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ABSTRACT

Dealing with interference is one of the primary challenges to
solve in the design of protocols for wireless ad-hoc networks.
Most of the work in the literature assumes localized or hop-
based interference models in which the effect of interference
is neglected beyond a certain range from the transmitter.
However, interference is a more complex phenomenon that
cannot, in general, be captured by localized models, imply-
ing that protocols based on such models are not guaran-
teed to work in practice. This paper is the first to present
and rigorously analyze a distributed dominating set proto-
col for wireless ad-hoc networks with O(1) approximation
bound based on the physical interference model, which ac-
counts for interference generated by all nodes in the network.
The proposed protocol is fully distributed, randomized, and
extensively uses physical carrier sensing to reduce message
overhead. It does not need node identifiers or any kind of
prior information about the system, and all messages are
of constant size (in bits). We prove that, by appropriately
choosing the threshold for physical carrier sensing, the pro-
tocol stabilizes within a logarithmic number of communica-
tion rounds, w.h.p., which is faster than the runtime of any
known distributed protocol without prior knowledge about
the system under any wireless model that does not abstract
away collisions.
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1. INTRODUCTION

A major challenge in the design of protocols for wireless
multi-hop networks is related to modeling complex physi-
cal phenomena such as radio wave propagation and inter-
ference. On one hand, using oversimplified radio propa-
gation/interference models leads to the design of protocols
that, although efficient in terms of computational complex-
ity and message overhead, might display a considerably dif-
ferent behavior from what is expected when utilized in a
practical scenario. On the other hand, using very complex
radio propagation/interference models might hinder the de-
sign and analysis of efficient protocols. Hence, finding the
adequate compromise between model accuracy and compu-
tational/communication efficiency is at the heart of the suc-
cessful design of protocols for wireless multi-hop networks.

The model accuracy/efficiency tradeoff has not been ad-
equately addressed so far. Computer scientists have mostly
focused their attention on designing distributed protocols for
wireless multi-hop networks based on simplistic models, such
as the unit disk graph model (UDG) for radio wave prop-
agation [17], and graph-based models for interference [29].
Classical graph-related problems such as distributed color-
ing, dominating set construction, clustering, etc., have been
successfully addressed in the past. However, these protocols
are guaranteed to work only if the models’ assumptions are
fulfilled, which is hardly the case in practice. In particular,
the UDG model assumes isotropic propagation of the ra-
dio signal with distance, which is unlikely to happen in the
real world due to phenomena such as scattering, reflection,
and diffraction of the radio signal. Concerning interference,
graph-based models assume that only nodes within d hops
from a certain receiver u can interfere with u, where d is a
small constant. A major shortcoming of these models is that
interference is modeled as a localized phenomenon, which is
not the case in practice. It is well known, in fact, that a
transmitter can corrupt message reception even at very large
distances, especially in large networks with several concur-
rent transmissions. A similar criticism applies to another
interference model commonly used in the design of proto-
cols for wireless multi-hop networks, namely the protocol
interference model [12]. In this model, a transmission from
node v to node u is considered successful iff there is no other
transmitter within a certain (constant) range centered at w.
On the other hand, the communication engineering commu-
nity has focused on deriving accurate models for radio wave
propagation and interference, but has devoted little effort to
the design of protocols with proven performance guarantees
based on these models.



In this paper, we try to bridge this gap by introducing
a fully distributed, randomized protocol called TWIN for
building a dominating set in logarithmic time, w.h.p., in
a wireless multi-hop network based on more realistic radio
propagation and interference models with respect to those
commonly used in the distributed algorithms community. In
particular, we assume radio wave propagation obeys a cost-
based generalization of the log-distance path loss model,
which can be used to resemble a close approximation of the
well-known log-normal shadowing model. For what concerns
interference, we use the physical interference model intro-
duced in [12], in which a message is correctly received if and
only if the SINR value at the receiver is larger than a certain
threshold.

A notable feature of the proposed algorithm is that, al-
though it is a localized distributed protocol, it is guaranteed
to work properly under a ‘global’ interference model such as
the physical model. This is made possible by extensive use
of physical carrier sensing. Another positive feature of using
physical carrier sensing is reduction of the communication
overhead: the protocol is shown to converge to a constant
density dominating set (i.e., a dominating set with a con-
stant number of nodes per unit square) within O(logn) com-
munication rounds, w.h.p. Having such a dominating set is
important because it can be used as a building block for de-
signing more complex distributed protocols. For instance, in
case of WSNs, once local leaders (nodes in the dominating
set) are elected, network-layer functionalities such as broad-
cast and convergecast can be more easily implemented on
top of them. Also application-layer functionalities such as
data aggregation significantly benefit from the existence of
a dominating set.

2. OUR CONTRIBUTIONS

We will focus on the dominating set problem. The classi-
cal dominating set problem is defined as follows. Given an
undirected graph G = (V, E), a subset U C V is called a
dominating set of G if all nodes v € V are either in U or
have an edge to a node in U. The density of a dominating
set is the maximum over all nodes v € U of the number of
neighbors that v has in U. In our context, the neighbor-
hood of a node v consists of all nodes within its transmis-
sion range, i.e., all nodes that can receive a message from
v under the ideal case that only the background noise is
there. (In simple wireless models like the unit disk graph
model, this neighborhood consists of all nodes within a cer-
tain distance from v.) A constant density dominating set
is a constant approximation of a minimum dominating set
(i.e., a dominating set of minimum cardinality). The prob-
lem of finding a minimum dominating set has been shown
to be NP-complete even when restricted to unit disk graphs
[7] and, hence, approximation algorithms are of interest.

Our contributions are two-fold: i) we propose a new model
for wireless communication based on the physical interfer-
ence model which incorporates physical carrier sensing and
which closely approximates the log-normal shadowing model;
and 1) we demonstrate how to develop and analyze algo-
rithms on top of this model by presenting a local-control
algorithm for building a constant density dominating set,
which we define below.

L4y h.p.” means with probability at least 1 — 1/n° for any
constant ¢ > 0, where n is the number of network nodes.

A notable feature of our algorithm, which we call TWIN,
is that nodes do not need to have any a priori knowledge
about the other nodes, not even an estimate on their total
number. Also, distinct identification numbers of any form
are not required so that our protocol may even be applicable
to the important field of sensor networks.

