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Abstract. A determuustlc O(log N)-time algorithm for the problem of routing an arbitrary permutation
on an N-processor bounded-degree network with bounded buffers is presented.

Unhke all previous deterministic solutions to this problem, our routing scheme does not reduce the
routing problem to sorting and does not use the sorting network of Ajtai, et al. [1]. Consequently, the

constant in the run time of our routing scheme is substantially smaller, and the network topology is

significantly simpler.
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1. Introduction

We present an efficient and simple deterministic solution to a fundamental

problem in communication and parallel computation; the problem of routing an

arbitrary permutation request on a bounded-degree network topology, with

bounded buffers.

An N permutation request is a set of N packets. Each packet resides in a

distinct processor and each processor is the destination of one packet. We are

required to specify a bounded-degree network topology, and a routing algorithm

that routes an arbitrary permutation request on that network in minimum

parallel time. In our computation model, a node in the network can send and

receive only one packet per step, and can store simultaneously only a bounded

number of packets.

A preliminary version of this work was published in Proceedings of the 21st A ntrual A CM SZGA CT
Symposium on Theory of Computmg (Seattle, Wash., May 15- 17), ACM, New York, 1989, pp.
241-250

Eli Upfal’s work at the Weizmann Institute was supported in part by a Bat-Shevu de Rothschild Award

and by a Rev son Career Development Award.

Author’s address: IBM Research Division K53, 80L, Almaden Research Center, 650 Harry Road, San
Jose, CA 95120-6099.

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and Its date appear, and notice is given that copying is by permission of the Association for

Computing Machinery. To copy otherwise, or to republish. requmes a fee and/or specific permission.
@ 1992 ACM 0004-5411 /92/0100-0055 $01.50

Journal of the As.ocmt>on for Computmg Machmay, Vd 39. No 1, January 1992, pp 55-70



56 ELI UPFAL

Packet routing can be implemented in two types of communication environ-

ments: switching networks and communication networks.

A switching network is an acyclic network with N inputs, N outputs, and at

least N log N internal nodes. Each node is connected to a bounded number of

input, output, and internal nodes.

A communication network has a total of N nodes, connected by a bounded

degree network. Each node can generate a packet, can be the destination of a

packet, and can serve as an internal node.

The problem of efficient packet routing on bounded-degree networks has

been extensively studied in the past. However, almost all past research focused

on probabilistic solutions. One reason is a known lower bound by Borodin and

Hopcroft [5], showing that the obvious routing strategies (oblivious routing),

cannot yield an efficient deterministic solution.

The only previously known O(log N) deterministic solutions reduced the

routing problem to sorting and used variants of the Ajtai-Komlos-Szemeredi [ 1,

6, 9] sorting network to solve the sorting problem on a bounded-degree

network. An O(log N)-sorting network gives an O(log N) solution for the

acyclic, switching network, packet-routing problem. Leighton’s Columnsort
algorithm [7] (which, in turn, is based on the AKS sorting network), gives an

O(log N) packet routing on an N-node communication network. Although

these solutions are asymptotically optimal, the constants involved in the run-time

are big, and the network topology required for the routing is inherently

complicated and nonregular.

Our new deterministic solution uses a novel scheme that does not reduce the

routing problem to sorting. As a result the constant (multiplying log N) in the

run-time of the routing algorithm is substantially smaller. Furthermore, the

network topology used by the new scheme is significantly simpler, its core

consists of a constant number of butterfly networks superimposed one over the

other in a certain pattern.

Although Batcher’s 1/2 logzN sorting network [4] is still the most efficient

solution for any practical N, our new results suggest that exploring the

difference between routing and sorting might yield more efficient deterministic

routing algorithms. In particular, we developed a new technique for utilizing

the special properties of expander graphs in constructing sparse routing graphs.

2. Preliminaries

Let G = (A, B, E) be a bipartite graph, and let r(X), denote the set of

neighbors of a set of vertices X, that is, T(X) = { y I (x, y) e E for some

XEX}.

Definition 2.1. G is an (a, ~,n, d)-expander if I Al = IBI = n, the

degree of every vertex in G is d, and for every set X C A such that

lxl=~n,lr(x)la~lxl.

