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An O(n log n) heuristic for the Euclidean Steiner Minimal Tree (ESMT) problem is 
presented. The algorithm is based on a decomposition approach which first parti- 
tions the vertex set into triangles via the Delaunay triangulation, then "recomposes" 
the suboptimal Steiner Minimal Tree (SMT) according to the Voronoi diagram and 
Minimum Spanning Tree (MST) of the point set. The ESMT algorithm was imple- 
mented in FORTRAN-IV and tested on a number of randomly generated point sets in 
the plane drawn from a uniform distribution. Comparison of the O(n log n) algorithm 
with an O(n") algorithm clearlyindicates that the O(n log n) algorithm is as good as the 
previous O(n4) algorithm in achieving reductions in the ratio SMT/MST of the given 
vertex set. This is somewhat surprising since the O(n4) algorithm considers more 
potential Steiner points and alternative tree configurations. 

1. THE EUCLIDEAN STEINER MINIMAL TREE PROBLEM 

The Euclidean Steiner Minimal Tree (ESMT) problem is the Steiner network prob- 
lem which has classically received the most attention in the literature [ 2 ,5 ,8 ,10 ,13 ,  
14, 17-20]. The ESMT problem is as follows: for a given set V of points in the 
plane, where I.'= { u l ,  u21 . . . , un} ,  we wish t o  construct a minimal length tree which 
connects these vertices. In order to minimize this total length, additional vertices 
S = {sl , s2,  . . . , s,} are sometimes necessary. In this problem, the distance metric is 
the L2 metric function, better known as the Euclidean metric. 

Algebraically, we can represent the ESMT problem as follows: 
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since the objective function is strictly convex, the necessary and sufficient conditions 
for our solution to achieve a minimum are given by: 

In certain configurations, the location of Steiner points coincides with those of the 

Some properties of the optimal solution to  this problem are known to be the 

(1) The number of Steiner points is m y  where 0 < m b: n - 2. 
(2) The graph is planar; i.e., there exist no crossings in the network except at the 

(3) Each original vertex ui, 1 < i S; n, has at most degree d ( q )  4 3. 
(4) Each Steiner node si, 1 < j d m, has degree d(si) = 3. 
( 5 )  It has been conjectured that the Minimum Spanning Tree (MST) is no more than 

Polak has most recently shown for n = 4 that this conjecture is true, however, for 

Graham and Hwang showed that the lower bound on the ratio of the SMT/MST 3 

given points. 

following: 

nodes of the network. 

2/& times as long as the minimum length ESMT [a]. 

the general case n 3 4, he does not see any foreseeable reasonable proof [21] . 
I/& [9], and recently Chung and Hwang [3] have improved this bound to  

2 4 3  + 2 - 4'7 + 2 f i  
3 

SMT/MST 3 

(6) The problem has recently been shown to be NP-complete [7]. 

II. OVERALL STRATEGY FOR THE O(n logn) ALGORITHM 

The overall strategy for constructing the O(n log n) heuristic algorithm is a decom- 
position approach which incorporates two phases: (1) a reduction phase; and (2) an 
expansion phase. 

Initially, the point set Y is triangulated. Within each triangle, the local optimal 
solutions, if they exist, are found. During the second phase, the solutions for each 
triangle are reconfigured into a solution for the entire point set. The triangulation of 
the point set is the Delaunay triangulation, which is unique for a particular metric, 
and is therefore a metrical triangulation of the point set [16]. The second phase of 
the algorithm is carried out through the properties of the Voronoi diagram and Mini- 
mum Spanning Tree (MST) of the point set. Although our approach may seem similar 
to Karp's in his probabilistic partitioning approach for the traveling salesman problem, 
our partitioning approach is vastly different and our overall use of the Delaunay tri- 
angulation and Voronoi diagram to recompose a suboptimal Steiner Minimal Tree 
solution is in no way similar to his algorithm [ 121 . 
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111. O(n logn) PRELIMINARIES 

The Voronoi diagram has been primarily used in solving nearest neighbor problems 
(15,221. Figure 1 illustrates a Voronoi polygon and a Voronoi diagram for a set of 
ten points. Figure 2 illustrates the dual graph of the Voronoi diagram which is a tri- 
angulation, called the Delaunay triangulation. The advantage of this triangulation for 
the SMT problem is that each Delaunay triangle tends to be more nearly an equilateral 
triangle. This property is quite important in SMT problems since larger percentage 

