
An OBDD approach to enforce confidentiality and visibility

constraints in data publishing∗

Valentina Ciriani, Sabrina De Capitani di Vimercati, Sara Foresti,

Giovanni Livraga, Pierangela Samarati

DTI - Università degli Studi di Milano - 26013 Crema, Italy
firstname.lastname@unimi.it

Corresponding author : Pierangela Samarati
DTI - Università degli Studi di Milano
Via Bramante 65 - 26013 Crema, Italy

pierangela.samarati@unimi.it

phone: +39-0373-898061, fax: +39-0373-898074

Abstract

With the growing needs for data sharing and dissemination, privacy-preserving data publishing is becom-

ing an important issue that still requires further investigation. In this paper, we make a step towards private

data publication by proposing a solution based on the release of vertical views (fragments) over a relational

table that satisfy confidentiality and visibility constraints expressing requirements for information protection

and release, respectively. We translate the problem of computing a fragmentation composed of the minimum

number of fragments into the problem of computing a maximum weighted clique over a fragmentation graph.

The fragmentation graph models fragments, efficiently computed using Ordered Binary Decision Diagrams

(OBDDs), that satisfy all the confidentiality constraints and a subset of the visibility constraints defined in

the system. We then show an exact and a heuristic algorithm for computing a minimal and a locally minimal

fragmentation, respectively. Finally, we provide experimental results comparing the execution time and the

fragmentations returned by the exact and heuristic algorithms. The experiments show that the heuristic

algorithm has low computation cost and computes a fragmentation close to optimum.

keywords : Privacy, fragmentation, confidentiality and visibility constraints, OBDDs, maximum weighted

clique

∗A preliminary version of this paper appeared under the title “Enforcing Confidentiality and Data Visibility Constraints: An
OBDD Approach,” in Proc. of the 25th Annual IFIP WG 11.3 Conference on Data and Applications Security and Privacy (DBSec
2011), Richmond, VA, USA, July 2011 [12].

1

Sara Foresti
© IOS Press, (2012). This is the author's version of the work. It is posted here by permission of IOS Press for your personal use.
Published in Journal of Computer Security (JCS), Volume 20, Issue 5, Pag 463-508, 2012.

Sara Foresti

1 Introduction

Information sharing and dissemination are typically selective processes. While on one side, there is a need -

or demand - for making certain information available to others, there is on the other side an equally strong

need to ensure proper protection of sensitive information. It is therefore important to provide data holders

with means to express and enforce possible constraints over their data, modeling the need for information of

the data recipients (visibility constraints) and the need for protecting confidential information from an improper

disclosure (confidentiality constraints).

Recent proposals considering confidentiality and visibility constraints have put forward the idea of computing

vertical fragments over the original data structure (typically a relation) so that all the constraints are satisfied [1,

10, 11, 14]. While such proposals have been introduced as a way of departing from data encryption when relying

on external storage services, data fragmentation can result appealing also in data publication scenarios. In fact,

data fragments can be seen as different (vertical) views that a data holder can release to external parties to satisfy

their demand for information, while at the same time guaranteeing that confidential information is not disclosed.

The problem of computing data views taking into consideration both privacy needs and visibility requirements

makes however the data fragmentation problem far from trivial. In particular, ensuring some meaningful form

of minimality of the fragments to be released (to the aim of avoiding unnecessary fragmentation of attributes),

makes the problem NP-hard [14].

In this paper, we propose a new modeling of the fragmentation problem that exploits the representation of

confidentiality and visibility constraints as Boolean formulas, and of fragments as truth assignments over Boolean

variables corresponding to attributes in the original relation. In this way, the computation of a fragmentation

that satisfies the given constraints relies on the efficiency with which Boolean formulas are represented and

manipulated. Since the classical methods for operating on Boolean formulas are impractical for large-scale

problems, we adopt reduced Ordered Binary Decision Diagrams (OBDDs), which are a canonical form for

representing and efficiently manipulating Boolean formulas [20]. OBDDs are used in practical applications

more often than other classical representations of Boolean formulas because they have a canonical form that

uniquely characterizes a given function, and because operations on Boolean formulas can be performed quite

efficiently in time and space [18]. The size of an OBDD does not directly depend on the size of the corresponding

formula, and even though, in the worst case, it could be exponential in the number of variables in the formula,

the majority of Boolean formulas can be represented by compact OBDDs. Our approach then transforms all

the inputs of the fragmentation problem into Boolean formulas, and takes advantage of their representation

through OBDDs to process different constraints simultaneously and to easily check whether a fragmentation

satisfies all the given confidentiality and visibility constraints. In [12], we presented an early version of our

2

proposal that is here extended by introducing a graph modeling of the fragmentation problem that permits to

reformulate it as the (NP-hard) problem of computing a maximum weighted clique. Based on this modeling,

we then define an exact and a heuristic algorithm for computing a fragmentation composed of the minimum

number of fragments. In addition, we formally analyze the correctness and computational complexity of both

our exact and heuristic algorithms and present a set of experiments for assessing their efficiency (in terms of

computational time) and the effectiveness of the heuristics (in terms of number of fragments of the computed

fragmentation). The experimental results prove that our heuristics, while providing faster computational time,

well approximates the minimal fragmentations computed by the exact algorithm.

