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ABSTRACT 
Low-Cost test methodologies for Systems-on-Chip are 

increasingly popular. They dictate which features have to 
be included on-chip and which test procedures have to be 
adopted in order to guarantee high test quality, while 
minimizing application costs. Consequently, Low-Cost test 
strategies can be run on testers offering lower 
performance and/or reduced features with respect to 
traditional Automatic Test Equipments (ATEs); these 
equipments are usually referred to as Low-Cost testers. 

This paper proposes a methodology for reducing the 
test data volume for the application of SoC Low-Cost test 
procedures. The method exploits a tester architecture 
organization suitable for SoCs testing, which includes a 
programmable device: the usage of this configurable block 
joined to the analysis of test pattern regularities permits 
minimizing the test data volume, thus improving the tester 
capabilities. The proposed method relies on test pattern 
compression at system level and it does not address core 
level pattern manipulation, as several other previously 
published works do. 

Case studies are proposed, which provide data about 
the application of the proposed methodology to the test of 
SoCs including self-testable processor and memory cores. 
IEEE 1149.1 and IEEE 1500 test access mechanisms are 
considered. The achieved pattern depth reduction ratio is 
up to about the 64% for the considered case studies. 

1. Introduction 
Low-Cost is a widely used term in the testing scenario. 

This attribute merges many test concepts and it is 
perceived with slightly different meanings depending on 
the considered testing area. Concerning test generation, a 
Low-Cost methodology provides test procedures that 
minimize the test application costs, such as test duration; 
conversely, in the test equipments scenario, a Low-Cost 
tester is a “cheap” equipment offering lower performance 
and/or reduced features with respect to a traditional 
Automatic Test Equipment (ATE).  

With the advent of Systems-on-Chip (SoCs), the term 
Low-Cost is commonly used to classify a set of strategies 
and equipments that exploit Design-for-Testability (DfT) 
features included on-chip for reducing test costs without 
impacting on test effectiveness; the costs of SoC test 
procedure involves many factors, that are primarily the test 
pins count, the required application frequency and the 
amount of patterns to be physically applied. Therefore, if 
test resources are judiciously partitioned, testers would be 
asked to provide only few channels per chip, the frequency 
requirement can be relaxed and even small memories can 
be sufficient to store the pattern set.  

Low-Cost properties of a SoC test procedure normally 
stem from two separate test aspects: 
• Test initialization/activation/management and result 

retrieval via test access protocols 
• Test execution. 

The adoption of test access protocols to transport 
information inside the SoC architecture mainly addresses 
pin count reduction, often at the expense of the bandwidth. 
Indeed, autonomous test procedure execution addresses 
frequency requirements mitigation, since it normally 
exploits internal or independent clock supply resources 
that do not request any external intervention. 

Concerning test data volume of procedures usually 
classified as Low-Cost, some additional considerations 
have to be done; the overall number of test vectors to be 
applied to the DUT depends on the number of 
initialization and management operations required to 
activate the SoC test functionalities. Consequently, 
patterns describing such procedures finally reside on the 
tester memory and potentially impact on the test 
applicability. Moreover, the adoption of a test access 
protocol may heavily affect the tester memory 
requirements by encapsulating each core vector into longer 
sequences that depend on the SoC test infrastructure 
organization. In this paper, the attention is mainly focused 
on this point. 

This paper describes a suitable methodology for test 
data volume reduction for the application of SoCs Low-
Cost test procedures. The illustrated strategy relies on the 
capabilities of a tester equipment based on the usage of a 
programmable logic device and exploits a  pattern depth 
minimization method taking advantage of test pattern 
regularities that derive from the specific test access 
mechanism employed. In the described methodology, a 
test set is firstly analyzed in order to identify test segments 
recurring several times during stimuli application; in this 
way, the programmable device is exploited for supplying 
the identified recurrent test parts without explicitly 
requesting their multiple memorization.  

The paper presents some conceptual issues that allow 
test size reduction and the guidelines for an effective usage 
of the programmable resources considered available. A 
case study is discussed including the application of 
Software-based Self-Test to a processor core and the 
application of a Built-in Self-Test strategy to memory 
cores. IEEE 1500 and JTAG test protocols are considered 
as test access mechanisms. 

