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Abstract. The maximum agreement subtree problem is the following. Given two rooted trees
whose leaves are drawn from the same set of items (e.g., species), find the largest subset of these
items so that the portions of the two trees restricted to these items are isomorphic. We consider
the case which occurs frequently in practice, i.e., the case when the trees are binary, and give an
O(n logn) time algorithm for this problem.
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1. Introduction. Suppose we are given two rooted trees T1 and T2 with n leaves
each. The internal nodes of each tree have at least two children each. The leaves in
each tree are labeled with the same set of labels, and further, no label occurs more
than once in a particular tree. An agreement subtree of T1 and T2 is defined as follows.
Let L1 be a subset of the leaves of T1, and let L2 be the subset of those leaves of T2

which have the same labels as leaves in L1. The subtree of T1 induced by L1 is an
agreement subtree of T1 and T2 if and only if it is isomorphic to the subtree of T2

induced by L2. The maximum agreement subtree problem (henceforth called MAST )
asks for the largest agreement subtree of T1 and T2.

We need to define the terms induced subtree and isomorphism used above. Intu-
itively, the subtree of T induced by a subset L of the leaves of T is the topological
subtree of T restricted to the leaves in L, with branching information relevant to L
preserved. More formally, for any two leaves a, b of a tree T , let lcaT (a, b) denote
their lowest common ancestor in T . If a = b, lcaT (a, b) = a. The subtree U of T
induced by a subset L of the leaves is the tree with leaf set L and interior node set
{lcaT (a, b)|a, b ∈ L} inheriting the ancestor relation from T ; that is, for all a, b ∈ L,
lcaU (a, b) = lcaT (a, b).

Intuitively, two trees are isomorphic if the children of each node in one of the trees
can be reordered so that the leaf labels in each tree occur in the same order and the
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shapes of the two trees become identical. Formally, we say two trees U1 and U2 with
the same leaf labels are isomorphic if there is a 1–1 mapping µ between their nodes,
mapping leaves to leaves with the same labels and such that for any two different
leaves a, b of U1, µ(lcaU1(a, b)) = lcaU2(µ(a), µ(b)).

Motivation. The MAST problem arises naturally in biology and linguistics as
a measure of consistency between two evolutionary trees over species and languages,
respectively. An evolutionary tree for a set of taxa, either species or languages, is
a rooted tree whose leaves represent the taxa and whose internal nodes represent
ancestor information. It is often difficult to determine the true phylogeny for a set of
taxa, and one way to gain confidence in a particular tree is to have different lines of
evidence supporting that tree. In the biological taxa case, one may construct trees
from different parts of the DNA of the species. These are known as gene trees. For
many reasons, these trees need not entirely agree, and so one is left with the task of
finding a consensus of the various gene trees. The maximum agreement subtree is one
method of arriving at such a consensus. Notice that a gene is usually a binary tree,
since DNA replicates by a binary branching process. Therefore, the case of binary
trees is of great interest.

Another application arises in automated translation between two languages [GY95].
The two trees are the parse trees for the same meaning sentences in the two languages.
A complication that arises in this application (due in part to imperfect dictionaries)
is that words need not be uniquely matched, i.e., a word at the leaf of one tree could
match a number (usually small) of words at the leaves of the other tree. The aim is to
find a maximum agreement subtree; this is done with the goal of improving context-
using dictionaries for automated translation. So long as each word in one tree has only
a constant number of matches in the other tree (possibly with differing weights), the
algorithm given here can be used and its performance remains O(n log n). More gen-
erally, if there are m word matches in all, the performance becomes O((m+n) log n).
Note, however, that if there are two collections of equal meaning words in the two
trees of sizes k1 and k2, respectively, they induce k1k2 matches.

Previous work. Finden and Gordon [FG85] gave a heuristic algorithm for the
MAST problem on binary trees which had an O(n5) running time and did not
guarantee an optimal solution. Kubicka, Kubicki, and McMorris [KKM95] gave
an O(n(.5+ε) log n) algorithm for the same problem. The first polynomial time al-
gorithm for this problem was given by Steel and Warnow [SW93]; it had a run-
ning time of O(n2). Steel and Warnow also considered the case of nonbinary and
unrooted trees. Their algorithm takes O(n2) time for fixed degree rooted and un-
rooted trees and O(n4.5 log n) time for arbitrary degree rooted and unrooted trees.
They also give a linear reduction from the rooted to the unrooted case. Farach

and Thorup gave an O(nc
√

log n) time algorithm for the MAST problem on binary
trees; here c is a constant greater than 1. For arbitrary degree trees, their algo-

rithm takes O(n2c
√

log n) time for the unrooted case [FT95] and O(n1.5 log n) time
for the rooted case [FT97]. Farach, Przytycka, and Thorup [FPT95a] obtained an
O(n log3 n) algorithm for the MAST problem on binary trees. Kao [Ka95] obtained
an algorithm for the same problem which takes O(n log2 n) time. This algorithm takes

O(min{nd2 log d log2 n, nd
3
2 log3 n}) for degree d trees. Finally, Cole and Hariharan

[CR96] improved the algorithm from [FPT95a] to an O(n log n) algorithm.

The MAST problem for more than two trees has also been studied. Amir and
Keselman [AK97] showed that the problem is NP -hard for even 3 unbounded degree
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trees. However, polynomial bounds are known [AK97, FPT95b] for three or more
bounded degree trees.

Our contribution. This paper is the combined journal version of [FPT95a] and
[CR96] and presents an O(n log n) algorithm for the MAST problem for two binary
trees.

The O(n log3 n) algorithm of [FPT95a] can be viewed as taking the following
approach (although the authors do not describe it this way). It identifies two special
cases and then solves the general case by interpolating between these cases.

Special case 1. The internal nodes in both trees form a path. The MAST problem
reduces to essentially a size n longest increasing subsequence problem in this case. As
is well known, this can be solved in O(n log n) time.

Special case 2. Both trees T1 and T2 are complete binary trees. For each node v
in T2, only certain nodes u in T1 can be usefully mapped to v, in the sense that the
subtree of T1 rooted at u and the subtree of T2 rooted at v have a nonempty agreement
subtree. There are O(n log2 n) such pairs (u, v). This can be seen as follows. Note
that for (u, v) to be such a pair, the subtree of T1 rooted at u and the subtree of T2

rooted at v must have a leaf-label in common. For each label, there are only O(log2 n)
such pairs obtained by pairing each ancestor of the leaf with this label in T1 with each
ancestor of the leaf with this label in T2. The total number of interesting pairs is thus
O(n log2 n).

For each pair, computing the MAST takes O(1) time, as it is simply a question
of deciding the best way of pairing their children.

The interpolation process takes a centroid decomposition of the two trees and
compares pairs of centroid paths, rather than individual nodes as in the complete
tree case. The comparison of a pair of centroid paths requires finding matchings with
special properties in appropriately defined bipartite graphs, a nontrivial generaliza-
tion of the longest increasing subsequence problem. This process creates O(n log2 n)
interesting (u, v) pairs, each of which takes O(log n) time to process.