The remainder of this paper is organized as follows. Section 2 introduces confidentiality and visibility con-

straints, and describes the fragmentation problem. Section 3 presents our modeling of the problem, defining

OBDDs corresponding to constraints, and illustrating how the truth assignments that satisfy the constraints

can be composed for computing a solution to the fragmentation problem. Section 4 uses the truth assign-

ments extracted from OBDDs and their relationships to reformulate the fragmentation problem in terms of the

maximum weighted clique problem over a fragmentation graph. Section 5 describes an exact algorithm for com-

puting a minimal fragmentation, based on the graph modeling of the problem. Section 6 illustrates a heuristic

approach that computes a locally minimal fragmentation by iteratively building a clique. Section 7 presents the

experimental results comparing the exact and heuristic algorithms. Section 8 discusses related work. Finally,

Section 9 reports our conclusions. The paper is complemented by the material in the Appendix that reports

the proofs of the theorems in Sections 5 and 6.

2 Preliminary Concepts

We consider a scenario where, consistently with other proposals (e.g., [1, 11, 14, 25]), the data undergoing

possible external release are represented with a single relation r over a relation schema R(a1, . . . , an), and

there are no dependencies among the attributes in R . We use standard notations of relational database theory

and, when clear from the context, we use R to denote either the relation schema R or the set {a1, . . . , an} of

attributes in R . We consider two kinds of constraints on data: confidentiality constraints , imposing restrictions

on the (joint) visibility of values of attributes in R , and visibility constraints , expressing requirements on data

views [11, 14].

Definition 2.1 (Confidentiality constraint) Given a relation schema R(a1, . . . , an), a confidentiality con-

straint c over R is a subset of {a1, . . . , an}.

3

Confidentiality constraints state that the values of an attribute (singleton constraint) or the associations among

the values of a given set of attributes (association constraint) are sensitive and should not be visible. More

precisely, a singleton constraint {a} states that the values of attribute a should not be visible. An association

constraint {ai1 , . . . , aim} states that the values of attributes ai1 , . . . , aim should not be visible in association.

For instance, Figure 1(b) illustrates one singleton (c1) and four association (c2, . . . , c5) constraints for relation

Patients in Figure 1(a). The satisfaction of a confidentiality constraint ci clearly implies the satisfaction of any

confidentiality constraint cj such that ci⊆cj, making cj redundant. A set C of confidentiality constraints is well

defined if ∀ci,cj∈C, i %= j, ci %⊆cj, that is, C does not contain redundant constraints. Note that, while previous

approaches assume that a pre-processing phase removes redundant constraints from C, the solution proposed in

this paper implicitly transforms C into a well defined set of confidentiality constraints (see Section 3).

Visibility constraints are defined as follows.

Definition 2.2 (Visibility constraint) Given a relation schema R(a1, . . . , an), a visibility constraint v over

R is a monotonic Boolean formula over attributes in R.

Intuitively, a visibility constraint imposes the release of an attribute or the joint release of a set of attributes.

Visibility constraint v=a states that the values of attribute a must be visible. Visibility constraint v=v i∧v j

states that v i and v j must be jointly visible (e.g., constraint v2 in Figure 1(c) requires the joint release of

attributes Job and InsRate since the associations between their values must be visible). Visibility constraint

v=v i∨v j states that at least one between v i and v j must be visible (e.g., constraint v1 in Figure 1(c) requires

that the values of attribute Name or the association between the values of attributes Birth and ZIP be released).

Note that negations are not used in the definition of visibility constraints since they model requirements of

non-visibility, which are already captured by confidentiality constraints.

Confidentiality and visibility constraints can be enforced by partitioning (fragmenting) attributes in R in

different sets (fragments). A fragmentation of relation R is a set of fragments, as formally captured by the

following definition.

Definition 2.3 (Fragmentation) Given a relation schema R(a1, . . . , an), a fragmentation F of R is a set

{F 1, . . . ,F l} of fragments, where each fragment F i, i = 1, . . . , l, is a subset of {a1, . . . , an}.

Consistently with the proposal in [14], a fragmentation is not required to be complete, that is, it does not

need to include all the attributes of the original relation. If the data holder is interested in releasing all the

(non sensitive) attributes in R [1, 10], it is sufficient to include an additional visibility constraint v=a for

each attribute a∈R such that there does not exist a constraint c∈C with c={a}. Given a relation R , a set

C of confidentiality constraints, and a set V of visibility constraints, a fragmentation F of R is correct if it

4

satisfies: i) all the confidentiality constraints in C, and ii) all the visibility constraints in V. Formally, a correct

fragmentation is defined as follows.

Definition 2.4 (Correct fragmentation) Given a relation schema R(a1, . . . , an), a set C of confidentiality

constraints over R, and a set V of visibility constraints over R, a fragmentation F of R is correct with respect

to C and V iff:

1. ∀c∈C, ∀F∈F : c %⊆F (confidentiality);

2. ∀v∈V, ∃F∈F : F satisfies v (visibility);

3. ∀F i,F j∈F , i %= j: F i∩F j=∅ (unlinkability).

Condition 1 ensures that neither sensitive attributes nor sensitive associations are visible in a fragment. Con-

dition 2 ensures that all the visibility constraints are satisfied. Condition 3 ensures that fragments do not

have common attributes and therefore that association constraints cannot be violated by joining fragments.