Section 2 of the paper provides backgrounds on Low-
Cost test procedure; section 3 contains key concepts for 
pattern size mitigation and describes a possible low-cost 
tester hw/sw organization, section 4 shows some obtained 
results, and section 5 draws some conclusions. 
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2. Background 
As mentioned in the introduction, the Low-Cost 

attribute is assigned to a SoC testing method dependently 
on both the implemented core test types and the adopted 
on-chip DfT solutions. These two aspects are normally 
strictly correlated in a strict manner. Anyway, it is 
important to separate what concerns the application of the 
test procedure (i.e., how the test is executed) from what 
concerns the test management at the SoC level (i.e., in 
which way the test is prepared, and run, and the results 
retrieved).  

Let’s briefly introduce which types of SoC test 
strategies are currently labeled as Low-Cost in the 
literature. To be as much general as possible, testing 
methodologies at core level may be classified in Scan-
based and Self-test approaches. 

Low-Cost  scan-based test approaches rely on design 
techniques allowing the minimization of the number of 
tester channels [1] and tester frequency requirements [2]. 
In addition to traditional scan cells, such techniques adopt 
suitable DfT features such as decoders and PLL-based 
circuitries; these techniques permit moving deterministic 
patterns in the chip at reduced speed, thus applying them 
at higher frequency independently on ATE capabilities.  

Low-Cost self-test approaches may be based on 
Infrastructure Intellectual Properties (IIPs) modules [3] or 
may employ functional parts of the device under test itself 
[4]. The key point is that, once launched, a self-test 
procedure is autonomously applied until it ends. A further 
sub-classification for Low-Cost Self-Test approaches may 
includes Software-Based Self-Test (SBST) [4] and Built-in 
Self-Test (BIST) strategies [5][6]. Test procedures 
exploiting both SBST and BIST principles consists at least 
in three parts: 1) a preliminary initialization phase aimed 
at loading at low frequency test micro-codes or setting 
parameters, 2) a self-test execution at high frequency, 3) 
result download at low frequency. 

When merging many cores into a SoC, a test 
infrastructure is required to move test data from a test 
source to each core and test results from each core to a test 
sink [9]. Standardized test structures have been proposed 
in many papers (i.e., Virtual Socket Interface Alliance 
(VSIA) [7] and the IEEE 1500 embedded core test [8]). 
Under the hardware point of view, possible test 
infrastructures include wrappers and test access 
mechanism (TAMs); concerning software, test creation for 
the entire SoC consists in test translation from core 
terminals to SoC pins [12]. 

The adoption of such a standardized test structure is a 
key point for transforming a SoC test procedure into a 
low-cost one, especially with respect to the frequency and 
edge-sets requirements. The adoption of a suitable 
wrapper efficiently permits to separate the test 
management from the test execution clock domains. 
[8][11]. 

Unfortunately, the usage of such test structures increases 
the patterns size; in fact, additional sequences are required 
for core selection and for addressing test wrapper internal 
resources [12]. 

3. Proposed method 
This paper describes a method for significantly reducing 

the test data volume required by SoC testing. Differently 
from previous works [9] which were based on test data 
compression and scheduling optimization, the proposed 
methodology is based on the identification of recurrent test 
set parts; recurring segments are mainly due to the Test 
Access Mechanism included on-chip and to the 
communication protocol introduced at the SoC integration 
level.  

The purpose of the proposed approach is to reduce the 
test data volume size by asking the tester to intervene 
during the pattern application; in particular, it is requested 
to autonomously generates part of the test patterns that 
will be no longer requested to reside in the tester memory. 
The proposed methodology is based on 
• test set analysis 
• suitable Low-Cost tester organization. 

The test set analysis aims at reducing the pattern set size 
by identifying test segments occurring several times in the 
considered test  set. This phase requires the knowledge of 
the employed test access mechanism and its inputs are the 
whole test set description and a set of shorter test segments 
provided by the test engineer who developed the test 
recipe. The analysis process returns  
• the list of test segments in the selected short test 

segments and identified as hardly recurrent,  
• a modified test set description pruned from such 

recurrent test segments,  
• the information needed to rebuild the original test set 

characteristics in a suitable format. 
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Fig. 1: Methodology flow. 

