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Abstract

We develop an algorithm that solves the constant capacities economic lot-sizing prob
lem with concave production costs and linear holding costs in O(T3 ) time. The algorithm
is based on the standard dynamic programming approach which requires the computation
of the minimal costs for all possible subplans of the production plan. Instead of com
puting these costs in a straightforward manner, we use structural properties of optimal
subplans to arrive at a more efficient implementation. Our algorithm improves upon the
O(T4 ) running time of an earlier algorithm.
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1 Introduction

In the single-item capacitated economic lot-sizing problem there is demand for a single item
in T consecutive periods. The demand in a certain period may be satisfied by production in
that period or from inventory that has been produced in earlier periods. It is assumed that
there is no inventory at the beginning of period 1 and that no inventory should be left at the
end of period T. Furthermore, capacity constraints on the production levels have to be taken
into account. The total costs associated with a production plan depend on the production
and inventory levels. A fixed set-up cost is incurred when production takes place in a certain
period. In addition there are production costs which are a function of the production level.
Finally, there are holding costs, which are a function of the inventory level at the end of the
period. The objective is to find a feasible production plan that minimizes total costs.

In most models that have been studied in the literature, the cost functions are assumed to be
concave or linear. Under these assumptions, many uncapacitated models are polynomially
solvable. For instance, if all cost functions are linear, then the uncapacitated version of the
above problem is solvable in O(Tlog T) time (d. Aggarwal and Park [1], Federgruen and Tzur
[5], Wagelmans et al. [10]). Polynomial algorithms also exist for many other uncapacitated
lot-sizing problems with linear costs (d. Van Hoesel et al. [8]). The uncapacitated problem
with concave production and holding costs is solvable in O(T2) time (d. Veinott [9]).

For capacitated problems the situation is quite different. Florian et al. [7] and Bitran and
Vanasse [2] have shown that the single item capacitated economic lot-sizing problem is NP
hard, even in many special cases. Bitran and Vanasse also designed a classification scheme
for capacitated lot-sizing problems with linear production and holding costs. They use the
four field notation a/f3!T/fJ, where a, f3, I and 0 represent the set-up cost, unit holding cost,
unit production cost and capacity type, respectively. Each of the parameters a, f3 and I
can take on one of the values G, C, ND, Nlor Z. G means that the parameter follows an
arbitrary pattern over time, whereas C, ND, NI and Z indicate constant, non-decreasing,
non-increasing respectively zero parameter values. 0 can take on the values G, C, ND or Nlj
in case there are no capacity restrictions, the fourth field is omitted.

A very successful DP approach to solve the most general problem, G/G/G/G, has recently
been proposed by Chen et al. [3]. We also refer to that paper for a discussion of other work
that has been done on NP-hard versions of the capacitated economic lot-sizing problem.

With respect to polynomially solvable special cases of the capacitated economic lot-sizing
problem, the following results are known. Bitran and Vanasse showed that ND/Z/ND/NI
and G/Z/G/G can be solved in OCT) respectively O(TlogT) time, Chung and Lin [4] gave
an O(T2) algorithm for NI/G/NI/ND and an O(T4) algorithm for G/G/G/G was presented
by Florian and Klein [6]. The latter algorithm also solves the more general constant capacity
problem in which the cost functions are concave instead of linear.

In this paper we will show that when the production costs are concave and the holding costs
are linear, it is possible to solve the economic lot-sizing problem with constant capacities in
O(T3) time. Hence, for this case we improve upon the Florian-Klein algorithm.

This paper is organized as follows. In Section 2 we introduce notation and make a few
preliminary remarks. Section 3 contains a description of the new algorithm and concluding
remarks can be found in Section 4.
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2 Preliminaries

We will use the following notation:

T : the length of the planning horizonj
C : the capacity of the production in each periodj

Furthermore, for each period t E {I, _. _, T}:

dt : the demand for the item in tj

Xt: the production level in tj

It: the inventory level at the end of t (10 =O)j
it: the set-up cost in tj

ht: the unit holding cost in tj

Pt(Xt): the production costs in period t, a concave function of Xt-

Without loss of generality we may assume:

(a) For each period t : dt :::; C. If this is not the case, we can move the excess demand in t to
the preceding period t - 1 without changing the set of feasible solutions.