Definition 2.2. G is a depth 2 (u, 6, m, m /2, d)-concentrator if I A I

= m, I B I = m /2, the degree of each vertex in A is cl, the degree of each
vertex in B is 2 d, and for every set X C A, such that I X I < CYm,
Ir(x)lzplxl.

The basic building block of the routing network is a splitter.
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input; and two sets of h/2 outputs’. The set of inputs is connected by an

(u, (3, m, m /2, a?)-concentrator to each of the two sets of output nodes. (See

Figures 1 and 2.)

THEOREM 2.1

(1) For any fl < d – 1, there exists an (a, (3, n, d)-expander with a >
l/fl(6e1+p)-’/( P-)-’).

(2) There exists an explicit construction of an (a, ~, n, d)-expander for
anyd=p + 1, pprime, and 13s d/((d– 4)a + 4).

PROOF. The first part is proven by a straightforward counting argument. The

second part is a consequence of the construction given in [8]. (See [2], [3], and

[10].) ❑

COROLLARY 2.1

(1) For any 2fl < d – 1, there exists an (a, ~, m, 2 d)-splitter with
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(2) There exists an explicit construction of an (a, fl, m,2d)-splitter for
anyd=p + 1, pprime, and~ < d/(2(d– 4)a + 8).

PROOF. An (a, o, m, m /2, d)-concentrator can be constructed by folding

the set of vertices B in an (a, 2 (3, m, d)-expander G = (A, B, E). Identify-

ing the sets of A vertices in two (a, ~, m, m /2, d)-concentrators gives an

(CY, D, m, 2d)-splitter. ❑

3. Packet Routing on an Acyclic Switching Network

3.1. THE MULTI-BUTTERFLY NETWORR. An (N, d, a, ~)-multi-butterfly is a

network with N input nodes, N output nodes, and N(log N – 1) internal

nodes. (To simplify the presentation, we assume that N is a power of 2.) Nodes

can store only a bounded number of packets in their buffers, and only one

communication line adj scent to each node can be active at any given time. The

nodes are partitioned into log N + 1 stages, stage O to stage log N. There are

N nodes in each stage. The N nodes of the stage O are the input nodes, and the

N nodes of stage log N are the output nodes. Let (s, j) denote the jth node in

stage s.

The connections between the stages are constructed as follows: For each

stage O s s < log N, the nodes of stage s are partitioned into 2 S sets

A S,o>...> A
S,2S— I.

A~, j = {(S, k) l[k/210~~-S
set As ~

]= j}. The IV/2s nodes of
are connected by an (a, ~, N/2’, 2d)-sphtter to the two N/2’+* sets

A ~+1 ~~, and A~+l ~~+,.l (See figure 3.)

Ou~ network is s&ongly related to the butterfly network. The only difference

between the two networks is that in the butterfly network a vertex in a set A, ,
is connected by one edge instead of d edges to each of the sets A ~+, ~, and

A In Appendix A, we show that the Multi-Butterfly network’ can in
S+1,2J+1.

fact be constructed by superimposing d butterfly networks.

Clearly, there are d edge disjoint paths of length log N connecting each input

to each output in the Multi-Butterfly network. Furthermore, like in the butterfly

network, a log N route from each input node to each output node can be easily

computed by bit comparison. By our construction, the set A ~ J is connected to

the two SetS As+l,~j and A ~+1.2~+ 1; we refer to the set AS.+’I,ZJ as the upper
set Of outputs of the set A,, ~, and to the Set A ~+ ~ ~J+ ~ as the lower Set of

outputs. In transition s, a packet is sent to the upper o’utput set if the s bit in the

bit representation of its destination address is O, and to the lower output set

otherwise. Thus, if a packet passes through a node in the set A ~ J the first ,s

bits in the packet’s destination equal the first s bits in the bit representation of
j. After log IV transitions, a packet reaches the singleton /t ,Og~, ~ and the

destination of the packet is j.

3.2. THE ROUTING ALGORITHM. For efficient execution of the algorithm, we

partition the N packets into L = [1/a ( ~ + 1)] priority groups or batches.