Shamos has shown that the Delaunay triangulation can be found in O(n log n) time 
in the worst case [23]. Also, Shamos has proved that the Voronoi diagram can be 
used to generate a MST of a completely connected graph in U(n log n) time. Hwang 
has recently shown that an O(n log n) algorithm is possible for the MST on the recti- 
linear metric by using the Voronoi diagram [ 101 . The reason that the Delaunay tri- 
angulation can be used interchangeably between metrics is because the Voronoi dia- 
gram has been most recently shown to be generalizable to  any L ,  metric [6, 161. 
First some useful concepts and definitions are in order. 

Perpendicular bisector. If we have two points, vi and vj, the locus of points closer to 
uj than to ui is defined by the half-plane delineated by the perpendicular bisector of 
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FIG. 1. Voronoi polygon and diagram. 
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FIG. 2. Delaunay triangulation. 

the line segment between ui and uj. The perpendicular bisector is defined as follows: 

Voronoi polygon. A poIygonal region that encompasses the locus of points closer to 
ui than to any other point in V. Formally defined as the intersection of half-planes 
determined by the bisectors of ui and all other points in V; often, denoted as VP(ui). 

Voronoi diagram. The collection of Voronoi polygons VP(u i )  for each ui in V.  Often 
denoted as VD(V). 

Voronoi point. Each vertex in the Voronoi diagram is a Voronoi point. Each Voronoi 
point is the circumcenter of at most three given vertices in R 2 .  The degenerate case 
with four or more cocircular points is excluded. 

Delaunay triangulation. The planar straight line dual graph of the Voronoi diagram is 
a triangulation, often referred to as the Delaunay triangulation, denoted as DT(V). 

There are some key properties of the Voronoi diagram and i t s  dual, the Delaunay 
triangulation, which we should examine before delving into the details of the ESMT 
algorithm. Proofs of the validity of these lemmas occur in the cited references. 
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Lemma 1 [ 1 5 , 2 3 ] .  Each Voronoi point is the intersection of perpendicular bisectors 
of the line segments between pairs of points (ui, ui) in the plane. As such, each Voronoi 
point is the circumcenter of a triangle in the Delaunay triangulation. 

Lemma 2 [15, 231. Every circumcircle with the Voronoi point as its center contains 
no other vertex ui of Y in its interior. 

Lemma 3 [15] . In the Voronoi diagram with n > 3 points: 

E =  3(n - 1) - c, 
Z = 2 ( n -  1 ) -  c, 

where E = the number of edges in the Delaunay triangulation; Z = the number of tri- 
angles; and C = the number of vertices on the perimeter of the Delaunay triangulation 
of the point set V. 

Lemma 4 [ 2 3 ] .  Any minimum spanning tree of the point set Yis a subgraph of the 
Delaunay triangulation. 

Lemma 4 follows from Lemma 3 and the basic properties of minimum spanning tree 
algorithms first proved by Kruskal and Prim [ 11 . This property is important when we 
construct the Steiner tree, since we will only have to consider [3(n - 1) - C ]  edges, 
not the usual [n(n - l)] edges which would lead to an O(nz) algorithm. 

Taken together, Lemmas 3 and 4 will lead to  our desired O(n log n) ESMT algorithm. 
Like the Voronoi diagram, the Delaunay triangulation is constructed using a divide- 
andconquer strategy, although implementation of the algorithm is done iteratively, 
and not recursively. 

The Delaunay triangulation requires n circular doubly linked lists, one for each ui in 
V.  The edges are ordered within each list according to the polar angle of the edge at 
its initial vertex. While the details of the algorithm are described elsewhere [25], it 
is important to realize that the data structure established for the Delaunay triangula- 
tion carries over into the expansion phase for constructing the solution for the ESMT 
problem. It is this data structure which largely allows one an O(n) step in constructing 
the ESMT once the triangulation is done. 