We note that singleton constraints can be satisfied only by not releasing the involved sensitive attributes. As-

sociation constraints can be satisfied either by not releasing at least one of the attributes in each constraint,

or by distributing the attributes among different (unlinkable) fragments. Visibility constraints are satisfied by

ensuring that each constraint is satisfied by at least one fragment. Figure 2 illustrates an example of correct

fragmentation of relation Patients in Figure 1(a) with respect to the confidentiality and visibility constraints

in Figure 1(b) and in Figure 1(c), respectively.

Given a set of confidentiality and visibility constraints, we are interested in a fragmentation that does not

split attributes among fragments when it is not necessary for satisfying confidentiality constraints. The rationale

is that maintaining a set of attributes in the same fragment releases, besides their values, also their associations.

The utility of released data for final recipients is higher when releasing a fragmentation composed of fewer

fragments, since they also have visibility of the associations among the attributes. Our goal is then to compute

a minimal fragmentation, that is, a fragmentation with the minimum number of fragments. Formally, the

problem of computing a minimal fragmentation is defined as follows.

Problem 2.5 (Minimal fragmentation) Given a relation schema R(a1, . . . , an), a set C of confidential-

ity constraints over R, and a set V of visibility constraints over R, determine (if it exists) a fragmentation

F={F1, . . . ,F l} of R such that:

1. F is a correct fragmentation of R with respect to C and V (Definition 2.4);

2. !F ′ such that: i) F ′ is a correct fragmentation of R with respect to C and V, and ii) F ′ is composed of

fewer fragments than F .

5

The problem of computing a minimal fragmentation is NP-hard, since the minimum hypergraph coloring problem

reduces to it in polynomial time [14]. We therefore adopt a definition of locally minimal fragmentation, which

can be computed with an efficient heuristic. Such a definition is based on the following dominance relationship

between the fragmentations of relation R .

Definition 2.6 (Dominance relationship) Given a relation schema R(a1, . . . , an) and two fragmentations

F i and F j of R with
⋃

F∈Fi
F=

⋃
F∈Fj

F , F i dominates F j, denoted F i+F j, iff F i %=F j, and ∀F j∈F j, ∃F i∈F i

such that F j⊆F i, and ∀F i∈F i, ∃{F jh ,. . . ,F jl}∈F j such that F jh∪. . .∪F jl=F i.

Definition 2.6 states that given two fragmentations F i and F j defined on the same set of attributes, F i dom-

inates F j if F i can be obtained by merging two (or more) fragments in F j . We note that fragmentations defined

on different subsets of attributes in relation R cannot be compared with respect to the dominance relationship.

As an example, consider relation Patients in Figure 1(a), and fragmentation F1 = {{Birth,ZIP,Disease},

{Job,InsRate}} in Figure 2. F1 dominates fragmentation F2 = {{Birth,ZIP}, {Disease}, {Job,InsRate}}

since F1 can be obtained by merging fragments {Birth,ZIP} and {Disease} in F2.

A locally minimal fragmentation is defined as a correct fragmentation whose fragments cannot be merged

without violating any confidentiality constraint (i.e., a locally minimal fragmentation cannot be dominated by a

correct fragmentation). Note that all the visibility constraints satisfied by a fragmentation F are also satisfied

by any fragmentation F ′ dominating it. The problem of computing a locally minimal fragmentation is formally

defined as follows.

Problem 2.7 (Locally minimal fragmentation) Given a relation schema R(a1, . . . , an), a set C of confi-

dentiality constraints over R, and a set V of visibility constraints over R, determine (if it exists) a fragmentation

F={F1, . . . ,F l} of R such that:

1. F is a correct fragmentation of R with respect to C and V (Definition 2.4);

2. !F ′ such that: i) F ′ is a correct fragmentation of R with respect to C and V, and ii) F ′+F .

For instance, the fragmentation in Figure 2 is locally minimal since merging F 1 with F 2 would violate

confidentiality constraint c5.

It is important to note that a locally minimal fragmentation may not be a minimal fragmentation, while

a minimal fragmentation is also a locally minimal fragmentation. For instance, consider relation Patients in

Figure 1(a) and the confidentiality and visibility constraints over it in Figure 1(b) and in Figure 1(c), respectively.

Fragmentation F = {{Name}, {Race,Disease},{Job,InsRate}} represents a locally minimal, but not a minimal,

fragmentation for relation Patients. Fragmentation F ′ = {{Birth,ZIP,Disease}, {Job,InsRate}} in Figure 2

6

is both locally minimal and minimal since there does not exist a correct fragmentation of relation Patients

composed of one fragment only.

3 OBDD-based Modeling of the Fragmentation Problem

We model the fragmentation problem as the problem of managing a set of Boolean formulas that are conveniently

represented through reduced and Ordered Binary Decision Diagrams (OBDDs) [7]. OBDDs allow us to efficiently

manipulate confidentiality and visibility constraints, and to easily compute a minimal (Section 5) or locally

minimal (Section 6) fragmentation.

