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Abstract. We study the stabilization problem of linear parabolic boundary control
systems. While the control system is described by a pair of standard linear differential
operators (£,r), the corresponding semigroup generator generally admits no Riesz basis
of eigenvectors. Very little information 011 the fractional powers of this generator is
needed. In this sense our approach has enough generality as a prototype to be used for
other types of parabolic systems. We propose in this paper a unified algebraic approach
to the stabilization of a variety of parabolic boundary control systems.

In the special case where the semigroup generator admits a Riesz basis, we also propose
a new and simpler algebraic approach to the stabilization which is based on the so-called
identity compensator. To show the usefulness of our approach, a class of linear boundary
control systems of second order in t is introduced, to discuss the stabilization or the
enhancement of stability of these systems.

1. Introduction. We consider in this paper the stabilization problem for a class
of linear boundary control systems of parabolic type by means of feedback control. In
investigating boundary control problems, the complete knowledge of fractional powers of
the associated elliptic operators has been an indispensable and powerful tool (see [13, 14],
for example). By the transformation of the state variable via the fractional power, the
original equation with boundary inputs is changed into the equivalent equation with
distributed inputs and no boundary input, so that the standard semigroup theory is
effectively applied. The essential and specific use of fractional powers, however, makes it
difficult to apply the existing procedure of stabilization to other more complicated control
systems: It is generally a difficult (but challenging at the same time) problem to derive
a complete knowledge of fractional powers of an elliptic operator under consideration
unless it is just a version of well-known operators such as those discussed in [4, 7], The
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operator studied in this paper consists of a standard elliptic differential operator C of
2nd order in a bounded domain i?(c R"1) and the associated boundary operator of
mixed nature, denoted as r: The operator r consists partially of the Dirichlet type and
partially of the Neumann type (see (1.2) below for the definition). For such operators,
few satisfactory results 011 fractional powers have been obtained. A serious reason is that
the Dirichlet boundary is locally continuously connected with the Neumann boundary.
I11 the standard case with the Dirichlet boundary (case I) or the generalized Neumann
boundary (case II), each subdomain near the boundary is mapped—via a partition of
unity—onto a domain of the half space: R|^ = {y = {//'. //,„): y' £ Wyl~1.ym > 0}.
where r is transformed into ry which is essentially equivalent to the one described as
Tyu — u(y', +0) (case I) or tvu = du/dym(y', +0) (case II). In case I, by introducing the
maps A of prolongation and /i of restriction:

A: L2(R™ )^L2(R"!). Au(y',y„ 'Vm): Vm ^ 0?

-u(y', -yrn), Vm < 0,

/i: L2(R™) - L2(R- ), fw(y', ym) = \(v{y',ym) - v(y'. -ym))
S+

and interpolating these maps, the characterization of the domain of the fractional powers
are accomplished within the framework of the Sobolev spaces. In case II. the charac-
terization is similarly obtained by introducing the maps v of prolongation and 7r of
restriction:

L2(R™ )^L2(R"1), uu(y',yn
J »(.</• </m ): Um > 0.
{"(</, !Jr„)- Vm < 0,

tt: L\R™) - L2(R- ), ttv(y',ym} = ym) + »(y', -ym))

and interpolating these maps.
It seems quite difficult in our boundary condition, however, to find effective maps

like the above. Another problem is that the actual construction of the control system
via fractional powers has some difficulty, even in the case where the complete fractional
structure is known.

The purpose of the present paper is to propose an alternative approach of algebraic
nature to stabilization, by avoiding the above difficulties, which turns out to be a con-
trol scheme simpler and more general than those in the existing literature. In fact our
approach requires little specific knowledge of fractional powers of the given elliptic op-
erator, and it would give a new algebraic insight into stabilization. We have studied a
similar problem in [14] along this line. However, the problem is limited to the case where
the operator admits an associated Riesz basis to establish a finite-dimensional dynamic
compensator, the so-called identity compensator. This compensator is first considered in
the same state space as the controlled plant, so that its state asymptotically approaches
the state of the plant. It is then reduced to a finite-dimensional one. Our situation is
more general: it requires no Riesz basis associated with the elliptic operator of the plant.
In order to cope with the general situation, the compensator in this paper is of a general
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type in an arbitrary separable Hilbert space. Although the controlled plant is described
by an elliptic operator with a complicated boundary condition, the discipline of this pa-
per has, however, substantial applications to other linear boundary control systems with
slight technical changes (see also Sec. 4).

As for the regularity of solutions, we face a difficulty in connecting the classical Ca-
theory with the modern L2-theory. In standard cases, the domain of the operator L is
often characterized as T>(L) = {u £ H2{f2);ru = 0 on dfl). In our case, L is obtained
as the closure in L2(f2) of a closable operator. Thus the domain of L is less clearer
than in the standard case. We do not know exactly, for example, if (A — L)^1 f with
A £ p(L) and / £ L2(J?) would be an i/2(i?)-function. Even the standard perturbation
argument needs a more careful consideration (see, for example, the proof of Proposition
3.5): We will find a narrow slit connecting the Ca- and the L2-theories—via the analytic
continuation.

Let us describe our boundary control system. It is written by the system of linear
differential equations:

' Ou
——h Cu = 0 in Ri_ x j?,
at

M

tu - ^2(v, Pk)sthk on x T,
fc=i (1.1)N v '

^ + Biv = "}T{u,wk)r£k in K+,
fc=l

u(0, •) — %(•) in J?, v(0) — Vo,

In (1.1), the controlled plant Up with state u = u(t,-) is characterized by a system of
linear differential operators (£, t) in a bounded domain fl of Rm with the boundary
r which consists of a finite number of smooth components of {m — l)-dimension. The
compensator Ec with state v = v(t) is described by the differential equation in 1R^, the
dimension ( being suitably chosen. Throughout the paper, the inner products in L2(J7)
and L2(r) are denoted by {•, •)q and (■, •)p, respectively. Let Wk be in L2(r), 1 < k < N.
Then the output of Sp is denoted as

(■u,wk)r, 1 < k < N, (1.2)

which enters Sc as the input through the actuators The output of Sc is denoted as

(v,Pk)n'> 1 <k<M,

which enters Sp as the input through the actuators hk on F. Thus (1.1) forms a closed
loop system with state (//(/. •}. f(/)) £ L2{Q) x Kf.

We employ a typical but general differential operator for the controlled plant Ep. Let
us define a pair of differential operators (£, r) as follows:

^ d ( ,du\ ^ t . . du
i,j=i v J/ i=i ' (1.3)

tu = a(£)y,+ { 1 - a(0)|^
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where dij{x) = a,ji{x) for 1 < i, j < m, x 6 17; for some positive 6

",j(-r)Ui > <5|£|2, ve = (6 U) e Km. Vx e 77;E
t,j=l

and
r) m ■}

0 < q(0 < f with a(0 =£1, ~ = ]T '
i,j=l J r

i/(£) = • • ■ > um{Q) being the unit outer normal at ( £ T. As for the regularity
of the coefficients, it is enough to assume that a?j(-), &,(■), c(-), and a(-) belong to
C2(f2), C2(J?), Cu(i?), and C2+U,(r), respectively, where w, 0 < uj < 1 will denote a
constant depending on each function. In the case where a(£) = 1 in (1.1), t is of the
Dirichlet type. We note that our stabilization arguments in this paper equally apply
to the Dirichlet case with the output replaced by (du/dv, «>*.)1 < k < N. In fact,
if the output is given by (1.2), and supp w3 n supp /(/,. - 0 for every j and k, we must
have the trivial output: {u,Wk)r = 0. Technical modifications in the Dirichlet case will
be remarked in the footnotes when necessary. As for the actuators, we assume that h^
belong to C2+UJ(r), l<k< M.

Our task is to establish a new algebraic approach to the stabilization, which is stated
as follows:

Given a set of hk and Wk, determine suitable feedback parameters, that
is, the dimension I, the matrix B\, the vectors and pi-, so that
the state u(t, ■) as well as v(t) decays exponentially as t —> oc for every
initial state uq and Vq ■

Stabilization results for (1.1) can be found in the literature (sec, e.g., [1. 3, 5, 13. 14,
16, 19]). In [13], the problem was completely solved for the system (1.1) when a(£) is
strictly less than 1 (the generalized Neumann case). A disadvantage is, however, that
the arguments depend heavily on the fractional properties of the elliptic operator. This
limits the application of the techniques in [13].

Let us review briefly how the boundary control systems as in (1.1) have been studied
in the literature. Set Lu — Cu for u with the boundary condition tu = 0 (the precise
definition of L is given in Sec. 2). Given a large constant c > 0, let ipk £ H2{Q),
1 < k < M, denote the unique solutions to the boundary value problems: (c + £)v?fe = 0
in <7. ripk = hk on r. The solutions ipk are denoted by i— N_chk in Sec. 2 (see
(2.12)). Let u(t, •) be a solution to (1.1) belonging to H2(Q) for each t > 0. Then we
rewrite the equation for u(t, •) as

- = CU, Vk = N-Chk, (1.4)

where Lc = L + c. In the case of the generalized Neumann boundary, i.e., 0<a(O < 1.
the approach in [13] via the fractional powers of Lc is stated as follows: It is well known
that (see [4, 7])

V(L'3c) = H20{n), 0 </3< 3/4.
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The homogeneous boundary condition: tu = 0 is required in the domain T)(L@) for
(3 > 3/4. Since u(t,-) (which is in H2(f2)) does not belong to V(L), we set x(t) =
Lc1^4 eu(t, •), 0 < e < 1/4. Then x(t), t > 0, belongs to T>(L). Applying Lcl^4e
on both sides of (1.4) and noting that N-Chk belong to V(L^4~e), we obtain another
expression of the plant Sp with state x(t), which is described by

dr ~
— + Lx = ^2(v,pk)RtL3c/4 eN_ch,k, x(0) = Lc 1/4 euo- (1.5)

fc=i

The boundary input is thus transformed into the standard distributed input. The output
of Up is rewritten in terms of x(t) as

(u(t,-),wk)r = (iy2+2£i(t),Lf/4~£^)fi,

where ipt £ H2{Q), 1 < k < N, denote the unique solutions to the boundary value
problems: (c + C*)tpk = 0 in T*ipk = wk 6 Hl/2(r) on F. The problem is then
reduced to a problem of standard type with unbounded output and distributed input.
This makes the problem considerably easier to handle. The above transform of the state
works just like an integral transform which makes the state u smoother in space variables.

As we have just seen, the use of the fractional powers is an essential tool in
the above analysis. This would cause a difficulty in complicated control systems where
fractional structures are not well known. Another difficulty arises when we apply this
approach to the system with the boundary operator of the Dirichlet type. As is mentioned
before, the output of the plant Ep is instead given by (du/dv,Wk)r, 1 < k < N. The
fractional structure in this case is well known, but essentially different from the one in
the generalized Neumann case: The homogeneous boundary condition tu = 0 is required
in the domain T){L@) for (3 > 1/4. Thus we need to set x(t) = Lc 3^4 eu(t, ■) so that x(t)
belongs to V(L). We similarly obtain (1.5) with L'^4~eN^chk replaced by Ll^4 (D-Chk,
where D^chk G H2(fi) denote the unique solutions to the boundary value problems
(c + C)D-chk = 0 in J?, rD-chk = D_chk\r = hk on r. The output of Sp is then
rewritten as

%'Wk)r = {jiLT*'x-wl) r

A difficulty arises at this stage: Due to the strong unboundedness, the above functional
on x is not subordinate to L.