(b) The holding costs are all equal to zero. If this is not the case, then an equivalent problem
is obtained by omitting the holding costs and redefining the production costs as Pt(Xt) =
Pt(Xt) +"E;=t hiXt (d. Wagelmans et al. [10]). Note that we can achieve this only when
the original holding costs are linear.

A feasible production plan can be subdivided into several 8ubplan8. Such a subplan (8, t)
(1 :::; 8 :::; t :::; T) consists of a set of consecutive periods, starting with 8 and ending with t.
It is characterized by the fact that there is no incoming inventory and no leaving inventory,
i.e., I s- l = It =0, and the intermediate inventories are all positive, i.e., Is, ... ,It-I> O.

Florian and Klein [6] have shown that there is an optimal schedule in which each subplan
contains at most one period in which production is positive and less than capacity, i.e., for
such a period T we have 0 < X r < C. This property is often referred to as the fractional
production property and it even holds for general capacities.

The algorithm that will be presented consists of two phases:

Phase 1: Find the minimum cost of the subplan (8, t), for each pair 8, t (1 :::; 8 :::; t :::; T).

Phase 2: Find, in a network with vertices {I, ... ,T + I} and arcs (8, t + 1) (1 :::; 8 :::; t :::; T),
the shortest path from vertex 1 to vertex T +1, where the length of arc (8, t +1) is
equal to the minimum cost of subplan (8, t).

Except for vertex T +1, the vertices on the shortest path found in phase 2 correspond to the
first periods of the subplans of an optimal production plan. Given the cost of-each subplan,
the second phase can be implemented in O(T2) time, since the network is acyclic and the
number of arcs is O(T2). In the next section we will give an O(T3 ) algorithm to solve phase 1.
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3 The algorithm

We will show in this section that the optimal cost of each subplan can be calculated in OCT)
amortized time. Without loss of generality, we consider subplan (1, T). Since we have a
fixed subplan, the production in the "fractional" production period can be determined as
I : 0 ~ I < C such that I +K C = '2:,;=1 dt for some integer K. Hence, K is the number
of times we will produce at full capacity in the subplan. For notational convenience, we let
cost(t) denote the cost of producing at full capacity in period t, i.e., cost(t) = It + Pt(C)
(t E {I, . .. ,T}).

Our algorithm solves the problem iteratively, by calculating for all relevant t E {I, ... , T} the
optimal solution when the fractional period is fixed to t. We will denote the latter problem
by pet). Clearly, we can restrict the fractional production I to periods t with r,f=t di ~ I,
since fractional production in later periods will lead to positive ending inventory in period
T, and therefore to infeasible production plans. Therefore, we define 1to be the latest period
such that r,f=l di ~ I·

In subsection 3.1 we will describe a greedy algorithm that solves pet) for a fixed value of
t E {I, ... , I} and prove the optimality of this approach. We will also study structural
properties of the optimal solution of pet) and of the optimal solution of a closely related
problem. In subsection 3.2 the iterative algorithm will be described. The idea is that the
aforementioned structural properties can be exploited such that it is not necessary to perform
the greedy algorithm explicitly for every relevant value of t. Finally, in subsection 3.3, some
details on data will be added and the claimed running time will be proved.

3.1 Greedy algorithm

Suppose that the fractional period is taken equal to s (1 ~ s ~ 1), then the corresponding
optimal solution can be determined by the following greedy algorithm.