3.1 OBDD Representation of Constraints

In our modeling, attributes in R are interpreted as Boolean variables. Visibility constraints have already been

defined as Boolean formulas (Definition 2.2). Each confidentiality constraint in C can be represented as the

conjunction of the variables corresponding to the attributes in the constraint. For instance, Figure 3 represents

the Boolean interpretation of the relation schema (i.e., the set B of Boolean variables), and of the constraints

over it in Figure 1.

We use OBDDs as an effective and efficient approach for representing and manipulating Boolean formulas.

An OBDD represents a Boolean formula as a rooted directed acyclic graph with two leaf nodes labeled 1 (true)

and 0 (false), respectively, corresponding to the truth values of the formula. Each internal node in the graph

represents a Boolean variable in the formula and has two outgoing edges, labeled 1 and 0, representing the

assignment of values 1 and 0, respectively, to the variable. The variables occur in the same order on all the

paths of the graph. Also, to guarantee a compact representation of the Boolean formula, the subgraphs rooted

at the two direct descendants of each internal node in the graph are disjoint, and pairs of subgraphs rooted at

two different nodes are not isomorphic. Figure 4 and Figure 5 illustrate the OBDDs of the Boolean formulas in

Figure 3 that model the confidentiality and visibility constraints in Figure 1(b) and in Figure 1(c), respectively.

For simplicity, in these figures and in the following, attributes are denoted with their initials, edges labeled 1

are represented by solid lines, and edges labeled 0 are represented by dashed lines. A truth assignment to the

Boolean variables in a formula corresponds to a path from the root to one of the two leaf nodes of the OBDD

of the formula. The outgoing edge of a node in the path is the value assigned to the variable represented by the

node. For instance, in the OBDD of v1 in Figure 5, the path traversing nodes N, B, Z, and 1 represents truth

assignment [N=0, B=1, Z=1] since the edge in the path outgoing from node N is labeled 0, and the edges in the

path outgoing from nodes B and Z are labeled 1. We call one-paths (zero-paths , respectively) all the paths of

an OBDD that reach leaf node 1 (0, respectively), which correspond to the assignments that satisfy (do not

7

satisfy, respectively) the formula. For instance, path N, B, Z, and 1 is a one-path of the OBDD of v1 in Figure 5.

Variables in the formula that do not occur in a path from the root to a leaf node are called don’t care variables,

since their values do not influence the truth value of the formula. For instance, with respect to one-path N and

1 of the OBDD of v1 in Figure 5, B and Z are don’t care variables. In the remainder of the paper, we use ‘-’ as

value for the don’t care variables. If there is at least a don’t care variable in a truth assignment, this assignment

is partial (in contrast to complete), since not all the variables in the formula have a value associated with them.

We note that a partial truth assignment with k don’t care variables is a compact representation of a set of 2k

complete truth assignments obtained by assigning to the don’t care variables value 1 or 0. A complete truth

assignment is implicitly represented by a partial truth assignment if, for each Boolean variable a in the formula,

either a is a don’t care variable for the partial truth assignment or the two truth assignments set a to the same

value. For instance, the OBDD of v1 in Figure 5 has two one-paths, corresponding to truth assignments [N=1,

B=-, Z=-] and [N=0, B=1, Z=1]. Partial truth assignment [N=1, B=-, Z=-] is a compact representation for [N=1,

B=0, Z=0], [N=1, B=0, Z=1], [N=1, B=1, Z=0], and [N=1, B=1, Z=1].

3.2 Truth Assignments

In the Boolean modeling of the fragmentation problem, a fragment F∈F can be interpreted as a complete truth

assignment, denoted IF , over the set B of Boolean variables. Function IF assigns value 1 to each variable

corresponding to an attribute in F , and value 0 to all the other variables in B. A fragmentation is then

represented by a set of complete truth assignments, which is formally defined as follows.

Definition 3.1 (Set of truth assignments) Given a set B of Boolean variables, a set I of truth assignments

is a set {I1 , . . . , Il} of functions such that Ii :B→{0,1}, i = 1, . . . , l.

With a slight abuse of notation, we use I to denote also the list of truth values assigned by I to variables in

B. For instance, fragmentation F in Figure 2 corresponds to the set I={IF1
,IF2

} of truth assignments, with

IF1
= [S=0, N=0, B=1, R=0, Z=1, J=0, I=0, D=1] and IF2

= [S=0, N=0, B=0, R=0, Z=0, J=1, I=1, D=0] .

Given a Boolean formula f , defined over Boolean variables B, and a truth assignment I, I(f) denotes the result

of the evaluation of f with respect to truth assignment I. A set I of truth assignments corresponds to a correct

fragmentation (Definition 2.4) if it satisfies all the confidentiality and visibility constraints and each Boolean

variable is set to 1 by at most one truth assignment in I, as formally defined in the following.

Definition 3.2 (Correct set of truth assignments) Given a set B of Boolean variables, a set C of confi-

dentiality constraints over B, and a set V of visibility constraints over B, a set I of truth assignments is correct

with respect to C and V iff:

8

1. ∀c ∈ C, ∀I ∈ I: I(c) = 0 (confidentiality);

2. ∀v∈V, ∃I ∈ I: I(v) = 1 (visibility);

3. ∀Ii ,Ij∈ I, i %= j, ∀a ∈ B with Ii (a) = 1: Ij (a) = 0 (unlinkability).