Another approach to transform boundary inputs into distributed inputs is based on
the formulation of the equation for u in weak form. According to this formulation, the
equation for u is regarded as the one in a space of linear forms, and L is interpreted as
the extended and generalized operator. In [17], this formulation is extensively studied in
studying optimal control problems, etc. Following [17], let us review briefly this approach
in two ways. Let L* denote the adjoint operator of L (see (2.3) in Sec. 2 for the precise
definition of L*). The domain T>(L*) is the space equipped with the graph norm. When
u belongs to V{L) and ip to T>(L*), Green's formula implies the well-known relation:
(Lu, ip)n = (u, L*ip)a, the right-hand side of which is an anti-linear form on V(L*). Thus
we see that there is a unique map A\: L2(f2) —> V(L*)' such that (u,L*if))a = (Aiu,ip),
where the bracket (•, •) is understood as the one between the pair of spaces T>(L*)' and
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V(L*). This allows us to extend L defined 011 V{L) to the operator A\ on L2(Q) by the
above formula. Identifying L2(17) as its dual, we obtain V(L*) C L2(f?) C T>(L*)' with
continuous, dense injections. For each tp G T>(L*) and ipk = Af chk in (1.4), Green's
formula implies that

0 = {jCctpk,ip)n = -{hk,v4>)r + {<pk-L*4')n,

( ^ \ 04' (1.6)where a-ij; = ( 1 - ^ b,(0^(0j 4' ~

Thus (1hk,(Jif>)r defines an anti-linear form 011 V(L*) (the boundary operator a appears
again in Sec. 3). According to the extended L, i.e.. A1, this anti-linear form is rewritten
as

(hk, &4')r - (<Pk, L*cip)n = (LcN_chk, *l>), LCN-Chk G D(L*).

We formulate the equation for u in weak form as follows: In (1.1), when the solution
u(t,-), t > 0, belongs to H2(Q) and tp to V(L*), we calculate the term {u,ip)n~ via
Green's formula—as

c(u,ip)n = u,4')n + (Ccu,ip)n

= ^-{u,ip)(2 - (tu, crip)r + {u,L*ip)a
at

d
= —{u,ip)n - ^2(v,pk)Rf(hk,(Tip)r + (u,L*cip)n

k=1
M

'l ~ ^2{v, pk)Rc(LcN-chk,ip) + (Lcu,ip).dt
k= 1

Thus u satisfies the equation in V(L*)'\

d M
-rr + Lu = J2(v,Pk)wLcN_chk, (1.7)

fc=i

which turns out to be a counterpart of (1.5). We stress in (1.7) that L is regarded as
the extended operator A\. Thus, T>(L) is equal to L2(J?) in (1.7). An advantage of the
form of (1.7) is that it allows the boundary operator r in our problem. On the other
hand, the regularity problem remains: examining if the solution u would be actually
an ff2(.f?)-function satisfying the original boundary condition. In addition, a serious
difficulty arises: The output (u,wk)r of the plant Ep is no more subordinate to the
extended L.

A formulation somewhat stronger than (1.7) is possible in the dual space of the Hilbert
space where

H*{n) = j« G H\Q)-u = 0 on A,
1/2 ^

u g L2(r\ A) >,
(1.8)

A = {£, g Aa(0 = 1} ¥= 0-
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The sesqui-linear form associated with the pair (£, r) is defined by

BM)' rxr,

+ £ ^)#+i: +«*)-.♦>#•
i.j = 1 J i= 1 x

When u and ip belong to T>(L) and H^(Q) respectively, we see that (Lu,ip)n = B{u,xp).
Since B(u, ip) is an anti-linear form in ip £ H\{fi), there is a unique map A2: —>
H^(Q)' such that B(u, ?/>) = {A2U, ip), where the bracket is understood as the one between
the pair of spaces and Thus L defined on T>{L) is extended to A2
on H\{f2) by the above formula. By assuming an additional condition: hk\rx = 0,
1 < k < M, solutions u(t, •) belong to H]y(Q). Then u satisfies the equation in
with unbounded controls:

du A/
+ Lu = pk)w Jhk, Jhk <E T>(L*Y, (1.7')

k=l

where L = A2 and T>(L) = H\{Q). An advantage of the form of (1.7') is that, since
solutions are sought in H^(J?), the output (■u,Wk)r is subordinate to L. However, we
have to require a superfluous assumption: h^. | r\ = 0, which is unnecessary in our paper.

Another representation of boundary control systems in weak form is found via frac-
tional powers of L, e.g., in [10]. Stabilization problems containing unbounded controls in
abstract spaces have been recently studied in [19], where the concept of "regular linear
systems" (RLS) is introduced. Another study of RLS's is also found in [2].

Based 011 these observations, we propose in this paper an alternative algebraic ap-
proach to the stabilization. In comparison with these approaches, ours is a much simpler
one. A feature of our approach is that it

(i) requires little specific knowledge of fractional powers;
(ii) it can be applied to the case of the Dirichlet boundary (a{£) = 1) as well; and

thus
(iii) it leads to applications to a variety of boundary control systems of parabolic

type.
In fact, what we use in the fractional calculus merely uses m-accretiveness of Lc and the
general moment inequality. In the above sense, the feedback scheme proposed here is a
general stabilization scheme.

In our approach we always have solutions u(t,-) remain in L2(f2). It is essential in
our framework that the function u — Xlk=i(v> Pk)wN~chk belongs to the original T>(L):
This function, being neither decomposed nor transformed into another, is studied as it
stands in both regularity and stabilization problems. Our point is as follows: Given a
closed operator B in another Hilbert space such that a{L) fl cr(B) = 0 and an output
operator C, we construct the operator solution X to the operator equation XL — BX = C
such that the range of X is contained in V(B) (Proposition 3.2, (ii) in Sec. 3), which
compensates the difficulty arising from the operator L and the boundary controls on r.
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The basic regularity problem as well as some preliminary results are discussed within
the framework of both the L2- and the classical theories in Sec. 2. The main result is
stated in Sec. 3, where the existence of a finite-dimensional stabilizing compensator of
general type is discussed. When the pair (£, t) especially admits a Riesz basis, another
stabilization scheme—based on the so-called identity compensator—is proposed in Sec.
4. Although the stabilization in this scheme has been extensively studied, the feedback
control law proposed here is a new one, and is constructed in a more readable manner. To
show the usefulness of the algebraic approach, we introduce a class of linear boundary
control systems of second order in t, and we apply our approach to these systems to
achieve stabilization or enhancement of stability.

2. Preliminary results. Let us begin with characterizing the operators L and B.
Set

Lu = Cu, V{L) = {ueC2(f2)nC1(n);Cu£ L2(Q),tu = 0}. (2.1)

The closure of L in L2(J?) is denoted by L. The domain V(L) consists of u G L2(Q)
with the property that there is a sequence {un} C T>(L) such that un —> u and Lun
converges as n —» oo. It is well known (see [8]) that I. has a compact resolvent (A — L)_1;
that the spectrum a(L) lies in the complement (E — b)c of some sector E — b, where
E = {A 6 C; #o < | arg A| < 7r}, 0 < 0o < 7t/2, b € R1; and that the estimates

ii,, t \ i ii const
IP-£) II - rXTTT'

const - <2-2'
ll(A - L) Wamny.HHn)) < 1 + |A|1/2»

hold, where the norm || ■ || denotes the L2((})- or the £,(L2(i7); L2(Q))-norm. The latter
estimate is derived from the relation (2.5) below. There is a set of generalized eigenpairs
{Asuch tha,t (see [6])

(i) cr(L) = {Ai, A2,.... A,,... }, Re Ai < Re A2 < • • • < Re A, < 00; and
(ii) Lipij = Xnpij + J2k<j aljk(pik, i > 1, 1 < j < rrii{< 00).

I11 our general boundary condition, the elliptic theory for L owes much to the fundamental
solution U(t,x,y), as discussed later in this section. In the specific case where a(£) = 1
or cc(£) < 1 011 r, however, the elliptic theory for L is standard, and much deeper
results are well known (see, e.g., [6], [11]). I11 this case, T>(L) is simply characterized by
{u € H2(Q)\tu = 0 on r}, so that (A - L)-1/, / e L2(f2) is an f/2(i7)-function. As
mentioned in Sec. 1, these facts seem unclear in our case: We do not know exactly if
(A - L)~l f would belong to H2(Q) for any / £ L2(Q).

Let be the formal adjoint of (C.t):

C*ip = ~ - div(b(^)v) + c(x)ip,
ij=i 1 V iJ (2.3)

T*ip = a(£)tp + (1 - a(0) ( + (b(0 ■ is(£))<p
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where b(x) = (b\ (x),..., bm(x)). The pair defines the operator L* just as in
(2.1). Then the adjoint of L, denoted by L*, is given as the closure of L* in L2(fl).
There is a set of generalized eigenpairs { A,, } such that

(i) a{L*) = {Ai, A2,.... Aj,... }; and
(ii) L*ipij = X^ij + J2k<j Pjk^ik, i > !> 1 < 3 < mi{< °°)-

Remark. In addition, the set {ipij', i > 1, 1 < j < rm} spans L2{fi) (see [6]). When L
is self-adjoint, all <pij are eigenfunctions, and the set {<,pij} forms a complete orthonormal
system for L2(J?). In the general case, it is not clear if would be a Riesz basis.

As for the genuine solutions to the boundary value problem associated with (C. r), we
note the following classical result: If / is in Cu{fl) and —c is a real number in p(L), then
the boundary value problem

(c+C)u = f in i?, tu = 0 on r (2-4)

admits a unique solution u e T>(L) [8, Theorem 19.2], In other words, ii = L^1 f is a
genuine solution in V(L) as long as f is Holder continuous and —c G p{L) is a real
number. A similar result holds for L* [8, Theorem 19.2*].

When c > 0 is chosen large enough, we note that

Re(Lcu, u)q > const and thus ||Lcu|| > const u e D(L).

Similarly we obtain

Re(L*u, u)q > const ||u||hi(^), and thus \\L*u\\ > const ||w||.Hi(fi), ueV(L*).