In order to obtain a constant density dominating set un-
der an arbitrary distribution of nodes, our algorithm has two
main, inter-dependent components: the density estimation
stage, during which each node obtains an estimate on the
number of nodes within its transmission range, and accord-
ingly adjusts its transmission probability, and a leader elec-
tion stage, which is done using the novel concept of “twin”
nodes introduced in Section 5. The notion of twins forces
leaders to wake up in a pair-wise fashion, so that they can
check whether the density of nodes becoming leaders is too
high. This ensures that the number of leader nodes within
the transmission range of a node never exceeds a constant,
so that the leader election process does not run into oscilla-
tion problems. Unfortunately, in some situations formation
of twins cannot be enforced (such as isolated nodes), so we
also need the concept of “single” leaders. However, our pro-
tocol privileges the “twin” status when electing leaders, and
our strategy will be to form singles only as a last resort. Us-
ing these concepts, we can construct a simple protocol with
the following performance.

THEOREM 2.1. The TWIN protocol establishes a constant
density dominating set in O(logn) communication rounds,
w.h.p., where n is the number of nodes.

We also discuss how to make this protocol self-stabilizing,
i.e., to establish a constant density dominating set starting
from any initial state. Note that a self-stabilizing protocol
is able to tolerate dynamic network conditions due to, e.g.,
node failures, node mobility, and so on.

Interestingly, the runtime bound is only possible because
our protocol uses physical carrier sensing. It is known that
if physical carrier sensing is not available and nodes have
no estimate of the size of the network, then it takes Q(n)
steps on expectation for a single message transmission to be
successful [15] in any protocol. Also interesting is the fact
that our O(logn) algorithm improves upon the best previ-
ous result in [19] under a much more restricted, bounded
interference model.

3. RELATED WORK

Since interference is a major factor limiting performance
in wireless multi-hop networks, a lot of effort has been in-
vested in deriving realistic interference models, and to an-
alyze network performance under such models. A seminal
work in this area is [12], in which Gupta and Kumar study
the transport capacity of wireless networks under two dif-
ferent interference models, the physical and the protocol in-
terference model. Contrary to the physical model, which is
used in this paper, the protocol interference model is a local-
ized model, since decision on whether a certain communica-
tion is successful depends only on the presence of concurrent
transmitters within a bounded area centered at the receiver.
Another localized interference model commonly used in the
literature is the graph-based interference model, in which a
certain communication graph representing communication
links is assumed, and only links whose endpoints are up to



a certain hop distance d on the communication graph from
link (u,v) can interfere with (u,v) [29].

Due to their simplicity and the fact that they somehow
resemble the behavior of the 802.11 MAC layer, localized
interference models have been mostly used in the literature
to design interference-aware protocols. This is the case, for
instance, for the protocols presented in [2, 21, 25, 26]. Given
the complexity of dealing with physical interference, only a
few protocols based on this model have been proposed so far.
For example, [10, 11, 14] consider the problem of scheduling
transmissions, but they provide solutions which are com-
putationally infeasible even for a small size network. Only
recently, a computationally efficient algorithm for scheduling
transmissions under the physical interference model with a
provable approximation bound has been proposed [4]. The
physical interference model has been recently used in [9,
23] to study the complexity of scheduling a set of link de-
mands in the shortest possible time and of one-shot schedul-
ing (scheduling as many transmissions as possible in a sin-
gle communication slot), which are both shown to be NP-
complete for wireless networks in a 2-dimensional Euclidean
space.

Various distributed algorithms have been proposed for
finding good approximations of minimum dominating sets in
arbitrary graphs (see, for example, [8, 19, 20, 22]). Alzoubi
et al. [3] presented the first constant approximation algo-
rithm for the minimum connected dominating set problem in
unit-disk graphs with O(n) and O(nlogn) time and message
complexity, respectively. Cheng et al. [5] proposed a poly-
nomial time approximation scheme for the connected dom-
inating set problem in unit-disk graphs. Huang et al. [13]
formally analyze a popular algorithm used for clustering in
ad-hoc mobile network scenarios. They show that this algo-
rithm gives a 7-approximation for the minimum dominating
set problem in unit-disk graphs while being able to adapt to
the mobility of the nodes in the network.

Kuhn et. al. [19] presented a distributed algorithm that
computes a constant factor approximation of a minimum
dominating set in O(log? n) time without needing any syn-
chronization but it requires that nodes know an estimate of
the total number of nodes in the network. In [24], Parthasa-
rathy and Gandhi also present distributed algorithms to
compute a constant factor approximation to the minimum
dominating set. The running time of their algorithm de-
pends on the amount of information available to the nodes,
and nodes have to know an estimate of the size of the net-
work. Both papers extend the unit-disk model taking into
account signal interference. A more realistic model tak-
ing physical carrier sensing into account was considered by
Kothapalli et al. [16], but their algorithm needs O(log® n)
time steps, w.h.p., in order to construct a constant factor
approximation of a minimum dominating set.

4. COMMUNICATION MODEL

In this section, we present the communication model used
in the design of our algorithm. The radio propagation and
physical carrier sensing components of the model we use
were first proposed by Kothapalli et al. in [16]. The inter-
ference model component is similar to the one used in [23].

4.1 Signal propagation
To model message reception, we observe that every data
transmission mechanism has a minimum Signal-to-Noise-

Interference Ratio (SINR) at which a data frame can still be
received with a reasonably low frame error rate. The mini-
mum SINRs for 802.11b, for example, are 10dB for 11Mbps
down to 4dB for 1Mbps. These SINR values specify the
transmission range of the data transmission mechanism, i.e.
the maximum range within which data frames can still be re-
ceived correctly. The transmission range, however, is highly
dependent on the environment.