IV. CONCATENATION ALGORITHM OVERVIEW 

The algorithm for constructing the Steiner tree based upon the Delaunay triangula- 
tion operates in a manner similar to Kruskal's mininum spanning tree algorithm. How- 
ever, in this case we establish a priority queue of triangles, based on their SMT/MST 
reductions, and then systematically construct a suboptimal SMT solution by a fast 
disjoint-set-union procedure. The reasons for this is that each triangle has a potential 
disjoint SMT in the forest ofiSMT's of V. In order to clarify notation, a suboptimal 
SMT will be indicated by SMT. Constructing the Delaunay triangulation assists us 
in defining the triangles, and information from the Voronoi diagram assists us in de- 
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fining how to concatenate these triangles into a SMT for V. In carrying out this pro- 
cess, we establish a framework around which either an exact or near optimal Steiner 
point canAbe found for a triangle which has the potential to  reduce the overall length 
of the SMT. Once those triangles with the largest SMT/MST reductions have been 
identified and their Steiner points located, the concatenation process can be done in 
linear time. 

V. ALGORITHM PRELIMINARIES 

The Delaunay triangulation, by itself, does not provide us enough information for 
determining which are the best triangles to concatenate. Since there are a total of 
2(n - 1) - C triangles, we must determine a proper subset of these to concatenate. 

An important insight of Gilber and Pol& in their classic paper [8], was that the 
MST could act as a guide in constructing Steiner minimal trees. Use of the MST as a 
guide is not useful in only certain instances and usually these cases are not drawn from 
a set of uniformly distributed points in the plane. An example of an instance where 
the MST is not a good guide for the SMT is pointed out by Chang [2], who also first 
implemented the MST as a guide in constructing the solution for the ESMT problem. 
Chang’s algorithm was discussed previously [24]. We also will utilize the MST to 
iniicate which is the proper subset of triangles to concatenate for the generalized 
SMT algorithm. Before we provide the details of the algorithm, however, we will 
establish some 1emm:s crucial to  proving that we can achieve an O(n log n) algorithm 
for the generalized SMT problem. These lemmas now follow: 

Lemma 5 [23]  . The Delaunay triangulation affords an O(n log n)  algorithm for the 
MST problem. 

As we shall see, constructing the MST of V greatly assists us in identifying the candi- 
d$es of the Delaunay triangles for reducing the overall MST length of V, resulting in a 
SMT of V. Additionally, utilizing the MST as the indicator of whizh triangles to con- 
catenate guarantees an upper bound on the performance of the SMT algorithm. The 
upper bound is, of course, the length of the MST itself. 

Lemma 6. For any given triangle ti in the Delaunay triangulation with two of its 
edges in the MST of V, a Steiner point si can be inserted into t i  to reduce the overall 
MST of V if it has a SMT/MST < 1 $8 and if the insertion does not create a cycle in V. 

Proof: In constructing the MST of V, each triangle that has two of its edges in the 
MST is a potential candidate for a Steiner insertion, since the vertices of ti ,  (ui ,  u j ,  uk), 
are locally connected within the triangle. This is true no matter which L,  metric we 
utilize, as long as 1 < p < 2 .  An additional vertex, si only can be inserted into ti when 
the ratio of the SMT/MST is less than 1.88. Otherwise, insertion would increase the 
length of the MST of ti and the overall MST of V. Finally, if inserting the si  and the 
necessary edges connecting the vertices of ti does not form a cycle in V, then we 
should go ahead and insert si deleting the necessary MST edges and adding the appro- 
priate SMT edges. Q.E.D. 

The ratio decision rule SMT/MST of Lemma 6 affords us a means of also identifying 
the order in which to consider the triangles for possible Steiner insertions. Further, to 



STEINER MINIMAL TREE PROBLEMS 29 

guarantee that no cycles are created, we will employ %fast find and disjoint-set-union 
procedure t o  determine whether the vertices in the SMT are in the same disjoint tree 
or not [ l ] .  