The operator L with b(x) being set 0 is denoted by L°. The operator L° is self-adjoint.
Choosing a c > 0 again large enough, if necessary, both Lc and L°c are m-accretive. Recall
that T>(L^1/') = where the space (C H1(f2)) is introduced by (1.8) (see
[16]). Thus we see—via a generalization of the Heinz inequality in [8]—that

D{L"J2) = V{L^'2) c Hu(f2), 0<u<l. (2.5)

Due to the first part of (2.2), — L is the infinitesimal generator of an analytic semigroup
e~tL, t > 0. The following is not directly connected to our stabilization study, but it is
interesting in the sense that it connects the modern theory with the classical one: It is
well known (see [8]) that there is a unique fundamental solution U(t, x, y), t > 0, x,y G (2
such that

(i) (m + £x)U(t,x,y) = 0, T€U(t,£,y) = 0.
where the subindex x to C, for example, means to apply C to U(t,x,y) as a
function of x, and the subsequent subindices 7j, etc. will be self-explanatory;

(ii) (-§-t + C*)U(t,x,y) = 0, r|f/(<,a;,0 = 0; and
(iii) e~tLu = JnU{t,x,y)u(y)dy, u G L2(J?),

i!e_tL|| < e~ct, t > 0, where C = iiifxg^ c(x)t.

tGenerally speaking, the estimate \\e tL\\ < Me c * with M > 1 is derived from the first part of
(2.2), where C' < inf Recr(L). The fact that M = 1 is not essential in our arguments.
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If u(t,x) is a genuine solution to the initial-boundary value problem:

du
—^ + Cu = f(t.x) in Ri x J?, tii = g(t,f). 011 x P.dt sy + (2.6)
u(Q,x) = u.q(x), in Q,

then u(t, x) is expressed as

u(t.,x)

= [ U{t.x,y)u0{y)dt + [ ds [ U{t - s,x,y)f(s,y)dy
Jn J 0 Jn

+ f*ds jr |(1 - 6(0 • u{i))U(t - s.x.Z) - JLu(t - 8,x,Z)}g{s,S)dr.

(2.7)

If uq(x), f(t, x), and g(t.,£) satisfy some regularity conditions, the right-hand side of (2.7)
gives a unique genuine solution (see [8]). The regularity assumptions needed for «o, /,
and g will be discussed later in this section.

As for the solution u(x) to (2.4) with / e CW(J?), we have the expression (see [8])

u(x) = I G(x, y)f(y)dy, where
J n

r°° _ _
X'V) = / e ctU(t,x,y)dt, (i,t/)6fixfi, Xjiy.

Jo
Let P\i be the projection operator corresponding to the eigenvalue A,- of L. Generally

speaking, P\i is not an orthogonal projector. Then the adjoint P{ is the projector
corresponding to the eigenvalue A, of L*. Setting P\ju = X^'/=i uijPiji we have the
relationship:

un \ / (u,ipa)n \
= , (2.8)

\(«' V'im, )ft/
where

j -> 1...., m,j

G(

= n j m.
Let K be the integer such that

Re A a- < 0 < Re Ax+i, (2.9)

and set / V = P^ + • • • + P\K- The restriction of L onto the subspace P^L2(Q) is,
according to the basis 1 < i < A", 1 < j < m j, equivalent to the upper triangular
matrix A. the diagonal elements of which are Aj Ai, A2,.... A2, .... Ak Ak-

in 1 m 2 m/c
Let, us define the operator B. Let H be a separable Hilbert space equipped with the

inner product (•, •)#, and choose an orthonorrnal basis for H. We relabel the basis as

{vfj', >■ > 1- 1 < j < M< 00)}.
Every vector v € H is expressed in terms of {//^ } as

v = E vtjvtj + E vv>hj< 4 = (r-
i-j ij
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Let be a sequence of increasing positive numbers 0 < pi < ^2 < • ■ ■ —> oo, and
define B as

Bv = Y1 ViU+v±r)± + ]T where
*>•»' (2-10)

= a ± %/—T\/l — a2, 0 < a < 1.

It is easily seen that B is a closed operator with dense domain V(B) = {v £ H;
lij I v?jlkiwi2 < °°}- In addition,

(i) cr(B) = i > 1}; and
(ii) - B)ri^ - 0, i > 1, 1 < j < m.

Thus we see that — B is the generator of an analytic semigroup e~tB, t > 0, which is
expressed by

e~tBv = J2 ^
i,j i,j

and it satisfies the estimate

-tB |
H b< e~a/llt, t > 0. (2.11)

For h £ C2+W(r), let R be a non-unique operator of prolongation such that

= h.Rh £ C2+U{f}), Rh\r = i-Rh
ov r

Then, rRh = h on r. If —c £ p{L) is a real number and h £ C2+UJ(r), the boundary
value problem

(c + C)u = 0 in Q, tu = h on f

admits a unique solution u £ C2(J7) fl C1(J?) (see [8]). In view of (2.4), the solution is
expressed by u = Rh — L~l(c + C)Rh. In fact,

(c + C){Rh — L~l(c + C)Rh) = (c+ C)Rh — (c + C)Rh = 0 in f2,

r(Rh - L~1(c+C)Rh) = h - 0 = h on T.

For A £ p(L), the function

N\h = Rh — (A — L)_1(A — C)Rh, (2.12)

is analytic, and coincides with the above genuine solution when A = —c*. For our
actuators hk, we thus define N_chk if c is a real number: c > — ReAi, and N^chk £
C2(i1) fl C1(J7) and CNchk £ L2{Q). Let us consider the coupled system of differential

'More is true. In fact, N\ belongs to C{H3/2(r)\ H2(Q)) in the case where a(£) = 1 and to
£(H1/2(r); H2(Q)) in the case where 0 < c*(f) < 1 (see, e.g., [11]).
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equations:

^ + Cu = 0 in Ki x f2.
at

M

TU = y^Av> Pk)nhk on R+ x r,
k=i (2.13)

dv N M
+ Bv = y^y(u,wk)rtk + ^2(v, Pk)HCk in K+ x H,

k=1 k=1
u(0,-)=«o(-)e£*(fl), w(0) = uo6ff.

This is the basic system of differential equations for our stabilization study. In (2.13) the
equation for v means the compensator Ec which is finally reduced to a finite-dimensional
equation. The output of Ec is a set of linear functionals (v,pk)H, 1 £ k < M, which
enters the plant Sp as the input through the hk on /. In the stabilization procedure in
Sec. 3, the vectors pk are chosen as linear combinations of a finite number of rjfy Thus,
we assume that pk belong to V{B*). We will show that the problem (2.13) is well posed
in L2(J?) x H. Actually we have the following result:

Theorem 2.1. The problem (2.13) is well posed in Lr(Q) x II, and the solution u(t, •)
is in C2(i7) n t > 0. The semigroup generated by (2.13) is analytic in t > 0.

Proof. Assume first that there is a solution (u(t, ■),v(t)) to (2.13). Setting

M

z = u- ^{v, pk) HN-Chk,
k=1

we obtain the equation for (z, v). It is clear that 2 belongs to T>(L). According to our
assumption that pk belong to V(B*), (z,v) satisfies the equations

rlz A/ m ( N
"97 + Lz = ^(v^BcPk)HN-chk - S 9k + YAN-Chk,wi)rfi

k=1 k— 1 I 1 = 1
N

- Y(z,Wk)rfk, rz = 0, (2.14)
k= 1

dv AI [ N 1 N— + Bv = ^~2{v,pk)H < C k + TXN^hktwi)rCi r + wk)rtjk,
k=1 I 1 = 1 J fc=1

where the functions fk and gk G C2(f?) fl C1(f2) are given, respectively, by

M M

fk — and gk = y^(Cfc, Pi)h N-Chi.
i=i i=i

By setting A = ( fj ^ ), the equation corresponding to (2.14) is simply written as

iCMO-'Q-ra- a-o- «
where dz/dt is changed to the differentiation of 2 in L2{i2): dz/dt, and the meaning of
the operators D. F, and G will be clear. There is a sector E = {A G C: 9q < | arg Aj < 7r},
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0 < (?o < tt/2, such that S — a for some a e K1 is contained in p(A) and that

z. .. -I.. const x —
11(^-^4) IIc(L?(n)xH) < i + XeE-a.

If A is in p(A) and the norm of D(A — A.)-1 is less than 1, we have

(A- A + D)-1 = (A - A)_1(l + D(X - A)-1)-1.

Let us estimate D{A — ̂ 4)_1(^). It contains the terms

((A - B)~1v,B*pk)H, ((A - B)~1v, Pk)H, and ((A - L)~1z, wk)r-

All these terms are easy to handle, since (A — B)~1v goes to 0 as A 6 S — a —> oo. Owing
to (2.2) and (2.5), the last term is estimated as

|((A - L)~lz,wk)r\ < const ||(A - L)~lz\\ Hs(n)

< const \\Lsc/2(X - L)-lz\\ < 1 +C|^ji-s/2 N' s > V2-

This shows that ||Z)(A — ̂ 4)~1||/:(z,2(0)xi:i') g°es to 0 as A £ I - a —> ocA We have proven
that there is a sector E — b with some i) 6 I1 such that

I,,. . . I,, const _ ——
ll(A-J4 + £)) ll£(£2(^)xff) < 1 + |A|' A eE-b.

Thus eqn. (2.15) determines an analytic semigroup e"4'"4--0', t > 0, generated by — A+D.
Let (*) = e~^A~D' (*°) be the solution to (2.15). Since Ae~t(-A~Dis analytic in t > 0,

both and are analytic in t > 0 in the space L2(i?) x H for any e > 0.
Let us consider the initial boundary value problem:

dz£
-gj- + Cz£ = F(z(t + e),v(t + e)) in R+ x i?,

rze = 0 on x T, (2-16)

ze(0, x) = z(s, x) in J?.

It is clear that F(z(t + e), v(t + e)) is Lipschitz continuous in [0, oo) x f2. In fact, we have
the inequality:

|(z(t) - z{s),wk)r| < const \\z(t) — ̂ (s)lliifi(j2)

< const |\Lc{z{t) — z(s))|| < const \t — s|, t,s > e.

Thus, the problem admits a unique genuine solution zE{t,x) such that Cz£(t,x) is
bounded in x Q for 0 < Vfi < Vi2 and so is dz£jdt (see [8]). This means

§When a(£) = 1, the estimate is replaced by

\{(d/du){\ - L)~1z,wk)r| < const ||(A - L)~1z\\h3/2+2< (17)

< const ||Lc/4+E(A - L) < l I|z|l

for A £ E — a and 0 < e < 1/4. Here we have used the standard results: m-accretiveness of Lc and a
generalization of the Heinz inequality that V(L^) is contained in 0 < uj < 1 (see [9]).
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that dzE/dt also exists in the topology of L2(f2) and it is equal to dz£/dt. Thus, taking
the difference between ze(t) and z(t + e), we see that

- z(t + e)) + L(z£{t) - z(t + e)) = 0, z£(0) - z(0 + e) = 0;

in other words,

ze(t) - z{t + e) = e-tL0 = 0, t > 0.

Thus z(t + e) satisfies the equation

1' + x) = x)> v(t + £0) in x

Tz(t+ £,£) = 0 on R| x f,

z(0 + e,x) = z{e, x) in J?.