In order to handle non-uniform environments, we propose
the following cost model. Assume we are given a set V' of
mobile stations, or nodes, that are distributed in an arbi-
trary way in a 2-dimensional Euclidean space. For any two
nodes v,w € V let d(v,w) be the Euclidean distance be-
tween v and w. Furthermore, consider any cost function c
with the property that there is a fixed constant 6 > 0 so
that for all v,w € V,

c(v,w) € [(1+ 0)71 ~d(v,w), (140)-dv,w)]. (1)

The cost function ¢ determines the transmission and inter-
ference behavior of nodes, and 6 bounds the non-uniformity
of the environment. In particular, transmission from node
v to w is considered successful in our model (in absence of
interference) if and only if ¢(v,w) < r¢, where r; is the in-
tended transmission range. Notice that we do not require
¢ to be monotonic in the distance, to satisfy the triangle
inequality, nor to be symmetric. This makes sure that our
model even applies to highly irregular environments. Similar
cost functions were also used in [16, 18, 23], for example.

Note that if ¢ is not symmetric, then we have to rephrase
the definition of a dominating set to avoid ambiguities. In
that case, a dominating set is a set U of nodes so that for
every node v, either v € U or v has a node v € U with
c(u,v) <7t (i.e., v can receive a message from u).

It is worth observing that, by properly setting the con-
stant 6, the above model can be used to represent a channel
propagation model which is similar to the well-known log-
normal shadowing model [27], in which the received power
at a distance of d relative to the received power at a refer-
ence distance of do (representing the distance at which the
signal strength starts to degrade) is given in dB as

—10log(max{d/do,1})* + X, (2)

where « is the path loss coefficient and X, is a Gaussian
random variable with zero mean and standard deviation o
(in dB) that models variability in signal loss with distance.
a usually ranges from 2 (free space) to 5 (indoors), and o
from 2dB to 8dB.

Note that the original log-normal shadowing model can-
not be represented through the notion of link cost defined
in (1), since the random component of signal propagation
(variable X, in equation (2)) has infinite support. This
implies that, in principle, it is possible to communicate to
nodes which are arbitrarily distant from the transmitter (or
to not being able to communicate to nodes which are ar-
bitrarily close to the transmitter). Hence, the log-normal
shadowing model cannot be represented by any notion of
link cost which confines possible successful transmission to
a pair of nodes whose distance is within a constant factor
from the intended communication range. To circumvent this
problem, we consider a bounded version of the log-normal
shadowing model, in which the random component of signal
propagation is represented by a random variable X! with
bounded support. In particular, the support of X/ is of the



form [—h - o,+h - o], where o is the standard deviation of
variable X,, and h is a constant. The pdf of X/ is obtained
from the pdf of X, by uniformly distributing the probabil-
ity density of variable X, falling outside the support of X/,
into the interval [—h - o, +h - g]. It is easy to see that, by
increasing h, we have that the pdf of X/ becomes arbitrarily
close to the pdf of the original variable X,. For instance, by
setting h = 3, we have that only 0.0027 of the probability
mass of variable X, falls outside [—3c,3c], and the pdf of
X/, is virtually indistinguishable from the pdf of X,.

It is easy to see that the above described bounded version
of the log-normal shadowing model can be represented by

the notion of link cost defined in (1) by setting § = 10105 -1,
where o and « are the parameters of the propagation model.
For instance, by setting a = 3, 0 = 6dB, and h = 3, we
obtain 6 ~ 1.5, implying that a transmission between nodes
u and v is always successful when d(u,v) < 0.3997;, and that
a successful transmission can only occur at distance < 2.5r;.
In summary, our cost model can be used to cover a bounded
variant of the log-normal shadowing model, but in this case
the cost function ¢ would be a random variable. In order to
be able to eventually arrive at a stable dominating set, we
will only consider fixed cost functions c¢ in this paper.

In the following, we assume that nodes use some fixed-
rate communication mechanism and operate over a single
frequency band. When a node u is using a transmission
power of P (the same for every node), then the received
power at node v is equal to P,(u) = P/max{c(u,v)*,1}
where « is the path-loss exponent®. Similarly to [4, 12], we
will assume throughout the paper that o > 2 + € for some
arbitrary constant € > 0, which is usually the case in reality.

4.2 |Interference model

In this paper, we model interference using the physical
interference model introduced in [12], which accounts for
the SINR at the receiver end of a link to determine whether
the transmission is successful. More specifically, a message
sent by node u to node v is correctly received if and only if

Py (u)
N + ZwES Pv(w)

where P,(y) is the received power at node z of the signal
transmitted by node y, N is the background noise, S is the
subset of nodes in V'\ {u, v} that are currently transmitting,
and (8 is a constant that depends on the desired rate, the
modulation scheme, etc.

It has been observed in the literature that, when using for-
ward error correction mechanisms as proposed in the IEEE
802.11e MAC standard currently under development, the
transition between being able to correctly receive a data
frame with high probability and not being able to correctly
receive a data frame with high probability is very sharp.
As shown in [6], it can be less than 1 dB. Thus, the trans-
mission range is an area with a relatively sharp border as
implied by (3) that in reality, however, may have a very ir-
regular shape due to environmental effects. These features
(irregular coverage area, and sharp transition between low
and high reception probability) are well captured by the link

> ()

2The max operator is used to account for the fact that the
log-distance path loss model holds only for distances beyond
a certain close-by distance do [27], w.l.o.g. assumed to be 1
in the following.

cost model defined in (1), and by the interference model de-
fined in the next sub-section.

Combining the physical interference model with the radio
propagation model introduced in the previous section, we
have that a message sent by node u to node v is correctly
received if and only if

P
max{c(u,v)®,1}

P
N+ ZwES max{c(w,v)*,1}

>p.

Observe that the physical interference model, contrary to
the case of simpler interference models such as graph-based
and protocol models, accounts also for the interference gen-
erated by nodes which are far away from the intended re-
ceiver (say, node v) of a communication. Although the con-
tribution to the interference level at v of a single far-away
transmitter can be relatively small, the overall contribution
of all far-away transmitters can be sufficiently high to drive
the SINR at v below the threshold and corrupt transmission.
This is the reason why protocols based on localized interfer-
ence models that simply ignore interference beyond a certain
range from the transmitter are not guaranteed to work in a
real scenario, where actual message reception probability is
governed by SINR.

The fact that interference in the real world cannot, in prin-
ciple, be confined within a bounded region from the trans-
mitter poses a major challenge to the design of distributed
protocols for multi-hop networks. In fact, locality i.e., the
ability of designing protocols based on message exchange
only between nodes which are at most a few hops away from
each other in the network topology, is fundamental to ensure
that the designed distributed protocol runs effectively even
in large networks (e.g., sensor networks).