The batches are constructed so that no more than a m( 13+ 1) packets from

each batch are routed through any m-splitter (we omit the parameters a, ~, and
d since they are fixed throughout the network). To guarantee this property,

*For uniformity we use splitters throughout the network. In practice, however, it would be more
efficient to replace the last log m stages of the network by N/m Batcher networks.
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FIG. 3. Multi-Butterfly network

batch k, B(k), contains the packets with addresses in the set { q I q mod L =
k}. A packet in batch B(k) has higher priority than packets in IJJ > ~ B( j).

The edges of each splitter are colored with 2 d colors so that no two edges of

the same color are adjacent to one vertex. The algorithm works in iterations. In

odd iterations, the edges connecting odd stages to even stages are activated. In

even iterations, the edges connecting even stages to odd stages are activated.

Edges are activated one after the other according to the color order. Thus, in

each step, only one edge adjacent to each processor is activated.

Processors try to send the packet with the highest priority that they currently

store. When an edge connecting v to u is activated, if the packet with the

highest priority in v is from B(k), and if u does not store a packet from B(k),
then that packet can be sent from v to u. This protocol guarantees that no more

than L packets will be stored simultaneously in one processor.

3.3. THE PERFORMANCE OF THE MULTI-BUTTERFLY NETWORR. The following

claims give the basic tool for analyzing the progress of packets in the network.

CLAIM 3.1. Given an m-splitter, denote by Y‘( j) the number of packets
of batch j stored at input nodes of the splitter after iteration t. Denote by
Zf( k) the total number of packets of batch k stored in the two output sets
of the splitter after iteration t. Assume that the edges of the splitter are
activated in iteration t of the algorithm. Then

Y’(k) s
y’-’(k) + Zt-’(k) + ~yt.l(j)

p+l j=()

PROOF. In each iteration, each processor tries to send the packet with the

highest priority that it currently stores. A packet in processor v is sent to a

neighbor u, only if u does not store a packet from the same batch.

Let 12- l(k) denote the set of input nodes of the splitter storing packets of

l?(k) before the execution of iteration t.Since a node can store only one packet
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from each batch, I It-i(k) I = Y’-’(k). Let Iflf- [(k) G l(-l(k) denote the

set of input nodes in which the packets from B(k) has the highest priority, that

is, processors in If –‘ (k) that do not store packets of IJ, < ~ B( k) before the

execution of iteration t. Let ff~t-l(k) = l_.JHIf-l U Llflt-l(k), where

UHI’-’ ( k) stores packets that need to be sent to the upper output set, and

LHI’ - 1( k) stores packets that need to be sent to the lower output set. Let

U]’(k) G UHI’-’(k), and Lit(k) s LHIf– 1(k) denote the nodes in

HI’- l(k) that contains packets of B(k) after the execution of iteration t. Note

that if a node is in U1f( k) or LIC( k), all its neighbors in the upper or the lower

output set respectively store packets of B(k) at the end of iteration t. (See
figure 4.)

The input set is connected to the upper output set by an ( CY,0, m, m /2, d)-

concentrator. If I UIt( k) I > am, then by the expansion property of the

concentrator

Ir(w(k)) I 2 o!~n’z.

But each processor in UI~( k) U I’( U]’( k)) stores a -packet from B(k), and

no more than Q( ~ + 1) m packets of B(k) are routed through any splitter, thus

I U]’(k) I 5 am.
Since each packet in HIt -1(k) is either in an input or in an output node,

after the execution of iteration t, we get

s I HI’-l(k)l + Z’-’(k) - I HIf(k) 1.

Since I HI’-’(k) I s Y’-’(k),

I HI’(k) I s
y’-’(k) + z’-’(k)

p+l

Y‘( k) – I HIr( k) \ s ~~~~yt- l(j), since each input node that stores a

packet of B(k) and is in 1 (k) - HI’- ‘(k) stored a packet from IJJ< .B(k)

before the execution of iteration t.Thus,

k–l

Y’(k) < I HIr(k) I + ~ Y’-l(j)
j=o

❑
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Using Claim 3.1, we can prove a uniform bound on X;(k), the number of

elements of batch k in column s after the execution of iteration t of the

algorithm.