Since e > 0 is arbitrary, z(t,x) satisfies the first equation in (2.14). Thus (u(t,x),v(t))
satisfies the system (2.13) by setting u = z + Yl!k=\{vi Pk)H^-c^ki and the solution is
unique. □

3. Main result. In order to state our main result, we need first the translation of
the functions hk and wk on r in the framework of the control theory for systems in the
finite-dimensional subspace PkL2(fi)- As for hk, set P\iN-chk = X^=i Cijfij- Then,
by (2.8)

( (N-Chk, ipa)n

Xi
1

irmJ \{N-Chk,1pimi) fi S

Green's formula implies that

(CcN-chk,ipij)n ~ (N~chk, L*cipij)n

dN-chk ( \ , / Ar t d^XJ
dv ^ij) +\N-chk, guipij) + <^N-Chk, +({*>(£,)-v{0)N-chk,ipij)i

hk,(l - 6(0 • v{Q)ipij ~ dxpij
"lJ dv

Thus there is a non-singular m,; x m-j matrix /?, such that

{Qi\

\CLJ

( {hk,(ripii)r
= 11,. 1 < i < K.

\{hk, vipimi) r;

where the boundary operator a is introduced in (1.6):

axpij = (1 - 6(0 • i/(0)i>ij ~
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The above relation is rewritten as

/ Cu \ / (hk,crit>ii)r \

Afc
Slmi = diag(7?!, ■ • ■ ,Rk) (hk,cnplmi)r

\C Km J \{hk,0"$KmK)r/

Setting S = mi + ■■■ + niK, define the 5 x M matrices Z and H as

7 _ (,'k k —> 1,,M \
~ lQi' (v.j) I (1) I); • • • 5 {K, ttik) J' an

H

(H i\
^2

K /

where Hi = [ (hk,aipij)r\
k -> 1,...,M
j i 1

(3.1)

respectively. Then, Z = RH, where i? = diag(i?i • • • /?/(-). It is clear that the controlla-
bility condition for the pair (/l, Z):

rank(Z AZ ■■■ A6-1 Z) = 5

is equivalent to the controllability condition for the pair {R~l AR.H). As for wk, we
define the N x rrii matrices Wi by

Wl= ((wk,<ptJ)r-, k[ l-"'N ), 1 < i < K. (3.2)
V 3 mi J

Our stabilization procedure is based on the control system (2.13), which is well posed
according to Theorem 2.1. We first achieve the stabilization of (2.13) and then reduce it
to (1.1), where B\ depends on the parameters \ii and which we can design. In order
to study (2.13), we assume that

iii < const P, % > 1, for some 7; 0 < 7 < 2,
(3.3)Re A^+i < a/^i, and a(L) <1 a(B) = 0.

The above conditions are fulfilled by adjusting the parameters and fix. We also
assume that the vectors £k are given in the form: = J2i,j ZijVtj + and
satisfy^

^ 0':/4-C2<oc. 6>0. (3.4)

Let us set

*-(^1* £:::£)• •>-1- (3-5)
Our aim is to derive an exponential decay of solutions (u(t, -),v(t)) to (1.1) with the

prescribed decay rate r < ReA^+i- We are in a position to state our main result.

'When a({) = 1, we assume instead that Yli , ISf7Atf'/4+6|2 < °°> where 0 < e < 1/4.
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Theorem 3.1. (i) Let. r be an arbitrary positive number smaller than ReXk+i- Suppose
that (R~lAR, H) is a controllable pair. Suppose further that

rank Wi = m^, 1 < i < K. and
(3-6)rank —i = N, i > 1.

Then for any n; r < r± < Re Xk+i, there exist vectors Cfc and pk which ensure the decay
estimate

IKMII + H*)ll# < conste""rit{||w0|| + IKIIh}, t> 0 (3.7)
for every solution (u(t, ■),v(t)) to (2.13).

(ii) Eqn. (1.1) is derived from (2.13) by suitably choosing an integer I < oo, and it is
well posed in L2(f2) x Rz, where the solution u(t, •) is in C2(fl) f] Cl(Q), t > 0. Every
solution (u,v) to (1.1) satisfies the decay estimate

||u(t, -)|| + \v(t)\i < const e"rt{||u0|| + |u0|i}, t > 0. (3.8)

Proof of Theorem 3.1.
First Step (operator equation). Let us first consider the operator equation

N

XL — BX = C on T>(L), where C = - wk)r£k- (3.9)
fc=l

Here, the domain T>(C) is given by Us>i/2 HS(Q)**. Our first result is the following:

Proposition 3.2. (i) The operator equation (3.9) admits a unique operator solution
A' e £(L2(!?); H). The solution X is expressed as

N N

-X'U = uGL2{i7),
i,j k= 1 ij k = 1 (3.10)

where /&(A; u) = ((A — L)~lu, Wk)r- 1 < k < N.

(ii) The ranges of X and its adjoint X* are contained, respectively, in T>(B) and V(L*a),
0 < a < 3/4.

Proposition 3.3. Under the assumptions (3.3) and (3.6), we have the inclusion relation:

P*kL2{Q) c X^H. (3.11)

In (3.11) the overline on the right-hand side means the closure in L2((2) and the left-hand
side is a finite-dimensional subspace spanned by ipij, 1 < i < K, 1 < j < m^.

By Theorem 2.1, eqn. (2.13) admits a unique genuine solution (u(t, -),v(t)) £ L2(S1) x
H such that u(t, ■) belongs to C2(J7) fl C1(f2), t > 0. Rewrite the equation for u as

du T ( \ AT
— + Lc I u - 2_^\v' Pk)hN-Chk I = CM

'When a(§) = 1, C is replaced by C = — J2k=i(® ' wk)r£,k with T>{C) = Us>3/2 HS(Q).
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(see, e.g., (1.4)). Applying the operator X to both sides, we have

jfXu + (BCX + C) L~ pk)HN^ch)j = cXu, or

, M
-Xu + (.BCX + C)u = J2{v, pk)h(BcX + C)N-chk + cXu.

Note that, if u were in T>(L), we could have (BCX + C)u = XLcu. But, this is not true
in our problem. We define the vectors (,k as

Cfc = (.BCX + C)N_chk, l<k<M. (3.12)

Then we see that

- (A' ii — v) + B(Xu - o) - 0. or

Xu(t, •) — v(t) = e~tB(Xu0 — vo), t > 0.

Due to the decay property of e_tB, the above right-hand side goes to 0 exponentially as
t —* oo:

\\Xu(t,-) - v{t)\\H < e~alllt\\Xu0 - v0\\H, t> 0. (3.13)

Second Step (operator F). In view of (3.13), we can rewrite the equation for u again
in the form:

du >
— +Cu = 0, u(0, •) = uq,

m M (3-14)
TU - Y](u,X*pk)ghk = ^2(e~tB(v0 - Xuq), pk)Hhk.

k= 1 k= 1

Given a set of functions yk, 1 < A: < M, we define the operator F as

Fu = Cu, u 6 V(F) = {u 6 C2(f2) n C1^); Cu £ L2{Q), Tfu = 0 on T},

(3.15)
where tsu - tu - yk)nhk, yk e i2(i?).

k= 1

The boundary condition for F is thus characterized by the feedback form. A specific
feature of the operator F is stated as follows. The proof is to be given later.

Proposition 3.4. (i) The operator F admits the closure F in L2(i7). The closure F is
densely defined and generates an analytic semigroup e~tF. If in addition yk, 1 < k < M,
belong to P(L*/3), (3 > 0, then e~tFuo is a genuine solution for each uo £ L2(J7).

(ii) Suppose that (i?_1/li?, H) or (yl, Z) is a controllable pair. Then there exists a set
of yk G P*kL2{U), 1 < k < M, such that the following estimate holds:

||e~tF!| < const e~r2t, t > 0. /•, < r2 < HeA/v . i. (3.16)

Remark. If all the eigenvalues of L on the vertical line: Re A = ReA^+i are poles of
(A — L)~1 of order 1, the above is replaced by ReA^'+i-
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We add a small perturbation to yk in Proposition 3.4. The perturbed functions,
denoted by yk, define another elliptic operator, say F. For later convenience, however, it
is still denoted by the same symbol F without confusion. The following result looks like
merely a standard perturbation result in the case where the coefficient a of the boundary
operator t satisfies the condition ce(£) = 1 or 0 < a(£) < 1. We need, however, a more
careful consideration in our general case.

Proposition 3.5. If YllLi WVk ~ Uk\\ is small enough, we have the estimate

lle~tF|| < const e~rit, t > 0. (3-17)

Third Step (stabilization). Let yk G P^L2(i?), 1 < A: < M, be the functions stated
in Proposition 3.4, (ii). Proposition 3.3 guarantees suitable sequences of functions X*pk
which are arbitrarily close to yk. In addition, the set {77^ } forms a complete orthonormal
system for H. Thus we can choose suitable pk, which are expressed by a finite number
of rm, say, 1 < i < n, such that

||e_tF|| < conste_rit, t > 0,

where F is the closure of F in (3.15) with yk replaced by X*pk-
Let us consider the boundary value problem

(c + C)u = 0 in fl, TfU = g on r, (3.18)

where g denotes a given function, belonging to C2+UJ(r). Then we have

Lemma 3.6. Choose a c > 0 large enough so that —c is in p(L). Then the boundary value
problem (3.18) admits a unique solution u € C2(fl) nC1(i7). The solution is denoted by
u = Ns_cg.

Remark. It is shown later in the fifth step that the solution u = NLcg is actually
expressed by TZC N-Cg, the operator XLC being defined in (3.24).

We go back to eqn. (3.14). Choose a c > 0 in Lemma 3.6, and set

M
p = u-J2fk(t)NLchk, where fk{t) = {e~tB(v0-Xu0),Pk)H-

k=1

The function p(t), t > 0, belongs to V{F) and satisfies the equation

. M , d \ M
■£ + Fp = ( cfk(t) - ) NLchk, p{0) = u0 - fk{0)N[chk-

k=1 ^ ' k=1

Since the vectors pk belong to T>(B*), both fk(t) and dfk(t)/dt——(e~tB(vo—Xuo)1 B*pk)n
converge to 0 exponentially as t —> 00. According to Proposition 3.5, we see that

||p(t)|| < conste~rii(||u0|| + ||vo||h), t > 0.

This immediately leads to the decay estimate (3.7), and the stabilization of eqn. (2.13)
has been achieved. Combining this result with Theorem 2.1, we also obtain the estimate

II(^-j4 + .D) 1\\c(l2(Q)xH) < j ' A e (Z1 - a) U {A; Re A < r}. (3.19)
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Fourth Step (reduction to a finite-dimensional compensator). We reduce eqn. (2.13)
to (1.1). Let Pf? be the projection operator in H corresponding to the eigenvalues
of B, 1 < i < n, that is,

n rii

P"v = Y. + Vfy) for v = + fy»7y) € H.
i= 1 j = 1 i,j

Recall that the vectors pk are chosen in the subspace (see the third step). In (2.13),
set V\(t) = P^v(t). Applying P^ to both sides of the equation for v, we obtain the
coupled system of differential equations

dii
——b Cu = 0 in Rl x J?,
at

M
TU = ^2(vi,pk)Hhk on K + X r,

k=1 (3.20)
d N M v '

+ Siui = ^2{u,wk)rP"tk + ^~2(vi,Pk)HP"<k in R+ x P"H,
k=1 k=1

[u(0, •) = uo(-) G L2(Q), Vl(0) = P*vo e P%H.