To get around this apparent contradiction between local-
ity and the use of the physical interference model, we make
extensive use of physical carrier sensing. As we show in this
paper, by properly tuning the carrier sensing threshold it
is indeed possible to design localized, fully distributed pro-
tocols which are guaranteed to function correctly (w.h.p.)
under the physical interference model.

4.3 Physical carrier sensing

In this paper, we assume that nodes can perform physical
carrier sensing, and that they can set the carrier sensing
threshold to different values.

Physical carrier sensing is part of the 802.11 standard, and
is provided by a Clear Channel Assessment (CCA) circuit.
This circuit monitors the environment to determine when
it is clear to transmit. The CCA functionality can be pro-
grammed to be a function of the Receive Signal Strength In-
dication (RSSI) and other parameters. The RSSI measure-
ment is derived from the state of the Automatic Gain Con-
trol (AGC) circuit. Whenever the RSSI exceeds a certain
threshold, a special Energy Detection (ED) bit is switched
to 1, and otherwise it is set to 0. By manipulating a certain
configuration register, this threshold may be set to an abso-
lute power value of t dB, or it may be set to be t dB above
the measured noise floor, where ¢ can be set to any value in
the range 0-127. The ability to manipulate the CCA rule al-
lows the MAC layer to optimize the physical carrier sensing
to its needs. Adaptive setting of the physical carrier sens-
ing threshold has been used, for instance, in [30] to increase
spatial reuse.



Parameter Meaning Variable Meaning
0 constant > 0 for defining link cost T threshold for physical carrier sensing in TWIN
« path loss exponent (a > 2) D upper bound on max twin density
N background noise d upper bound on transmitters density
8 SINR thr. for correct message reception acc(v) | account variable for node v (acc(v) > 0 iff v is active)
P nodes transmission power Do tx probability for node v (stage 2)
re = T/BLN nodes transmission range p max tx probability value
= prt range for physical carrier sensing (0 < p < 1) ¥ increase/decrease step of node tx probability

Table 1: Network model parameters and TWIN algorithm variables.

In our network model, nodes can not only send and re-
ceive messages, but also perform physical carrier sensing.
Given some sensing threshold 7' (that can be flexibly set by
a node), a node v senses a busy channel if and only if

N+> P(w)>T,
weS

where S is the subset of nodes in V' — {v} that are currently
transmitting when node v is sensing the channel.

4.4 Summary of network model

Summarizing, we consider a wireless network where cor-
rect message reception at the receiver end of a transmission
is determined by the experienced SINR value computed ac-
cording to equation (3), and radio signal propagation is ex-
pressed in terms of ) a fixed cost of a communication link as
defined in (1), and #3) a signal loss exponent «. Finally, we
assume that nodes can perform physical carrier sensing, and
that the threshold used to sense the channel can be chosen
among a (sufficiently large) set of possible values.

The main parameters of our network model, as well as
variables used in the TWIN protocol, are summarized in
Table 1.

5. THE TWIN PROTOCOL

We assume that all nodes transmit with some fixed, uni-
form transmission power P. Let r; be the transmission range
of that power, i.e., under an ideal situation (only the back-
ground noise is there), v can transmit a message to node
w if and only if ¢(v,w) < 7. In other words, r: satisfies
P/ry > N.

Our dominating set protocol, called TWIN, is based on
two carrier sensing thresholds:

e Threshold T is defined so that whenever a node w with
c(v,w) < r, sends a message for some sensing range
rs, node v will notice a busy channel. We assume that
rs = pry for some small constant 0 < p < 1 that
satisfies Ts = (P/(pr:)®) > 4N so that the sensing
threshold is sufficiently far above the noise floor.

e Threshold 7T, (d) is defined so that if the density of
transmitting nodes is at most some constant d, then a
node will only sense a busy channel if there is a sending
node within its transmission range.

The following lemma bounds T (d) in terms of o and the
maximum density d of nodes we expect.

LEMMA 5.1. If @ > 2, then we can set Tn(d) = N +
Cla, d) with
T(l1+60)* 2

e 2% -2

C(a,0)=6-P-

round

~stage 1» stage 2 stage 3

| | | |

slot 1 slot 1 slot 2 slot 1 slot 2 slot 3

Figure 1: Round of execution of the TWIN protocol.

PROOF. To prove the lemma, we need to show that C(«, §)
is an upper bound for the total signal strength caused by the
nodes outside of the transmission range of u, for a maximum
density value §. This follows along the lines of [4]. [

The TWIN protocol works in rounds that are continuously
executed and synchronized among the nodes. A node can
be either inactive or active, and active nodes can be either
singles or twins, as will be explained later in this section.
The active nodes will eventually converge to a dominating
set.

Each round of the TWIN protocol consists of three stages
(see Figure 1). In stage 1, the active twins send out an
ACTIVE signal with a certain probability so that inactive
or active singles can learn about active twins in their vicinity.
In stage 2, those nodes v that have not yet found an active
twin in their vicinity probe the wireless medium and adjust
their probabilities p, so that within a certain number of
rounds the sum of the probabilities within any transmission
range of a node is within a constant on expectation. In stage
3, the non-twin nodes that were able to receive each other’s
signal in stage 2 acknowledge this to each other to be sure to
form active twins. They will then announce it to the other
nodes so that close-by nodes terminate the protocol.

In order to become an active single, each node v main-
tains an account acc(v) > 0. Each time p, = p, the max-
imum transmission probability value a node can have, it
sets acc(v) := acc(v) + 4, and each time p, < p, it sets
acc(v) := max{acc(v) — 1,0}. A node is an active single as
long as acc(v) > 0.