In [CR96] two improvements are given, each of which gains a logn factor.
Improvement 1. The complete tree special case is improved to O(n log n) time as

follows. A pair of nodes (u, v), u ∈ T1, v ∈ T2, is said to be interesting if there is an
agreement subtree mapping u to v. As is shown below, for complete trees, the total
number of interesting pairs (u, v) is just O(n log n). Consider a node v in T2. Let
L2 be the set of leaves which are descendants of v. Let L1 be the set of leaves in T1

which have the same labels as the leaves in L2. The only nodes that may be mapped
to v are the nodes u in the subtree of T1 induced by L1. The number of such nodes
u is O(size of the subtree of T2 rooted at v). The total number of interesting pairs is
thus the sum of the sizes of all subtrees of T2, which is O(n log n).

This reduces the number of interesting pairs (u, v) to O(n log n). Again, process-
ing a pair takes O(1) time. (This is less obvious, for identifying the descendants of
u which root the subtrees with which the two subtrees of v can be matched is non-
trivial.) Constructing the above induced subtree itself can be done in O(|L1|) time,
as will be detailed later. The basic tool here is to preprocess trees T1 and T2 in O(n)
time so that least common ancestor (LCA) queries can be answered in O(1) time.

Improvement 2. As in [FPT95a], when the trees are not complete binary trees,
we take centroid paths and match pairs of centroid paths. The O(log n) cost that
the algorithm in [FPT95a] incurs in processing each such interesting pair of paths
arises when there are large (polynomial in n size) instances of the generalized longest
increasing subsequence problem. At first sight, it is not clear that large instances of
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these problems can be created for sufficiently many of the interesting pairs; unfor-
tunately, this turns out to be the case. However, these problem instances still have
some useful structure. By using (static) weighted trees, we process pairs of interest-
ing vertices in O(1) time per pair, on the average, as is shown by an appropriately
parameterized analysis.

The paper is organized as follows. Section 2 gives some basic definitions and
primitives. Section 3 outlines the algorithm. Section 4 provides further details of
the algorithm, and section 5 gives the analysis. The remaining sections deal with
problems raised in sections 3–5.

2. Definitions and preliminaries. All trees henceforth refer to binary trees
whose internal nodes have exactly two children.

The tree T (x) denotes the subtree of T rooted at vertex x. The size of a tree T ,
denoted by |T |, is the number of leaves in it. In our problem, |T1| = |T2| = n.

Given a binary tree T , its centroid decomposition is a partitioning of its vertices
into disjoint paths obtained as follows. First, for each internal node x in T , the edge
to the child with the maximal number of leaves below it is called a centroid edge.
Here ties are broken arbitrarily. Now, the centroid edges form a collection of disjoint
paths, called centroid paths. The beginning of such a centroid path P is defined to
be the vertex x closest to the root of T . Then, if we remove P from T (x), we get a
forest of trees called the side trees of T (x), and then each side tree is of size at most
|T (x)|/2. Note that the full centroid decomposition could also be found recursively
by first finding the centroid path from the root, and then recursing on each side tree.
Also note that the centroid decomposition of T can easily be found in O(n) time.

A tree T can be preprocessed in O(|T |) time so that given any subset L of its
leaves in left to right order, the subtree induced by L can be computed in O(|L|) time.
The details of this procedure are described in section 8.

The set of labels at the leaves of T1 is identical to that at the leaves of T2. For a
leaf l in one of these trees, the leaf with the same label in the other tree is called its
twin. Two subtrees, one from each tree, are said to intersect if and only if some leaf
in one subtree has a twin in the other. The subtree of T2 induced by some subset of
the leaves of T1 is the subtree of T2 induced by the twins of these leaves of T1.

3. Algorithm outline. We need some definitions to outline the algorithm.

Definitions. Let π be the centroid path containing the root of T1. Let p = |π|,
and let u1, u2, . . . , up−1, up be the vertices on this path in order from the root. Let
M1,M2, . . . ,Mp−1 comprise the forest of side trees created by the removal of π from
T1. Let mi = |Mi| be the number of leaves in Mi (see Figure 3.1). Recall that
mi ≤ n/2 as π is a centroid path. For technical reasons, we define Mp to be the tree
consisting of the vertex up and set mp = 1. Then,

∑p
i=1 mi = n.

Given trees T1, T2, our aim is to determine the maximum agreement subtree of T1

and T2 efficiently. To do so, we will need to compute not just this agreement subtree
but the maximum agreement subtree of T1 and T2(w) for each w in T2. All these
subtrees will be computed implicitly by a procedure Agree(T1, T2).

Agree(T1, T2) proceeds broadly as follows. See Figure 3.1. First, it recursively
computes the maximum agreement subtree of Mi, T2(w) for each side tree Mi of T1

and each vertex w in T2. This is not done explicitly, though, as we will see shortly.
Second, it uses the information gathered in this process to compute the maximum
agreement subtree of T1, T2(w) for each vertex w in T2. Both steps together take
O(n log n) time.
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N2
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vq

Nq−1

π
π(x)

Fig. 3.1. Centroid paths in T1 and T2 with π starting in root of T1 and π(x) starting in x = v1
in T2.

We will describe Agree(T1, T2) in detail shortly. Two observations will be used in
this description.

First, as in the discussion of interesting pairs in Improvement 1, note that it
is not necessary to compute the maximum agreement subtrees of Mi, T2(w) for all
w ∈ T2. The first reason is that the maximum agreement subtree of Mi, T2(w) is
empty if Mi does not intersect with T2(w). The second reason is that the maximum
agreement subtrees of Mi, T2(w) and Mi, T2(parent(w)) are identical if Mi does not
intersect with the the subtree of T2 rooted at w’s sibling. For these two reasons, it
suffices to compute Agree(Mi, Si), where Si is the subtree of T2 induced by the leaves
of Mi. This implicitly computes the maximum agreement subtrees of Mi, T2(w) for
all w ∈ T2.

Second, note that if the maximum agreement subtree of T1, T2(w) does not have
any vertex on the centroid path π of T1, then all vertices in this agreement subtree
belong to a single side tree Mi of T1. For, if these vertices were distributed over two or
more side trees of T1, then these vertices would have a common ancestor on π which
would be in the maximum agreement subtree as well. Thus, when the maximum
agreement subtree of T1, T2(w) does not have any vertex on π, it can be determined
using some Agree(Mi, Si) from the previous paragraph.

Algorithm outline. Agree(T1, T2) has three steps.

Step 1. The centroid decompositions of T1 and T2 are computed. This takes O(n)
time.

Step 2. For each i, 1 ≤ i ≤ p − 1, Agree(Mi, Si) is computed recursively, where
Si is the subtree of T2 induced by the leaves of Mi. We will inductively assume that
this takes O(mi logmi) for each i. Recall that if the maximum agreement subtree of
T1 and T2 contains no vertex from π, then it will be found in Step 2. Step 3 handles
the other case.