Condition 1 ensures that the evaluation of any confidentiality constraint with respect to any truth assignment

is false (i.e., all fragments satisfy confidentiality constraints). Condition 2 ensures that, for each visibility

constraint, there is at least one truth assignment that makes the visibility constraint true (i.e., every visibility

constraint is satisfied by at least one fragment). Condition 3 ensures that there is at most one truth assignment

that sets a variable to true (i.e., fragments do not have common attributes). It is immediate to see that a set of

truth assignments is correct with respect to C and V iff the corresponding fragmentation is correct with respect

to C and V (i.e., Definition 3.2 is equivalent to Definition 2.4). OBDDs representing confidentiality and visibility

constraints can be used to efficiently verify if a set I of truth assignments satisfies Condition 1 and Condition 2

in Definition 3.2: i) each assignment I∈I must correspond to a zero-path in all the OBDDs of the confidentiality

constraints; and ii) for each visibility constraint, at least one assignment I∈I must correspond to a one-path in

the OBDD of the constraint. We also note that Condition 3 in Definition 3.2 can be efficiently verified by simply

comparing the truth value assigned to each variable by the truth assignments in I. For instance, consider the

OBDDs of confidentiality and visibility constraints in Figures 4 and 5, respectively, and the set I = {IF1
, IF2

},

with IF1
= [S=0, N=0, B=1, R=0, Z=1, J=0, I=0, D=1] and IF2

= [S=0, N=0, B=0, R=0, Z=0, J=1, I=1, D=0],

representing the fragmentation in Figure 2. I is correct, since: 1) IF1
and IF2

correspond to zero-paths of the

OBDDs of the confidentiality constraints (confidentiality); 2) IF1
corresponds to a one-path of the OBDDs of

v1 and v3, and IF2
corresponds to a one-path of the OBDD of v2 (visibility); and 3) each variable in B is set

to 1 by at most one assignment between IF1
and IF2

(unlinkability).

Problem 2.5 (minimal fragmentation) can be reformulated as the problem of computing a correct set of truth

assignments composed of the minimum number of truth assignments, which is formally defined as follows.

Problem 3.3 (Minimal set of truth assignments) Given a set B of Boolean variables, a set C of confiden-

tiality constraints over B, and a set V of visibility constraints over B, determine (if it exists) a set I of truth

assignments such that:

1. I is a correct set of truth assignments (Definition 3.2);

2. !I ′ such that: i) I ′ is a correct set of truth assignments, and ii) I ′ is composed of fewer truth assignments

than I.

Analogously, the problem of computing a locally minimal fragmentation (Problem 2.7) can be reformulated

as the problem of computing a correct set I of truth assignments such that no pair of truth assignments Ii

9

and Ij in I can be combined producing a new assignment Iij such that ∀a ∈ B, Iij (a) = Ii(a) ∨ Ij (a), and all

the confidentiality constraints are satisfied. This condition can be formally formulated by first translating the

dominance relationship between fragmentations into an equivalent dominance relationship between sets of truth

assignments as follow.

Definition 3.4 (Dominance relationship) Given a set B of Boolean variables and two sets of truth assign-

ments Ii and Ij over B, Ii dominates Ij , denoted Ii+Ij , iff Ii %=Ij and ∀Ij∈Ij , ∃Ii∈Ii such that ∀a ∈B, with

Ij (a) = 1, Ii(a) = 1 and ∀Ii∈Ii , ∃{Ijh ,. . . ,Ijl }∈Ij such that ∀a ∈B, Ii(a) = Ijh (a) ∨ . . . ∨ Ijl (a).

The problem of computing a locally minimal fragmentation (Problem 2.7) can now be formally defined as the

problem of computing a locally minimal set of truth assignments.

Problem 3.5 (Locally minimal set of truth assignments) Given a set B of Boolean variables, a set C of

confidentiality constraints over B, and a set V of visibility constraints over B, determine (if it exists) a set I of

truth assignments such that:

1. I is a correct set of truth assignments (Definition 3.2);

2. !I ′ such that: i) I ′ is a correct set of truth assignments, and ii) I ′+I.

Our approach to solve the minimal and locally minimal set of truth assignments problems uses properties of

the OBDDs to efficiently check if a set of truth assignments is correct. In principle, a set of truth assignments

should be checked for correctness against each confidentiality constraint and each visibility constraint. We

can cut down on such controls by noting that if a truth assignment I does not make true any confidentiality

constraint, Boolean formula c1∨. . .∨cm evaluates to false with respect to I. Also, if truth assignment I makes

true at least one of the confidentiality constraints in C, Boolean formula c1∨. . .∨cm evaluates to true with

respect to I. In other words, we can check all the confidentiality constraints together in a single step. Formally,

this observation is expressed as follows.

Observation 1 Given a set B = {a1, . . . , an} of Boolean variables, a set C = {c1, . . . , cm} of confidentiality

constraints over B, and a truth assignment I:

∀ci ∈ C, I(ci) = 0 ⇐⇒ I(c1 ∨ . . . ∨ cm) = 0.

To verify whether a truth assignment I satisfies the given confidentiality constraints, we can then simply

check if I corresponds to a zero-path of the OBDD representing the disjunction of confidentiality constraints.