Following many experiments with constructing Steiner minimal trees on the Lz 
metric, it became apparent that certain configurations of points indicated that pairs of 
triangles with a total of four vertices could be concatenated simultaneously rather 
than as separate triangles of three vertices each. By selecting appropriate pairs of tri- 
angles, it was possible to  achieve better solutions by concatenating four vertices at a 
time, especially on the L, metric, where 1 < p  < 2. In terms of balancing speed against 
efficacy of the heuristic, Hwang argues that it is practical to  consider adding three 
vertices at a tim%during the concatenation period. However, his experience has been 
primarily with SMT's on the L 1  metric [lo]. Results from many experiments indicate 
that for the L2 metric, concatenating four vertices at a time is clearly superior to  
concatenating three at a time. Figure 3 illustrates a case in point. In fact, unless we 

Steiner Tree Bared on Concatenating ( t i  , t , )  Separately 

ti  / 

first concatenated 

edge 

Shiner hge  Bored on Concatenating ( t i  , t i )  Together 

FIG. 3. Comparison of concatenation procedures. 
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concatenate four vertices together we will not achieve the optimal solution for the 
four vertices in this example. 

Because of the potential for obtaining better solutions, we need a rule to indicate 
which four-point clusters, i.e., which triangle pairs (ti, ti) of the Delaunay triangulation, 
should be concatenated. 

Before presenting the rule, however, the following definitions and discussion are 
relevant. 

Convex quadrilateral. This is a figure which has four points in the plane, no three of 
which are collinear. In addition, all four points are interconnected by four noninter- 
secting edges, and each point subtends an interior angle less than 180'. 

Polak demonstrated that if a Full Steiner Tree (FST), one with n - 2 Steiner points, 
exists for a quadrilateral in the plane, the quadrilateral must be convex [21]. Further, 
he showed that for four points in the plane, a FST, if it exists, will approach the maxi- 
mum possible reduction fi/2 in the ratio of the SMT/MST. 

Regular convex quadrilateral. This is a convex quadrilateral with four equal sides and 
four equal angles, i.e., a square. An important property of a square is that the Voronoi 
points of the two adjacent Delaunay triangles of the square are coincident. 

Rule 1. Given a Delaunay triangle t i ,  the most regular convex quadrilateral among the 
three quadrilaterals formed by ti and its neighboring triangles is the ordered pair 
( t i ,  ti) which is convex and for which IIup(ti) - up(tj)Il is a minimum, where up(ti) is 
the circumcenter of triangle ti. 

From Lemma 2 we know that up(ti) contains no other vertex u in its interior. 
In the degenerate case, h6wever, up(ti) could be the circumcenter of four points. For 
the degenerate case, we have two coincident Voronoi points for which IIup(ti)- 
up(tj)II = 0. Ignoring this degenerate case for the moment, the degree of vp(ti) is equal 
to  three. Since there are at most three neighboring triangles to ti with Voronoi edge 
lengths > 0, the minimum Voronoi edge length of the three neighboring triangles will 
determine the most regular convex quadrilateral adjacent to ti, if it exists. 

Three comments are important at this juncture. First of all, it should not be inferred 
from the above that the unit square achieves a maximum SMT/MST reduction ratio 
of G/2. However, from empirical results, this Rule has led to  very good reductions. 
#at is important about the above Rule is the convexity property it demonstrates 
for four points which can be directly inferred from the Voronoi diagram. As was 
mentioned previously, the convexity property is crucial to the existence of a FST 
which in turn is essential to achieving the maximum reduction SMT/MST for four 
points. Second, computational experience with generating Steiner trees for points 
in the p1:ne has led us to believe that as you increase the !umber of Steiner points 
in the SMT, you tend to increase the reduction ratio SMT/MST. Although this 
is not always the case, it appears to be true for convex sets of points, i.e., with no 
interior points. Thus, use of the Voronoi diagram and Delaunay triangulation allows 
one to  locate convex sets of points for which the FST, if it exists, can be generated 
for the component. Finally, for point clusters of more than four points, we conjec- 
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ture and do not prove that FST's providing the maximum reduction in SMT/MST 
only exist for convex point clusters. Example FST point configurations for n > 4 
appear in Gilbert and Polak's paper [8]. Hence, if we have an efficient way of 
locatingAconvex point clusters in the plane, we should be able to generate suitably 
large SMT/MST reductions for the entire point set. This leads naturally to the follow- 
ing definitions and main heuristic rule: 

Regular Convex n-gons. These figures have n equal sides and n equal interior angles, 
e.g. for n = 5, a pentagon; for n = 6 a hexagon, and so on. Additionally, the Delaunay 
triangles of the convex n-gons all have coincident Voronoi points. 

