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Abstract. Cover automata were introduced in [1] as an efficient repre-
sentation of finite languages. In [1], an algorithm was given to transform
a DFA that accepts a finite language to a minimal deterministic finite
cover automaton (DFCA) with the time complexity O(n4), where n is
the number of states of the given DFA. In this paper, we introduce a
new efficient transformation algorithm with the time complexity O(n2),
which is a significant improvement from the previous algorithm.

1 Introduction

Finite languages have many practical applications [6,2]. However, the finite lan-
guages used in applications are generally very large, which need thousands or
even millions of states if represented by deterministic finite automata (DFA) or
similar structures. In [1], deterministic finite cover automata (DFCA) were in-
troduced as an alternative representation of finite languages. Experiments have
shown that, in many cases, DFCA are much smaller in size than their corre-
sponding minimal DFA [5].

Let L be a finite language and l the length of the longest word(s) in L.
Intuitively, a DFCA A for L is a DFA that accepts all words in L and possibly
additional words of length greater than l. So, a word w is in L if and only if it is
accepted by A (as a DFA) and it has a length less than or equal to l. Note that
checking the length of a word is usually not an extra burden in practice since
the length of an input word is kept anyway in most applications.

In order to explain intuitively the notion of a DFCA, we give a very sim-
ple example in the following. Let Σ = {a, b, c} be the alphabet and L =
{abc, ababc, abababc} a finite language over Σ. Clearly, the length of the longest
word in L is 7, i.e., l = 7. The minimal DFA accepting L is shown in Figure 1,
which has 8 states (9 if complete). A minimal DFCA is shown in Figure 2, which
has only 4 states (5 if complete).

In [1], an algorithm was given for constructing a minimal DFCA from a
given DFA that accepts a finite language. The time complexity of the algorithm
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Fig. 1. The minimal DFA accepting L
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Fig. 2. A minimal DFCA for L with l = 7

is O(n4), where n is the number of states of the DFA. Note that the number of
transitions of a DFA is linear to its number of states. In this paper, we give an
O(n2) algorithm for the construction of a minimal DFCA from a given DFA. The
new algorithm is not only a significant improvement from the previous algorithm
[1] in time complexity, but also much easier to comprehend and to implement.

The two algorithms differ mainly at how to compute the similarity (or dis-
similarity) relation between states. The new algorithm computes the pairs of
states that are dissimilar and propagates the dissimilarity relations, rather than
to compute directly the similarity relation as in the algorithm in [1]. A new al-
gorithm is also given for merging similar states, which is simpler than the one
given in [1]. We also prove several new theorems on the similarity relation which
form the theoretical basis of the new algorithm.

In the next section, we give the basic definitions and notation, as well as
the basic results, on cover languages and automata. In Section 3, we prove two
theorems which are essential to the new algorithm. In Section 4, we describe our
new algorithm and analyze its complexity. In the last section, we conclude the
paper.

2 Preliminaries

First, we give the basic definitions and notation for cover languages, cover au-
tomata, and the similarity relation. Then we list some basic results, which are
relevant to this paper, without giving any proofs. Detailed explanations and
proofs can be found in [1] or [5].

Let S be a finite set and n a nonnegative integer. By S≤n we denote ∪n
i=0S

i.

Definition 1. Let L ⊂ Σ∗ be a finite language over an alphabet Σ and l the
length of the longest word(s) in L. A language L′ over Σ is called a cover lan-
guage of L if L′ ∩ Σ≤l = L.
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Definition 2. A cover automaton for a finite language L is a finite automaton
A such that the language accepted by A, i.e., L(A), is a cover language of L. If
A is a DFA, then A is called a deterministic finite cover automaton (DFCA) for
L.

We often use the term cover automaton casually to mean DFCA in this paper.
In the following, we give the basic definitions regarding the similarity relation.

We first define the similarity relation on words respect to a finite language, and
then the similarity relation on states of a DFA that accepts a finite language.
The notion of similarity between words was first introduced in [4], and then
studied in [3], [1], [5], etc. The concept of the similarity relation on words is the
basis for the similarity relation on states of a DFA.

Definition 3. Let L be a finite language over the alphabet Σ and l the length
of the longest word(s) in L. Let x, y ∈ Σ∗. We define the following relation:

(1) x ∼L y if for all z ∈ Σ∗ such that | xz |≤ l and | yz |≤ l, xz ∈ L iff yz ∈ L;
(2) x 6∼L y if x ∼L y does not hold.

The relation ∼L is called the similarity relation with respect to L. We will use
x ∼ y instead of x ∼L y when L is clearly understood from the context. Note
that the relation ∼L is reflexive, symmetric, but NOT transitive.