The tester organization assumes that the used tester 
includes a programmable logic device (FPGA) devoted to 
reconstruct the original test set. This component is often 
included in tester architectures; in the proposed method it 
is used as it follows: first of all, identified recurrent test 
segments are translated into finite state machines (FSMs) 
able to autonomously reproduce the recurrent test 
segments themselves. Secondly, FSMs are mapped on the 
FPGA and activated at pre-calculated times during test 
pattern application; Additionally, the programmable logic 
device is asked to store suitable circuitry able to merge 
recurrent and non-recurrent test parts  

To summarize, the overall Low-cost test analysis and 
application flow consists in the following, sequentially 
performed steps, as illustrated in Fig 1: 
a. Test pattern analysis and recurrent segment 

identification 



 

 

b. Tester FPGA programming and reduced pattern file 
storage on tester memory 

c. Physical application of the test set autonomously 
reconstructed by the tester. 

 

3.1 Recurrent test segments identification 
Let’s consider a test procedure suitable for Low-Cost 

test of SoCs. Independently on the implemented 
communication protocol, for every test data sent to any 
core or read from it, it is possible to identify three 
separated phases: 
1. preparation of the involved test structure(s) 
2. data transfer 
3. return to idle state. 

These three phases can be identified over the timing 
diagram snapshot reported in Fig. 2, which is related to the 
test procedure for a SoC design driven through a TAP 
controller compliant with the IEEE 1149.1 standard. Such 
a TAP controller is used to control the functionalities of 
IEEE 1500 wrappers [9] and its state machine is driven by 
5 suitable top level signals [10]. 
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Fig. 2: TAP access timing snapshot; zone labels are related to the 
described phases. 

Depending on the content of zones labeled as (1), the 
TAP controller IR or the wrapper registers are addressed. 
Therefore, their content is filled up accordingly with the 
tdi values serially shifted in. In the example, the TAP IR 
is 2 bit wise (the three possible values correspond to 
Wrapper Instruction Register selection-write, Wrapper 
Data Register write, Wrapper Data Register read 
operations), while the wrapper register addressed is 8 bit 
long.  

Accordingly to these considerations, 2 types of 
occurrences may be identified in the pattern set: 
• Vertical occurrences: a vertical occurrence is 

encountered when a timing diagram slice (during 
more than 1 clock cycle) is repeated many times in the 
overall pattern set application. Fig. 3 shows an 
example; 2 vertical occurrences are observable 
matching with zones (1) and (3) identified in fig. 2. 
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Fig. 3: Two vertical occurrences (V_0 and V_1) are identified in 
the proposed scenario. 

• Horizontal occurrences: a horizontal occurrence is 
encountered when a signal value is maintained stable 

at a certain value for more than 1 clock cycle. 
Horizontal occurrence identification follows the 
vertical one, thus it works on pattern set regions that 
are not vertically recurrent. An example is shown in 
fig. 4; horizontal occurrences are shaded parts with 
outlined border.  
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Fig. 4: One horizontal occurrence (H_0) is identified in the 
proposed scenario for the trst and tms signals. 

By following such an occurrence identification strategy, 
a certain number of bits can be removed from the pattern 
set for being generated by hardware tester resources. The 
result of this pruning operation is therefore a Reduced Test 
Set description file (RTS file); clock cycle per clock  
cycle, this file sequentially stores the remaining bits in a 
fixed order. Such bits corresponds to narrower pattern 
parts in Fig. 4 

Indeed, a second file called Test Segments Occurrence 
table file (TSO file) is required, storing the information 
required to reconstruct the original pattern set. The 
following encoding has been chosen for the TSO file: 
• In case of the current pattern segment does not present 

any vertical occurrence,  
o 16 bits (2 bytes) are used to describe its 

characteristics (values are stored in the RTS file) 
o the MSB of the first byte is set to 0  
o the 2nd to 4th bits provide the horizontal 

occurrence identification number (up to 7 cases - 
111 if none) 

o the remaining 12 bits store the length in clock 
cycle of the segment (up to 4096 clock cycles) 