Voronoi Tree. This is a subgraph of the Voronoi diagram which has no cycles and has 
exactly np - 1 edges, where np is the number of Voronoi points in the tree. 

Minimum Spanning Voronoi Tree (MSVT). A tree spanning np Voronoi points with 
minimum length. 

Rule 11. Given a Delaunay triangle, ti, the most regular convex n-gon among the 
n-gons formed by ti and its neighboring triangles is the set of triangles {ti,. . . , t k }  
whose boundary is convex and whose MSVT is a minimum. 

From Rule I, for k = 2, we know that the most regular convex quadrilateral, if it 
exists, is given by the minimum length Voronoi edge incident to the Voronoi point of 
ti. The MSVT of k = 2 is thus a single edge of the Voronoi diagram for V .  

The addition of a minimum weight Voronoi edge to the existing set of minimum 
weight Voronoi edge segments increases the number of unique vertices in the point 
cluster by one and the number of triangles by one. If the additional edge added to 
the existing MSVT did not add a unique vertex to the existing cluster of vertices, 
then it would necessarily be an edge which would form a cycle in the MSVT. Forming 
a cycle in the MSVT is equivalent to connecting two triangles already included in the 
construction of the MSVT. Thus, if the addition of a minimum weight Voronoi edge 
adds a unique vertex to k it must also add a new triangle to  the cluster of triangles, 
otherwise, the addition of the Voronoi edge would create a cycle in MSVT. Further, 
since the edge added to the MSVT is the minimum edge incident to  the Voronoi 
vertices already in MSVT, the unique vertex should be the vertex which creates the 
most regular convex collection of points, if it exists, of the k adjacent Delaunay tri- 
angles. Figure 4 illustrates the process. 

The question naturally arises through Rule ;I, whether concatenating five or six 
vertices at a time might lead to  even better SMT solutions. This would be done by 
first defining the nearest pair of triangles (ti, ti) as in Rule I, then determining the 
shortest Voronoi edges incident to the Voronoi edge of the triangle pair (ti, ti). For 
five vertices, the nearest triple of triangles, starting with ti would be found. Going 
one step further, we could find the nearest neighbor cluster of four triangles which 
would result in finding the most regular convex cluster of six vertices; see Figure 5. 
With these clusters of five and six vertices, we could then employ an exact or heuristic 
method for determining the Steiner tree for the 5 and 6 vertex configurations found 
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FIG. 4. A nearest neighbor triangle pair ( t i ,  t i) .  

through the use of the Voronoi edge information. However, preliminary experiments 
with concatenating five vertices at a time has indicated that this is not necessarily a 
better strategy than alternating between concatenating three and four vertices at a 
time. These experimental results are based primarily on the use of the algorithm on 
point sets drawn from a uniformly distributed set of points in EZ bounded by a unit 
square. For other point sets drawn from different distributions, this may not be the 
case. 
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FIG. 5 .  A nearest neighbor triangle quadruple ( t i ,  ti, f k ,  t l ) .  
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Although the length of the Voronoi edge assists in defining candidate triangle pairs, 
additional information is needed :concerning whether a particular triangle pair will 
reduce the overall length of the SMT of V. The following definitions and lemma are 
needed: 

Frond. This is a subgraph of the MST of V interconnecting four adjacent vertices of 
V with exactly three edges of the MST of V .  There are, in general, three types of 
fronds: a sac frond, a star frond, and a zee frond. These are Uustrated in Figure 6. 

Since the frond represents a disjoint minimum spanning tree of V ,  any reduction in 
the length of the frond will necessarily reduce the overall length of the SQT of V. 

Sac Frond 

Star Frond 

Zee Frond 

FIG. 6. Alternative frond configurations. 
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Lemma 8. Given the vertices of two adjacent Delaunay triangles (ti, ti) which form a 
frond, then (ti, ti) can be concatenated @to the SMT of Vif and only if all the vertices 
of the frond are in disjoint sets of the SMT of V. 