Next, we give the details of our TWIN protocol. Initially,
all nodes are inactive and acc(v) = 0 for every node v. The
probability values p, may be set to any value x with 0 <
z < p. Each round works as follows

e Stage 1: Announcing active twins

This stage consists of one time slot. In that time slot,
each active twin v decides with probability 1/D to
send out an ACTIVE signal, where the constant D
is an upper bound on the maximum density of twins
determined later. Each inactive or active single v that
receives an ACTIVE signal stops executing the proto-
col (since it is covered) and sets acc(v) := 0 (i.e., it
becomes inactive).

e Stage 2: Guessing the right density
This stage consists of two time slots. Each inactive



or active single v still participating in the protocol
chooses one of the two time slots of this stage uni-
formly at random, say, slot s. For slot s, v decides to
send a PING signal with probability p,. If v sends
a PING signal, it senses the wireless channel with
threshold Ts in the alternative slot, 5. Otherwise, it
senses the wireless channel with threshold 7% in both
slots. If it does not sense anything in either case, it
sets py = min{(1 + v)pv, P}, and otherwise it sets
Py := (14 ~) 'p, for some constants p < 1 and 0 <
v < 1. Whereas v may be set to any constant value,
our analysis requires that p < 1/(2407(1 + 6)*), but
we did not try to optimize this bound. If p, = p, then
acc(v) := acc(v) +4, (i.e., v becomes or remains an ac-
tive single) and otherwise acc(v) := max{acc(v)—1, 0}.

e Stage 3: Forming new twins

This stage consists of three time slots. Every inactive
or active single v that sent a PING signal in some slot
s and received a PING signal in the alternative slot §
does the following. It sends an ACK signal in slot s of
this stage and listens to the wireless channel in slot §
of this stage. If it receives an ACK signal in slot s, it
becomes an active twin.

All nodes that just became a new active twin in this
stage send a NEW signal in the last time slot. All
remaining inactive or active singles sense the wireless
channel with threshold T}, (d), where d is the maximum
density at which new active twins can emerge. Each
node v that senses a busy channel stops executing the
protocol and sets acc(v) := 0 (since it has an active
twin within its transmission range).

Hence, altogether, each round consists of six time slots. The
assumption that the rounds are synchronized among the
nodes is not needed any more if six frequencies are avail-
able, one frequency for each of the six time slots of the pro-
tocol. In this case, we would only need the assumption that
the drift between the local clocks of the nodes is sufficiently
small for the protocol to work.

In order to avoid switching back and forth between the
two sensing thresholds all the time, TWIN may just use a
single threshold T := max{T, T, (d)}. This is not a prob-
lem for the protocol as long as T (d) < P so that a single,
sufficiently nearby node is able to trigger a busy channel.
According to the bound in Lemma 5.1, T,,(d) < P is true if
r¢ is sufficiently large. With a much more careful analysis
that takes into account that all nodes sending NEW signals
must have received ACK signals before and the convexity of
the signal propagation function, it turns out that an upper
bound of 2(27w((1 +6)/r;)* * +1/3) suffices for the sensing
threshold in stage 3 so that a node only senses a busy chan-
nel if a NEW signal is sent by a node within its transmission
range. Thus, relatively small constants r; and g already suf-
fice. We will defer the proof of that bound to the full version
of the paper. In the following analysis, we will just argue
with the T" above.

5.1 Analysis of the TWIN protocol

Next, we prove the main result of this paper, i.e., we show
that our protocol constructs a constant density dominating
set within O(log(n + 1/¢)) rounds, w.h.p., where ¢ is the
lowest probability value a node v has at the beginning of the

protocol. Hence, when initially setting p, = p for all v, then
the runtime bound is O(logn).

Let R, be the current set of inactive or active singles
within the transmission range of node v and R,(v) be the
current set of inactive or active singles within the sensing
range of node v with threshold T' (i.e., whenever a node
w € Rs(v) transmits a message, v will sense a busy chan-
nel with threshold 7). According to the definition of T,
Rs(v) € R,. We need a series of lemmas to prove the
theorem. The first lemma implies that after a logarithmic
number of rounds a point is reached so that most of the
time, ZweRS(U) Pw is bounded from above by a constant
(Lemma 5.3). With the help of this result we can prove an
upper bound on the expected number of rounds in which
> weR,(v) Pw is above a constant (Lemma 5.5). The two
lemmas can then be used to show that most of the time
the expected interference at a node caused by nodes outside
of its transmission range is below 7//2 — N (Lemma 5.6).
Hence, most of the time, >° . pw = O(1) and the in-
terference caused by nodes outside of R, together with the
noise is less than 7' (Lemma 5.7). That will allow us to
prove that within a logarithmic number of communication
rounds, any node v will either be an active single or have
an active twin within its transmission range (Lemma 5.8).
Finally, we show that within a logarithmic number of com-
munication rounds there can only be a constant number of
active singles and twins within the transmission range of v
(Lemma 5.9). All of the lemmas hold w.h.p. Combining
them yields Theorem 2.1.

For the analysis of our protocol we need the following
general form of the Chernoff bounds [28].

LEMMA 5.2. Consider any set of binary random variables
Xi1,...,Xn, and let X =37 | X;. If there are probabilities

P10 with E[[[,co Xi] < Tl,eqpi for every set S C
{1,...,n}, then it holds for p=>_7_, p: and any § > 0 that

5 b 2
e __ %7

PrX > (1+d)p] < ((1 T 5)1+6) <e 2aF73

If, on the other side, there are probabilities p1,...,pn with

E([l;cs Xi] > I1;cgpi for every set S C {1,...,n}, then it

holds for p= 3", pi and any 0 < § < 1 that

m
€ —5%u/2

_ <e

(1- 5)1*5) -

-5
PI[X < (1)) < (

We assume for stage 2 that, as a worst case, the set of
inactive and active singles participating in stage 2 is fixed.
In reality, it decreases monotonically, which is in our favor
when proving upper bounds on sums of access probabilities
in certain regions. In the following, the term 'node’ refers to
inactive or active singles still participating in the protocol.