• In case the current pattern segment corresponds to a 
vertical occurrences 
o 8 bits are used to describe it in the TSO file and 

its value is generated by tester hardware parts 
o the MSB of this byte is set to 1 
o the remaining 7 bits indicate the vertical 

occurrence identification number (up to 128). 
In general, the reduced test data volume (RTDV) 

obtained by applying the illustrated method can be 
calculated as: 

 
RTDV = 8 ⋅ (nTS + nNRS) + ∑(i=0 to nNRS) (lNRSi ⋅ (nS – nHRSi)) 

 
where nTS is the total number of segments (either 

showing vertical occurrence or not), nNRS is the number of 
segments that do not show any vertical occurrence, lNRSi is 
the length in clock cycles of the ith non-recurring segment, 
nS is the number of stimulated top-level signals and nHRSi 
is the number of signals horizontally occurring during the 
ith non-recurring segment. 

 



 

 

In the shown example, the RTS file (concerning the 
reported test set slice) would be: 
000011100100111101100110 

The resulting TSO file is the following: 
00000000 
00000010 
10000000 
00000000 
00000010 
10000001 
00000000 
00001000 
10000000 
00000000 
00000010 
10000001 

Concerning the shown example that encompasses very 
few clock cycles, the RTS plus TSO size is 120 bits, while 
initially the test set size included 144 bits, corresponding 
to a test data volume reduction ratio of the 16.7%.  

The effectiveness of this strategy may depend on the 
analyzed patterns and it fits well with test sets showing 
• long vertical occurrences 
• few, but extensively repeated cases of horizontal 

occurrences.  
This is the case of Low-Cost test strategies including 

BIST and SBST, which usually request many repeated 
initialization and result download operations.  
3.2 Low-Cost Tester HW/SW organization 

The principle of the proposed method is that some parts 
of the test set can be removed from the pattern set and 
reproduced by means of hardware FSMs, which are 
activated at predetermined times like macros for 
programming languages. 
To suit with the proposed method, the assumed  Low-Cost 
tester architecture has to possibly include the hardware 
components itemized herein: 
a. A Control Unit in charge of managing the test flow 

execution 
b. A Stimuli Generator directly sequencing patterns to 

the device under test 
c. A Monitoring Unit managing results retrieval  
d. A set of memories storing test set information. 
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Fig. 5: hardware organization of the Low-Cost tester. 

As shown in fig. 5, Control Unit tasks may be 
performed by a  microprocessor (alternatively, it may 
correspond to a properly designed circuitry) Within its 
duties, the Control Unit reads the TSO file and 
communicates information to Stimuli Generator.  

The Stimuli Generator is implemented by a FPGA and, 
by means of the information received from the Control 
Unit, it is in charge of reconstruct the test set by reading 
the RTS file and by activating some FSMs that 
autonomously reproduce the recurrent test segments 
identified during the test set analysis. 

The Monitor Unit is also contained in the FPGA and it 
can act in two ways: pattern matching and results storage. 
In case of pattern matching, it simply compares the 
obtained DUT outputs with the expected ones; therefore, it 
strictly collaborates with the Stimuli Generator and 
memorizes only noticed discrepancies. Otherwise, when 
selecting results storage mode, the DUT output values are 
completely stored. 

Following the description of such tester components, it 
is clear that the Memories are requested to: 
• Store the TSO file 
• Store the RTS file 
• Store test stimuli application responses/pattern 

mismatches. 
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    Fig. 6: Tester Stimuli Generator conceptual schema. 
The most important component of the illustrated 

environment is the Stimuli Generator, which interacts with 
all the other mentioned tester components and whose 
conceptual schema is reported in Fig 6.  

This component contains the following modules: 
• A Stimuli Generator CTRL unit 
• A TSO buffer and its management unit 
• A RTS buffer and its management unit 
• A set of V_i units, each one containing a FSM able to 

reproduce one of the identified vertical occurrences 
•  A set of H_i units, each one containing information 

about one of the identified horizontal occurrences 
• A Reconstr Unit that merges RTS with horizontal 

occurrence data 



 

 

• A set of multiplexers for pattern source selection 
• A Current Stimuli Vector register. 