We start with the (infeasible) production plan in which only the fractional production takes
place, i.e., the inventory levels are It =- '2:,:=1 di for t =1, ... ,s -1 and It =1- r,:=1 di for
t = s, ... ,T. The K periods in which we produce at full capacity are chosen as follows. We
consider the periods from 1 to T in increasing order. IT It < 0 when period t is considered,
then the cheapest available period in the set {I, ... , t} is chosen as production period (if
necessary, we break ties by choosing the earliest cheapest period). Because period t forces us
to choose a production period, we call this period a choice period. If we decide to produce
at capacity in period T, then the ending inventory of all periods {T, ... ,T} increases with C.
Thus, It becomes nonnegative (because dt ~ C and It- 1 ~ 0). The greedy aspect is that the
decision to produce is always taken as late as possible (thereby maximizing the number of
periods available for production) and that, among all periods available for production, the
cheapest one is chosen.

The following lemma is easy to prove.

Lemma 1 Let IP (1 ~ t ~ T) denote the inventory levels at the start 01 the greedy algorithm
after the lractional production has been assigned. Then Wk, the k - th choice period, is the
first period t E {I, ... , T} lor which IP-1 ~ -(k - I)C and IP < -(k - I)C (1 ~ k ~ K).
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As a corollary we get the following condition.

Feasibility condition
A production schedule is feasible, Le., It ~ 0 (1 :$ t :$ T), if and only if for every choice
period Wk (1 :$ k :$ K), there are at least k production periods in {I, ... , Wk}.

Every feasible production plan is completely characterized by its full production periods. To
compare two feasible production plans Sand S', we can look at the first full production
period in which they differ. If that period is earlier in S than it is in S', then solution S is
called lexicographically earlier than solution S'.

Clearly, the greedy solution is feasible. The optimality of the greedy approach is stated in
the following theorem.

Theorem 2 The greedy algorithm constructs the lexicographically earliest optimal production
plan for pet), t E {I, ... , I}.

Proof. Let S be the lexicographically earliest optimal solution. Suppose it is not equal to
the solution Sa created by the greedy algorithm.

Let WI, ••. , WK be the choice periods for the greedy algorithm, and let the respective full
production periods chosen by the greedy algorithm be rl,"" rK. Let k be the minimum
index such that rk is not in S. There is a period r' in {I, ... , Wk} that is a production
period in S but not in Sa, because otherwise S would have less than k production periods
in {I, ... , Wk}, violating the feasibility condition.

Consider the following cases.

(1) If cost(r') < cost(rk), then this contradicts the fact that the greedy algorithm chooses the
cheapest available production period for Wk.

(2) If cost(r') = cost(rk) and r' < rk, then this contradicts the fact that the greedy algorithm
chooses the earliest period among the cheapest available ones.

The feasibility condition also holds for the solution created from S by replacing r' by rk as
a production period. Therefore, we can conclude the following.

(3) If cost(r') > cost(rk), then the solution S can be improved.

(4) If cost(r') = cost(rk) and r' > rk, then the solution S is not the lexicographically earliest
optimal solution.

Hence, the assumption that r' =J rk always leads to a contradiction. We conclude that Sa is
equal to S, the lexicographically earliest optimal solution. 0

When referring to the optimal solution, we will from now on always mean the lexicographically
earliest optimal solution determined by the greedy algorithm.
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In the iterative algorithm to be presented in the next subsection, we will not only compute the
optimal solutions for the problems pet), t E {1, ... , I}, but also the optimal solutions of the I
problems defined as follows. Let t E {1, ... , I}, then pet)' is the problem offinding an optimal
schedule when f units become available in period t completely for free, Le., without costing
any money or capacity. Clearly, a feasible solution for this problem corresponds to a choice of
K full production periods. The only difference with the feasible solutions of pet) is that now
also period t is available for full production (at cost cost(t)). It follows immediately that the
optimal solution can be found by applying the greedy algorithm. Again, when referring to
the optimal solution of pet)', we will mean the solution constructed by the greedy algorithm.
Furthermore, note that the optimal solution of pel) is also optimal for pel)', since production
of C units in I would lead to a positive ending inventory in period T.

The following property plays a key role in our iterative algorithm.

Lemma 3 Let t E {1, ... , I - 1}. The optimal solutions of P(t + 1)' and P(t)' differ with
respect to the full production periods in at most one period. Moreover, if there is a difference,
then the optimal solution of pet)' is obtained from the optimal solution of P(t+1)' by replacing
a full production period in {1, ... , t} by a period in {t +1, ... , T}.

