

An novel Methodology for Reducing SoC Test Data Volume on FPGA-based Testers
P. Bernardi, M. Sonza Reorda

Dipartimento di automatica e Informatica, Politecnico di Torino, IT

ABSTRACT
Low-Cost test methodologies for Systems-on-Chip are

increasingly popular. They dictate which features have to
be included on-chip and which test procedures have to be
adopted in order to guarantee high test quality, while
minimizing application costs. Consequently, Low-Cost test
strategies can be run on testers offering lower
performance and/or reduced features with respect to
traditional Automatic Test Equipments (ATEs); these
equipments are usually referred to as Low-Cost testers.

This paper proposes a methodology for reducing the
test data volume for the application of SoC Low-Cost test
procedures. The method exploits a tester architecture
organization suitable for SoCs testing, which includes a
programmable device: the usage of this configurable block
joined to the analysis of test pattern regularities permits
minimizing the test data volume, thus improving the tester
capabilities. The proposed method relies on test pattern
compression at system level and it does not address core
level pattern manipulation, as several other previously
published works do.

Case studies are proposed, which provide data about
the application of the proposed methodology to the test of
SoCs including self-testable processor and memory cores.
IEEE 1149.1 and IEEE 1500 test access mechanisms are
considered. The achieved pattern depth reduction ratio is
up to about the 64% for the considered case studies.

1. Introduction
Low-Cost is a widely used term in the testing scenario.

This attribute merges many test concepts and it is
perceived with slightly different meanings depending on
the considered testing area. Concerning test generation, a
Low-Cost methodology provides test procedures that
minimize the test application costs, such as test duration;
conversely, in the test equipments scenario, a Low-Cost
tester is a “cheap” equipment offering lower performance
and/or reduced features with respect to a traditional
Automatic Test Equipment (ATE).

With the advent of Systems-on-Chip (SoCs), the term
Low-Cost is commonly used to classify a set of strategies
and equipments that exploit Design-for-Testability (DfT)
features included on-chip for reducing test costs without
impacting on test effectiveness; the costs of SoC test
procedure involves many factors, that are primarily the test
pins count, the required application frequency and the
amount of patterns to be physically applied. Therefore, if
test resources are judiciously partitioned, testers would be
asked to provide only few channels per chip, the frequency
requirement can be relaxed and even small memories can
be sufficient to store the pattern set.

Low-Cost properties of a SoC test procedure normally
stem from two separate test aspects:
• Test initialization/activation/management and result

retrieval via test access protocols
• Test execution.

The adoption of test access protocols to transport
information inside the SoC architecture mainly addresses
pin count reduction, often at the expense of the bandwidth.
Indeed, autonomous test procedure execution addresses
frequency requirements mitigation, since it normally
exploits internal or independent clock supply resources
that do not request any external intervention.

Concerning test data volume of procedures usually
classified as Low-Cost, some additional considerations
have to be done; the overall number of test vectors to be
applied to the DUT depends on the number of
initialization and management operations required to
activate the SoC test functionalities. Consequently,
patterns describing such procedures finally reside on the
tester memory and potentially impact on the test
applicability. Moreover, the adoption of a test access
protocol may heavily affect the tester memory
requirements by encapsulating each core vector into longer
sequences that depend on the SoC test infrastructure
organization. In this paper, the attention is mainly focused
on this point.

This paper describes a suitable methodology for test
data volume reduction for the application of SoCs Low-
Cost test procedures. The illustrated strategy relies on the
capabilities of a tester equipment based on the usage of a
programmable logic device and exploits a pattern depth
minimization method taking advantage of test pattern
regularities that derive from the specific test access
mechanism employed. In the described methodology, a
test set is firstly analyzed in order to identify test segments
recurring several times during stimuli application; in this
way, the programmable device is exploited for supplying
the identified recurrent test parts without explicitly
requesting their multiple memorization.