For instance, consider the confidentiality constraints in Figure 3, the OBDD representing their disjunction in

Figure 6, and truth assignment IF1
= [S=0, N=0, B=1, R=0, Z=1, J=0, I=0, D=1], representing fragment F 1

10

in Figure 2. IF1
corresponds to a zero-path of the OBDD in Figure 6, implying that IF1

does not violate any

confidentiality constraint.

For each visibility constraint v , a correct set of truth assignments must include at least a truth assignment

I satisfying v , while not violating confidentiality constraints (i.e., I(v)=1 and I(c1∨. . .∨cm)=0). This is

equivalent to say that Boolean formula v∧¬(c1∨. . .∨cm) with respect to truth assignment I evaluates to true,

as formally observed in the following.

Observation 2 Given a set B = {a1, . . . , an} of Boolean variables, a set C = {c1, . . . , cm} of confidentiality

constraints over B, a visibility constraint v over B, and a truth assignment I:

I(v) = 1 and I(c1 ∨ . . . ∨ cm) = 0 ⇐⇒ I(v ∧ ¬(c1 ∨ . . . ∨ cm)) = 1.

In other words, the set of one-paths of the OBDD of Boolean formula v i∧¬(c1∨. . .∨cm) represents in a

compact way all and only the truth assignments that satisfy v i and that do not violate any confidentiality

constraint. In the following, we will use O i to denote the OBDD of Boolean formula v i∧¬(c1∨. . .∨cm), and

Pvi
to denote the set of one-paths in O i, which can represent both complete and partial truth assignments.

For instance, consider the confidentiality and visibility constraints in Figures 4 and 5, respectively. Figure 7

illustrates the OBDDs of formulas v i∧¬(c1∨. . .∨c5), i = 1, . . . , 3, along with their one-paths. Note that all

the variables in B not appearing in formula v i∧¬(c1∨. . .∨cm) are considered as don’t care variables for the

one-paths in O i, i = 1, . . . , k.

To satisfy Condition 1 (confidentiality) and Condition 2 (visibility) in Definition 3.2, a set of truth assign-

ments must include, for each v∈V, at least a complete truth assignment implicitly represented by a (partial)

truth assignment corresponding to a one-path in Pv . However, not all the sets of truth assignments that include

at least one complete truth assignment implicitly represented by a (partial) truth assignment in Pv , for each

v ∈ V, are correct, since they may violate Condition 3 in Definition 3.2 (unlinkability). In the following, we

discuss how to combine truth assignments in Pv1 , . . . ,Pvk
to compute a correct set of truth assignments.

3.3 Comparison of Assignments

Goal of our approach is to compute a correct set of truth assignments that solves either the minimal or the locally

minimal fragmentation problem. To this purpose, we first introduce the concepts of linkable and mergeable truth

assignments.

Definition 3.6 (Linkable truth assignments) Given two assignments Ii and Ij over Boolean variables B,

we say that Ii and Ij are linkable, denoted Ii↔Ij , iff ∃a ∈ B : Ii(a) = Ij (a) = 1.

11

According to Definition 3.6, two assignments are linkable iff there is a Boolean variable in B such that the

truth value of the variable is set to 1 by the two given assignments, that is, the fragments corresponding to them

have an attribute in common. For instance, assignments [S=0, N=0, B=1, R=0, Z=1, J=0, I=-, D=-] and [S=0,

N=0, B=1, R=0, Z=-, J=0, I=-, D=1] are linkable since they both assign 1 to variable Birth. In the following,

we will use the term disjoint , and notation Ii %↔Ij , to refer to two truth assignments Ii and Ij that are not

linkable. For instance, assignments [S=0, N=0, B=0, R=-, Z=-, J=1, I=1, D=0] and [S=0, N=1, B=0, R=-, Z=-,

J=-, I=0, D=0] are disjoint. Note that variables with value 0 and - do not have any impact on the linkability

of two truth assignments.

Definition 3.7 (Mergeable truth assignments) Given two assignments Ii and Ij over Boolean variables

B, we say that Ii and Ij are mergeable, denoted Ii!Ij , iff !a s.t. Ii(a) = 1 and Ij (a) = 0, or viceversa.

According to Definition 3.7, two truth assignments are mergeable iff the truth value of each variable a in

B in the two assignments is not in contrast, where being in contrast for variable a means that a is assigned

1 by one assignment and is assigned 0 by the other one. For instance, the two assignments [S=0, N=0, B=1,

R=0, Z=1, J=0, I=-, D=-] and [S=0, N=0, B=1, R=0, Z=-, J=0, I=-, D=1] are mergeable. While these two

assignments are also linkable, linkability and mergeability are two independent properties and none of them

implies the other. For instance, assignments [S=0, N=0, B=1, R=0, Z=1, J=0, I=-, D=-] and [S=0, N=0, B=1,

R=0, Z=-, J=1, I=1, D=0] are linkable (Birth is set to 1 by both assignments) but not mergeable (there is a

conflict on variable Job), while [S=0, N=0, B=1, R=0, Z=1, J=-, I=-, D=-] and [S=0, N=0, B=-, R=0, Z=-, J=1,

I=1, D=0] are mergeable but not linkable.