Proof. We will prove that the solutions produced by the greedy algorithm in both problems
differ in at most one production period, as described in the lemma.

Comparing the initial inventories of pet + 1)' and pet)' we observe that the inventories are
all equal, except that the inventory n' is f units higher in P(t)' than in P(t +1)'. Thus, only
for period t it may be possible that the situation with respect to the condition of lemma 1
is different. To be more precise, it is possible that for P(t + 1)' the condition is satisfied in t
for some k, whereas it is not satisfied in t for pet)'. Thus, if t is a choice period in pet + 1)'
it need not be a choice period in pet)'. Instead, there may be a later choice period, say u.
All other choice periods are equal for both problems.

Clearly, if the choice periods are equal in both problems, or if the same choices for production
in t and u are made by the greedy algorithm, the optimal solutions do not differ. Hence, we
only have to examine the case where the choices in t and u differ, say T' is chosen in t and
Til is chosen in u. Note that t and u are the first periods where the choices may differ, since
the earlier choice periods are equal in both problems.

By definition, T' is the cheapest available production period in {1, ... , t}. Moreover, Til is the
cheapest available production period in {1, ... , u}. It follows that cost(Til) < cost(T'), and
Til > t.

We will show that in the remainder of the greedy algorithm the number of different production
periods for both problems remains at most one, and that the difference is always as specified
in the lemma.

As argued before, the choice periods after u are equal for both problems. Let those periods
be Wk, ••• , WK, and consider the production period chosen at Wk.

(a) Suppose that T' is the period chosen at Wk in problem pet)'.
Because T' is the cheapest period available for production up to Wk in pet)', it follows
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that Til is the cheapest period available up to Wk in pet + 1)'. Clearly, from Wk on the
partial solutions are equal again.

(b) Suppose T i: T' is the period chosen at Wk in problem P( t),.
T is the cheapest period available for production up to Wk, and it holds that r > t (since
r' is the cheapest period available up to t). Moreover, in pet + 1)' it is also the cheapest
period for production, unless r" is cheaper. However, which of these periods is chosen
does not matter. In both cases the difference with the partial solution of pet)' remains
one period, either r or r", and both are later than t.

H (a) occurs, then it follows immediately that the full production periods of the optimal
solutions of pet)' and pet + 1)' are the same. IT (b) occurs, the above argument can be
repeated for the later choice periods Wk+b' .. ,WK, and the lemma is proved. 0

The following lemma states a property about the difference between the optimal solution of
pet) and the optimal solution of pet)'. It can be proved using similar arguments as in the
proof of Lemma 3.

Lemma 4 Let t E {1, ... , I} and suppose that t is a full production period in the optimal
solution of pet)'. Then the optimal solution of pet) differs from the optimal solution of pet)'
only in the fact that the full production in t is reallocated.

3.2 Iterative algorithm

In our algorithm we only perform the greedy algorithm explicitly to obtain the optimal
solution of pel)' and P(l). After this initialization, we determine the optimal solutions of
pet)' and pet) for all t E {1, ... ,1- 1}, by starting at period 1- 1 and moving downward to
period 1.

An iteration of the algorithm consists of two steps. For a certain period t E {1, ... ,1- 1},
we are given the optimal solution of pet +1)'. First, we will determine the optimal solution
of P(t)', and then, if this solution is not feasible for P(t), Le., if t is a full production period,
it will be changed into an optimal one of pet), Le., one without full production in t. We will
first sketch an iteration and then give the details.

2-step iteration for period t

Given: The optimal solution of pet +1)'.

Step 1: Determine the optimal solution of pet)'.
Move in the optimal solution of P(t + 1)' the fraction f from t + 1 to t. As we have
seen in Lemma 3, it is only necessary to check now whether there exists a feasible
and profitable move of full production from a period up to t to a period later than t.

Step 2: Convert the optimal solution of pet)' to an optimal solution of pet).
H t is a full production period in P(t)', then the cheapest feasible alternative for

7



production of the C units is to be found. According to Lemma 4 no other changes
have to be considered.