Step 3: Matching π. For each w ∈ T2, the largest agreement subtree for the trees
T1 and T2(w) is found using information from Step 2. Informally, we call this the
process of “matching” π at each of the vertices w of T2. We will show how this is
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done in O(
∑p

i=1 mi log
n
mi

) time.

Clearly, the total time over all three steps is O(n log n). The following sections
show how Step 3 is performed in O(

∑p
i=1 mi log

n
mi

) time. Starting in the next sec-
tion, we will define some bipartite graphs. Each graph will correspond to a particular
centroid path in the centroid decomposition of T2 and will be used to match π as in
Step 3 at all the vertices in this centroid path. These graphs will have the property
that a particular kind of matching, which can be computed efficiently, will correspond
to the relevant agreement subtrees.

4. The matching graphs G(x) and the π matching algorithm.

Definitions. Recall that the centroid decomposition of T2 partitions its vertices
into disjoint paths and that the beginning of such a path is defined to be the vertex
closest to the root of T2 in that path. Let X denote the set of vertices in T2 at which
paths in the above decomposition begin.

We define a number of bipartite graphs, one for each x ∈ X. The graph G(x)
corresponding to vertex x is defined as follows.

Vertices of G(x). The left vertex set L(x) of G(x) is a subset of {u1, . . . , up}.
Vertex ui, 1 ≤ i ≤ p− 1, is in the set if and only if Mi and T2(x) intersect. Vertex up

is in the set if and only if its twin is in T2(x).

The right vertex set R(x) of G(x) is exactly the set of vertices in the centroid
path beginning at vertex x.

Since both sets of vertices are drawn from centroid paths, we order the vertices
on each side in the order they occur on their respective centroid paths. The topmost
vertex is the closest to the root and the bottommost is the farthest. Further, two edges
(a, b) and (a′, b′) in G(x) are said to cross if a is above a′ and b is below b′, or vice
versa. In addition, edge (a, b) is said to dominate (a′, b′) in G(x) if a is above a′ and
b is above b′. The topmost edge in a set of edges, if any, is the edge which dominates
all other edges in that set.

Before defining the edges of G(x), we need the following definitions.

Definitions. Let π(x) be the centroid path containing x. Let q be the length of
this path. Let v1, v2, . . . , vq be the vertices on this path in order from the root. Let
N1, N2, . . . , Nq−1 comprise the forest of side trees of T2(x) created by the removal of
v1, . . . , vq from T2(x). Let ni = |Ni| for i = 1, . . . , q−1 (see Figure 3.1). For technical
reasons, we define Nq to be the tree consisting of the vertex vq and set nq = 1. Then∑q

i=1 ni = |T2(x)|.
4.1. Motivation for defining edges of G(x). We first motivate the definition

of edges of the graph G(x). The purpose of G(x) is to determine maximum agreement
subtrees of T1 and T2(vk) for each k, 1 ≤ k ≤ q. The edges of G(x) will be defined
so that maximum weight matchings of a certain kind (called agreement matchings) in
G(x) will correspond to maximum agreement subtrees of T1 and T2(vk), 1 ≤ k ≤ q.
Clearly, the edges of G(x) and the agreement matchings must capture the structural
properties of these maximum agreement subtrees. We outline these structural prop-
erties next and show how they lead to the edge definitions.

Consider the maximum agreement subtree A of T1, T2(vk). Note that A has the
following properties.

Case 1. If A has no vertices in π(x), then it must be the maximum agreement
subtree of (T1, Nj) for some j, k ≤ j ≤ q − 1.
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Case 2. Similarly, if A has no vertices in π, then it must be the maximum
agreement subtree of (Mi, T2(vk)) for some i, 1 ≤ i ≤ p− 1.

Case 3. Next, suppose A has at least one vertex both from π and from π(x).
In other words, there is at least one vertex in A which is in π and which maps to a
vertex in π(x).

Suppose vertex ui ∈ π is one such vertex and it maps to vertex vj ∈ π(x). If ui

is not the bottommost such vertex in π and z is the unique child of ui in A which is
not in π, then A(z) must be the maximum agreement subtree of (Mi, Nj).

Now if ui is indeed the bottommost such vertex, we divide into subcases.

Case 3.0. If ui is the leaf up, it must map to the other leaf vq since leaves can
only map to leaves. Then the subtree of A rooted at ui is just the vertex ui, which is
also the maximum agreement subtree of (T1(ui), Nq).

For the remaining subcases, we assume that ui is not the leaf up.

Case 3.1. The subtrees ofA rooted at the two children of ui inA are the maximum
agreement subtrees of the pairs (T1(ui+1), Nj) and (Mi, T2(vj+1)). The following facts
will be of use in this case. If Mi and Nj+1 do not intersect, then the maximum
agreement subtree of (Mi, T2(vj+1)) is identical to that of (Mi, T2(vj′)), where j′ > j
is the topmost vertex below vj in π(x) such that Mi and Nj′ intersect. And if Mi+1

and Nj do not intersect, then the maximum agreement subtree of (T1(ui+1), Nj) is
identical to that of (T1(ui′), Nj), where i′ > i is the topmost vertex below ui in π
such that Mi′ and Nj intersect.

Note that if this subcase does not hold, then the subtree of A rooted at one of the
two children of ui is just the maximum agreement subtree of (Mi, Nj). In addition,
all descendants of the other child of ui in A must come from either a single side tree
below vj in T2 or a single side tree below ui in T1. These situations are handled by
the second and third cases, respectively.

Case 3.2. The subtrees ofA rooted at the two children of ui inA are the maximum
agreement subtrees of (Mi, Nj) and (T1(ui+1), Nj′) for some j′, j < j′ ≤ q.

Case 3.3. The subtrees of A rooted at the two children of ui in A are the max-
imum agreement subtrees of (Mi, Nj) and (Mi′ , T2(vj+1)), respectively, for some i′,
i < i′ ≤ p.

The following properties of A can be inferred from the above case analysis.

Property 1. A has a path (which is possibly empty) comprising vertices in π
which map to vertices in π(x), with the property that off-path subtrees are maximum
agreement subtrees of the following three kinds: maximum agreement subtrees of
(Mi, Nj) for some i, j, maximum agreement subtrees of (T1(ui), Nj) for some i, j, and
maximum agreement subtrees of (Mi, T2(vj)) for some i, j.

Property 2. A contains at most one maximum agreement subtree of the second
kind and at most one of the third kind. A also contains at least one maximum
agreement subtree of either the second or the third kind. More specifically, in Case
3.1, there is one of each kind, in Cases 1 and 3.2, there is one of the second kind but
none of the third kind, and in Cases 2 and 3.3, there is one of the third kind but none
of the second kind. Finally, Case 3.0 can be viewed as either kind since Mp = T1(up)
and Nq = T1(vq).

Property 3. In Case 3, there are zero or more maximum agreement subtrees of the
first kind, all of which occur above subtrees of the second and third kinds. Here, by
above we refer to the relative positions of the nearest ancestors ui, vj on the centroid
paths. In Cases 1 and 2, there are no subtrees of the first kind.