It is interesting to note that the sets of complete truth assignments implicitly represented by mergeable

partial truth assignments are overlapping (i.e., they have assignments in common), and that a complete truth

assignment cannot be represented by two different partial truth assignments with variables in contrast. This

is equivalent to say that two partial truth assignments are mergeable only if they represent at least a common

complete truth assignment, as formally observed in the following.

Observation 3 Given a set B = {a1, . . . , an} of Boolean variables and two truth assignments Ii and Ij over

B:

Ii!Ij ⇐⇒ ∃Ik s.t. ∀a ∈ B, Ik (a)=Ii(a) or Ii(a)=-, and Ik (a)=Ij (a) or Ij (a)=-.

For instance, consider mergeable truth assignments [S=0, N=0, B=1, R=0, Z=1, J=0, I=-, D=-] and [S=0,

N=0, B=1, R=0, Z=-, J=0, I=-, D=1]. They both implicitly represent the following two complete truth assign-

ments: [S=0, N=0, B=1, R=0, Z=1, J=0, I=0, D=1] and [S=0, N=0, B=1, R=0, Z=1, J=0, I=1, D=1].

12

Mergeable (partial) assignments can be composed (merged) according to operator 1 in Figure 8. Merging

truth assignments Ii and Ij results in a new truth assignment Iij , where the truth value of a variable coincides

with its truth value in the assignment in which it does not appear as a don’t care variable. If a variable appears

as a don’t care variable in both Ii and Ij , then its value in the new assignment remains don’t care. The result

of the composition of Ii with Ij represents in a compact form all the complete truth assignments implicitly

represented by both Ii and Ij . Note that if Ii and Ij are two (partial) truth assignments in the set Pvi
and Pvj

,

respectively, then Iij=Ii1Ij represents a set of complete truth assignments that satisfies all the confidentiality

constraints and both v i and v j . For instance, with reference to the example in Figure 7, [S=0, N=0, B=1, R=0,

Z=1, J=0, I=-, D=-] is a one-path in Pv1 and [S=0, N=0, B=1, R=0, Z=-, J=0, I=-, D=1] is a one-path in Pv3 .

These two assignments are mergeable and the result of their merging computed through operator 1 is [S=0,

N=0, B=1, R=0, Z=1, J=0, I=-, D=1], which implicitly represents two complete truth assignments (differing

for the value of I) that satisfy both v1 and v3 and that do not violate any confidentiality constraint. Also, we

note that no pair of one-paths in Pv is mergeable since they are two distinct one-paths of the same OBDD, and

therefore differ by at least one edge, meaning that they are in conflict on at least one variable.

4 Graph Modeling of the Minimal Fragmentation Problem

To compute a correct set I of truth assignments (i.e., ∀v i ∈ V, I includes at least one complete truth assignment

implicitly represented by a one-path in Pvi
, and each pair of truth assignments in I is disjoint), we propose

to model the one-paths of Pvi
, for each v i∈V, and their relationships described in Section 3.3 through a

fragmentation graph. We then translate the problem of computing a minimal set of truth assignments into the

equivalent problem of computing a maximum weighted clique of the fragmentation graph.

A fragmentation graph is an undirected graph that implicitly represents all the truth assignments that may

belong to a correct set of truth assignments as they satisfy all the confidentiality constraints and an arbitrary

subset of visibility constraints. Edges in a fragmentation graph connect truth assignments that could appear

together in a correct set of truth assignments. The fragmentation graph has therefore a node for each partial

truth assignment in the set P# obtained from the closure of P under operator 1, where P = Pv1∪. . .∪Pvk
is

the set of one-paths extracted from the OBDDs representing v i∧¬(c1∨. . .∨cm), i = 1, . . . , k (see Section 3).

Note that each truth assignment in Pvi
is explicitly associated with visibility constraint v i. The rationale is

that the truth assignments in Pvi
satisfy at least v i, while not violating the confidentiality constraints. Set P#

includes both the truth assignments in P and the truth assignments resulting from the merging of any subset

of mergeable one-paths in P. The merging of two (partial) truth assignments Ii and Ij generates a (partial)

truth assignment Iij that is associated with a set of visibility constraints computed as the set-theoretic union

13

of those associated with Ii and Ij . We have therefore the guarantee that P# contains all the (partial) truth

assignments that represent fragments satisfying all the confidentiality constraints and a subset of the visibility

constraints. Each node in the fragmentation graph is modeled as a pair 〈I,V 〉, where I is a truth assignment

in P# and V is the set of the visibility constraints associated with I. Note that a complete truth assignment

that satisfies a set {v i,. . . ,v j}⊆V of visibility constraints is represented by 2n − 1 nodes in the fragmentation

graph, with n = |{v i, . . . , v j}|, one for each subset of {v i,. . . ,v j}. Clearly, the set of nodes in the graph

implicitly representing I may also represent other (different) truth assignments. The edges of the fragmentation

graph connect nodes that represent disjoint truth assignments associated with non-overlapping sets of visibility

constraints. Note that we add these edges because if there exist two nodes ni and nj representing two disjoint

partial truth assignments with overlapping sets of visibility constraints, by construction, P# must include also a

node nk that represents a partial truth assignment that is mergeable with the truth assignment represented by

ni (nj , respectively) and is associated with a set of visibility constraints non-overlapping with the set of visibility

constraints associated with nj (ni, respectively). The fragmentation graph therefore has an edge connecting

node nk with node nj , thus making the edge between nodes ni and nj redundant. A fragmentation graph is

formally defined as follows.