We will now explain both steps in greater detail.

Details of Step 1

Let It denote the inventory level of period t in the optimal solution of P( t + 1)' and let If
denote the inventory level after the fractional production has been moved from t +1 to t, i.e.,
If = It + f. All other inventory levels do not change.

(a) If If ~ C > It then the inventory at the end of period t is increased from a value less than
C to a value greater than or equal to C. Let s ~ t < u be such that I~-l < C, I'll. < C
and all ending inventories of the periods s, s +1, ... , u - 1 are larger than or equal to C.
Note that it is not feasible to move production from a period that is earlier than s, or to a
period that is later than u. Therefore, we only have to check whether it is advantageous to
move production from the most expensive production period in {s, ... , t} to the (earliest)
cheapest available period in {t +1, ... , u}. If this is the case, the move is made.

(b) If If> It ~ Cor C > If> It then the full production periods remain the same. If If < C,
then moving production from a period up to t to a period after t will always lead to a
negative inventory level in period t. On the other hand, if It ~ C, then every profitable
move that we can make now would also have been feasible with respect to the optimal
solution of pet + 1)'. That would contradict the optimality of the latter solution.

The following lemma is now obvious.

Lemma 5 Only if If ~ C > It it may be necessary to move a full production production
period in Step 1. If the move is made as specified under (aj, the resulting solution is optimal
for pet)'.

Note that after step 1 we have the schedule that is the starting point for the next iteration.

Details of Step 2

The starting point is the optimal solution of pet)' created in step 1. We transform this
schedule into a feasible solution for pet), if necessary. Thus, nothing remains to be done if t
is not a full production period. Otherwise, the C units produced in t should be transferred
to another period. We determine the choices that we have as follows. Let u ~ t be the
period such that the ending inventory of the periods {t, ... , u - 1} is at least C and I'll. < C.
Moving the production to a period after u will result in an infeasible solution. Therefore,
the production of C units in t is moved to the (earliest) cheapest available period in the
set {1, ... t-1,t+ 1, ... ,u}. Clearly, this solution is feasible and optimality follows from
Lemma 4.

Lemma 6 If step 2 is performed as descibed above then the optimal schedule of pet) results.
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3.3 Running time of the algorithm

In the following we will add some details to steps 1 and 2 that are necessary to derive the
O(T3) running time of the overall algorithm. We will do so for each part of the algorithm
separately, i.e., for the initialization (performing the greedy algorithm explicitly), step 1 and
step 2.

Complexity of the initialization

We will use the following result.

Lemma 7 Let 1 ~ t1 ~ t2 ~ T - 1. Consider the optimal schedules for subplans (tI, t2) and
(t1' t2 + 1) under the restriction that the fractional periods are the last production periods.
Then the set of full production periods in the schedule for subplan (tI, t2) is a subset of the
set of full production periods in the schedule for subplan (tI, t2 + 1).

Proof. This follows from the fact that the choice periods for the smaller subplan are a subset
of the set of choice periods of the larger subplan (d. Lemma 1). IT :E~~tl dj < kC ~ :E~~~~ dj
for some k then one extra choice has to be made in the larger subplan. 0

It follows immediately from Lemma 7 that performing the initialization for all subplans with
first period t1 has a total running time that is of the same order as the running time of the
initialization for subplan (tI, T) only. The latter can easily be implemented in O(T2) time.
Hence, the overall algorithm takes O(T3) in the initialization step.

Complexity of step 1

We proceed with the iterations of the actual algorithm for a specific subplan. Again, we
consider for convenience subplan (1, T). After the initialization, we determine for each period
t in this subplan the period ret) which is the cheapest available period in the set {I, ... , t}.
This takes OCT) time. The periods ret) may change during the algorithm.

The following lemma restricts the number of possible changes performed by step 1..