LEMMA 5.3. Let R be any region with the property that
for any two nodes v,w € R it holds that v and w are within
the sensing range of each other. Consider any time interval
I in which initially Zveva = ¢o and let Xy be a ran-
dom variable denoting the number of rounds in I in which
Y werPv = &. Then it holds for any ¢ > 2 and 6 > 2 that

Pr(X, > (1+6)4(1]/e?/* +log, ., [¢0/$]]
< (e/(1+8) 7oA



PRrROOF. For any v € R and any round ¢ > 1 let p(v)
denote the probability p, used by node v at the beginning
of round t. Let p: = 3 pt(v). Consider some fixed round
t. The probability that v does not send a PING signal in
a specific time slot s in stage 2 of that round is equal to
(1/2)(1—pi(0)) +(1/2) = 1—py(v)/2 (where (1/2)(1—pi(v))
is the probability that v picks s but does not transmit a
PING signal in s and (1/2) is the probability that v does not
pick s). Thus, the probability that no node is transmitting
a PING signal at some time slot s is equal to

[[a-p@y/2) < [[em@2=em” (1
vER vER
If both slots in stage 2 are used by PING signals in R, then
pi+1 = (14 ~)"'p, and therefore,

Prpis1 = (1 ++) 'p:] > Prlboth slots used in stage 2]

Inequality (4) implies that the probability that at least one
of the slots in stage 2 is not used by a node in R is at most
2e~Pt/2, Hence, Pr[both slots used in stage 2] > 1 — 2~ Pt/?
which is at least 1 — 2e~%/2 if pt > ¢. Thus, for p; > ¢ it
holds that Pr[pis1 = (14 7)) 'p] > 1 — 2e7%/2,

Now, consider any interval I of ¢t rounds, numbered from 1
to t. Forround r € {1,...,t} let the binary random variable
Y: be 0 if and only if p, < ¢ or it holds that p, > ¢ and
pr+1 = (1 + ) 'p,. Irrespective of the previous rounds it
holds that

Pr[Y; = 0]

Prlp, < ¢] +

Prlpr > ¢ A pry1=(1+7) 'pr]

Prlp, < ¢] +

Prlp, > ¢] - Pr[pr1 = (14+9) 'pr | pr > ¢
Prlp, < ¢] + Prlp, > ¢]- (1 —2¢~%)
1—2e %2

v v

which implies that for allr € {1,...,t} andsets S C {1,...,t}
with s < r for all s € S, Pr[Y, = 0| [[,cqYs = 1] >
1—2¢~%/? and therefore Pr[Y, =1 | [[ees Vs =1 < 2e /2,
From this it follows that

E[J] vi] < (2e7/%)!! (5)
res

for any set S C {1,...,t}. Let Y = >!_,Y;. From above
we know that E[Y] < 2t/e?/2. Due to (5) we can apply the
Chernoff bounds in Lemma 5.2 to Y, so

PrlY > (1406)2t/e?] < (e/(1+8)7%<"*  (6)

for any § > 2. To complete the proof, we need the following
claim. Recall the definition of ¢o in Lemma 5.3.

CLAM 5.4. The number of rounds r € I with p» > ¢ is
at most 2Y +1log, . [po/¢].

PRrOOF. For any interval I' = [t1,t2] C I with py,—1 < &
and p, > ¢ for all » € I’ it must hold that Y, = Zf?:tl Y, >
|I'|/2 because for every r € I' with ¥, = 0, pr41 = (1 +
v)"'pr, and for any other r € I’, pr11 < (1 + 7)p,. For the
initial probability p, of I we assumed that p, = ¢o. Hence,
for the first interval I’ C I with p, > ¢ for every r € I’,
Y, must be at least [I'|/2 —log, . [¢o/#] so that indeed

pr > ¢ for every r € I'. Thus, altogether it must hold for

the number of rounds r € I with p, > ¢ that these are at
most 2Y +log, . [¢o/¢]. O

Inequality 6 and Claim 5.4 imply that
Pr[Xy > (14 6)4t/e?’? +log, ., (1 + ¢0)]
< PrlY > (146)2t/e”?]
< (e/(1+ )0
for any § > 2, which completes the proof of Lemma 5.3. [l

Lemma 5.3 allows us to bound the expected number of
time steps in which p; > ¢ for some time interval I. The
bound we present is not obvious since we want to avoid the
additive term of log, , ., [¢o/¢] in Lemma 5.3, which can be
as large as log, . (np).

LEMMA 5.5. Let R be any region with the property that
for any two nodes v,w € R it holds that v and w are within
the sensing range of each other. Consider any sufficiently
large time interval I with |I| = Q(log, ., n) starting at a
sufficiently large time step to = Q(log; ., n) and let Xy be
a random variable denoting the mumber of rounds in I in
which ) o pPo > ¢. Then it holds for any ¢ > 2 that

E[X,] < 40[1|/e”"*

ProOOF. For any time step t let p; = > _ppe(v). Ini-
tially, p+ < n. Hence, it follows from the proof of Lemma 5.3
that for any sufficiently large interval I" of size ©(log, , ., n)
and any ¢ > 2 there is a time step t € I’ with p; < ¢
w.h.p. Thus, if interval I starts at a sufficiently large time
step to = Q(log, . n), there must be a time step ¢ < o
with to —t = O(log,,, n) and p; < ¢ w.h.p. Let I be the
interval starting at ¢ and containing I. Then we know from
Lemma 5.3 that when defining X, with respect to I,

Pr[Xy > (14 8)41I'|/e?/%] < (e/(1 + &) S2 /<"

for any 6 > 2. The same bound also applies to I. If |I'| <
(5/4)|I| (which is true if |I| is sufficiently large, w.h.p.), then
it follows that

Pr[X, > (14 0)51]/e%/%] < (e/(1 + 8)) 21V

for any 6 > 2. When defining £ = (1 + §)5|I|/e®/? for some
0 > 3, it holds that

2U1/e™” = 55y

and therefore for any such ¢, Pr[X, > €] < (e/4)®/10¢ <
27¢/6, Hence, for £y = 20|I|/e®/?,

0> (3/10)¢

EXs] < ) Pr[Xy >
0>1
< Lo+ ) Pr[Xy >
>0
< b+ )20 <20
>0

O

Lemmas 5.3 and 5.5 allow us to prove the following lemma,
which bounds the number of rounds in which there is too
much non-local interference. Recall that the exponent for



the signal degradation is « for some constant a > 2 and
that P is the transmission power of every node. Let R,
represent the complement of R,, i.e., the area outside of the
transmission range of v.

LEMMA 5.6. Consider any time interval I and let Y be
a random variable denoting the mumber of rounds in I in
which P37, cp pw/c(v,w)* > T/2. For any constant € >
0, Pr[Y > €|I]] can be made polynomially small in n if |I| =
Q(log, ., n) is sufficiently large.