Fix constants a, (3, -y, and 19, such that

4 3’#

d+l+ l-#
s’y2 <l. (1)

CLAIM 3.2. Let t be even, then at the end of iteration t,

I[
iVN

min —
L’~y

‘-’~(1 + 6)(s+ ’)/2
1

if s is odd;

X;(k) s

[

NN
s/~

min —, —y(–o~
LL

(1+ ~) -] if s is even.

PROOF. For t = O, the claim is trivially true since there are no more than

N/L packets in any batch.

Assume that the claim is true for t – 2. and fix k. Let s be odd. In iteration

t – 1, stage s is sending packets to stage s + 1.

Applying Claim 3.1 to all the splitters connecting state s to stage s + 1, we

get

by the induction hypotheses. A similar bound holds for X~~~ ( k),

Since s – 1 is even, stage s – 1 receives packets from stage s – 2 in

iteration t – 1. It can receive no more than X~~~ ( k) packets of B(k) thus,

X::l(k) =xi=;(k) + X~~f(k) s 2;7t-2-’k(D + 1)( S-’)2.

A similar bound holds for X~~/( k).
In iteration t,stage s is receiving packets from stage s – 1.

X:(k) s X:J; (k) + X:-’(k)

by the requirement (1) on ~.
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by the requirement (1) on i9. ❑

THEOREM 3.1. The (N, d, a. fl)-iWulti-Butter fl.v network routes an arbi-
trary permutation in

(1 + 1/2 log(l + (3)
2d

log l/’y )

logN+ O(1)

steps.

PROOF. We bound the total number of packets in the network after T
iterations ( T even), by

This sum is less than 1 for

[

1 + l/210g(l + (3)
To >

log l/~ )

log N+ O(l).

Each iteration takes 2 d steps. Thus, the run-time is bounded by 2 dTo +
0(1). ❑

A reasonable choice of parameters for a nonexplicit construction d = 10,

~ = 7, ~ = ~/2312, ‘Y = Q.714, 6 = 14, and ~ = 68. The run-time for that
assignment is 100 log N + 0(1) compared to 6100 log N + 0( 1) using an

AKS sorting network [9].
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A reasonable choice for an explicit construction is d = 60, (3 = 7, a =

1/189, ~ = 0.707, 19 = 14, and L = 27, which yields run-time 60010g N +

0(1) compared to at least 10Glog N + 0(1) using an AKS sorting network.

Note that the Multi-Butterfly solution uses significantly less hardware. The

Multi-Butterfly network has only log N stages each with N nodes. The number

of stages in the AKS network is equal to its run-time, each stage with N nodes.

Although the degree of each node and the size of the node’s buffer is larger in

our network, the total number of edges in the network, and the total number of

buffers is smaller than in the sorting network. By replacing each set of d edges

adjacent to one node with a tree of depth log ~d, one can decrease the degree to

4 adding no more than a factor of 2 log ~d to the run-time. Thus, we get a

nonexplicit construction of degree 4 that runs in 600 log N steps and an explicit

construction of degree 4 that runs in 4800 log N steps.

4. Routing N Packets on an N-Processor Communication Network

4.1. THE NETWORK TOPOLOGY. To simplify the presentation, we use topol-

ogy with 3 N nodes. We later show how to implement the topology on an

N-processor network. Nodes can store only a bounded number of packets in

their buffers. Only one communication line adjacent to each node is active at

any given time. When a communication line is active, the nodes adjacent to it

can either exchange the content of one of their buffers or keep their buffers

unchanged.

Let N = n(log n + 1). The nodes are partitioned into 3 log n + 1 stages,

stage O to stage 3 log n. Each stage contains n nodes, and for every O < s s

3 log n – 1, stage s is connected to stage s – 1 and stage s + 1. A node in

this topology has a unique address (s, q), where O < s s 3 log n denote the

stage in which the node is located, and 1 s q < n is its number in the stage.