Lemma 8 Suppose that in step 1 of the iteration for period t E {1, ... , l}, it is necessary to
check whether production should be moved from a period up to t to a period after t. Let 5 ~ t
be such that I s- 1 < C, whereas all inventory levels from periods s to t are at least C. Then
it is not necessary to check whether production should be moved in step 1 of the iterations for
periods {5, ... , t - I}.

Proof. IT in step 1 of the iteration for t no profitable move of full production is detected, then
the statement follows directly from Lemma 5 and the fact that for all periods in {s, ... , t - I}
the ending inventory is at least C.

Now suppose that a full production period is moved in step 1 of the iteration for t from a
period in {5, ... , t} to a period after t. Note that this move reduces the inventory of t to a
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level below C. Suppose that the lemma is false and there are periods in {s, ... , t - I} for
which it is profitable to move a full production period in step 1. Consider the first iteration
for which this happens and let v be the corresponding period. A profitable move with respect
to v consists of moving full production from a period in {s, ... ,v} to a period after v, but not
later than t. It is easy to see that this move would also have been a feasible and profitable
one with respect to the solution given at the start of the iteration for t. As this was the
optimal solution to pet +1)', we have derived a contradiction. Hence, the lemma holds. 0

If we want to check whether it is profitable to move a full production period in step 1 of
iteration t, then we need to determine the first period after t that has an inventory level
below C. Denote this period by u(t).

Lemma 9 Suppose that in step 1 of the iteration for period t E {I, ... , I}, it is checked
whether full production needs to be moved from a period up to t to a period after t. Let v <t
be the next period in which such a check is made. Then u(v) = u(t) or u(v) ~ t.

Proof. This follows from the observation already made in the proof of Lemma 8, that if a
full production period is moved in step 1 of the iteration for t, the inventory of t is reduced
to a level below C. 0

Step 1 of the iteration of period t is implemented as follows. We are given an optimal
solution of P(t +1)'. First, u(t) is determined. The cheapest available period r(u) in the set
{I, ... , u(t)} is given. Furthermore, we can determine s and the most expensive production
period in {s, ... , t}, say r', in t - s +1 comparisons. By Lemma 8 the overall complexity of
this operation is OCT), since this part of step 1 never needs to be performed in a period after
s anymore, if it is performed in t. Using Lemma 9, it follows that also the determination of
the relevant u(t) values can be implemented in linear time. Suppose full production is moved
from a period r' ~ s to r(u). Note that r(u) ~ t is not possible, because then the solution
of P(t + 1)' would not have been optimal. Because r' becomes available, we may have to
update ret') for some periods t' in {r', ... , t}. Because r' ~ s, this operation takes OCT) in
total as well.

We conclude that step 1 takes OCT) for each subplan.

Complexity of step 2

In this step we need to know the cheapest available period in {I, ... , u}, which is exactly
r(u). Therefore, this step is trivially seen to take only OCT) time for each subplan. Note
that the rest of the data is not updated, since the schedule at the beginning of step 2, is also
the schedule at the beginning of the next iteration.

To summarize, we have shown the following complexities.

Initialization: O(T2) running time for all subplans (tll t2) with tl fixed.
Step 1: OCT) running time for each subplan (tll t2)'
Step 2: OCT) running time for each subplan (tll t2)'
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Hence, the total complexity of our algorithm is D(T3).

4 Concluding remarks

We have presented an D(T3 ) dynamic programming algorithm for solving the economic lot
sizing problem with constant capacities, concave production costs and linear holding costs.
Our algorithm is an improvement upon the algorithm by Florian and Klein [6] by a factor
T. However, the latter algorithm also solves the more general problem in which the holding
costs are concave. For our approach the linearity of the holding costs seems essential. It
allows us to formulate an equivalent problem without holding costs, for which it is easy to
calculate the change in costs when a full production period is moved.

The improvement in running time of our algorithm is based on the idea that many similar
subproblems have to be solved, and that it is worthwhile to exploit the fact that the optimal
solutions to these problems are partially the same. The only possible way in which a further
improvement could be achieved, seems to be the existence of a relationship between the
optimal fractional periods of similar subplans. Until now, we have not been able to identify
such a relationship.
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