Property 4. If two maximum agreement subtrees of the first kind occur in A, for
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instance, the maximum agreement subtrees of (Mi, Nj) and (Mi′ , Nj′), then i < i′

implies j < j′.
Property 5. If subtrees of both the second kind and the third kind exist in A, for

instance, the maximum agreement subtrees of (T1(ui′), Nj) and (Mi, T2(vj′)), respec-
tively, then i < i′ and j < j′.

To model these three different kinds of maximum agreement subtrees, we need
three different kinds of edges in G(x), namely white edges, red edges, and green edges,
respectively. The details of these edges are described next, followed by the definition
of agreement matching which captures the above structural properties.

4.2. Edges of G(x). G(x) is actually a multigraph, where each multiedge con-
sists of three edges—a white edge, a red edge, and a green edge—each of which has a
distinct weight associated with it. A multiedge between ui ∈ L(x), 1 ≤ i ≤ p− 1, and
vj ∈ R(x), 1 ≤ j ≤ q− 1, exists if and only if Mi and Nj intersect. The white edge in
this multiedge has weight equal to the size of the maximum agreement subtree of Mi

and Nj . The red edge in this multiedge has weight equal to the size of the maximum
agreement subtree of T1(ui) and Nj . The green edge in this multiedge has weight
equal to the size of the maximum agreement subtree of Mi and T2(vj). If up ∈ L(x),
then there is a multiedge between up and vj such that either j 	= q and up’s twin is
in Nj or j = q and up’s twin is vq; all three edges in this multiedge have weight 1. In
addition, there is a multiedge between ui and vq such that either i 	= p and vq’s twin
is in Mi or i = p and vq’s twin is up; all three edges in this multiedge have weight 1.

4.3. Agreement matchings in G(x).

Definitions. We define a proper crossing in G(x) to be either a single red edge, a
single green edge, or a red-green edge pair such that the two edges cross and, further,
the endpoint of the green edge in L(x) is above that of the red edge.

A matching in G(x) is an agreement matching if

1. it has zero or more white edges and one proper crossing, and
2. no white edge crosses any other edge; further, all white edges dominate the

edges in the proper crossing.

See Figure 4.1. The weight of such a matching is just the sum of the weights of its
edges. The following property of agreement matchings in G is crucial.

The key property. Each maximum weight agreement matching corresponds to
a maximum agreement subtree, and vice versa, as is made precise below.

Lemma 4.1. A maximum weight agreement matching M containing only edges
incident upon or below vertex w in R(x) corresponds to an agreement subtree A of
T1, T2(w), w ∈ π(x), having the same weight.

Proof. We associate with each white edge (ui, vj) the maximum agreement sub-
tree of (Mi, Nj). Similarly, we associate with each red edge (ui, vj) the maximum
agreement subtree of (T1(ui),Mj) and with each green edge (ui, vj) the maximum
agreement subtree of (Ni, T2(vj)). The tree A is defined as follows.

A will have a path containing one vertex for each white edge (see Figure 4.1).
These vertices occur in the same sequence from top to bottom as their corresponding
edges. The off-path children of these vertices will be the roots of the associated
maximum agreement subtrees defined above. It remains to define the remaining child
of the bottommost vertex on this path. This child will depend upon the nature of
the proper crossing. We will define a tree A′ for the proper crossing as follows. This
child will be the root of A′.
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Fig. 4.1. An agreement matching with the associated agreement tree.

If the proper crossing has a green edge and a red edge, then A′ is a tree whose
left and right subtrees are the maximum agreement subtrees associated with the two
edges. On the other hand, if the proper crossing has exactly one edge (red or green),
then A′ is just the maximum agreement subtree associated with that edge.

And finally, if there are no white edges at all, then A = A′. The equivalence of
weights is easy to check in all cases.

Lemma 4.2. A maximum agreement subtree A of T1 and T2(w), w ∈ π(x), has
a unique corresponding agreement matching which has the same weight and contains
only edges incident upon or below w in R(x).

Proof. We sketch how the agreement matching corresponding to A is constructed.
Recall Cases 1–3 and Properties 1–5 in section 4.1.

If Case 1 occurs, then A is of the maximum agreement subtree of (T1, Nj) for
some vj coinciding with or below w in π(x). Let ui be the topmost vertex in π such
that Mi intersects with Nj . Then the maximum agreement subtree of (T1(ui), Nj)
has the same weight as that of (T,Nj). Further, there is a red edge between ui and
vj in G(x); this red edge constitutes the agreement matching. Clearly, the weight of
this matching is identical to that of A.

If Case 2 occurs, a similar argument shows that the matching comprises a solitary
green edge with the same weight as A. In Case 3, a similar argument can be used to
show that the matching contains a sequence of zero or more noncrossing white edges,
lying above a proper crossing.

Thus, in order to determine the maximum agreement subtree of T1 and T2(w),
w ∈ π(x), it suffices to determine the maximum weight agreement matching in G(x)
containing only edges incident upon or below vertex w in R(x).

4.4. Finding maximum weight agreement matching in G(x). To describe
the algorithm for matching π, we need the following definitions followed by an impor-
tant theorem. The theorem itself will be proved in section 7.

Definitions. The degree of a vertex in G(x) is defined as the number of white
edges incident on it. Let dx(ui) denote the degree of ui. A vertex in L(x) is called
a singleton vertex if it has degree one; the white edge incident on it is called a sin-
gleton edge. Let nswe(x) denote the number of nonsingleton white edges in G(x).
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Let nsav(x) denote the number of vertices in R(x) which have at least one incident
nonsingleton white edge. Let SV (x) denote the set of singleton vertices in L(x).

Theorem 4.3. Consider a particular x ∈ X. For each ui ∈ L(x), the largest
weight agreement matching in G(x) containing only edges incident on or below ui in
L(x) can be found in time

O


 ∑

i|dx(ui)>1

dx(ui) log
nsav(x)

dx(ui)
+

∑
(ui,vj)∈G(x)|dx(ui)=1

log
|T (x)|
nj


 .

Further, for each vj ∈ R(x), the largest weight agreement matching in G(x) con-
taining only edges incident on or below vj in R(x) can also be found in the same
time.

Theorem 4.3 is achieved by storing the vertices of R(x) in an appropriately
weighted search tree. The construction is described in section 7.

Algorithm outline for matching π. The matching graphs G(x) for all x ∈ X
will be constructed in time proportional to the sum of the sizes of these graphs. This
construction is described in section 6. Then each matching graph G(x) is processed as
follows (see Theorem 4.3). For each ui ∈ L(x), the largest weight agreement matching
in G(x) containing only edges incident on or below ui in L(x) is found. Further, for
each vj ∈ R(x), the largest weight agreement matching in G(x) containing only edges
incident on or below vj in R(x) is also computed. This computation of agreement
matchings is described in section 7. For each w ∈ T2, the largest agreement subtree
of T1 and T2(w) can be determined easily from the above information as it is given
by the largest weight agreement matching in G(x) comprising only edges incident
upon or below vertex w in R(x). Section 5 shows that the total time taken above is
O(

∑p
i=1 mi log

n
mi

), as required.