The first log n + 1 stages are connected by expanders. For each O s s <

log n, stage s connected by an (u, ~, n, d)-expander to stage s + 1. The

intermediate log n + 1 stages are connected by an (N, d, a, (3)-Multi-Butterfly

network. The n nodes of stage log n are connected by an n-splitter to two sets

of n/2nodes ofstagelogn + 1. Foreach O<i<logn – 1 andl < iS 2’,

the set A, ~ of stage log n + i is connected by an n /2 ‘-splitter to the sets

A1+l,z~–1 and A~+l,~j of stage log n + i + 1.
The last log n + 1 stages are connected to each other only by forward edges.

Each node (s, q), 2 log n < s <3 log n is connected to node (S + 1, q).

Initially all the N packets reside in the first log n + 1 stages. All the final

destinations of the packets are in the nodes of the last log n + 1 stages. Clearly,

there is a path with no more than 3 log n edges between every node in the first

log n + 1 stages and every node in the last log n + 1 stages, and this path can

be locally computed. A packet initially at node (s, q) with destination (s’, q’)
can take an arbitrary path forward to stage log n. By bit comparison, the packet

is then led to the node (2 log n, q’), and then by the direct edges ((x, q’), (x +
1, q$), the packet reaches its destination.

4.2. THE ROUTING ALGORITHM. The core of the routing is the Multi-But-

terfly network. Given a packet with destination (s, ~), the Multi-Butterfly

network delivers the packet to node (2 log n, q). From there the packet

proceeds through the direct edges to its destination. To achieve an O(log N)
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run-time we pipeline O(log n) batches, each with 0(n) packets. The main

difficulty in implementing this idea is that the Multi-Butterfly network can

handle efficiently only partial permutations on n, while an arbitrary set of

0(n) packets might contain up to log n packets that need to reach the same

output of the Multi-Butterfly network. The task of the first log n stages is to

feed the Multi-Butterfly network with well-prepared batches, that is, to approxi-

mately sort the packets according to the column of their destination.

For efficient execution, we partition the N packets into [1/u] (log n + 1)

batches. For k = O, . . ., ~1/al(log n + 1) -1, batch k, l?(k), consists of no

more than an packets with destinations in the set { ( ,s, q) I s = \ k/ ~1/ a 1~, and

q = k mod~ 1/ a 1}. This construction guarantees that no more than am packets
from each batch can reach the input set of any m-splitter. A packet in B(k) has

higher priority over packets in IJJ > ~ B(j).

The edges of each expander are colored by d colors, and the edges of each

splitter are colored by 2 d colors, such that no two edges with the same color

share a node. The algorithm works in iterations. In odd iterations, the edges

connecting odd stages to even stages are activated while in even iterations edges

connecting even stages to odd stages are activated.

In each iteration, the edges are activated one after the other according to the

color order. When an edge-connecting node (t, q) to node (i + 1, q’) is
activated, if node (t, q) stores in its buffer a packet with higher priority than

the packet stored in the buffer of ( t + 1, q’), the two nodes exchange packets.

An empty buffer is considered a packet with the lowest priority.

An iteration takes d steps of a node in the first log n stages, 2 d steps of a

node at the second log n stages, and 1 step of a node in the third log n stages.

Thus, we can simulate the network on N processors. Each processor has

degree 6 d + 2, and 3 buffers. An execution of each iteration, by the N

processors, takes 3 d + 1 steps.

In Section 4.4, we show how to reduce the degree of the network without

significantly changing its performance.

4.3. ANALYSIS OF THE NETWORR PERFORMANCE. Let ~~( K) denote the num-

ber of elements of batch k in column s after the execution of iteration t of the

algorithm.

CLAIM 4.1. Let s < log n, and let t be an iteration in which stage s is
sending packets to stage s i- 1. Then

PROOF. Since s < log n, stage s is connected to stage s + 1 by an

(a, @, n, d)-expander, Let X denote the locations of the X:(k) packets of

batch k that were left in stage s after the execution of step t.Since packets in

batch B(k) have priority over packets in IJJ > ~ B( j) all neighbors of ~ in

stage s + 1 contain packets of UJ ~ ~ l?( j).