Here B\ denotes the restriction of B onto the invariant subspace P^ H. In exactly the
same manner as in Theorem 2.1, it is shown that the system (3.20) is well posed in
L2(fi) x P^H, and the solution u(t,-) is in C2(l?) fl C1(f2), t > 0. The semigroup
generated by (3.20) is analytic in t > 0. In other words, every solution (u(t, -),V\(t)) to
(3.20) is derived from the solution to (2.13), and satisfies the stability estimate (3.7). The
equation for V\ in (3.20) means the finite-dimensional compensator with I = dim. P^H,
where the terms on i>i on the right-hand side are absorbed into B\ in the expression of

(1.1).
Fifth Step. Let us turn to the proofs of the previous propositions and lemmas.
Proof of Proposition 3.3. We will show that

Xu — 0 => Pku — 0.

Setting Xu = 0 in (3.10), we see that
N N

A(w*>+; =0, i > 1, 1 < j < 71*.
k=1 k=l

Since rankEi = N, i > 1 by (3.6), this implies that

fk(fiiuj±;u) = ((fiiuj± - L)~1u,wk)r = 0, 1 < k < N, i > 1.

Recall that a(L) is inside some parabola x = a'y2 — b'; A = x + y/—ly, a' > 0. Thus,
choosing a 6\ such that 0 < 8\ < min{argo;+, ^(2 — 7)}, we have the estimate

11/, t \ 111 const , — „
||(A-L) || < j ^ ui> Ae£L-a,

where El = {A G C; 9\ < | arg A| < 7r}, and a" £ R1. Let us introduce the map

m(A) = (A + e^~*K, Im A > 0,
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where Rq > 0, and ?; and k are chosen so that

f 2 ,1 2 2 — 77max < 7, 2 argu;"1" > < ij < 2 , k =  7r.
[ ' 7T J 7T 2

Thus we see that 9\ < k < argw+. By choosing an Rq large enough in this map, the
image of the upper half-plane, that is, the set {m(A); Im A > 0} is contained in the sector
El — a". For simplicity of symbols, we write f^(rn(X)\u) as f(m.(A)). Then the function
f(m(A)) is analytic in A, ImA > 0, and

f(m(aj)) = 0, aj =/UiA;ev^T(argu,+-*)/„_ (3.21)

f°r j > Joi where jo is the integer such that Ima3-0 > 0 or

i/v . argw+ - k
Hj'o sin   R0 > 0.

We show that (3.21) implies

/(m(A)) = 0, Im A > 0. (3.22)

Although this implication is essentially the same as in [13], we give the proof here for the
reader's convenience. Assuming the contrary, we derive a contradiction. We may assume

theorem is applied to f{m(A)). A version of this theorem is stated as follows:
that f(m(0)) = /(—i?2) 7^ 0 by adjusting the number Rq if necessary Then Carleman's

Lemma 3.7 ([18]). Let R > 0 be arbitrary but large enough. Suppose that f(m(A)) has
the zeros rves/~le", 1 < v < p, inside the closed contour Cr consisting of the semicircle:
|A| =R, 0 < argA < 7r, and the segment: |A| < R on the real axis. Set a = l//(m(0)).
Then we have the relation:

- ~ j sin 0U = J log |o/(?n(flev/3T0))| - sin Odd

+ TZ Jo loslaf{m(-x))af{m(x))\ • jf«^ - dx

(3.23)
+ \ lm^Xaf(m( 0))-

As to the first term on the right-hand side of (3.23), we note that

|f{m{Re^~lB))\ = \((m(Re^=~ie) - L)~1u,w)r\
^ const ^ const ^ 1
" 1 + |m(/?ex/~Te)|3/4_£ ~ /?(3/4-e)r7 ' < 6 - 4'

Thus the first term is bounded from above by

1 fn
  / (const —(3/4 — e)?y log R) sin 9 dO » 0 as R —» oo.
nR J0

As to the second term, the estimate | log \af(m(—X))af(m(X))\ \ < const |A|2 holds in a
neighborhood of A = 0. Thus decomposing the second term as J * + Js for a small <5 > 0,
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we see that the second term is bounded from above by

If I 11const H / (const—2(3/4 — ejr^log.T)
2?r Js

—^ —— dx < const, R —> oo.
xA R-

Thus the right-hand side of (3.23) remains bounded as R —> oo.
Let us turn to the left-hand side. Let N(x), x > 0, denote the number of fih < x,

that is, N(x) = #{n > 0; [ij,71 < a;}. According to assumption (3.3), we easily find that

N[x) > const xv^ — 1.

We know from (3.21) that (7j with j > jo are zeros of f(m(A)). Thus

E m" ~ sin 9- ^ E (~T/n~ %") sin(arg a^'
"=i Vr" ' i>io,\°j\<R W /

Since #{j; \aj\ < R} > #{j; /J1/1 < R}, the above right-hand side is obviously esti-
mated from below by

E ~ t)sin(arg^o)-

The last term is calculated as follows:
Mv

i>io,ny'<R

1 x
x R2

R

N(x)
1 /T7 £

> [ ( —z + | (const x*7/7 — 1 )dx — const
JuV"-€ \x2 R2 J

> -—t-—5   RP^ 1 — const —> oo as R —> oo
(l/l) - 1

for a sufficiently small e > 0, which is a contradiction. We have thus proven relation
(3.22). Going back to the original notations, we see that

A (A; u) = ((X — L)~1u,Wk)r = 0, 1 < k < N, Xep(L).

Let us consider the Laurent expansion of (A — L)"1 in the neighborhood of A^:
rrii . oo

(A - L)-1 = E r\ )j + E(A ~ Xi)JAv where
j=1 1 l> j=0

1 f (C -L)-1
2iry/=l JK.Xi\=s (C-Ay+1

Note that P\ = A-\. It is clear that

Ai = —=r / \ <*C. 3 =0,±1,±2,... .

3 2tt^T ,/|C_Ai|=<5 (C-A,)^1
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Thus — Ky AjU converges in the topology of V{L) and, of course, in the topology
of if1 (J?). We have shown that

ml . oo
(A - L)~lU = £ TV^J + E(A - A^">

, = 1 (A - W j=0
mi / A \ 00

/fc(A; „) = £ ( + £(A - wk)r.
j=1 ( ^ j=0

Calculating the residue of fk(\-,u) at A^, we have
rrii

{A~\U, wk)r = {P\iU,wk)r = ^~2(tPij,Wk)rUij = 0, 1 < k < N, i > 1.
i=i

Since rank Wj = rrii, 1 < i < K by (3.6), we find that Uij = 0, 1 < i < K, 1 < j < rrii,
or Pku = 0. This is what we intended to show. □

Proof of Proposition 3.4. (i) For A G p{L), let T\ be the operator defined by
M

z = Txu = u-y^(u,yk)nNxhk
ti (3-24)

= u- (N\hi ■ ■ ■ N\hM){u, y)n, u e L2(Q),

where N\hk, given by (2.12), are analytic in A.
For the existence of the closure F, it is necessary and sufficient that

un £ V(F) ^ 0 and Fun —> y as n —> 00

implies that y = 0. For a sufficiently large c > 0, set A = —c. If u is in T>(F), then
z = T_cw is in T>(L) and

Lcz — £cz = Ccu = Fcu.

Since zn = T-Cun —> 0; Lczn = Lczn —► y + cO = y; and L is closed, we see that y = 0.
In order to consider the inverse of T\, let us introduce the matrix <1>\ by

$x=((Nxhk,yj)a-, (3'25)

We show that <P\ goes to 0 as A e T - a —> 00. Abbreviating the subindices j and k in
suppose first that y is in T>{Q) = ?). Choose a c > 0 large enough so that —c

is in p(L). Then we see—via Green's formula—that

(CN_ch,y)n-(N-ch,£*y)f2

= ~({N-Ch)v,y)r + (N^ch,yu)r + ((b ■ v)N^ch,y)r = 0.

Thus,

(N-ch,y)n = —(N-ch,C*y)n, c > - Re Ax.
—c

Note that, when —c is replaced by A £ p(L) in the above relation, both sides are analytic
functions of A. By analytic continuation, we obtain the relation

(Nxh,y)n = ^(Nxh,C*v)n, A e p(L).
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In view of (2.12), N\h is bounded as A —> oo. Thus we see that (N\h,y)o goes to
0 as A —» oo. For a general y £ L2(i?), we can also show that (N\h,y)n goes to 0,
approximating y arbitrarily by a sequence of elements of T>(f2).

If a is large enough, (1 — exists in £ — a, where £ — {A € C; do < | arg A| < 7r},
0 < 6q < 7r/2. Thus the bounded inverse T^1 exists and it is expressed by

T-1z = z + (Nxh1---NxhM)(l-^x)~l(z,y)n, z £ L2(H), A € S - a.

We have shown that both T\ and T^1 are analytic in £ — a.
For a given c> a and / £ L2(f2), let us consider the boundary value problem:

(c + F)u = /.

By setting 2 = Lj1 / £ 'D(L) and u = TZ^z = TZ]L~l f, we find a sequence {zn} C V{L)
such that zn —* 2 and Lzn —> Lz. Here we note that (un,y)n = (1 — <£_c)_1(z„, y)n,
where un = TZlzn. Then it is clear that un £ C2(J?) PI Cl(f2)\ Cun £ L2(S7); and
Tf Un = 0. Thus,

un £ D(F); un —> TZ]z = u; and (c + F)un = Ccun = Lczn —+ Lcz.

We have shown that u is in T>{F) and that Fcu = Lcz = /.
Uniqueness of the solution is shown as follows: Let Fcu = 0, and find a sequence

{un} C T>(F) such that «„->« and Fun —* Fu. By setting zn = T-Cun, we see that

Zn £ zn * F—cii, and Lczn — £.czn — Fcun * Fcu.

Thus T_cu is in T>(L) and LCT-Cu = Fcu = 0. This means that T-Cu = 0 or u — 0. We
have shown that the bounded inverse F"1 exists and is expressed by TZ^L^1, or

(—c — F)~x = TZ}{—c — L)~l, c > a.