The paper presents some conceptual issues that allow
test size reduction and the guidelines for an effective usage
of the programmable resources considered available. A
case study is discussed including the application of
Software-based Self-Test to a processor core and the
application of a Built-in Self-Test strategy to memory
cores. IEEE 1500 and JTAG test protocols are considered
as test access mechanisms.

Section 2 of the paper provides backgrounds on Low-
Cost test procedure; section 3 contains key concepts for
pattern size mitigation and describes a possible low-cost
tester hw/sw organization, section 4 shows some obtained
results, and section 5 draws some conclusions.

978-3-9810801-3-1/DATE08 © 2008 EDAA

2. Background
As mentioned in the introduction, the Low-Cost

attribute is assigned to a SoC testing method dependently
on both the implemented core test types and the adopted
on-chip DfT solutions. These two aspects are normally
strictly correlated in a strict manner. Anyway, it is
important to separate what concerns the application of the
test procedure (i.e., how the test is executed) from what
concerns the test management at the SoC level (i.e., in
which way the test is prepared, and run, and the results
retrieved).

Let’s briefly introduce which types of SoC test
strategies are currently labeled as Low-Cost in the
literature. To be as much general as possible, testing
methodologies at core level may be classified in Scan-
based and Self-test approaches.

Low-Cost scan-based test approaches rely on design
techniques allowing the minimization of the number of
tester channels [1] and tester frequency requirements [2].
In addition to traditional scan cells, such techniques adopt
suitable DfT features such as decoders and PLL-based
circuitries; these techniques permit moving deterministic
patterns in the chip at reduced speed, thus applying them
at higher frequency independently on ATE capabilities.

Low-Cost self-test approaches may be based on
Infrastructure Intellectual Properties (IIPs) modules [3] or
may employ functional parts of the device under test itself
[4]. The key point is that, once launched, a self-test
procedure is autonomously applied until it ends. A further
sub-classification for Low-Cost Self-Test approaches may
includes Software-Based Self-Test (SBST) [4] and Built-in
Self-Test (BIST) strategies [5][6]. Test procedures
exploiting both SBST and BIST principles consists at least
in three parts: 1) a preliminary initialization phase aimed
at loading at low frequency test micro-codes or setting
parameters, 2) a self-test execution at high frequency, 3)
result download at low frequency.

When merging many cores into a SoC, a test
infrastructure is required to move test data from a test
source to each core and test results from each core to a test
sink [9]. Standardized test structures have been proposed
in many papers (i.e., Virtual Socket Interface Alliance
(VSIA) [7] and the IEEE 1500 embedded core test [8]).
Under the hardware point of view, possible test
infrastructures include wrappers and test access
mechanism (TAMs); concerning software, test creation for
the entire SoC consists in test translation from core
terminals to SoC pins [12].

The adoption of such a standardized test structure is a
key point for transforming a SoC test procedure into a
low-cost one, especially with respect to the frequency and
edge-sets requirements. The adoption of a suitable
wrapper efficiently permits to separate the test
management from the test execution clock domains.
[8][11].

Unfortunately, the usage of such test structures increases
the patterns size; in fact, additional sequences are required
for core selection and for addressing test wrapper internal
resources [12].

3. Proposed method
This paper describes a method for significantly reducing

the test data volume required by SoC testing. Differently
from previous works [9] which were based on test data
compression and scheduling optimization, the proposed
methodology is based on the identification of recurrent test
set parts; recurring segments are mainly due to the Test
Access Mechanism included on-chip and to the
communication protocol introduced at the SoC integration
level.

The purpose of the proposed approach is to reduce the
test data volume size by asking the tester to intervene
during the pattern application; in particular, it is requested
to autonomously generates part of the test patterns that
will be no longer requested to reside in the tester memory.
The proposed methodology is based on
• test set analysis
• suitable Low-Cost tester organization.