Lemma 1. Let L ⊆ Σ∗ be a finite language and x, y, z ∈ Σ∗, |x| ≤ |y| ≤ |z|.
The following statements hold:

1. If x ∼L y, x ∼L z, then y ∼L z.
2. If x ∼L y, y ∼L z, then x ∼L z.
3. If x ∼L y, y 6∼Lz, then x6∼Lz.

Definition 4. Let L ∈ Σ∗ be a finite language.

1. A sequence of words (x1, . . . , xn) over Σ is called a dissimilar sequence of L
if xi 6∼L xj for each pair i, j, 1 ≤ i, j ≤ n and i 6= j.

2. A dissimilar sequence (x1, . . . , xn) of L is called a maximal dissimilar se-
quence of L if for any dissimilar sequence (y1, . . . , ym) of L, m ≤ n.

In the following, we define the similarity relation on the set of states of a
DFA or a DFCA. Note that if a DFA A accepts a finite language L, then A is
also a DFCA for L.

Definition 5. Let A = (Q, Σ, δ, s, F ) be a DFA (or a DFCA). We define, for
each state q ∈ Q,

level(q) = min{|w| | δ(s, w) = q},

i.e., level(q) is the length of the shortest path (in the directed graph associated
with the automaton) from the initial state to q.
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Definition 6. Let A = (Q, Σ, δ, s, F ) be a DFCA for a finite language L with
l being the longest word(s) in L. Let p, q ∈ Q and m = max{level(p), level(q)}.
We say that p ∼A q if for every w ∈ Σ≤l−m, δ(p, w) ∈ F iff δ(q, w) ∈ F .

We use the notation p ∼ q instead of p ∼A q whenever L is clearly understood
from the context.

We are now ready to state the theorem that is the basis for any algorithm
for the minimization of DFCAs.

Theorem 1. Let A = (Q, Σ, δ, s, F ) be a DFCA for a finite language L. Assume
that p ∼L q for some p, q ∈ Q such that p 6= q and level(p) ≤ level(q). Then
we can construct a DFCA A′ = (Q′, Σ, δ′, s, F ′) for L such that Q′ = Q − {q},
F ′ = F − {q}, and

δ′(t, a) =
{

δ(t, a) if δ(t, a) 6= q,
p otherwise

for each t ∈ Q′ and a ∈ Σ.

Definition 7. A DFCA A for a finite language is a minimal DFCA if and only
if no two different states of A are similar.

Theorem 2. For a finite language L, there is a unique number N(L) such that
any minimal DFCA for L has exactly N(L) states.

Please refer to [1] for the proofs of the above theorems.

Definition 8. Let A = (Q, Σ, δ, s, F ) be a DFA or a DFCA for a finite language
L with l be the length of the longest word(s) in L. For p ∈ Q, denote by xp a
shortest word in Σ∗ such that δ(s, xp) = p; xp is called a “representative” of p.

Note that for each q ∈ Q, |xq| = level(q).

Theorem 3. p ∼ q if and only if xp ∼ xq.

One may refer to [1] for a proof.

3 The New Algorithm

Given a DFA that accepts a finite language, we can construct a minimal DFCA
for the given language in two steps: (1) compute the similarity relation between
the states of the DFA, and (2) merge similar states. Note that the similarity
relation is not transitive. So, if p ∼ q and q ∼ r, we cannot simply merge
p, q, and r together in general. Step (1) is the most complex one. A naive
algorithm for determine whether p ∼ q is to check whether δ(p, z), δ(q, z) ∈ F or
δ(p, z), δ(q, z) ∈ Q−F for all words z such that |z| ≤ l −max(level(p), level(q)).
This would need exponential time. In the algorithm given in [1], it needs O(n2)
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time to determine whether two states are similar. The time complexity of the
entire step (1) of that algorithm is O(n4).

Here we use a different approach and the time complexity of our algorithm is
O(n2). In this section, we will describe our new algorithm. However, before de-
scribing the algorithm, we have to give several new definitions and prove several
new results.

3.1 New Definitions and Results

Again we assume that A = (Q, Σ, δ, s, F ) is a DFA accepting a finite language L
over the alphabet Σ and l is the length of the longest word(s) in L. We assume
that A is a complete DFA and there is no useless state in Q except the sink state
d, i.e., for each q ∈ Q − {d}, there exist u, v ∈ Σ∗ such that δ(s, u) = q and
δ(q, v) ∈ F .

Definition 9. For p, q ∈ Q and p 6= q, we define

range(p, q) = l − max{level(p), level(q)}.

Intuitively, range(p, q) is the maximum length of a word w that satisfies both
|xpw| ≤ l and |xqw| ≤ l.