Proof: The SMT of V is a spanning tree of V by definition. If at least two of the 
vertices of (ti, ti) are in the same set of the SGT of V, then concatenating theJriangles 
will create an additional link belween the vertices in the same set of the SMT of V. 
This will create a cycle '," the SMT of V. Therefore if two or more vertices of (ti, t i )  
are in the same set of SMT of V, (ti, ti) cannot be concatenated. In a similar manner, 
only if vertices of ( t i ,  ti) are in disj2int sets can (ti, ti) be concatenated, otherwise one 
would have created a cycle in the SMT of V. Q.E.D. 

V. GENERAL CONCATENATION OVERVIEW 

Assuming that the Delaunay triangulation for the specific L2 metric has been created, 
the concatenation procedure is as follows: 

Step I: Construct the MST on the triangulation. This is actually a subgraph of the 
Delaunay triangulation. 

Step 2: Mark the triangles during the MST construction process and identify those 
with two edges of the MST. Place those triangles with two edges of the MST in a 
priority queue. Call this priority queue Q. 

Step 3: Where possible, concatenate pairs of triangles, and, if ?of, add the single 
triangle with its Steiner point and the three edges into the overall SMT of V. 

Step 4: The concatenation process is complete once the priority queue is empty. 
A flow chart of the overall :oncatenation process is illustrated in Figure 7. Once 

the MST is constructed, the SMT can be found in linear time, since it is necessary to 
pass through the priority queue of marked triangles only once. In the worst case, all 
the triangles of the Delaunay triangulation would be in the queue. 

One important point that should be mentioned is that not just any triangulation is 
usable here, because not all triangulations will have the MST as a subgraph of its edge 
set. There may be triangulations which have the MST as a subgraph of its edge set, 
other than the Delaunay triangulation. Because the MST is a subgraph of the 
Delaunay triangulation, we can guarantee a worst case O(n log n) time step for con- 
structing the MST. 

VI. COMPLEXITY ANALYSIS 

Since aspects of the worst case behavior of the ESMT algorithm have already been 
discussed, this analysis will be primarily a brief summary. 

Construction of the Delaunay triangulation takes O(n log n) time in the worst case. 
Constructing the MST takes O(n log n) time as defined in Step 2 of the concatena- 
tion process, although if implemented differently construction of the MST would take 
O(n) time. Creation of the list of nearest triangle neighbors is done in linear time; 
and If implemented properly, the behavior of the disjoint-set-union algorithm is linear 
in the number of edges of the Delaunay triangulation. Since the number of edges in 
Delaunay triangulation is 3(n - 1) - C,  the disjoint-set-union procedure is linear in 
the number of vertices of V. The remainder of the loops of the concatenation proce- 
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dure require constant time independent of the size of V. Finally, given the MST, 
creation of the priority queue of marked triangles takes @log ti) time where ti repre- 
sents the number of triangles with two edges in the MST. The single pass through the 
concatenation algorithm therefore takes O(ti log t i )  time. In the worst case all tri- 
angles of the Delaunay triangulation would be in the queue. Thus, since the number 
of triangles is 2(n - 1) - C, the overall concatenation algorithm is O(n log n). 

The total amount of storage required is proportional to the number of edges in the 
Delaunay triangulation. Since there are exactly 3(n - 1) - C edges in the triangulation, 
the total amount of storage is O(n). 
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VII. 14 ESMT COMPUTATION RESULTS 

In order to evaluate the import of the O(n log n) alogrithm and its computational 
performance and solution accuracy, the O(n log n) version was coded in FORTRAN IV 
and tested on a number of uniformly distributed sets of points in E2 bounded by a 
unit square. The same random points generated for the test problems of the previous 
O(n4) algorithm were utilized to test the O(n logn) algorithm. As we shall see in 
Figure 8,  there is a remarkable change in the running time of the new algorithm over 
the previous algorithm. Before examining the running t F e s  of the new algorithm, 
however, we first ought to make sure that the percentage SMT/MST reductions of the 
O(n log n) algorithm are at least as good as the O(n4) algorithm. A simple t-test for 
the n = 10 point problems was utilized. Table I illustrates the percentage reduction 
(SMT/MST) for the two different algorithms as well as their differences. 