The test set analysis aims at reducing the pattern set size
by identifying test segments occurring several times in the
considered test set. This phase requires the knowledge of
the employed test access mechanism and its inputs are the
whole test set description and a set of shorter test segments
provided by the test engineer who developed the test
recipe. The analysis process returns
• the list of test segments in the selected short test

segments and identified as hardly recurrent,
• a modified test set description pruned from such

recurrent test segments,
• the information needed to rebuild the original test set

characteristics in a suitable format.

original
Test Set

description

analysis

HW
resources

SW
resources

FPGA
programming

Tester
Memory
loading Stimuli

recontruction
&

application

Fig. 1: Methodology flow.

The tester organization assumes that the used tester
includes a programmable logic device (FPGA) devoted to
reconstruct the original test set. This component is often
included in tester architectures; in the proposed method it
is used as it follows: first of all, identified recurrent test
segments are translated into finite state machines (FSMs)
able to autonomously reproduce the recurrent test
segments themselves. Secondly, FSMs are mapped on the
FPGA and activated at pre-calculated times during test
pattern application; Additionally, the programmable logic
device is asked to store suitable circuitry able to merge
recurrent and non-recurrent test parts

To summarize, the overall Low-cost test analysis and
application flow consists in the following, sequentially
performed steps, as illustrated in Fig 1:
a. Test pattern analysis and recurrent segment

identification

b. Tester FPGA programming and reduced pattern file
storage on tester memory

c. Physical application of the test set autonomously
reconstructed by the tester.

3.1 Recurrent test segments identification
Let’s consider a test procedure suitable for Low-Cost

test of SoCs. Independently on the implemented
communication protocol, for every test data sent to any
core or read from it, it is possible to identify three
separated phases:
1. preparation of the involved test structure(s)
2. data transfer
3. return to idle state.

These three phases can be identified over the timing
diagram snapshot reported in Fig. 2, which is related to the
test procedure for a SoC design driven through a TAP
controller compliant with the IEEE 1149.1 standard. Such
a TAP controller is used to control the functionalities of
IEEE 1500 wrappers [9] and its state machine is driven by
5 suitable top level signals [10].

tck
trst
tms
tdi
tdo

(1) (3) (1) (3) (1) (3) (1)(2) (2) (2)(2) (3)

Fig. 2: TAP access timing snapshot; zone labels are related to the
described phases.

Depending on the content of zones labeled as (1), the
TAP controller IR or the wrapper registers are addressed.
Therefore, their content is filled up accordingly with the
tdi values serially shifted in. In the example, the TAP IR
is 2 bit wise (the three possible values correspond to
Wrapper Instruction Register selection-write, Wrapper
Data Register write, Wrapper Data Register read
operations), while the wrapper register addressed is 8 bit
long.

Accordingly to these considerations, 2 types of
occurrences may be identified in the pattern set:
• Vertical occurrences: a vertical occurrence is

encountered when a timing diagram slice (during
more than 1 clock cycle) is repeated many times in the
overall pattern set application. Fig. 3 shows an
example; 2 vertical occurrences are observable
matching with zones (1) and (3) identified in fig. 2.

tck
trst
tms
tdi
tdo

(V_0) (V_1) (V_1)(V_0)

Fig. 3: Two vertical occurrences (V_0 and V_1) are identified in
the proposed scenario.

• Horizontal occurrences: a horizontal occurrence is
encountered when a signal value is maintained stable

at a certain value for more than 1 clock cycle.
Horizontal occurrence identification follows the
vertical one, thus it works on pattern set regions that
are not vertically recurrent. An example is shown in
fig. 4; horizontal occurrences are shaded parts with
outlined border.

tck
trst
tms
tdi
tdo

(V_0) (V_1) (V_1)(V_0)(H_0)(H_0) (H_0)(H_0)

Fig. 4: One horizontal occurrence (H_0) is identified in the
proposed scenario for the trst and tms signals.