PRrROOF. For simplicity, suppose that ¢(u,v) = d(u,v) for
all pairs of nodes. Going back to the original cost model
would influence the bounds below by at most a (1 + 0)¢
factor. In the following, let o/ = o — 2.

Consider R, to be cut into rings Ro, R1,... where R; cov-
ers the area between radius r+ + irs/2 and r¢ + (i + 1)rs/2
around v. Each ring R; can be cut into sectors Si1,...,S:
with k < 2m(re + (i + V)rs/2)/(r5/2) = 2n(i + 2/p + 1) for
rs = pre¢ so that every sector S; ; represents a region in which
nodes can sense each other. Suppose that p:(S;,;) < ¢; for
all ¢,7 with ¢; = (i +2/p+ 1)“//2¢7 where the constant ¢ is
specified later. Then

Y pu/d(v,w)
wERv

Ty 407 /2)2 e 2(i+2/p+1)" /2¢

>0

B 27r 2¢ (i42/p+1)'+e"/?
- /2 2+a’ Z 2/P+74 2+a’
< 22+2a . 47T¢ Z ( 1 >1+a//2
— 2+a’ ;

Ts i>0 1+ 2/p
< 92(2+a’) 7 . 2 (£>a’/2
- T§+a’ o 2

Recall that T = P/r?*“l for some constant P. Hence, if p
is sufficiently small, then P 3" 7 puw/d(v,w)* <T/2.

It remains to show that most of the time this bound is
true, w.h.p. Consider any time interval I starting at some
sufficiently large round, and suppose that Y > €|I|. Then
there are d = €|I| rounds t1,...,tq € I so that for each ¢
there is an S;; with p, (Si ;) > ¢i. In order to analyze
these events, let the random variable Y; ; to be defined as
the number of times py, (Si,;) > ¢ in I. It follows from
Lemma 5.5 that

E[Y;;] < 40[1|/¢%/?

Hence,

J
=
I

ZZE[Yi,j]

D om(i+2/p+1)-40]1|/e?

%

IN

IN

el 1|

if the constant ¢ is large enough. Each Y; ; can be considered
as the sum of binary random variables in the flavor of the
proof of Lemma 5.3 (see the definition of the Y;’s). Thus,
Y can be considered as the sum of binary random variables.
This sum is finite since p(S;,;) < n for every i,j, which
implies that we do not have to go beyond ring ¢ with ¢; > n.

Moreover, the binary random variables satisfy the condition
of the first Chernoff bound in Lemma 5.2. Thus, for any
0>0,

Pr[Y > (14 )e|1]] < e~/ GO0/l

which is polynomially small in n if |[I| =
ficiently large. [

Q(log, ., n) is suf-

For a node v, a round ¢ in I is called good if and only if
> wer, Pt(w) < g for some fixed constant g and the inter-
ference caused by nodes in R, is less than T — N (so that
the additional noise may not trigger a busy channel).

LEMMA 5.7. For any constant € > 0, at least (1 — €)|I]
of the rounds in I are good for v, w.h.p., if g and T are
sufficiently large.

Proor. Fix some ¢ > 0. Lemma 5.3 implies that for
at least (1 —€/2)|I| of the rounds in I, 37 p pe(w) < g
w.h.p. if the constant g is sufficiently large. Furthermore,
Lemma 5.6 implies that for at least (1—¢')|I] of the rounds in
I, Py g, Pw/c(v,w)® < T/2, wh.p., for some constant
€ > 0 that can be arbitrarily small. Using the Chernoff
bounds, only for an ¢-fraction of these rounds the cumula-
tive signal strength of the nodes in R, will exceed T — N
(given that T' > 4N), w.h.p., so altogether there are at most
(€'(1—¢€)+¢€)|I| rounds in I in which the cumulative signal
strength of these nodes exceeds T'— N, w.h.p. If ¢ > 0 is
sufficiently small, then ¢'(1 — €') + € < €/2. In this case,
we would have at most an ¢/2-fraction of the rounds with
> wer, Pt(w) < g and at most an €/2-fraction of the rounds
in which the cumulative signal strength of the nodes in R,
exceeds T'— N, which implies the lemma. []

We are now ready to prove quick coverage by active nodes.

LEMMA 5.8. Let I be any time interval that is starting
after Q(log, ., n) rounds with |I| = O(log, ;. (n+1/¢)) being
sufficiently large. If p < 1/(2407(1 +0)*) then at the end of
I it holds for every mode v that v is either an active single
or has an active twin within its transmission range, w.h.p.

ProOOF. We distinguish between two cases for
pr = ngRu\{v} pr(w).
Case 1: p; < 24n(1 4 0)*p for at least 7/8 of the rounds
in I. Let t be any of these rounds and suppose that ¢ is
good. Then it follows from the proof of Lemma 5.3 that

Pr[pis1(v) = min{(1 + 7)p:(v), p}] is at least
(V) H (1 = pe(w)/2) +
wERy\{v}
(1 =pe(v)) H (1= pe(w))
weER,\{v}
> pt(v)efl‘lp;/z el _pt(v))efl.lp;
> 6—1.1p; > g

if p < 1/(2407(1 + 0)*). For round ¢, let the binary random
variable X; be 1 if and only if p;y1(v) = min{(14+~)p:(v), p}.
Let X =3, , X;. If at most 1/64 of the rounds in I are
bad (which is true according to Lemma 5.3 w.h.p.), it follows
that E[X] > |I](7/8 —1/64)8/9 > |I|(3/4+ 1/72). Further-
more, for any good round t with p; < 18p and any set S of



prior rounds it holds that

Pr(X, =1 A\ (X, =1)]>8/9
res

Hence, we can use the Chernoff bounds to get that, if |[I| >
clogn for a sufficiently large constant ¢, then X > |I|(3/4+
1/144) w.h.p. If initially p, > ¢ and |I| = O(log(n + 1/¢))
is large enough, then (1 + ~)!/**y > p, which implies
together with X > |I|(3/4 + 1/144) that v would have
pt(v) = p for at least a quarter of the rounds in . When
using the accounting method in the protocol (see acc(v)),
it follows that v must be an active single at the end of I
(given that no node has become an active twin within its
transmission range).