Since batch k has no more than an packets, I X I = X:(k) s an. By the

expansion property

k

plxl s Ir(x)l s ,-o(x;-yj) +x;;;(j)) - 1X1.
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n

CLAIM 4.2. Given an m-splitter, denote by Y‘( j) the number of packets
of batch j stored at input nodes of the splitter after iteration t. Denote by
.Zf( j) the total number of packets of batch j stored in the two output sets
of the splitter after iteration t. Assume that the edges of the splitter are
activated in iteration t of the algorithm, then

Y’(k) s
Z~=o(Yt-’(j) + Z’-’(j))

0+1

PROOF. Let Y‘( j) = UYf( j) + L Yf(j), where UY’( j) packets need to be

sent to the upper output set and L Y‘( j) to the lower output set. Let Zf( j) =
UZ~( j) + LZ’( j) where UZf( j) packets are in the upper output set and

LZt( j) are in the lower output set after iteration t. (See Figure 5.)

The input set is connected to the upper output set by an (a, 13, m, m /2, d)-
concentrator. Let X denote the locations of the UY’( k) packets of batch k that

were left in input nodes of the splitter after the execution of iteration t. (There

is no more than one packet of UY’( k) in each node. ) Since packets in batch

II(k) have priority over packets in (_Jj> ~ B( j), all neighbors of X in the upper
output set contain packets of U ~~ ~ B( j).

Since no more than am packets of batch k can reach the m-splitter,

I .X I = (JY’( k) < am. By the expansion property of the concentrator

~lXl S 11’(X) I S $O(UYf-’(j) + UZf-’(j)) - 1X1.

Thus ,

UYf(k) = I Xl <
E~.O(UY’-’(j) + UZ’-l(j))

6+1

A similar inequality holds for L Y‘( k). Combining both inequalities, we get

Zf=o(Yt- l(j) + Zt-l(j))
Yf(k) s

/3+1
n
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Using Claims 4.1 and 4.2, we can prove a uniform bound on the number of

packets of a given batch stored in a given stage after the execution of itera-

tion t.

Fix constants a, 13, T, and 19 satisfying the following condition:

(2)

CLAIM 4.3. Let t be even; then

[

[
min an, any ‘-”(l + p)

X;(k) <
‘s+1)’2] f sisodd:

[
min an, anyr–o~ (1+ ;)’/2] if s is even.

PROOF. We prove by induction on t.For t = O, the claim is trivially true

since all bounds equal the maximum number of packets of batch k that can

reach that set.

Assume that the claim is true for t – 2, and fix k. Let s be odd. If

s < log n, we apply Claim 4.1, else we apply Claim 4.2.

Since s is odd, stage s is sending packets in iteration t – 1. By the induction

hypothesis and Claim 4.1 or 4.2:

Since s – 1 is even, in iteration t – 1 itreceives packets from stage s – 2.

It can receive no more than X,~~~( k) packets of batch k. Thus,

In the next iteration (iteration t).stage s receives packets from stage s – 1.

by (2).
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Stage s + 1 is sending packets in iteration t.

Using Claim 4.1 or 4.2, and condition (2), we get

X:+I(k) s -&2un7t.2.0J(B + ~)(s+,m

~~2.ny
‘-’-”(l + 6)(s+3)’2

‘/3+11=0 (6+ 1)(1 - ‘#)

s any ’-’~(l + 6)( S+[)’.

THEOREM 4.1. The network routes an arbitrary N-permutation in
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( 1 + log(l + ~)
(3d+ 1) ; + ~og(1,7)

)

+ 1 + O(l)logN

steps.

PROOF. We bound the total number of packets that are in the first 2 log n
stages of network after T’ iterations (T even). There are KO = (n log n)/ a n
batches. Thus, the total number of packets in the first 2 log n stages is bounded

by

Ko–l 210gn–1

~ ~ ~n~r-e~(~ + 1)(s+’)/2 z ~~(~ + ~JIOg”+lyT-OKO ~’—
j=Q S=cl l–#”

This sum is less than 1 for

[

1 + log(l + /3)
To> ~+

log(l/~) Ilogn + o(l).
a

After an additional log n iterations all packets reach their final destinations

through the direct edges of the last log n stages. An iteration takes 3 d + 1

steps; thus, the total time is bounded by (3 d + 1)( To + log n). ❑

For the nonexplicit case, fix d = 21, 15’= 6, ~ = 0.81, a = 0.042, and

6 = 12. This assignment yields a run-time of 18500 log N steps.