Inferring maximum agreement subtrees. Consider a vertex w ∈ T2; let x be
the beginning of the centroid path in T2 containing w. Then w ∈ R(x). The maximum
agreement subtree of T1 and T2(w) is given by the largest weight agreement matching
in G(x) comprising only edges incident upon or below vertex w in R(x).

5. The analysis. We need the following preliminary lemmas before beginning
the analysis.

Lemma 5.1. Consider graph G(x). Then

∑
i|dx(ui)>1

dx(ui) log
nsav(x)

dx(ui)
≤

∑
i|dx(ui)>1

dx(ui) log
n

mi
.

Proof. Multiplying each side by ln 2, we get the following equivalent inequality:

A =
∑

i|dx(ui)>1

dx(ui) ln
nsav(x)

dx(ui)
≤

∑
i|dx(ui)>1

dx(ui) ln
n

mi
= B.

Note that
∑

i|dx(ui)>1 dx(ui) = nswe(x). Let αi(x) > 0 be such that dx(ui) =

αi(x)
mi

n nswe(x). Then
∑

i|dx(ui)>1 αi(x)mi = n. Also note that nsav(x) ≤ nswe(x).
Therefore,

A ≤ B −
∑

i|dx(ui)>1

αi(x)
mi

n
nswe(x) lnαi(x).
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It suffices to show that

C =
∑

i|dx(ui)>1

αi(x)mi lnαi(x) ≥ 0.

We split C into two terms:

C1 =
∑

i|dx(ui)>1,αi(x)≥1

αi(x)mi lnαi(x)

and

C2 =
∑

i|dx(ui)>1,0<αi(x)<1

αi(x)mi lnαi(x),

C1 ≥
∑

i|dx(ui)>1,αi(x)≥1

(αi(x)− 1)mi.

Further,

∑
i|dx(ui)>1,αi(x)≥1

(αi(x)− 1)mi −
∑

i|dx(ui)>1,αi(x)<1

(1− αi(x))mi

=
∑

i|dx(ui)>1

(αi(x)− 1)mi =
∑

i|dx(ui)>1

αi(x)mi −
∑

i|dx(ui)>1

mi ≥ n− n ≥ 0.

Therefore C ≥ ∑
i|dx(ui)>1,0<αi(x)<1(1− αi(x) + αi(x) lnαi(x))mi ≥ 0.

Recall that Si denotes the subtree of T2 induced by the leaves of Mi.
Lemma 5.2.

∑
x∈X|dx(ui)>1 dx(ui) = O(mi).

Proof. Consider G(x) such that dx(ui) > 1. Then all but one of the vertices of
R(x) adjacent to ui are also in Si; this is because Mi intersects both the right and the
left subtrees of all but the bottommost of the vertices adjacent to ui in R(x). Since
each vertex in Si is in at most one matching graph G(x) and since |Si| = mi, the
lemma follows.

Consider a vertex ui ∈ π. From Theorem 4.3 and Lemma 5.1, the following work
is assigned to ui when considering the matching graph G(x), x ∈ X.

1. If Mi and T2(x) do not intersect, then no work is assigned to ui as ui is not
in G(x).

2. If dx(ui) = 1, then the work assigned to ui is O(log |T2(x)|
nj

), where vj is the

vertex in π(x) adjacent to ui.
3. If dx(ui) > 1, then the work assigned to ui is O(dx(ui) log

n
mi

).
The following is a corollary of Lemma 5.2 and the above bounds.
Corollary 5.3. The work assigned to vertex ui over all matching graphs G(x)

with dx(ui) > 1 is O(mi log
n
mi

).
It now suffices to account for the work assigned to vertex ui over all matching

graphs G(x) with dx(ui) = 1. Next, we show that this work is also O(mi log
n
mi

). We
use the tree Si for this analysis.

Analyzing over Si. Note that for each x ∈ X such that dx(ui) = 1, x is not in
Si, i.e., either it lies on the path in T2 between the endpoints of some edge e in Si,
or it lies on the path in T2 between the root of Si and the root of T2. In the former
case, x is said to lie on edge e of Si. To handle the latter case, we add a dummy edge
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x2

x3

xk

last(e)

z

Fig. 5.1. Portion of T2 showing vertices in H(e) and last(e).

to Si connecting its root to a new node, representing the root of T2. This new node
now becomes the root of Si. This addition of the dummy edge is only for the next few
paragraphs, until the work done on that edge is accounted for. Subsequent references
to Si will not have the dummy edge.

Consider the maximal subset H(e) of vertices x in X which lie on edge e of Si

and for which dx(ui) = 1. Let H(e) = {x1, x2, . . . , xk}; here the vertices appear in
increasing order of distance from the root of T2. Let e = (y, z), with y as the parent of
z in Si. Let first(e) = x1. Let last(e) be the first vertex x in X such that dx(ui) > 1
and x is on the path from xk to z in T2, if any; otherwise, let last(e) be z (and then
z is a leaf). See Figure 5.1.

Lemma 5.4. The sum of |T2(first(e))| over any subset of edges of Si, no two of
which lie on the same root-to-leaf path in Si, is O(n).

Proof. The above subtrees of T2 are all disjoint.

Lemma 5.5. The work assigned to ui on edge e, i.e., in processing graphs G(x),

x ∈ H(e), is O(log |T2(first(e))|
|T2(last(e))| ).

Proof. The work assigned to ui in processing G(xj) is O(log
|T2(xj)|

|T2(xj+1)| ) for 1 ≤
j < k and O(log |T2(xk)|

|T2(last(e))| ) for j = k. Thus the sum of the work assigned to ui at

the graphs G(xj) is O(log |T2(first(e))|
|T2(last(e))| ).

Corollary 5.6. The work assigned to ui on the dummy edge e is O(log n
mi

).

Proof. |T2(last(e))| ≥ mi.

It remains to analyze the work assigned to ui over the nondummy edges in Si.
From now onwards, we can ignore the dummy edge in Si.

Lemma 5.7. Consider edges e, e′ ∈ Si such that e is on the path from e′ to the
root of Si. If H(e), H(e′) are nonempty, then |T2(last(e))| ≥ |T2(first(e′))|.

Proof. first(e′) is a descendant of last(e) in T2.

We claim that sum of the work assigned to ui over all the edges of Si isO(mi log
n
mi

).
We show this next by applying tree contraction on Si.

Removal step. First, remove all edges e in Si incident upon leaves in Si. The work
done on these edges is bounded by the sum over all such edges e of O(log |T2(first(e))|);
further, the number of such edges is at most mi. By Lemma 5.4, this sum is at most
O(mi log

n
mi

).
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Contract step. Next, contract all paths consisting only of degree two vertices in
Si into a single edge. The H set for such an edge e is defined to be the union of the H
sets for the edges comprising the path which was contracted to give e. The work done
on e is also defined to be the sum of the work done on the relevant edges. first(e) and
last(e) are again defined as before. As is easily seen, Lemmas 5.4, 5.5, and 5.7 hold
for the new contracted tree as well. Further, this new tree has at most mi/2 leaves.