By following such an occurrence identification strategy,
a certain number of bits can be removed from the pattern
set for being generated by hardware tester resources. The
result of this pruning operation is therefore a Reduced Test
Set description file (RTS file); clock cycle per clock
cycle, this file sequentially stores the remaining bits in a
fixed order. Such bits corresponds to narrower pattern
parts in Fig. 4

Indeed, a second file called Test Segments Occurrence
table file (TSO file) is required, storing the information
required to reconstruct the original pattern set. The
following encoding has been chosen for the TSO file:
• In case of the current pattern segment does not present

any vertical occurrence,
o 16 bits (2 bytes) are used to describe its

characteristics (values are stored in the RTS file)
o the MSB of the first byte is set to 0
o the 2nd to 4th bits provide the horizontal

occurrence identification number (up to 7 cases -
111 if none)

o the remaining 12 bits store the length in clock
cycle of the segment (up to 4096 clock cycles)

• In case the current pattern segment corresponds to a
vertical occurrences
o 8 bits are used to describe it in the TSO file and

its value is generated by tester hardware parts
o the MSB of this byte is set to 1
o the remaining 7 bits indicate the vertical

occurrence identification number (up to 128).
In general, the reduced test data volume (RTDV)

obtained by applying the illustrated method can be
calculated as:

RTDV = 8 ⋅ (nTS + nNRS) + ∑(i=0 to nNRS) (lNRSi ⋅ (nS – nHRSi))

where nTS is the total number of segments (either

showing vertical occurrence or not), nNRS is the number of
segments that do not show any vertical occurrence, lNRSi is
the length in clock cycles of the ith non-recurring segment,
nS is the number of stimulated top-level signals and nHRSi
is the number of signals horizontally occurring during the
ith non-recurring segment.

In the shown example, the RTS file (concerning the
reported test set slice) would be:
000011100100111101100110

The resulting TSO file is the following:
00000000
00000010
10000000
00000000
00000010
10000001
00000000
00001000
10000000
00000000
00000010
10000001

Concerning the shown example that encompasses very
few clock cycles, the RTS plus TSO size is 120 bits, while
initially the test set size included 144 bits, corresponding
to a test data volume reduction ratio of the 16.7%.

The effectiveness of this strategy may depend on the
analyzed patterns and it fits well with test sets showing
• long vertical occurrences
• few, but extensively repeated cases of horizontal

occurrences.
This is the case of Low-Cost test strategies including

BIST and SBST, which usually request many repeated
initialization and result download operations.
3.2 Low-Cost Tester HW/SW organization

The principle of the proposed method is that some parts
of the test set can be removed from the pattern set and
reproduced by means of hardware FSMs, which are
activated at predetermined times like macros for
programming languages.
To suit with the proposed method, the assumed Low-Cost
tester architecture has to possibly include the hardware
components itemized herein:
a. A Control Unit in charge of managing the test flow

execution
b. A Stimuli Generator directly sequencing patterns to

the device under test
c. A Monitoring Unit managing results retrieval
d. A set of memories storing test set information.

D
U

T

H
O

ST Control Unit

µP FPGA
Stimuli

Generator

Monitoring
Unit

TSO RTS

Responses
/

Mismatches

R
A

M
R

A
M

R
A

M

Tester architecture

Fig. 5: hardware organization of the Low-Cost tester.

As shown in fig. 5, Control Unit tasks may be
performed by a microprocessor (alternatively, it may
correspond to a properly designed circuitry) Within its
duties, the Control Unit reads the TSO file and
communicates information to Stimuli Generator.

The Stimuli Generator is implemented by a FPGA and,
by means of the information received from the Control
Unit, it is in charge of reconstruct the test set by reading
the RTS file and by activating some FSMs that
autonomously reproduce the recurrent test segments
identified during the test set analysis.

The Monitor Unit is also contained in the FPGA and it
can act in two ways: pattern matching and results storage.
In case of pattern matching, it simply compares the
obtained DUT outputs with the expected ones; therefore, it
strictly collaborates with the Stimuli Generator and
memorizes only noticed discrepancies. Otherwise, when
selecting results storage mode, the DUT output values are
completely stored.