Definition 10. Let p, q ∈ Q and z ∈ Σ∗. We say that p and q fail on z if
δ(p, z) ∈ F and δ(q, z) ∈ Q − F or vice versa, and |z| ≤ range(p, q).

Theorem 4. p 6∼ q if and only if there exists z ∈ Σ∗ such that p and q fail on
z.

Definition 11. If p 6∼ q, we define

gap(p, q) = min{|z| | p and q fail on z}.

If p 6∼ q, then gap(p, q), intuitively, is the length of the shortest word(s) that
can show that p and q are dissimilar. It is clear that gap(p, q) = gap(q, p) and
gap(p, q) < l for any p, q ∈ Q such that p 6∼ q. For convenience, we define
gap(p, q) = l if p ∼ q. The next theorem is clear.

Theorem 5.

(1) Let d be the sink state of A. If level(d) > l, then d ∼ q for each q ∈ Q−{d}.
If level(d) ≤ l, then d 6∼ f and gap(d, f) = 0 for each f ∈ F .

(2) If p ∈ F and q ∈ Q − F − {d} or vice versa, then p 6∼ q and gap(p, q) = 0.

Lemma 2. Let p, q ∈ Q, p 6= q, and r = δ(p, a) and t = δ(q, a), for some a ∈ Σ.
Then range(p, q) ≤ range(r, t) + 1.
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Proof. It is clear that level(r) ≤ level(p) + 1 and level(t) ≤ level(q) + 1. So,

max(level(r), level(t)) ≤ max(level(p), level(q)) + 1.

Then, by Definition 9, range(p, q) ≤ range(r, t) + 1. ut

Theorem 6. Let p and q be two states such that either p, q ∈ F or p, q ∈ Q−F .
Then p 6∼ q if and only if there exists a ∈ Σ such that δ(p, a) = r and δ(q, a) = t,
r 6∼ t, and

gap(r, t) + 1 ≤ range(p, q).

Proof. Only if: We assume that p 6∼ q and will show that there exists a pair (r, t)
satisfying the conditions of the theorem. Choose z ∈ Σ∗ such that p and q fail on
z and |z| = gap(p, q). Note that |z| > 0 because of the given condition of p and q.
By the definition of gap function, we know that |z| ≤ range(p, q). Without loss
of generality, we assume that δ(p, z) ∈ F and δ(q, z) ∈ Q−F . Let z = az′. Then
δ(p, az′) = δ(r, z′) ∈ F and δ(q, az′) = δ(t, z′) ∈ Q − F for some r, t ∈ Q. By
Lemma 2, we know that range(r, t) ≥ range(p, q) − 1. Then |z′| ≤ range(r, t).
By Definition 10, r and t fail on z′ and r 6∼ t. Since gap(r, t) ≤ |z′|, we have
gap(r, t) + 1 ≤ range(p, q).

If: Assume that there exists a ∈ Σ such that δ(p, a) = r, δ(q, a) = t, r 6∼ t, and
gap(r, t)+1 ≤ range(p, q). Then there is z′ ∈ Σ∗ such that r and t fail on z′ and
|z′| = gap(r, t). Let z = az′. Then |z| = gap(r, t) + 1 and thus |z| ≤ range(p, q).
Therefore, p and q fail on z. In other words, p 6∼ q. ut

The following theorem gives a formula which computes gap(p, q) for two state
p and q that are either both final states or both non-final states.

Theorem 7. If p 6∼ q such that p, q ∈ F or p, q ∈ Q − F , then

gap(p, q) = min{gap(r, t) + 1 | δ(p, a) = r and δ(q, a) = t, for a ∈ Σ,
r 6∼ t, and gap(r, t) + 1 ≤ range(p, q)}.

Proof. We first prove that gap(p, q) ≤ gap(r, t) + 1 for every pair r, t ∈ Q such
that δ(p, a) = r, δ(q, a) = t, r 6∼ t, and gap(r, t)+1 ≤ range(p, q). Let (r, t) be an
arbitrary pair that satisfy the above conditions. Since r 6∼ t, there exists z′ such
that r and t fail on z′ and |z′| = gap(r, t). It is also clear that |az′| ≤ range(p, q)
since gap(r, t) + 1 ≤ range(p, q). Then p and q fail on z = az′. By definition,
gap(p, q) ≤ |z|. So, we have gap(p, q) ≤ gap(r, t) + 1.