The Stimuli Generator CTRL unit is in charge of both 
communicating with the tester control unit (merely test 
procedure management, e.g., test launch, status polling 
and conclusion acknowledgement) and managing the test 
stimuli reconstruction/application. The latter aspect 
consists in translating the TSO content in suitable signals: 
• FSM/mem signal: this signal enables the application 

of patterns deriving from RTS file content or from 
FSMs reproducing vertical occurrences 

• V_ID signal: identifies the specific vertical 
occurrence to be applied 

• H_ID signal: identifies the specific vertical 
occurrence to be applied. 

FSM/mem signal timings derives from both the TSO 
file content (it includes the duration in clock cycle for each 
non-recurrent test part) and the internal Stimuli Generator 
CTRL unit. In fact, other than reproducing a test segment 
once activated by the FSM/mem rising front, each V_i 
module acknowledges its end; this signal, V_end, reaches 
the Stimuli Generator CTRL unit. 

The TSO and RTS files content is received at run-time 
from the tester control unit and read from memory, 
respectively; this operation is performed by means of 2 
circular buffers, TSO and RTS buffers, and managed by 
two separated managements units. These units are in 
charge of continuously monitoring the buffer content in 
order to replace already used parts with new ones. This 
operation is done concurrently with the stimuli generation 
and application processes. 

The TSO buffer is read by the Stimuli Generator CTRL 
unit and is word addressable; on the contrary, the RTS 
buffer has to be bit addressable since a variable number of 
bits can be requested for patterns reconstruction, 
depending on the associated horizontal occurrence. This 
information is provided by each H_i unit by means of a 
pattern mask and used by the Reconstr Unit whose output 
is the complete pattern value. When moving from a 
reduced test set to another, only the H_i and V_i are 
requested to be redesigned, accordingly with vertical and 
horizontal occurrence identified. 

4. Experimental results 
The developed experimental setup exploits a semi-

automated tool chain that includes a Lexical Analysis and 
a Translation tools. The former is able to identify vertical 
and horizontal occurrences in a VCD file basing on user 
provided test segments, again provided in VCD; the latter 
is able to translate a recurrent test segment described in 
VCD language into a FSM. Both these tools are 
implemented in AINSI C (totally about 1,500 code lines). 
Fig. 7 shows the pattern analysis experimental setup. 

As underlined in section 3, some of the tester 
components supposed to be embedded on FPGA do not 
require any redesign when changing the analyzed pattern 
(e.g., the buffer managers and the Stimuli Generator 
control unit. Therefore, fix parts are designed in VHDL 
and integrated with the FSM VHDL descriptions resulting 

from the pattern analysis phase. In our environment, we 
used a Xilinx Spartan3 XC3S1000 FPGA as reference for 
our evaluation and we used it for prototyping the Stimuli 
Generator design. This FPGA contains about 1M 
equivalent gates, including about 15,000 flip-flops and 
500k SRAM bits; buffers are mapped over SRAM blocks 
available on FPGA. Table I shows the occupation of fix 
components mapped on the considered device. 
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Fig. 7: Pattern analysis experimental setup. 

 

Stimuli generator Component Lut [#] FF[#] 

Stimuli Generator CTRL Unit 64 57 

RTS Buffer Manager 41 38 

TSO Buffer Manager 49 27 

V_mux + H_mux + FSM/mem_mux 158 0 

Reconstr Unit 345 0 

Curr_stimuli_vector_reg 0 32 

Total 657 154 

Tab I: Components occupation on FPGA 

It should be noticed that current FPGAs offer enough 
blocks to store the entire system including control unit, 
stimuli generator and monitoring unit modules and 
memories. Reducing the pattern size is a fundamental 
issue for such an implementation since it permits to 
maximize the number of vectors store in the FPGA 
memory that is currently represents a bottleneck for 
programmable devices.   

The evaluation of the proposed methodology was done 
on a sample SoC including self-tested processor and 
memory cores. Low-cost test methodologies considered 
are: 
a. Software-based Self-Test of microprocessors [4] 
b. Programmable Built-in Self-Test of memories  [11]. 
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Fig. 8: the 2 investigated SoC test architectures. 

 



 

 

Two versions of the SoC structure, shown in fig 8., have 
been implemented considering 2 test access mechanisms: 
1. cores surrounded by an IEEE 1500 wrapper whose 

functionalities are controlled through a TAP controller 
compliant with the IEEE 1149.1 Standard 

2. cores surrounded by an IEEE 1500 wrapper whose 
functionalities are directly controlled from the top-
level of the SoC. 