Following the description of such tester components, it
is clear that the Memories are requested to:
• Store the TSO file
• Store the RTS file
• Store test stimuli application responses/pattern

mismatches.

Stimuli
Generator
CTRL unit

TSO buffer
manager

Te
st

er
 C

on
tr

ol
 U

ni
t

FSM/mem

V_ID

H_ID

Log m

Log n

curr_stim
uli_vector_reg

RTS buffer manager

H_0

H_1

H_n

V_0 V_1 V_m

H
_m

ux

V_mux

H_val

H_msk

V_end V_val

RTS memory

reconstr
unit

FSM
/m

em
m

ux

Monitoring
Unit

D
U

T

Stimuli Generator

 Fig. 6: Tester Stimuli Generator conceptual schema.
The most important component of the illustrated

environment is the Stimuli Generator, which interacts with
all the other mentioned tester components and whose
conceptual schema is reported in Fig 6.

This component contains the following modules:
• A Stimuli Generator CTRL unit
• A TSO buffer and its management unit
• A RTS buffer and its management unit
• A set of V_i units, each one containing a FSM able to

reproduce one of the identified vertical occurrences
• A set of H_i units, each one containing information

about one of the identified horizontal occurrences
• A Reconstr Unit that merges RTS with horizontal

occurrence data

• A set of multiplexers for pattern source selection
• A Current Stimuli Vector register.

The Stimuli Generator CTRL unit is in charge of both
communicating with the tester control unit (merely test
procedure management, e.g., test launch, status polling
and conclusion acknowledgement) and managing the test
stimuli reconstruction/application. The latter aspect
consists in translating the TSO content in suitable signals:
• FSM/mem signal: this signal enables the application

of patterns deriving from RTS file content or from
FSMs reproducing vertical occurrences

• V_ID signal: identifies the specific vertical
occurrence to be applied

• H_ID signal: identifies the specific vertical
occurrence to be applied.

FSM/mem signal timings derives from both the TSO
file content (it includes the duration in clock cycle for each
non-recurrent test part) and the internal Stimuli Generator
CTRL unit. In fact, other than reproducing a test segment
once activated by the FSM/mem rising front, each V_i
module acknowledges its end; this signal, V_end, reaches
the Stimuli Generator CTRL unit.

The TSO and RTS files content is received at run-time
from the tester control unit and read from memory,
respectively; this operation is performed by means of 2
circular buffers, TSO and RTS buffers, and managed by
two separated managements units. These units are in
charge of continuously monitoring the buffer content in
order to replace already used parts with new ones. This
operation is done concurrently with the stimuli generation
and application processes.

The TSO buffer is read by the Stimuli Generator CTRL
unit and is word addressable; on the contrary, the RTS
buffer has to be bit addressable since a variable number of
bits can be requested for patterns reconstruction,
depending on the associated horizontal occurrence. This
information is provided by each H_i unit by means of a
pattern mask and used by the Reconstr Unit whose output
is the complete pattern value. When moving from a
reduced test set to another, only the H_i and V_i are
requested to be redesigned, accordingly with vertical and
horizontal occurrence identified.

4. Experimental results
The developed experimental setup exploits a semi-

automated tool chain that includes a Lexical Analysis and
a Translation tools. The former is able to identify vertical
and horizontal occurrences in a VCD file basing on user
provided test segments, again provided in VCD; the latter
is able to translate a recurrent test segment described in
VCD language into a FSM. Both these tools are
implemented in AINSI C (totally about 1,500 code lines).
Fig. 7 shows the pattern analysis experimental setup.