Wrapping up. O(logmi) phases of the removal and contract steps are performed.

In the jth phase, the work done on the edges removed is O( mi

2j−1 log
n2j−1

mi
). Summing

up over all phases, we get the following lemma.

Lemma 5.8. The work assigned to vertex ui over all matching graphs G(x) with
dx(ui) = 1 is O(mi log

n
mi

).

The following lemma is needed in the next section.

Lemma 5.9. The total number of edges incident on ui over all matching graphs
is O(mi log

n
mi

).

Proof. Recall that the work attributed to a singleton edge is of the form log |T2(x)|
nj

≥
1. Thus, Lemma 5.8 implies that there are O(mi log

n
mi

) singleton edges incident to
ui, and by Lemma 5.2, there are O(mi) nonsingleton edges incident to ui.

Theorem 5.10. There is an algorithm for the MAST problem for two binary
trees with an O(n log n) running time.

Proof. Corollary 5.3 and Lemma 5.8 imply that the total work assigned to ui is
O(mi log

n
mi

). Hence the total matching cost from Step 3 in section 3 isO(
∑

mi log
n
mi

).
Further, Step 1 takes linear time. Also, in section 8, it will be shown that we can con-
struct the recursive subproblems in Step 2 in linear time, so if we exclude the recursive
calls, our cost is bounded by c

∑
mi log

n
mi

for some sufficiently large c. Inductively,
we assume that each recursive call takes at most cmi logmi time, and then the total
time is at most

c
∑
i

(
mi log

n

mi
+mi logmi

)
= cn log n,

as desired.

The above analysis assumes (a) that we can construct the recursive subproblems
in linear time, which will be done in section 8, (b) that we can construct the matching
graphs in time proportional to their sizes, which will be done in sections 6 and 8, and
(c) that Theorem 4.3 holds true, which will be proved in sections 7 and 9.

6. Constructing the matching graphs. We show how all the matching graphs
can be set up in time proportional to the sum of their sizes, which by Lemma 5.9 is
O(

∑p−1
i=1 mi log

n
mi

). First, we show how to set up the vertices and edges in each
graph. Then we show how the weights on the edges are computed.

Preprocessing. T2 is preprocessed in linear time to compute a pointer from each
vertex to the beginning of the centroid path containing it. It is also preprocessed to
enable induced subtree computations in the same time bounds.

6.1. Setting up vertices and edges. The matching graphs in which vertex ui

appears along with the multiedges incident upon it in these graphs are determined in
time proportional to the sum of the number of such multiedges over all such graphs
as follows.



1398 COLE ET AL.

Processing up. First, consider the leaf up of T1. The only matching graphs
containing up are those which correspond to centroid paths beginning at vertices x of
T2 such that x is an ancestor of the twin of up in T2. Further, if up ∈ L(x), then there
is a multiedge between up and vertex y ∈ R(x) if and only if y is the nearest ancestor
of up’s twin in the centroid path beginning at x. Thus the matching graphs to which
up belongs and the multiedges incident on up in these graphs can be determined in
time proportional to the number of such graphs, given pointers from each vertex in
T2 to the beginning of the centroid path containing it.

Lemmas 6.1 and 6.2 are needed for the next step.

Lemma 6.1. If vertex vj in the centroid path beginning at vertex x of T2 is in Si,
then ui is adjacent to vj in G(x).

Proof. Clearly, if j 	= q, then Mi and Nj intersect, and if j = q, then vj ’s twin is
in Mi.

Lemma 6.2. If vertex vj in the centroid path beginning at vertex x of T2 is not
in Si, then ui is adjacent to vj in G(x) if and only if vj 	= vq and there exists some
vertex y ∈ Si which is in Nj.

Proof. We assume that j 	= q. For if j = q, then vj = vq is a leaf of T2, and since
it does not appear in Si, its twin is not in Mi, and therefore, there is no edge between
ui and vj .

First, suppose some vertex y ∈ Si is in Nj . Then, clearly, Nj intersects Mi.
Therefore, there must be an edge between ui and vj in G(x). Next, suppose that
there is such an edge. Then Nj intersects Mi. Therefore, there exists some y ∈ Si

which is in Nj .

Processing ui, 1 ≤ i ≤ p − 1. The subtrees of T2 induced by leaves of each
Mi are computed in O(

∑p−1
1 mi) time as described in section 8. Let Si denote this

induced subtree. For each vertex z in Si, perform the following in T2 until a vertex
in the centroid path containing the parent of z in Si is reached: repeatedly jump to
the parent of the beginning of the centroid path in T2 containing the current vertex.
By Lemmas 6.1 and 6.2, there is a multiedge from ui to each vertex y of T2 (in the
corresponding matching graph containing y) encountered in this following procedure.
Thus this procedure takes time proportional to the sum of the number of multiedges
incident on ui over all matching graphs it lies in, given pointers from each vertex in
T2 to the beginning of the centroid path containing it.

Remark. For an edge between ui and vj , i 	= p, j 	= q, define map(i, j) as follows.
If vj ∈ Si, then map(i, j) = vj . Otherwise, if vj 	∈ Si, then map(i, j) is that vertex in
Si which is closest to the root of Si and a descendant of vj in T2. Note that map(i, j)
can be easily computed in the course of the above procedure.

6.2. Determining edge weights in G(x). Recall that for a multiedge between
ui and vj in G(x), we need to determine the sizes of the maximum agreement subtrees
of the following pairs of trees.

1. Mi, Nj : white edge weight.
2. T1(ui), Nj : red edge weight.
3. Mi, T2(vj): green edge weight.

Also recall that the multiedge itself indicates that Mi and Nj intersect.

Assume that the agreement matchings in graphs G(x′) have already been deter-
mined, where x′ is a descendant of x in T2. Using this information and the information
computed in Step 2, we show how the above required information can be computed
for multiedge (ui, vj) in graph G(x) in constant time. Recall that in Step 2, the max-
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imum agreement subtrees of Mi and the subtrees rooted at each vertex w of Si were
determined.

White edge weight. Let y = map(i, j). If y 	= vj , then the maximum agreement
subtree of Mi and the subtree of Si rooted at y gives the desired information. Suppose
y = vj , i.e., y ∈ Si. Let z be the child of y ∈ Si such that z ∈ Nj . The maximum
agreement subtree ofMi and the subtree of Si rooted at z gives the desired information
in this case. This takes constant time.

Green edge weight. The maximum agreement subtree of Mi and the subtree
of Si rooted at y = map(i, j) gives the desired information in constant time.