The operator T^~1(A — L)_1 is analytic in £ — a. Thus the resolvent (—c — F)_1 on the
real interval (—oo, —a] has an analytic extension as T^1 (A — L)~l in the sector £ — a.
This extension is, however, nothing but the resolvent of F. We finally obtain

E-aCp(F), and (A - F)"1 = Ta"x(A - L)"1 in £ - a. (3.26)

This expression also gives the estimate

IKA-F)"1!! < AeT-a. (3.27)

Thus — F generates an analytic semigroup e~tF, t > 0.
Denseness of T>(F) is shown as follows: For a A £ £ — a, we show the implication:

{(A - F)-1/, if)n = 0 for any / £ L2(J?) => ip = 0.
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By relation (3.26),

0 = (^V1 (A - L)-1/, ip)n
= ((A — L) 1/, <p)a + ((N\hi, ip)f) ■ ■ ■ (N\hM, <p)j?)(l - $a)-1((A - L)~l f,y)q

S s/ /

= (ai ■•■cim)

M

= ((A - L)~lf,v)n + J2ak^X ~ L)~lf^k)n
k=1

= ^/, (A-L*)"1 ^ + for any / G L2{Q), or

M

v + y^akyk = o.
k=1

Thus we see that
/ m \ M

0=(Nxhj,<p + Y,*kVk) = {N\hj,v)n + Y^ak(Nxhj,yk)n, 1 < j < M,
\ k=l / Q k= 1

which readily implies that a/t = 0, 1 < k < M, or ip = 0.
Let us consider the solution u(t) = e~tFuo to the Cauchy problem:

— + Fu = 0, u(Q) = u0. (3.28)

We have shown in (3.26) that F,~1 = TZ}L~l or FCTZ] = Lc on T>(L). By setting
z{t) = T-Cu(t), the function z(t) G V{L) satisfies the equation

dz
— +T-cFcTzlz = cz, t > 0, z(0) = T_cuo, or

dz
— + Lz = (N-Chi • • • N-chM){Lcz,y)n

= (N_ch1---N„chM)(L1c-PZ,Lfy)n, t> 0, z(0) = 71, u0.

It is clear that eqn. (3.29) is well posed in L2(f2) and generates an analytic semigroup.
Conversely, for the solution z(t) to (3.29), u(t) = Tz]z(t) satisfies (3.28). Given an
arbitrary e > 0, let us consider the initial boundary value problem for z£(t,x)\

dzE
— +Cz£ = (N-Chi ■ ■ ■ N-chAI)(Llc-0z(t + e),L?y)n in R^ x ^

Tze — 0 on R+ x r,

z£(0,x) = z(e,x) in J?.

On the right-hand side, L\~^z{t + e) is analytic in t > 0 and N^chk are in C2(l?) fl
C,1(]?). In exactly the same way as in (2.16), the problem admits a unique genuine
solution z£(t, •) G T>(L) such that Cz£(t,x) is bounded in (t\, £2) x J? for 0 < Vti < V^;
dz£/dt = dz£/dt; and consequently z£(t,-) = z(t + s,-), t > 0 (see [8]). Since e > 0
is arbitrary, this means that the solution z(t) to (3.29) is a genuine solution, and so is
u(t) = e~tFUo = TZ}z(t) with u(t) G V(F), t > 0.
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(ii) In order to achieve the stabilization, we consider (3.29) which is equivalent to
(3.28). Assuming that yk belong to P^L2(S1) c V{L*), (3.29) is rewritten as

dz A
— + Lz - 22{z, L*cyk)nN-chk = 0, t> 0, z(0) = Tu0. (3.29')

fc=i

Thus we see that

exp{-tF) = TZl ■ exp L*cyk)nN-ch^ ^ ■ T_c, t > 0.

The stabilization of (3.29') is reduced to a simple problem which is essentially a finite-
dimensional one, since yk belong to P£L2(i?). The restrictions of L onto the invariant
subspaces PkL2((7) and (1 — Pk)L2(Q)C\V(L) are denoted by L(X) and L(2), respectively.
Then, by setting z\ = Prz, and Z2 = (1 — Pk)z, eqn. (3.29') is decomposed into the pair
of differential equations:

dz M
— + L(i)Zi - y,(z1,L:yk)nPKN.chk = 0, (3.30a)

fe=l

dz M
—j- + L(2)Z2 ~ i L*yk)i7(1 - Pr<)N-chk = 0. (3.306)dt

k=1

By expressing

L*cVk = VijLlipij = J2 ilijVij-
i,j(i<K)

(3.30a) is equivalent to the equation in Cs:

dz
Tt+(A-ZY)Z = 0,

where the S x M matrix Z — RH is the one defined in the beginning of this section, and

Y=(<\
, k [ 1,... ,M

(i,j) — (1,1(K,mK)

According to the assumption, (R~lAR,H) or (A, Z) is a controllable pair. Thus the
well-known pole assignment argument of finite dimension (see, e.g., [20]) implies that,
for any fi > Re\k+l, there exists a matrix Y or yk in P^L2(f2), 1 < k < M, such that
the estimate

||e-t(/l-zy )||£^CSj < const. e~Mt, t > 0

holds. By recalling that

|| exp(—ti/(2))|| < const e~nt, t > 0, r\ < ReAA-+i,

(3.306) immediately gives the desired estimate for 2. Note that n cannot be generally
replaced by Re A^'+i, due to the algebraic multiplicities of the eigenvalues on the vertical
line: ReA = ReAA-+i. □
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Proof of Proposition 3.5 and Lemma 3.6. Let us consider the perturbed operator F°.
This operator is obtained as the closure of F°, which is defined by

F°u = Cu, uG V(F°) = {ue C2(fl) fl Cl(H)-Cu 6 L2{n), ffu = 0 on J1},

A (3.15')
where ffu = tu - > t(u, yk)nhk, Vk S L2(f2).

k=1

By Proposition 3.4 we already know that, as long as YliLi II Vk — 11 >s close to 0, there is
an a e R1 such that the sector E — a is contained in p(F°) uniformly in yk, 1 < k < M.
Choose any c > a (—c £ E — a). In order to compare (c + F°)-1 with (c + F)_1, let us
first show Lemma 3.6, and obtain the expression of (c + F0)"1. On the analogy of the
solution N\h (see (2.12)), we seek the solution to the boundary value problem (3.18):

(c + C)u = 0 in fi, TfU = g £ C2+UJ(r) on r.

We may suppose with no loss of generality that the set {yi,... ,2/a/} is a linearly inde-
pendent system. Choose ipk iQ T>(f2) so that ipk are arbitrarily close to yk in L2(f2).
Then the matrix ^ defined by

j -> 1
k[ 1,... ,M

is non-singular. By setting

Rfg = Rg - (^1 ■ ■

it is easily seen that Rfg belongs to C2+U,(J?) and it satisfies TfRfg = g. Set

Nfxg = Rfg-(\-F)-1(\-£)Rfg, A £ p{F). (3.31)

When c is greater than or equal to a and g belongs to Cu(i?), we note that F~ g =
TZcL~1g belongs to T>(F). Thus u = N[cg solves (3.18) uniquely, and this proves
Lemma 3.6^.

For a given / 6 L2(J?), suppose for a moment that u = (c + F°)~1f is in V(F°) and
that it satisfies the equation:

Ccu = f, ffu = 0, or Tfu = (hi- ■ -hM)(u,y - y)n,

where (it, y — y)n is the transpose of {{u,yi - yi)n • (u,yM ~ yhi)n)- Then we have

Cc(u - (Nf_chx ■ ■ ■ NlchAI)(u,y - y)n) = f in f2,

Tf(u - (.Ns_chi ■ ■ ■ Ns_chM)(u,y - y)n) = 0 on r.

This means that

(1 - Ns_ch(-,y - y)n)u -u - (.Nf_chi ■ ■ ■ Ns_chM)(u,y - y)n

= (c+ F)~l f.

tfIt is easily seen that T~cx N-Cg = N-Cg+ (N-Ch\ ■ ■ ■ N-Ch\i){ 1 — (N-Cg, y)p also gives the

unique solution to (3.18). In other words, we have ArLcg = N-Cg- However, the simpler expression

TZ^N-cg does not work in the following argument.
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We know from Proposition 3.4, (ii) that the set (E—a)U{ A £ C; Re A < r\} is contained in
p(F). In view of (3.31), the functions n[h = (N[hi ■ ■ ■ are analytic and bounded
in A £ (E — a) U {A £ C;ReA < ?"i}. Thus the bounded inverse (1 — N[h(-,y — y)j?)-1
exists in (E — a) U {A £ C; Re A < r\} as long as \\y — y|| is chosen small enough, and we
have the formal expression of the solution:

u = (c + F°)~\f = (11 Nf_ch(-,y- y)n)-\c + F)'lf. (3.32)

Next we show that, given any f £ L2(ft), the function u defined by (3.32) actually means
the solution (c + F°)~lf. Setting v = F~1f, we find a sequence {■un} C V(F) such that
vn->v and fn = Fcvn Fcv = f. The functions tpn = (1 - Nich(-,y - y)n)~lF~l fn

satisfy <pn - Nlch(<pn,y - y)n = vn. Thus,

^c^Pn £,cN_ch(^Pn* y y)n ^cVn — .fn ''' — ■

TfPn = TfN_ch(tpn, y ~ y) n + TfVn = (hi, ■■■ , hM)(Vn,y ~ y) Q Oil F.

In other words, <pn belong to T>(F°) and F°tpn = fn. Furthermore,

<pn->(l- Nf_ch(■, y - y)n)~1F~1f, and F°ipn -> f.

Thus, (1 — Nlch(-,y — y)q)-1 F~xf belongs to V(F°) and

F°(i-NLchCiy-y)n)-1F-lf = f.

Since —c belongs to p(F°) (see the proof of Proposition 3.4), we have shown the correct-
ness of the expression (3.32).

Recall that the operators (1 — Nlh{-,y — y) n) 1 and (A — F) 1 are analytic in
A £ (E — a) U {A £ C;ReA < ri}. We extend (A — F°)_1 analytically via (3.32) to the
set (E — a) U {A £ C; Re A < ri}. The extension is nothing but the resolvent of F°. Thus
we have shown the relation

(X^F°)-1 = (l-Nlh(.,y-y)n)-1(X~F)-\
(3 33)

A £ (E - a) U {A £ C;ReA < rx},

from which we immediately obtain the estimate

\\e~tF || < const e~rit, t> 0,

or (3.17). The proof of Theorem 3.1 is thereby complete. □
We close Sec. 3 with the following remark: If an additional assumption is posed on

the hk, a simpler approach is possible in the proof of Proposition 3.5. A part of this
assumption is discussed in (1.7'). Let us see this briefly.

Proposition 3.8. Suppose that

/i*(0 = 0 on A and i k,„ £ L2(F \ Tj), 1 <k<M. (3.34)
1 - a(4)
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Then the adjoint operator of F is expressed by**

m , ,
hkfv = lv-E(^ i Vk

fc=1 \ 1 01 / r\A (3.35)
= lv~£W: gV{f*) = v{l*).