As underlined in section 3, some of the tester
components supposed to be embedded on FPGA do not
require any redesign when changing the analyzed pattern
(e.g., the buffer managers and the Stimuli Generator
control unit. Therefore, fix parts are designed in VHDL
and integrated with the FSM VHDL descriptions resulting

from the pattern analysis phase. In our environment, we
used a Xilinx Spartan3 XC3S1000 FPGA as reference for
our evaluation and we used it for prototyping the Stimuli
Generator design. This FPGA contains about 1M
equivalent gates, including about 15,000 flip-flops and
500k SRAM bits; buffers are mapped over SRAM blocks
available on FPGA. Table I shows the occupation of fix
components mapped on the considered device.

SoC
pattern
.VCD

Pattern
segment

.VCD

Lexical
Analyzer

Test
Segments

Occurrence
table

Reduced
Test
Set

description

Translator
FSM
.VHD

Fig. 7: Pattern analysis experimental setup.

Stimuli generator Component Lut [#] FF[#]

Stimuli Generator CTRL Unit 64 57

RTS Buffer Manager 41 38

TSO Buffer Manager 49 27

V_mux + H_mux + FSM/mem_mux 158 0

Reconstr Unit 345 0

Curr_stimuli_vector_reg 0 32

Total 657 154

Tab I: Components occupation on FPGA

It should be noticed that current FPGAs offer enough
blocks to store the entire system including control unit,
stimuli generator and monitoring unit modules and
memories. Reducing the pattern size is a fundamental
issue for such an implementation since it permits to
maximize the number of vectors store in the FPGA
memory that is currently represents a bottleneck for
programmable devices.

The evaluation of the proposed methodology was done
on a sample SoC including self-tested processor and
memory cores. Low-cost test methodologies considered
are:
a. Software-based Self-Test of microprocessors [4]
b. Programmable Built-in Self-Test of memories [11].

µp mem

IIP pBIST

1500 wrapper 1500 wrapper

IEEE 1149.1 TAP
5

µp mem

IIP pBIST

1500 wrapper 1500 wrapper

7

a) b)
Fig. 8: the 2 investigated SoC test architectures.

Two versions of the SoC structure, shown in fig 8., have
been implemented considering 2 test access mechanisms:
1. cores surrounded by an IEEE 1500 wrapper whose

functionalities are controlled through a TAP controller
compliant with the IEEE 1149.1 Standard

2. cores surrounded by an IEEE 1500 wrapper whose
functionalities are directly controlled from the top-
level of the SoC.

This methodology can be fruitfully extended to other
protocols such as on-going works on IJTAG/SJTAG.

We assumed that the maximum supported tester
frequency is 20 MHz while the test execution is supplied
by an internal (or tester independent) 200 MHz source.

Considering processor Software-based Self-Test, results
refer to the application of test procedures described in [4]
for a Minimips RISC processor. Such a processor
architecture fetches instructions and data codified on 32
bits; addresses are provided on a 32 bits bus, too. In the
supposed environment, it means that at least 67 (32
instruction + 32 address + 3 control bits) clock cycles are
requested for each program word to be serially transferred
into a suitable embedded memory, therefore loading
programs is the major cost for this test procedure
application. The considered procedure accounts for 1,565
words and 7,162 clock cycles are requested for its
execution once loaded. In [4], few details are given
concerning results retrieval; we assume here that 256 data
memory locations are used to store results, each one on 32
bits. Table II summarizes the results for this case study.
The gain is up to about the 64% in case of pure IEEE 1500
access type.

SoC
Access

Structure
Vertical
occ. [#]

Horizontal
occ. [#]

Full pattern
set [kbits]

Reduced
pattern set

[kbits]

IEEE 1500 +
TAP ctrl 4 (5 ck) 2 (2 bits) ∼527 ∼287

IEEE 1500 0 2 (5 bits) ∼871 ∼313

Tab. II: test data volume reduction results for SBST test
procedures application.