Case 2: p; > 24n(1 4 6)*p for at least 1/8 of the rounds
in I. According to our cost model, the transmission region
of v must be inside a disk of diameter (1 + 0)ro where rq is
the ideal transmission range for § = 0. When cutting this
disk into [27(1 4+ 0)*v/2] sectors of equal angle and each
sector into [(1 + 0)%+/2] ring sections of equal width, then
we obtain at most 87(1+ 6)* ring sections with diameter at
most v/2-79/(v/2(146)) = ro/(1+6). Thus, in each of these
sections, any pair of nodes can communicate with each other.
For each round ¢ with p; > 247(1 + 6)*p there must be one
of these sections, say S, with ZwESﬁRU pe(w) > 3p, which
implies that S can be decomposed into two groups S1 and S2
with > cg nr, Pt(w) > pand -, g p pe(w) > p. This
implies that if ¢ is good (so the probabilities of the nodes
within the transmission range of any node in Si or S sum
up to a constant), there is a constant probability > 0 that
the nodes in S will form a twin. Thus, if |I| > clogn for a
sufficiently large constant ¢, then a twin will emerge within
the transmission range of v, w.h.p. [

Finally, we need to prove the following lemma.

LEMMA 5.9. At the end of time interval I, each node v
can have at most a constant number of active singles and
twins within its transmission range, w.h.p.

PROOF. First, consider the twins. According to the pro-
tocol, a node v will only participate in the twin creation if it
has not sensed a NEW signal in stage 3, which implies that
there cannot be twins within its sensing range defined by 7.
Node v only becomes a twin if v sent a PING signal in stage
2 and also received one from some node w in that stage and
it also receives an ACK signal in stage 3 from some node
w’ (that does not necessarily have to be w). If v had sent a
PING signal together with a non-constant number of nodes
within its transmission range, then no other node within
its transmission range could have received a PING signal,
which means that v would not have received an ACK signal
in stage 3. Hence, only a constant number of nodes can be-
come a twin within the transmission range of any node, and
any node becoming a twin does not have a twin within its
sensing range defined by 1" from previous rounds, so overall
the twins must have a constant density.

Next, we consider active singles. Recall the cases in the
proof of Lemma 5.8. Suppose that there are at least ¢ many
nodes u € R, for which case 1 is true, which means that
they would all be active singles at the end of I, w.h.p. If the
constant c is sufficiently large, that would violate the case
1 assumption that p; < 247 (1 + 6)*p for at least 7/8 of the

rounds in [ since each of these nodes would have a proba-
bility of p for at least 1/4 of the rounds in I. Hence, there
can at best be a constant number of nodes u € R, for which
case 1 applies. For the rest of them, case 2 must apply,
but in this case a twin will emerge within their transmission
range, w.h.p. Once a twin emerges within the transmission
range of a node v, stage 1 ensures that with constant prob-
ability v will receive an ACTIVE signal from that twin in a
round. Hence, these nodes will not be active singles within
O(log n) rounds, w.h.p., since their accounts will be set to 0
when they terminate the protocol. [

6. TOWARDS SELF-STABILIZATION

Note that the initial probabilities of the nodes can be set
in any way. From above we know that if the initial proba-
bilities are at least ¢, then the number of rounds the TWIN
protocol needs is O(log(n+1/¢)). Interestingly, also the ini-
tial acc(v) values of the nodes can be set in any way since the
proofs above do not make any assumptions on them besides
acc(v) > 0. To see this, let us review the proof of Lemma 5.8
(the other lemmas are uncritical). In Lemma 5.8, there are
two cases. If case 1 is true, node v will become an active
single w.h.p. (which it will also be for very large acc(v)),
but if case 2 is true, then v will learn about an active twin
within its transmission range, w.h.p., and in this case it will
set acc(v) = 0 and terminate the protocol, so it will be an
inactive node at the end.

However, we still have two problems left. Initially, there
may be a non-constant density of twins, and the nodes should
not terminate the protocol at any point.

Termination is crucial for the TWIN protocol above be-
cause otherwise a non-constant density of twins may be cre-
ated as the remaining nodes will continue to compete for
becoming a twin. The simplest way to get around this prob-
lem is to assume that the nodes have a round threshold of
R = ©(log, ;. n). Whenever an inactive or active single re-
ceives an ACTIVE signal in stage 1 or senses a NEW signal
in stage 3, it does not participate in stage 2 for R many time
steps. This is equivalent to stopping the protocol, w.h.p., as
long as no active twin will become inactive again for some
reason or other events such as faults or mobility occur.

It remains to address the issue of twins with a non-constant
density. An approach that may work well in practice is the
following (which may be added as two additional time slots
in stage 1):

Each active twin v chooses one of two time slots uniformly
at random, say, slot s. For slot s, v sends out an ACTIVE
signal, and for the other slot, s, v senses the wireless medium
with threshold T, that is sufficiently high so that it will not
be exceeded as long as the density of the twins does not
exceed a certain constant D. If v senses a busy medium, it
becomes inactive and sets acc(v) := 0.

Even though this approach just needs a single round to get
the density distribution of the active twins down to a con-
stant, oscillation problems can occur in pathological cases
in which everywhere on expectation the cumulative signal
strength is slightly below Ty. The easiest approach to avoid
running into oscillation problems is that a twin sensing a
busy channel sends a reset signal that is flooded to its lo-
cal k-neighborhood, e.g., with the help of surviving twins,
which have constant density once T, has been applied so
that the flooding effect is kept local. Every active twin re-
ceiving or sensing a reset request is becoming inactive. The



2-neighborhood of a twin should suffice to make sure that
afterwards the density in its local area will not get beyond
what the original TWIN protocol would create, so oscilla-
tion problems will not occur in that area any more and the
dominating set will eventually stabilize.

7.

CONCLUSIONS

In this paper, we have introduced a fully distributed al-
gorithm for constructing a constant density dominating set
under realistic interference and radio propagation models.
We believe the ideas and techniques presented in this paper
might prove very useful in the design of other distributed
protocols for wireless ad-hoc networks based on realistic
models, which is left for future work.
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