Red edge weight. Let y be the root of Nj . Recall that the agreement matchings
in graphs G(x′) have already been determined, where x′ ∈ X is a descendant of x
in T2. Since y ∈ X, agreement matchings in graph G(y) would already have been
computed. Recall from Theorem 4.3 that for each vertex in L(y), the maximum weight
agreement matching containing only edges incident on or below that vertex in L(y)
has been computed.

Note that since Mi intersects with T2(y) (since a multiedge exists between ui and
vj), ui ∈ L(y). The largest weight agreement matching in G(y) containing only edges
incident on or below vertex ui in L(y) gives the desired information. This information
is computed as graph G(y) was processed, so it can be accessed in constant time now.

7. Computing agreement matchings. Consider graph G(x). Recall that for
each vertex in L(x), we need to compute the largest weight agreement matching
containing only edges incident on or below it in L(x), and likewise for each vertex
in R(x). We outline the algorithm before giving details. The algorithm is similar to
that in [FPT95a], but the data structure we use and the associated operations are
different.

Algorithm outline. First, a weight balanced binary search tree T whose leaves
are the vertices in R(x) is set up; here, the vertices in R(x) are given appropriate
weights yet to be described. Next, the vertices in L(x) are considered in turn in
bottom-to-top order. For each vertex ui ∈ L(x), the vertices adjacent to it in R(x)
are searched for in T ; the largest weight agreement matching with each white edge
incident on ui as topmost edge is found in the course of this search, as is the largest
weight proper crossing for each green edge incident on ui. From the above information,
the largest weight agreement matching containing only edges incident on or below ui

in L(x) is easily found. Following the above search, the information stored in T is

updated. The time taken for processing ui will be O(dx(ui) log
nsav(x)
dx(ui)

) if dx(ui) > 1

and O(log |T (x)|
nj

) if dx(ui) = 1 and ui is adjacent to vj in G(x). After all vertices in

L(x) have been processed, the vertices in R(x) are processed. For all such vertices vj ,
the largest weight agreement matching containing only edges incident on or below vj

in R(x) are found in O(|R(x)|) time by a single scan of T . The bounds in Theorem
4.3 follow.

Weighted search tree T . Vertex vj ∈ R(x) is given weight nj+
|T (x)|

nsav(x) if some

nonsingleton edge in G(x) is incident upon it, and weight nj otherwise. The sum of
the weights of vertices in R(x) is at most 2|T (x)|. The construction of T using these
weights is dealt with in section 9.

Tree T has the following three crucial characteristics.
1. T can be constructed in O(|R(x)|) time.

2. Searching for vj in T takes O(log |T (x)|
nj

) time.
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3. Searching for an ordered subset {vj1 , . . . , vjk} of R(x), each vertex in which

has an incident nonsingleton edge, takes O(k log nsav(x)
k ) time. The procedure

used here is to first search for vj1 , starting at the root, and then to search for
vj2 , starting at vj1 in the obvious way, and so on.

Auxiliary information in T . We maintain the following auxiliary information
at each internal vertex in T . Recall that we process the vertices of L(x) in order; an
edge of G(x) is said to be in T if its endpoint in L(x) has already been processed.
Further, we say that an edge of G(x) is in T (z) if it is in T and its endpoint in R(x)
is located in T (z). Let anc(z) denote the set of ancestors of z in T , z inclusive. For
a leaf vj ∈ T , lfringe(vj) is the set of vertices in T which are left children of vertices
in anc(vj) but not themselves in anc(vj). rfringe(vj) is defined analogously.

The following information is maintained at each vertex z of T .
1. g(z): For each z, maxz′∈anc(z) g(z

′) will be the heaviest green edge in T which
forms a proper crossing with each red edge in T (z).

2. x(z): This is largest weight proper crossing among the edges in T (z).
3. m(z): This is largest weight agreement matching containing a white edge

such that the topmost white edge is in T (z).
4. y(z): This the largest weight proper crossing such that the green edge in this

crossing is in T but not in T (z), the red edge in this crossing is in T (z), and
the green edge does not form a proper crossing with all the red edges in T (z).

5. r(z): This is simply the heaviest red edge in T (z).
Next, we show how vertex ui is processed, given that vertices below it in L(x) have

been processed. For the moment, assume that dx(ui) = 1. The case when dx(ui) > 1
will be addressed later.

Case 1. dx(ui) = 1. Let vj be the only vertex to which ui is adjacent. First, vj

is found in T ; this takes O(log |T (x)|
nj

) time. Next, the white, red, and green edges

incident on ui are processed as described below in the same time bound. An important
fact to note is that in each case, the information in T will be read and updated only
at vertices in the set anc(vj) and vertices which are children of vertices in this set; the

time taken in this process will be proportional to the depth of vj , i.e., O(log |T (x)|
nj

).

Processing white edge e = (ui, vj). First, the largest weight agreement
matching with e as the topmost edge is determined. Then the m() values at vertices
in anc(vj) are updated according to the weight of this matching. All other information
remains unchanged.

The above desired matching is computed as follows. There are two cases. In the
first case, this matching contains another white edge. The largest weight matching
among all such matchings is given by 1+maxz∈lfringe(vj) m(z). The other case occurs
when this matching contains only edge e plus a proper crossing. Thus, it suffices to
compute the largest proper crossing containing edges dominated by e. This is given by

max

{
max

z∈lfringe(vj)
x(z), max

z∈lfringe(vj)

(
max

z′∈anc(z)
g(z′)

)
+ r(z), max

z∈lfringe(vj)
y(z)

}
.

The first term here is the largest weight proper crossing in which both edges are in
T (z) for some z ∈ lfringe(vj). The second term is the largest weight proper crossing
in which the red edge is in T (z) for some z ∈ lfringe(vj); the green edge is not in this
subtree but it forms a proper crossing with each red edge in this subtree. The third
term is the largest weight proper crossing in which the red edge is in T (z) for some
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z ∈ lfringe(vj); the green edge is not in this subtree and it does not form a proper
crossing with some red edge in this subtree.

Processing red edge e = (ui, vj). The m() and x() values remain unchanged
in T . Next, note that no green edge already in T can form a proper crossing with e.
This implies that the y() and g() values for z ∈ anc(vj) need to be modified.

Consider y(z) first, z ∈ anc(vj). A green edge in T which formed a proper
crossing with all red edges in T (z) does not do so any more. So y(z) is set to
max{y(z), (maxz′∈anc(z) g(z

′)) + r(z)}.
Consider g(z) next, z ∈ anc(vj). g(z) is set to φ. Before this is done, g(y)

is updated to maxy′∈anc(y) g(y
′) for each y ∈ lfringe(vj) and y ∈ rfringe(vj). The

invariant on g() is easily seen to be maintained.
Finally, r(z) is set to max{r(z), wt(e)} for each z, z ∈ anc(vj).

Processing green edge e = (ui, vj). Note that e can form a proper crossing
with only those red edges in T which are in T (z), z ∈ rfringe(vj); further, e forms a
proper crossing with each such red edge. Therefore, g(z) is set to

max
{

max
z′∈anc(z)

g(z′), wt(e)
}

for each z ∈ rfringe(vj).
For each z ∈ anc(vj), x(z) is then set to the larger of the current value and

max(wt(e)+ r(z′)), the maximum being taken over all vertices z′ ∈ rfringe(vj) which
are descendants of z. Also note that maxz∈rfringe(vj)(wt(e) + r(z)) gives the largest
weight proper crossing containing e.