Considering memory testing, the results refer to a test
procedure application exploits a Programmable BIST
whose architecture is detailed in [11]; the management of
this self-test architecture includes initialization, test
activation and results retrieval phases. The memory test
algorithm is stored in a microcode memory whose
parallelism is 4 bits and address bus is 6 bits; therefore, the
loading operation for a selected algorithm consists in
serially shifting 64 sequences, each one composed of 12
bits. In this specific case, a 16M memory core with a 32
bits data parallelism is tested by applying a 12n march
algorithm. Test execution results in about 5M clock cycles
at tester frequency. The test data volume reduction is very
high, mainly because of horizontal occurrence identified
during autonomous memory test execution. Commodities
like this one are commonly employed in the industrial
practice to save tester memory when waiting for test
completion; anyway, fairly speaking, an additional gain of
about 30% is obtained concerning test procedure
initialization either in case a TAP controller or solely

IEEE 1500 wrapper are used. Initialization and execution
phase gains are separately reported in table III.

SoC Access
Structure

Vertical occ.
[#]

Horizontal occ.
[#]

Full pattern set
[kbits]

Reduced
pattern set

[kbits]

IEEE 1500 +
TAP ctrl 4 (5 ck) 2 (2 bits)

(INIT) ∼4

(EXEC) ∼20,132

(INIT) ∼3

(EXEC) ∼19

IEEE 1500 0 2 (5 bits)
(INIT) ∼6

(EXEC) ∼35,232

(INIT) ∼4

(EXEC) ∼19

Tab. III: test data volume reduction results for programmable
memory BIST test procedures application.

Concerning the described two SoC test access
mechanisms, the stimuli generator occupation ranges
between the 17% and the 11% of the available FPGA
resources, respectively. The difference is due to the
different occurrence types identified, thus to the different
FSMs included on FPGA.

5. Conclusions
This paper provides a methodology suitable to reduce

the test data volume when low-cost test strategies are used.
The illustrated method consists in the analysis of the test
pattern set for identifying recurrent test segments. These
segments are pruned from the pattern set and supposed to
be reproducible in a hardware matter on the tester;
therefore, the described strategy relies on the assumption
that a FPGA is included in the used tester architecture to
store a suitable stimuli generator.

Experimental results shows the effectiveness and the
feasibility of the methodology for low-cost self-test
strategies of microprocessor and memory cores.

6. References
[1] P.T. Gonciari et al. ”Integrated test data decompression and core

wrapper design for low-cost system-on-a-chip testing” IEEE
International Test Conference, 2002, page(s):64 – 73

[2] Beck, M. et al. “Measures to improve delay fault testing on low-
cost testers - a case study”, IEEE VLSI Test Symposium, 2005,
page(s):223 – 228

[3] Zorian, Y.; “Guest editor's introduction: what is infrastructure IP?”,
IEEE Design & Test of Computers, Volume 19, Issue 3, May-June
2002 Page(s):3 – 5

[4] M. Psarakis et al. “Systematic software-based self-test for pipelined
processors”, ACM/IEEE Design Automation Conference,2006,
page(s):393–398

[5] A. Benso et al. ”HD2BIST: a hierarchical framework for BIST
scheduling, data patterns delivering and diagnosis in SoCs”, IEEE
International Test Conference, 2000, page(s): 892 – 901

[6] Stroud, C. E.; "A designer´s Guide to Built_In Self_Test", Kluwer
Academic Publisher, 2002

[7] http://www.vsi.org/, 2006
[8] E.J. Marinissen et al. “Towards a standard for embedded core test:

an example”, IEEE International Test Conference, 1999, page(s):
696 - 705

[9] K. Chakrabarty, “Low-cost modular testing and test resource
partitioning for SOCs”, IEE Proceedings - Computers and Digital
Techniques, Volume 152, Issue 3, 6 May 2005 Page(s):427 – 441

[10] IEEE 1149.1-1990 Standard Test Access Port and Boundary-Scan
architecture

[11] D. Appello et al. “Exploiting programmable BIST for the diagnosis
of embedded memory cores”, IEEE International Test Conference,
2003, pp. 379-385

[12] E.J. Marinissen et al. “The role of test protocols in testing
embedded-core-based system ICs”, IEEE European Test Workshop
1999.