Calculation of the t statistic, t o ,  shows that no significant difference existed at the 
90% confidence level with fourteen degrees of freedom. Even though the overall 
percentage reduction for the O(n log n) algorithm is 3.137% as compared to  a value of 
2.874% for the O(n4) algorithm, no significant difference occurs statistically. There- 
fore, all we can say at this point is that the new algorithm is at least as good as the old 
one in terms of its solution efficacy. Nonetheless, this is encouraging because one 
should not necessarily expect that the faster algorithm would achieve greater reduc- 
t$ns. The O(n4) algorithm considers more Steiner points and different possible 
SMT configurations. 

Table I1 summarizes the overall performance of the O(n log n) algorithm on point 
set sizes ranging from 10 to 50 points, 

O h l w n l  /</// - I - -~ 4 
5 10 I 5  20 25 30 35 40 

Number of  Pomlr 

FIG. 8. Final comparison of ESMT CPU times. 
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TABLE I. ESMT algorithm SfiT/MST percentage reductions. 

Algorithm 
Observed results 0(n4 O(n log n )  difference 

Data set number 
1 3.88 4.38 
2 3.27 3.65 
3 2.61 2.61 
4 1.22 1.22 
5 2.81 2.81 
6 1.17 1.81 
7 2.88 2.88 
8 4.77 6.85 
9 7.30 7.23 

10 2.25 0.9 1 
11 4.70 5.37 
12 0.90 1.39 
13 3.97 3.97 
14 1.05 1.05 
15 0.33 0.93 

Mean 2.87 3.14 
Variance of differences sz = 0.532 
t-test statistic, to = 0.729, not significant at 90% level. 

0.50 
0.38 
0.00 
0.00 
0.00 
0.64 
0.00 
2.08 

-0.07 
- 1.34 

0.67 
0.49 
0.00 
0.00 
0.60 
0.27 

TABLE 11. Experimental results for the ESMT algorithm.* 
Mean number Maximum 

CPU time S$T/MST mean Maximum of Steiner number of 
Number in seconds percent decrease percent points Steiner 
of nodes (SD) (SD) decrease (SD) points 

10 0.293 (.015) 3.173 (2.09) 6.847 3 (1) 4 
20 0.569 (.015) 2.333 (0.70) 4.227 5.6 (0.8) 7 
30 0.799 (.022) 2.769 (0.89) 4.554 9.1 (1.7) 12 
40 1.089 (.032) 2.663 (0.64) 4.014 13.2 (1.8) 16 
50 1.375 (.025) 2.568 (0.57) 3.443 16 (1.8) 19 

aFifteen runs of each size problem were run on a DEC-10 computer housed at the 
Coordinated Science Laboratory at the University of Illinois, Urbana campus. 

Certainly, the results of this paper would be strengthened if we could indicate a 
bound for our algorithm on how close it will come to the optimal Steiner tree for the 
given point set. However, there is no known bound on the ratio of the lengths of 
heuristic Steiner minimal trees and optimal Steiner trees, for either the L1 or Lz 
metrics [ 101 . This remains a question for further research. 

VIII. SUMMARY AND CONCLUSIONS 

We have presented in this paper an O(n log n) algorithm for generating heuristic 
solutions to the Steiner Minimal Tree (SMT) problem on the Euclidean metric, The 
overall strategy used was a decomposition approach where we utilized the Delaunay 
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triangulation to  “decompose” the point set and we used the properties of the Voronoi 
diagram and the Minimum Spanning Tree (MST) of the point set to “recompose” 
the solution for the point set. Along with a detailed presentation of the algorithm, 
computational running times were compared with a previous 0(n4) algorithm. The 
results not only indicate a significant reduction in running time but also that the solu- 
tions with the O(n log n) algorithm are at least as good as the O(n4) algorithm in 
reducing the length of the SMT over the MST. Future research will explore the de- 
velopment of better bounds for how close to  the optimal solution this heuristic 
procedure will come. In general, the approach utilizing the Delaunay triangulation 
and the properties of the Voronoi diagram opens up new vistas on developing algo- 
rithms for generalized SMT problems. 

The authors would like to thank the referees for their valuable criticism and the 
Graduate Research Board of the University of Illinois for providing the necessary 
funds for conducting the computer experiments. 
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