Proof. By Green's formula, we see that, for u G 15(F) and Lp G V(L*)

(Fu, = -(uv, <p)r + (w, <£>„ + (&• f)y?)r + (u, ^V)r?
M

= - ^2(u,yk)n(hk,0<p)r + {u.C*ip)n

(3.36)
fe=i

= lu,C*<p-^{ow,hk)rykj
\ k=i In

= (u,F]p)n,

where cr^ = (1 ~ (b ' I/))v3 ~~ V>v and P(F*) = V(L*). By (3.34) we note that

(aip,hk)r = {aip,hk)r\r1 = (~—^hk\
\ i a / \ r a / r^ri

Thus, F* is rewritten as

FV = £> - ^ f<p, Wfe- <peP(Ft).
fc=i ^ a ' AA

Set
M , , .

fV = L>-yk = L*v-E^, ip e D(F*) = T>(L*). (3.37)
fe=i \ Q/ AA

Then we see that F* C F*. As discussed in Sec. 2, we recall the estimate: ||£*u|| —
const ||u||jji(f2) for u G T>(L*). Then passage to the limit with respect to u G V{F) and

<p G 2?(F*) gives the refined version of (3.36):

(Fu, <p)n = (u, FV)n, " € Z>(F). G X>(F*). (3.38)

Thus we see that F* C F*. We show that the bounded inverse (A — F*)_1 exists in the
sector E — a if a > 0 is chosen large enough. Since L* is m-accretive, we note a fairly

*'When a(£) = 1, we assume that hk, 1 < fc < M, belong to H3/2(r). The adjoint operator F* in
this case is expressed by

M
F*(p = L*<p - hk)rVk, peV(F*),

k= i

where T>(F*) = T>(L*) = H2 (Q) fl Hq (Q). The perturbing terms {Lpv,hk)r are subordinate to L*w with

aj > 3/4.
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rough relation: V(L*U) C HU(Q), 0 < uj < 1 (compare it with the finer relation (2.5) for
Lc). Then,

HE,(A - L*)~\|| < const ||(A - L*)~VlU^) < const ||L^(A - L*)~VII
const „ „ 1

£TT]aF=IMI' 2<u<1-
Choosing an a > 0 large enough, we see that ||£a(A — L*)_1|| is smaller than 1 in £ — a.
Thus, the resolvent (A — F^)~l exists in £ — a, and it is expressed by (A — F^)-1 =
(A — L*)_1(l + Ei(X — L*)-1)""1. Since both the resolvents Fct_1 and F*~l = (F'1)*
exist for a sufficiently large c > 0, we find that D(F^) is equal to T>(F*)\ in other words,
Ft = F*. □

Alternative proof of Proposition 3.5. By Proposition 3.8 we see that
M ,

h.k

fe=i v 1 ° ' r\A

m , , \
= F> +(yk-yk) = F*<p + E2tp, ve T){F*).

fc=i \ 1 a/r\ri

It is clear that
M M

\\E2<+>\\ < const ||yfc - yfe|| ||v?||ffl(/2) < const ]T \\yk - yk\\ ||L*F*-1|| ||FV||.
k=1 k=1

We already know that the set {£ - a) U {A G C; Re A < ri} is contained in p(F). Thus,
i„ „ const

|(A - F*)_1|| < r^, AG (r-a)U{AGC;ReA<n}.

If YjILi IIVk - jffell is chosen small enough, we see that ||F2(A - F*) 11| is smaller than 1
for A G (£ — a) U {A G C; Re A < }, and thus

II(A ~ F°*)_1|| = ||(A - F*)_1(l - F2(A - F*ylrl\\
const< A e (£ - a) U {A e C; Re A < n}.1 + |A|

This shows that

||e-tF°|| = ||(e-tF°)l = ||e-tF°*|| < const e"Plt, t > 0,

which is nothing but the estimate (3.17). □

4. Linear control systems with Riesz bases. When the boundary control system
admits a Riesz basis, we can develop another stabilization scheme with slight technical
changes. To illustrate this, let us consider the controlled plant £p in (1.1) with state
u(t,-):

uu— + Cu — 0 in Ki x n,
ot

M (4.1)
tu = Yjk(t)hk on Rj. x f, u(0, •) = uq in J?,

fc=i
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where the pair (C.t) is defined at this time by

Cu. = (ai:j(x)J^-) + c(x)u, and tu = a{£)u + (1 -
i,j= 1 1 ^ J '

The output of Ep is given by (1.2). Since the corresponding operator L, which is denoted
by the symbol L° in Sec. 2. is self-adjoint, there is a set of eigenpairs {A*, ipij} such that
(see, e.g.. [6, 8])

(i) a(L) = {A]. A-2 Aj, ■••}, Ai < A2 <• — ■< Aj <■'■■—> oo; and
(ii) the set {<^27} forms an orthonormal basis for L~(f2).

The input fk(t) is designed as a suitable output of an identity compensator Ec with
state v(t). The problem with this scheme has been extensively studied in the literature.
A11 algebraic method is also proposed in [16]: The common basic idea is to obtain an
exponential decay estimate of ||w(t) — u(f)|| as t —» oc. In this section, we develop a new
and simpler algebraic method of stabilization by estimating the decay rate of another
error function.

The regularity assumption 011 the coefficients is the same as in the preceding sections.
In Theorem 3.1, the assumptions on hk and wk are rewritten as

rank //, = rank W, = Wj, 1 < i < K. (4-2)

where the matrices Hi and IT, are defined, respectively, by (3.1) with ipij replaced by
ifij, and (3.2).

We may assume with no loss of generality that 0 is in p{L). Setting

M

q(t. •) = u{t, •) - fk{t)N0hk, (4.3)
fc=i

and assuming that fk(t) are of class C1, we obtain the equation for q in L2(i7):
M

— + Lq = - ^ f'k(t)N0hk, q(0, •) = q0. (4.4)
k= 1

It is a new feature upon which our compensator is designed, based not 011 (4.1) but 011
(4.4). Set C = —J2k=i (■•wk)r^k- where £&, 1 < k < N, denote the vectors in L2(f2).
Our compensator Ec is a differential equation in L2(i7), which is described by

d AI
~ + (L-C)v = -Cq-Y^f'k(t)NQhk, v(0,-) = v0. (4.5)

k= 1

Taking the difference between (4.4) and (4.5), we see that

^(q~v) + {L-C){q-v)= 0. <?(0) — v(0) = q0 — v0,

i.e.. q(t) - v(t) = e~t{L~c)(q0 - v0), t > 0.

Since rank Wj = m,, 1 < i < K, we can find suitable vectors £ Pi<L2(fi), 1 < k < N,
such that

||e_t(L~c)|| < conste~XK+lt, t> 0. (4.7)
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Since rank Hi = rrii, 1 < i < K, we can find suitable vectors yk € PkL2{Q), 1 < k < M,
such that (see Proposition 3.4, (ii))

||e"tF|| < const e~XK+lt, t> 0. (4.8)

At this stage, we set

M
fi(t) = (v(t),Q)n, Ci = ^OijVj G PKL2(f2), 1 < i < M, (4.9)

3= 1

where 9ij denote the parameters to be determined later. By (4.6) and (4.7),

(7iU)
fi(t) - (u(t)Xi)n + ({Nohi,Q)n ■ ■ • [NohM, (i)a)fi(t) ~ (q(t),Ci)n|

< conste~AK+lt(||go|| + ||u0||), t> 0, 1 < i < AI,

or in vector form

| f(t) - 0(u(t),y)n + OGif(t)\ < const e~AK+lt(||g0|j + ||v0||), t > 0,

where f(t) denotes the transpose of the vector ■ ■ ■ /a/(^)), and

«•G'-iVc.:")■
By adjusting y\,..., a little, if necessary, we may assume with no loss of generality
that det(l — Gi) ^ 0. Setting 0 = (1 — Gi)^1 or (1 + QG\)~10 = 1, we see that

\f(t) - {u{t),y)n\ < conste"Ax+lt(||g0|| + ||v0||), <>0. (4.10)

Similar calculations show that

j f'{t) - (ut{t),y)n| < const<"1/4"£e"AK+lt(||fyo|| + IMI), t > 0. (4.10')

By setting

M 1, 1 = .)■

0,

(Cil

: | = (1 - Gi)~1ei, where = Sij =

CiM)

uniquely solve the boundary value problems:

M

iCifii = 0 in J?, Tftfi = TLpi - Vk)nhk = hi on f, 1 < i < M.
fc=l

Set p(t) = u(t) - - (u(t),y)n) = u(t) - Efcli(/fcW - (u{t),yk)n)<fik-
Then

y]j +Fp= —(<pi ■ ■ ■ <PM)(f'(t) - (ut(t),y)n),
or

p(t) = e tFp(0) - [ e a)F(<pi-'<PM)(f'(s) - (u3(s),y)n)ds.
Jo
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In view of the estimate (4.10'), we see that

IbMII < conste~rt, 0 < r < A/<+1, t > 0.

This immediately gives the estimate

\\u(t)\\ + ||i>(f)|| < conste~rt(||ug| + ||w0||), t > 0. (4.11)

The presence of ,/(.(i) = (vt(t),(k)n in (4.4) and (4.5) makes onr control system
somewhat unclear regarding its well-posedness. Let us express f'k(t) in terms of q and v
including no derivative in time. Looking at (4.5), we calculate as

N M

fl(t) + <(L - C)v, Qn = ][>(*), "fcM&.COn - E /kWWfc, Qn, 1 < i < M,
k=1 k=1

or in vector form

f'(t) + ((L - C)v, On = 6G2(q(t),w)r - OG.f'it),

where G2 = yj)n\ ^ ^ ■

Thus we see that

f'(t) = (1 - G1)(6G2(q,w)r - (v,LQn ~ 0G2{v,w)r)• (4.12)

Tlie right-hand side of (4.12) defines the M x 1 vector-valued function g(q,v). Replacing
f'it) by g{q,v) in (4.4) and (4.5), we obtain

~ + Lq= ~(N0hi ■ ■ ■ N0hM)g{q,v), q{0, •) = qQ,
dt (4.13)

+ (L - C)v = -Cq - (N0ln ■ ■ ■ N0hM)g(q, v), v(0, ■) = v0,

which is our basic system of differential equations. Eqn. (4.13) is well posed in L2(i?) x
L2(i?). It is readily seen in (4.13) that f(t) — (v(t)X)n actually satisfies the relation:
f'(t) = 9{q,v).

To reduce the compensator to a finite-dimensional equation, we add a small pertur-
bation to (4.13). The perturbed system of equations is described by

(4.14)
^ +Lq = ~(N0hi ■ ■■N0hM)gn{q,v), g(0, ■) = g0,

d.u
— + (L - Cn)v = -Cq - (PnN0h! • • • PnN0hM)gn(q,v), «(0, •) = v(h

where Cnv = - J2k=i(Pnviwk)r£,k, and gn(u,v) is defined by

gn(q, v) = (1 - G\){OG2(q. w)r - (v, LQn - 0G2(Pnv, w)r)-

The perturbation contains the unbounded terms (Qnv, Wk)r- It is small in the sense that

0<<4
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Thus the stability property of the perturbed system (4.14) is little affected when n > K
is chosen large enough. Consequently the solutions (q,v) to (4.14) satisfy the decay
estimate

IkWII + IK*)II < conste"rt(||u0|| + ||v0||), t > 0,
with r > 0 slightly modified. As in the fourth step of Theorem 3.1, v(t) remains in
PnL2(fi) as long as v0 is in PnL2(f2). Thus the equation for v in (4.14) is regarded as
the equation in the finite-dimensional subspace PnL2(i?).

As in (4.13), it is readily seen that /(f) = satisfies the relation: f'(t) =
gn(q,v). Thus, by setting u(t,-) = g(f, ■) + (iV0/ii • • • N0hM)(v(t), Qn, the system of
differential equations for (u,v), which is equivalent to (4.14), is described by

7 M
n r\ \—A / .— +£u = 0, tu = 2_^{v,(k)nhk,

k=l

dv A M, (4-15)
+ (L - Cn)v = 2j(w, Wk)r(k + /,(v,£k)nCNohk

k=1 k=1

- {PnN0hx ■ ■ ■ PnN0hM)gn{u,v),

where gn(u,v) = gn(u — (Nh\ ■ ■ ■ NIim){v, C)n, v), and the solutions (u,v) to (4.15)
satisfy the decay estimate

Su(t,-)ll + ll«WII < const rrt(||«o|| + ||«o||), t> 0. (4.16)
Eqn. (4.15) is the desired control system.