This methodology can be fruitfully extended to other 
protocols such as on-going works on IJTAG/SJTAG. 

We assumed that the maximum supported tester 
frequency is 20 MHz while the test execution is supplied 
by an internal (or tester independent) 200 MHz source. 

Considering processor Software-based Self-Test, results 
refer to the application of test procedures described in [4] 
for a Minimips RISC processor. Such a processor 
architecture fetches instructions and data codified on 32 
bits; addresses are provided on a 32 bits bus, too. In the 
supposed environment, it means that at least 67 (32 
instruction + 32 address + 3 control bits) clock cycles are 
requested for each program word to be serially transferred 
into a suitable embedded memory, therefore loading 
programs is the major cost for this test procedure 
application. The considered procedure accounts for 1,565 
words and 7,162 clock cycles are requested for its 
execution once loaded. In [4], few details are given 
concerning results retrieval; we assume here that 256 data 
memory locations are used to store results, each one on 32 
bits. Table II summarizes the results for this case study. 
The gain is up to about the 64% in case of pure IEEE 1500 
access type. 

 

SoC 
Access 

Structure 
Vertical 
occ. [#] 

Horizontal 
occ. [#] 

Full pattern 
set [kbits] 

Reduced 
pattern set 

[kbits] 

IEEE 1500 + 
TAP ctrl 4 (5 ck) 2 (2 bits) ∼527 ∼287 

IEEE 1500 0 2 (5 bits) ∼871 ∼313 

Tab. II: test data volume reduction results for SBST test 
procedures application. 

Considering memory testing, the results refer to a test 
procedure application exploits a Programmable BIST 
whose architecture is detailed in [11]; the management of 
this self-test architecture includes initialization, test 
activation and results retrieval phases. The memory test 
algorithm is stored in a microcode memory whose 
parallelism is 4 bits and address bus is 6 bits; therefore, the 
loading operation for a selected algorithm consists in 
serially shifting 64 sequences, each one composed of 12 
bits. In this specific case, a 16M memory core with a 32 
bits data parallelism is tested by applying a 12n march 
algorithm. Test execution results in about 5M clock cycles 
at tester frequency. The test data volume reduction is very 
high, mainly because of horizontal occurrence identified 
during autonomous memory test execution. Commodities 
like this one are commonly employed in the industrial 
practice to save tester memory when waiting for test 
completion; anyway, fairly speaking, an additional gain of 
about 30% is obtained concerning test procedure 
initialization either in case a TAP controller or solely 

IEEE 1500 wrapper are used. Initialization and execution 
phase gains are separately reported in table III. 

 

SoC Access 
Structure 

Vertical occ. 
[#] 

Horizontal occ. 
[#] 

Full pattern set 
[kbits] 

Reduced 
pattern set 

[kbits] 

IEEE 1500 + 
TAP ctrl 4 (5 ck) 2 (2 bits) 

(INIT) ∼4 

(EXEC) ∼20,132 

(INIT) ∼3 

(EXEC) ∼19 

IEEE 1500 0 2 (5 bits) 
(INIT) ∼6 

(EXEC)  ∼35,232 

(INIT) ∼4 

(EXEC) ∼19 

Tab. III: test data volume reduction results for programmable 
memory BIST test procedures application. 

Concerning the described two SoC test access 
mechanisms, the stimuli generator occupation ranges 
between the 17% and the 11% of the available FPGA 
resources, respectively. The difference is due to the 
different occurrence types identified, thus to the different 
FSMs included on FPGA. 

5. Conclusions 
This paper provides a methodology suitable to reduce 

the test data volume when low-cost test strategies are used. 
The illustrated method consists in the analysis of the test 
pattern set for identifying recurrent test segments. These 
segments are pruned from the pattern set and supposed to 
be reproducible in a hardware matter on the tester; 
therefore, the described strategy relies on the assumption 
that a FPGA is included in the used tester architecture to 
store a suitable stimuli generator. 

Experimental results shows the effectiveness and the 
feasibility of the methodology for low-cost self-test 
strategies of microprocessor and memory cores. 
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