For the explicit case, fix d = 102, D = 6.4, y = 0.796, LX = 0.04, and

O = 10. This yields a run-time of 8 x 104 log AJ steps.

4.4. REDUCING THE NETWORK 13EGREE. We use the repetitive structure of the

network to reduce its degree to 10, adding no more than a factor of 2 to the

run-time of the routing algorithm. We assume for that reduction that d is a
power of 2.

THEOREiM 4.2. Let G = (V, U, E) be a bi-partite graph specifying the
connections bet ween two adjacent stages in the network. Assume that

(1)

(2)
(3)

The degree of G is d.
Each node stores no more than one packet in each step.
There is a partition of G into d identical gruphs H, = ( A,, B,, E( H,)),
i= O,..., d – 1 such that V = (_J~j~Ai, U = U~l~Bi, and E =

u;:owo.



68 ELI UPFAL

Then, there is a network G’ = ( V U U, E’), such that lhe degree of G’ is
3, and each step of the original stage can be simulated on G’ in 2 steps.

PROOF. Let H = (A, B, E(H)) denote the generic graph of H,, i =
o >. ... d – 1. For each vertex v in H, denote by Vo, . . . . ‘d. 1 the d copies

of v in the d graph G = l_Jfj~Hz.
To construct the graph G’, we color the edges of H by d colors such that no

vertex is adjacent to two edges with the same color. The graph G’ has the same

set of vertices as the graph G. The edges are constructed as follows: For each

edge (v, u) in H that got the color i we connect v, to u, in G’. For each

vertex v in H, we connect the set of vertices VO, . . . , vd–, with a Cycle: v, is

connected to V([ + ~)~0~d.

In each iteration of the original network, each processor activates the edges

adjacent to it, one after the other according to the color order. In the new

implementation, each processor in the original network is a virtual process that

moves along a cycle of d nodes. In each node, the virtual process can

communicate with one of processes adjacent to it in the original network.

We simulate an iteration of the original network by d phases of the new

network. Denote by ;, the virtual process of vertex v, in the original network

G = u~:~~i. The set of processes fiO, . . . . ;d_ ~ is simulated by the cycle of

the vertices vo, . . . . v&~. In each phase, each processor first communicates

with another process, then moves to the next vertex in its cycle.

In phase k, process ;, is in vertex V(Z+ ~)~0~ d. Let u be the neighbor of v in

H, such that the edge (v, u) was colored by (i + l)mod d. By the construction

of the network, vertex V( i+ ~~mod d is connected to vertex U(l + ~,~Odd. That

vertex contains, in phase k, the process u,. Since v is connected to u in H, v,
is connected to Ui in G, and the processes ;l and ii, can simulate step

(i + k)mod d of their iteration in the original algorithm. Thus, in d phases

each process can communicate with the d processes adjacent to it in the original

network.

To move a process to the next vertex in the cycle, only the content of the

buffer associate with this process needs to be sent. Thus, each phase takes two

steps. One step to communicate between the processes and one step to forward

them to the next vertex in their cycle. ❑

THEOREM 4.3. The construction of Section 4.1 can be implemented on
an N-node network with degree 10, such that the run-time
algorithm on the new network is bounded by

( 1 + log(l + p)
(6d+ 1) ; + /og(l,T)

)

i- 1 log N

steps.

PROOF. We first construct a network of 3N processors and

of the routing

then simulate it

on an N-processors network. Let N = n(log ~ + d log d). We start with a
network that consists of 3 log n + 4 d log 2 d + 1 stages, each stage with n

processors. The first log n + 2 d log 2 d + 1 stages are connected to each other

by identical (a, (3, n, d)-expanders. The next log n + 1 stages perform a

Multi-Butterfly network, and the last log n + 2 d log 2 d + 1 stages are con-

nected only by direct edges.