An application to a class of second order equations:
The self-adjointness of L is not an essential assumption in this section. In fact, the

algebraic approach developed here is applied—with the same spirit as in Sec. 3 and with
slight technical changes—to a class of linear boundary control systems of second order
in time. Let us consider the linear differential equation with state (u(t, •),ut{t, ■)) in the
interval = (0,1):

Utt 2OLUixx UXxxx ~ 0,

Ux(t,0) = f{t), u{t, 1) = 0, uxxx(t,0) = uxx(t, 1)=0, (4.17)

tu(0, ■) = uo(0> ut(0, ■) = ui(-).

Here, a, 0 < a < 1, denotes a constant, and /(f) the boundary input. We first consider
a static feedback control scheme and then proceed to a dynamic feedback scheme.

A static feedback control scheme: Given aw £ L2(S7), the output is given by
(■u,w)n = fg u(t,x)w(x)dx, and set /(f) = (u,w)n■ Setting Au = Au = —«"(•), where
V(A) = {u£ H2(0, 1);m'(0) = u(l) = 0}, and iti = u, 112 = ut, we have

dt\U2j 2a A J \1i2J \0
Set ip(x) = x — 1. As in (3.24), let T be the operator defined by Tu = u — {u,w)n<P for
u G L2(0,1), and set z = (^), z\ — Tu\, 22 = Tu2. When (ip,w)n 7^ 1, the bounded
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inverse T~l exists. Let H = V(A) x L2(0,1) be a Hilbert space with the inner product
(•, ■)h and the norm || • \\h*- By assuming a w in V(A), z satisfies the equation in H:

dz
— + Lz = (z.w)hV- z{Q,-) = zq. (4.18)
at

where

L={1' £)■ „=(»). a„d
It is clear that

(i) a(L) = n = 0,1,... }, where fin = (n + \)2n2■ = a ± \/—lvT^a2,
' - i)r?| = 0. ?7,f = = V^cos(n+ |)ttx; and

(ii) the set {//^; « = 0,1,... } forms a normalized Riesz basis for H.
Thus the semigroup e~tL satisfies the estimate

\\e~tL\\c{H) < conste~a"ot, t> 0. (4.19)

The set {ipi}i>o forms an orthonormal basis for L2(0,1). Let P„, n > 0, denote the
projection operator in L2(0.1) corresponding to the eigenvalues //,,• of A, i < n, and let

denote the projection operator in H corresponding to the eigenvalues of L,
i < n:

pnz = i>2(z?r'i+ + zirh ) = (PpZf] for z = (?) = £(4>lt + h ilT)•
T^o ^PnZ2j ^2/ 7^o

When n = 0, we have Pj1 z = ;,}'/(! + *oVq, and P^<p = 2 (Vo ~ Vo), where
<Po = (fi1^o)n — V/2(-)2- Let us construct a w simply as a scalar multiple of ipQ. Then

(z. w)H = -j=- (1 - 2auj 1 - 2auj ) ( _ ). w0 = {w, ipo)n-

The equation for (zq , Zq) is written as-0 ' "0

,+ \ , HWqs/^I (-IV , \ (z$\ (0
37 - + /'0 n _ + . (1 - 2aw+ 1 - 2 awdt \zoJ V V 0 w / 2v/V^2 V 1 7 7 W/ \0y
We can choose a wo = (w, tpo)n such that the minimum k of the real part of the spectrum
of the above coefficient matrix is greater than af.t0. For such a wq, we have the estimate

4(0
20" (*)

< const e Kt
H

*o(0)
^0 (°)

, t > 0,
H

which immediately leads to the estimate

\\z{t)\\H < const c-min(«.«Mi)t||a;(,\\h: t > 0

for solutions z(t) to (4.18). In other words,

|| exp-t(L - {-^h^Wcw) < const t>0, n>a/j,0.

Thus we obtain an improvement of the stability estimate (4.19):

IKMIIffW) + IK(V)ll < conste~min(K'QMl)t(||u0||//2(0a) + ||ui||), t > 0. (4.20)

"{z, q)H = (Azi,Aqi)n + (Z2,q2)f2, \\z\\h = iJ{z,z)H for 2 = (^), q = (qi) G H.



BOUNDARY STABILIZATION FOR LINEAR PARABOLIC SYSTEMS 745

A dynamic feedback control scheme: Instead of the implausible output (u,w)n,
the output here is assumed to be u(t, 0) and ut(t, 0), t > 0. We construct a dynamic
compensator for enhancing the stability of the whole control system. In (4.17) set

Assuming that f(t) is of class C2, the equation for q is described in H by

^+Lq + f"(t)V = 0. (4.22)

Given a £ G H, let C be the bounded operator defined by Cq = —<7i(0)£ for q(-) £ H.
Our compensator with state v{t) = ^ H formally given by

dv
- + (L-C)v = -Cq-f"{t)<p, v{0)=vo. (4.23)

As before, we see that q(t) — v(t) = e~t(L~c\q0 — Vq), t > 0. Let us find a £ =
(|^) G P0HH so that minRe<7(L — C) is greater than afi0. It is enough to investigate the
structure of the restriction Pff {L — C)P$ . By setting £ = the operator
Pq1 {L — C)P^ is equivalent to the matrix

;h©«
Since (/jo(u'0+ J5- )> (1 1)) is al1 observable pair, there is a vector Q°) such that the spec-

trum a(Pq (L-C)Pq) is freely assigned (see, e.g., [20]). Thus we can choose a £ G Pq H
such that minRea(L — C) = k, where a^o < k < an\. With this choice of £ we have
the decay estimate

- "Wlltf < const e"Kt||q0 - v0||ij, t> 0. (4.24)

At this stage we define /(f) as

f(t) = (v(t),p)H, P = o(A QW\ 9 G R1,

where w G PoL2(0.1) is the function stated in (4.18). We may assume with no loss of
generality that (<p,w)a ^ 1. Set 0 = (1 - {tp, w)n)~1. As in (4.10), we obtain the decay
estimate

\f(t) - (u(t, ■)1w)q\ < const e~Kt, t> 0. (4-25)

As in (4.12), let us express /"(f) = p)h in terms of q(t) and v(t) including no
derivative in time. Looking at (4.23) and noting that p is in P(L*2), we see that

0 = f'{t) + (v(t), L*p)H + (wi(f, 0) - qi(t, 0))(£. p)h,

where L*p=—9y\t and L*2p=—9w.
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Differentiating both sides in t, we calculate as

0 = f"(t) + L*p)H + ((!;,),(*, 0) - ut(t, 0) - f'{t)){Z,p)H
= f"(t) + 0(v(t), w)H - (vi(t, 0) - u(t, 0) - f(t))(£, L*p)H

+ f"(t)0(ip,w)n + ((wi)t(^0) - ut(t,0))(£.p)H
+ {(v(t), L*p)H + 0) - u(t, 0) - f(t))(£, p)h)(£. p)h,

0f"(t) = -0{v(t),w)H - {£,p)H{v{t),L*p)H

+ ((£,L*p)H - (£,p)2H)(vi(t,0) - u(t.O) - f(t))

- ((V!)t(t, 0) - ut(t, 0))(C p)H (4.26)
= -d(v{t),w)H + (vi(t, 0) - qi(t, 0))(£, L*p)h

- (v2{t, 0) - q2(t,0) - (vi(t,0) - qi(t,0))Zi(0))(£,p)H.
The last term of the right-hand side of (4.26) is denoted by E(t). The terms \v2(t, 0)| and
l<?2, 0)| in S(t) are bounded from above, respectively, by \\y/Lv(t)\\H and || </Lq(t) ||_f/.
Replacing f"{t) by 9~1E(t) in (4.22) and (4.23), we obtain the basic system of equations:

~ + Lq + 0 = 0,

dv
—r~ + (L — C)v + Cq + 0 = 0.
at

(4.27)

which is well posed in HxH and generates an analytic semigroup. In (4.27), it is not hard
to verify that the second derivative f"(t) = p)n is actually equal to
Thus we can go back to (4.22) and (4.23). The first equation of (4.27) is rewritten as

^ + lQ - {q, w)hV = t > 0, e(t) = - (q(t),w)H.

The error term e(t) is estimated as

kWI = I(q{t) - v(t),w)H + 0_1(7Ji(t,O) - qi(t,0))(£,L*p)H
- 6>_1(t;2(i.0) - q2(t, 0) - (ui(t,0) - <?i(f, 0))fi(0))(£, p)h\

< c°nst ^-(Ikoll/f + ||«o||tf), t> 0.

In view of the decay estimate of the semigroup exp —t(L — (-,w)h<p) and s(t), we have

\\q{t)\\H < const e~nt{\\qQ\\H + IKHtf), t > 0,

and a similar decay estimate for v(t). We have thus established the stability enhance-
ment.

To reduce the compensator to a finite-dimensional equation, we add a small pertur-
bation to (4.27). The perturbed equation is described as

^~+Lq + 6 l=.n(t)ip = 0.

(Iv
— + Lv + {Pnvi)(t,0)£ + Cq + 6~l Zn(t)P% tp

(4.28)
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where

•=„(*) = -6(v(t),w)H + ((PnVi){t,0) - qi(t, 0))(£, L*p)h

- {{Pnv2)(t,0) - q2(t, 0) - ((PnVl)(t,0) - qi(t,0))ti(0))(£, p)h-

When n is chosen large enough, the stability of (4.28) is little affected. Thus the estimate

\\q{t)\\H + IMOIItf < const e-^dlqoll^ + IKIIff), t> 0, (4.29)
holds for the solutions to (4.28). In (4.28), v(t) remains in P^ H, as long as vo is in H.
Just as before, we see in (4.28) that f"(t) = ^{v(t),p)n is nothing but 9~lSn(t).

Setting u(t,-) — qi(t,-) + (v(t), p)Hip, we go back to the original state (u,ut). By
recalling that q(t) belongs to V(A2) x V(A), (u(t,-),v(t)) satisfies the equation

utt + 2 aAut + A2u = 0,
Ux(t,0) = fit), u(t, 1) = 0, uxxx(t,0) = uxx(t, 1) = 0,
dv (4.30)
— + Lv + {{Pnvi)(t, 0) - u(t, 0) - /(£))£ + 0"1Hn(^)P?f ip = 0,

= u0(-), ut(0, ■) = ui(-), v(0) = v0 GP"H,

where f(t) = (v(t),p)H, and

En(t) = -6{v(t),w)H

+ ((PnVl)(t,0)-u(t,0) - mm,L*p)H+Z1(0)(tp)H - (t,p)2H)
- ({PnV2)(t,0) - u(t, 0) + (v,L*p)H)(£,p)H.
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