We now prove the other direction, i.e., there exist r, t ∈ Q such that δ(p, a) = r,
δ(q, a) = t, r 6∼ t, and gap(r, t) + 1 ≤ gap(p, q). Let z ∈ Σ∗ such that p and q fail
on z and |z| = gap(p, q). Clearly, |z| > 0 by the given conditions. Then z = az′ for
some a ∈ Σ. Let δ(p, a) = r and δ(q, a) = t. Then range(p, q) ≤ range(r, t)+1 by
Lemma 2. Thus, |z′| ≤ range(r, t). Then clearly r and t fail on z′. By definition,
gap(r, t) ≤ |z′|. Then we have gap(r, t) ≤ |z| − 1 = gap(p, q) − 1. ut
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3.2 The Algorithm

The algorithm consists of two main parts: the first is to determine the similarity
relation between states; the second is to merge similar states.

In the first part of the algorithm, we determine the similarity relation by
computing the gap function starting from the sink state and along the inverse
direction of the transitions of the given DFA. Note that the construction of
a minimal DFCA is different from the minimization of a acyclic DFA. In the
latter case, if two states have different heights then they are not equivalent.
(The height of a state is the length of the longest path starting from this state
to a final state.) However, in the former, it is possible that two states are similar
even if they have different heights. The equivalence relation is a refinement of
the similarity relation with respect to a finite language.

In the following, we assume that the given DFA accepting a finite language is
complete (a transition is defined for each state and each letter in the alphabet)
and reduced (no useless states except one sink state). We also assume that the
given DFA is ordered, i.e., the n+1 states (including the sink state) of the DFA
are numbered by 0, 1, . . . , n such that there is no transition from state j to state
i if 0 ≤ i < j ≤ n. This implies that 0 is the starting state, n is the sink state,
and n-1 is the last final state. All the above pre-conditions can be achieved in
linear time in terms of the number of states of the given DFA. Note that the size
of a DFA is linear to its number of states.
Algorithm for computing the gap function
Input: An ordered, reduced, and complete DFA A = (Q, Σ, δ, 0, F ), with n + 1
states, which accepts a finite language L, and the length l of the longest word
in L
Output: gap(i, j) for each pair i, j ∈ Q and i < j
Algorithm:

1. For each i ∈ Q compute level(i) end for;
2. for i = 0 to n − 1 do gap(i, n) = l end for;

if level(n) ≤ l then
for each i ∈ F gap(i, n) = 0 end for

end if;
3. for each pair i, j ∈ Q − {n} such that i < j

if i ∈ F and j ∈ Q − F or vice versa then
gap(i, j) = 0;

else
gap(i, j) = l;

end if;
end for;

4. for i = n − 2 down to 0 do
for j = n down to i + 1 do

for each a ∈ Σ do
let i′ = δ(i, a) and j′ = δ(j, a);
if i′ 6= j′ then

g = if (i′ < j′) then gap(i′, j′) else gap(j′, i′);



250 A. Păun, N. Sântean, and S. Yu

if g + 1 ≤ range(i, j) then
gap(i,j) = min(gap(i,j), g+1);

end if;
end if;

end for;
end for;

end for

Algorithm for merging similar states
Input: A ordered, reduced, and complete DFA A = (Q, Σ, δ, 0, F ) which accepts
a finite language L, and gap(i, j) for each pair i, j ∈ Q and i < j
Output: A minimal DFCA A′ for L
Algorithm:

1. Let P [0..n] be a Boolean array with each P [i], 0 ≤ i ≤ n, initialized to false;
2. for i = 0 to n − 1 do

if P [i] == false then
for j = i + 1 to n do

if P [j] == false and gap(i, j) = l then
merge j to i;
P[j] = true;

end if;
end for;

end if;
end for.

For convenience, we assume that the number of states is n + 1 in the above
algorithm and there is at least one state in A. Thus n = 0 if there is only one
state in A.

The step “merge j to i;” follows the steps described in Theorem 1.

The correctness of the algorithm can be easily established with Theorem 5,
Theorem 6, and Theorem 7. So, we omit the formal proof here.

We now consider the time complexity of the algorithm. In the first part, each of
Step 1 and Step 2 is O(n). Clearly, Step 3 takes O(n2) iterations. Step 4 is the
main part, which has two nested loops, each of which has O(n) iterations. Each
inner iteration is O(|Σ|), where |Σ| is a constant. Therefore, the first part of the
algorithm, that computes the gap function, is O(n2). Clearly, the second part is
also O(n2). So, the time complexity of the algorithm is O(n2).

4 Concluding Remarks

We have shown an O(n2) algorithm for constructing a minimal DFCA for a
finite language given in the form of a DFA. This is a significant improvement
from the O(n4) algorithm given in [1]. This new algorithm is also much easy to
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comprehend and implement. The algorithm can be modified into a minimization
algorithm for general DFCA.

In the future, we will conduct more experiments on DFCA with finite lan-
guages from real-world applications. It is important to know how much reduction
on the size of the automata one can achieve by using DFCA instead of DFA.
We believe that the reduction can be large for certain types of applications, but
minor on others.
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