An O(log N) Deterministic Packet-Routing Scheme 69

We can apply Theorem 4.2 to sets of d nonadjacent expanders to reduce the

degree of all the vertices in the first part of the network to 4. (We assume that d
divides 1/2 log n + 2 d log 2 d + 1; otherwise, we treat the nodes in the re-

maining stages in the same way we treat the nodes of the first log 2 d stages of

the Multi-Butterfly.)

We replace each node in the first log 2 d of the Multi-Butterfly by a cycle of

2 d vertices. Each new vertex is connected to one backward and one forward

edge of the original node. Thus, we add 2nd log 2 d new vertices each with

degree 4.

We apply Theorem 4.2 to the remaining stages of the Multi-Butterfly network

and reduce the degree of all the vertices there to 4. (Since we assumed that d is

a factor of 2, once a stage consists of more than d splitters, it can be partitioned

into d identical isolated patterns.)

We get a graph with 3N processors, 2 N processors have degree 4, and N

processors have degree 2. Each iteration takes 2 d steps in the first log n +

2 d log 2 d stages, 4 d steps in the Multi-Butterfly part, and one step in the last

part of the network.
Thus, we can simulate each iteration on N processors with degree 10 in

6 d + 1 steps. Since the O(log N) batches are pipelined through the network,

the extra 1/ a2 d log 2 d batches of packets add only a constant to the run-time

of the algorithm (see proof of Theorem 4.1). ❑

Using the parameters assignment of the previous section, we get a nonexplicit

construction that routes a permutation in 37000 log N steps and an explicit

construction that requires 1.6 x 10510g N steps.

Appendix A. Constructing a Multi-Butterfly from Butterfly Networks

We show how an N log N node Multi-Butterfly network with degree d can be

constructed by superimposing d butterfly networks, each with N log N nodes.

Letk?l, ..., B~ denote d, N log N node, butterfly networks. For s =

o , . . . . log N – 1 let G. denote an (a, (3, N/2’+ 1, d)-expander. Assume that

the edges of each Gl are colored by d colors and let m~, . . . , m; denote the d
permutations defined by the d colors of the edges of G..

Let (i, s, k) denote the kth node in stage s of B,, and let xl~ ~ =

(i, s, k) l[k/21°g~-S
A; ~

]= j}. By the construction of the butterfly, each node in
is connected to one node in A ~+, ~j and one node in A ~+, ~,+,.

Fu~hermore, for each O < q < 2‘- 1, the nodes (i, s, j2S + q), and (i, ;, j2s
+ 2‘- 1 + q) are connected to the same two nodes in stage s + 1.

We label the nodes of the butterfly networks in the following way: The label

of a node (i, O, k) is k. For s > 0, if the label of (i, s – 1, k) is r, and

r < 2‘, then the label of the two nodes connecting to it in stage s + 1 is T:( r).

Note that these two nodes are also connected to (i, s, k + 2‘).

To construct the Multi-Butterfly network, we identify nodes with identical

labels. The set A, ~ of the Multi-Butterfly network is constructed by identify-

ing nodes with identical labels in the set U ~=, A ~,j. Since for each set s, and i,
~~ is a permutation, each label appears exactly d times in U ~= ~A ~ j. Thus, the
network has degree 2 d.

For each s and j, let

“J= {(sk’112g~-s-l=j}
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and let

ELI UPFAL

{
A~,~ = (s, k) 1 kd=2s+Jl‘210gn-s-

A,$i=A~i+A~, and the edges define four (cx, ~, N/2s+], d)-expanders

connecting “A: ~ to” A~+, ~j, A; ~ to A,+l, zj+l, A~,l to A~+l ~1, and A~,~
to A ‘Thus, there is an (’CY,D/2, N/ S2, N/2’+ 1, 2 d)-splitter betweenS+l.2J+1.
each set A ~,~ and the sets A ~+ ~ ~~ and A,+,, ~j +,, and the construction gives

a Multi-Butterfly network. ‘
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