Case 2. dx(ui) = k > 1. Suppose ui is adjacent to vj1 , vj2 , . . . , vjk , in bottom-
to-top order. Then these vertices are searched for in sequence in T . This takes

O(k log nsav(x)
k ) time by the procedure mentioned earlier, i.e., first search for vj1 ,

starting at the root, and then search for vj2 , starting at vj1 in the obvious way, and
so on. In the above process, all vertices in the set {z|z ∈ (anc(vj1) ∪ anc(vj2) ∪ · · · ∪
anc(vjk))} are traversed. Again, as in Case 1, only information at vertices in the above
set and at children of vertices in the above set needs to be read and updated. This

takes time proportional to the size of the above set, which, in turn, is O(k log nsav(x)
k ).

Processing R(x). It remains to show how, for each vj ∈ R(x), the largest
weight agreement matching containing only edges incident on or below vj in R(x) is
computed.

For each vj ∈ R(x), we find the largest weight agreement matching with some
white edge incident upon vj as the dominant edge and the largest weight proper
crossing containing some red edge incident on vj . This information clearly suf-
fices. The first of the above two is given simply by m(vj). The second is given
by max{y(z),maxz′∈anc(vj) g(z

′)+ r(vj)}. Over all vj ∈ R(x), the computation of the
above two values can be accomplished in a single pass of T in O(|R(x)|) time.

8. Computing induced subtrees. We show how to preprocess a tree in O(|T |)
time so that given any subset L of its leaves in order, the subtree induced by L can
be computed in O(|L|) time. The construction is a generalization of the proof of
Lemma 5.2 in [FT95].

T is preprocessed for LCA queries in O(|T |) time. This enables the computation
of the LCA of any two leaves of T in constant time [HT84]. The distance of each
vertex from the root of T is also computed; call this quantity the depth of a vertex.
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Given the ordered set of leaves L = l1, l2, . . . , l|L|, the following steps are executed.
First, the LCA l′i of each pair of consecutive leaves li, li+1, 1 ≤ i ≤ |L| − 1, is found;
the l′is will be the internal vertices in the subtree induced by L. Next, the edges
between vertices are set up as follows.

For each vertex v in the sequence l1, l
′
1, l2, l

′
2, . . . , l|L|−1, l

′
|L|−1, l|L|, two vertices

vleft and vright are computed. vleft is the nearest vertex to the left of v, if any,
which has depth strictly less than v. vright is defined analogously. This computation
is easily accomplished in O(|L|) time. Finally, edges are put between v and one of
vleft, vright—whichever has greater depth. If exactly one of vleft, vright is defined (this
will happen only for vertices on the paths from the root to the leftmost and rightmost
leaves in the induced subtree), then an edge is put between v and the vertex which is
defined. The root of the induced tree will be the unique vertex for which both vleft

and vright are undefined; no edges need be put in this case.

Step 2 of the main algorithm. Step 2 (see section 3) requires finding the

induced trees Si for each Mi, 1 ≤ i ≤ p− 1, in O(
∑p−1

i mi) time. This is done in two
steps. (Essentially, this procedure is described in [FT95].) First, the leaves of each
Mi are sorted by the order in which their twins occur in T2. This is done by bucket
sorting all the leaves of T1 by the order in which their twins occur in T2, and then
bucket sorting them (in a stable way) by the order in which the trees Mi to which

they belong occur in T1. This takes O(
∑p−1

i mi) time.

Next, for each Mi, 1 ≤ i ≤ p − 1, the subtree of T2 induced by the leaves of Mi

is found using the algorithm described above in O(mi) time. The total time taken is

O(
∑p−1

i mi).

9. The weighted search tree. We will now complete our solution to the MAST
problem by describing the weighted search trees from section 7. Recall that we are

given vertices v1, v2, . . . , v|R(x)|, such that vertex vj has weight w(vj) = nj +
|T (x)|

nsav(x)

if it has an incident nonsingleton edge, and weight w(vj) = nj otherwise. The sum of
the vertex weights is bounded by 2|T (x)|.

Theorem 9.1 from [Fre75, Meh77] shows that the weight balanced tree T can be
constructed in O(|R(x)|) time.

Theorem 9.1. Given weights w1, . . . , wn with sum W , a binary tree such that
the depth of the ith leaf is O(1+ log(W/wi)) can be constructed in O(n) time. In this
tree, the total weight of all leaves in the subtree rooted at any node z will be at most
half of the corresponding weight for the subtree rooted at the grandparent of z.

It follows from Theorem 9.1 that the time to search for vj in T isO(1+log |2T (x)|
w(vj)

) =

O(1 + log |T (x)|
nj

).

Next consider the case when an ordered subset {vj1 , . . . , vjk} of vertices is given,
each having an incident nonsingleton edge. The algorithm to search for these vertices
is to first start from the root and search for vj1 , then start from vj1 and search for
vj2 , then start from vj2 and search for vj3 , and so on. Each search is performed in
the obvious way. For technical reasons, we return to the root at the end.

Each edge in T is traversed at most twice during the above search, once in each
direction.

Consider the topological subtree formed by the traversed edges. It has k leaves
and k − 1 internal nodes with two children. These nodes form a tree, with each edge
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in the tree corresponding to a path in the search tree. We associate with a node in
the topological subtree the path in the search tree corresponding to the edge from
the node to its parent in the topological subtree. The associated path for the root
node of the topological subtree is the path from this node to the root of the search
tree. We will give an upper bound on the total number of vertices on these paths
excluding their endpoints. To do this, we give a lower bound on the total weight of
the “off-path” subtrees for each path. (An “off-path” subtree for a node is simply the
subtree which does not contain the continuation of the path.)

Let l be the number of internal vertices on one such path associated with node v.
By Theorem 9.1, the sum of the weights of every second root of the off-path subtrees
is at least (2w(v) − w(v)) + (4w(v) − 2w(v)) + · · · + (2�l/2	w(v) − 2�l/2	−1w(v)) =

(2�l/2	 − 1)w(v). But w(v) ≥ |T (x)|
nsav(x) and the total weight is at most 2T (x). Simple

calculus shows that the sum of these lower bounds on the path lengths is maximized
when the terms w(v) are all at their minimum value and the path weights are all

equal at 2T (x)/(2k − 1). This gives path lengths of O(log nsav(x)
2k−1 ) and hence a total

path length of O(k log nsav(x)
k ).

10. Concluding remarks. We can generalize our technique to higher degree
bounds d > 2 by combining it with techniques from [FT95, section 2] for unbounded
degrees. This appears to yield an algorithm with running time O(min{n√d log2 n,
nd log n log d}). We conjecture, however, that there is an algorithm with running
time O(n

√
d log n).
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