Definition 4.1 (Fragmentation graph) Given a set B = {a1, . . . , an} of Boolean variables, a set C =

{c1, . . . ,cm} of confidentiality constraints over B, a set V = {v1, . . . , vk} of visibility constraints over B, and

a set P=Pv1∪. . .∪Pvk
of one-paths in O1, . . . ,Ok, a fragmentation graph is an undirected graph GF (NF , EF)

where:

• NF = {〈I,V 〉: I∈P# ∧ V⊆V ∧ ∀v∈V , I(v)=1}, with P# the closure of P under 1;

• EF = {(ni,nj): ni,nj∈NF ∧ ni.I %↔nj .I ∧ ni.V ∩nj.V=∅}, with ni.I the truth assignment represented by

node ni, and ni.V the set of visibility constraints associated with ni.I.

Note that nodes with sets of visibility constraints that have at least one visibility constraint in common are

not connected by an edge in GF since, in a correct set of truth assignments, it is sufficient that each visibility

constraint is satisfied by one assignment. In fact, the release of multiple assignments satisfying the same visibility

constraint may imply the release of unnecessary fragments, that is, of a fragmentation which is not minimal.

Figure 9 illustrates the fragmentation graph resulting from the 1-closure on Pv1 , Pv2 , Pv3 in Figure 7. In this

figure and in the following, for readability purposes, we denote truth assignments by reporting attribute initials

with a different notation, depending on the truth value assigned to the corresponding variable. More precisely,

variables set to 1 are represented in uppercase and boldface (e.g., A), variables set to 0 are represented in

lowercase (e.g., a), and variables set to - are represented in uppercase (e.g., A).

14

We note that a clique in GF that includes, for each v∈V, at least a node n such that v∈n.V (i.e., n.I is

associated with v and satisfies it), represents a correct set I of truth assignments (Definition 3.2). In fact, by

definition of fragmentation graph, the nodes in the clique represent a set of disjoint (and possibly partial) truth

assignments (Condition 3) such that each of them satisfies all the confidentiality constraints (Condition 1).

Also, each visibility constraint v∈V is satisfied by at least one of the truth assignments in the clique, the one

represented by node n with v∈n.V (Condition 2). Analogously, each correct set I of truth assignments is

implicitly represented by a clique in GF , and the same clique may represent more than one correct set of truth

assignments. A correct set I of truth assignments is composed of complete truth assignments only, while the

nodes in the fragmentation graph may represent partial truth assignments. Given a clique in the fragmentation

graph, don’t care variables in the truth assignments represented by the nodes in the clique must be set to either 0

or 1 to obtain one of the correct sets of truth assignments represented by the clique, with the restriction that no

variable can assume value 1 in more than one fragment. Hence, we conveniently set all the don’t care variables

to 0. For instance, nodes 〈snBrZjID,{v1,v3}〉 and 〈snbRZJId,{v2}〉 form a clique for the fragmentation graph

in Figure 9 such that the corresponding assignments satisfy all the confidentiality and visibility constraints in

Figure 3. This clique corresponds to the set of truth assignments I = {[S=0, N=0, B=1, R=0, Z=1, J=0, I=0,

D=1], [S=0, N=0, B=0, R=0, Z=0, J=1, I=1, D=0]}. We note that the clique also implicitly represents I =

{[S=0, N=0, B=1, R=0, Z=1, J=0, I=0, D=1], [S=0, N=0, B=0, R=1, Z=0, J=1, I=1, D=0]}.

The problem of computing a correct set I of truth assignments can now be reformulated as the problem of

computing a clique C of the fragmentation graph GF such that
⋃

n∈C n.V=V. We are interested in computing

a minimal set of truth assignments (Problem 3.3), which corresponds to a clique of the fragmentation graph

that satisfies all the confidentiality and visibility constraints while minimizing the number of nodes composing

it. The problem of computing a minimal set of truth assignments (Problem 3.3), or equivalently the problem of

computing a minimal fragmentation (Problem 2.5), is then translated into the problem of computing a maximum

weighted clique for the fragmentation graph, where a weight function w assigns a weight to the nodes of the

graph so to model our minimization requirement. The maximum weighted clique problem has been widely

studied in the literature and is formulated as follows [23, 24].

Problem 4.2 (Maximum weighted clique) Given a weighted undirected graph G(N,E,w), with w : N →

R+, determine a subset C⊆N of nodes in N such that:

1. ∀ni,nj∈C, (ni,nj)∈E (C is a clique);

2. !C′ ⊆ N such that: i) C′ is a clique, and ii)
∑

n∈C′ w(n)>
∑

n∈C w(n) (C has maximum weight).

To reformulate the minimal set of truth assignments problem into the maximum weighted clique problem,

15

we define the weight function w in a way that satisfies the following three properties, which guarantee the

equivalence between a maximum weighted clique in GF (if it exists) and a minimal set of truth assignments.

1. Monotonicity of w with respect to the number of visibility constraints: given two cliques, the one associated

with a higher number of visibility constraints has higher weight.

2. Anti-monotonicity of w with respect to the number of nodes : given two cliques associated with the same

number of visibility constraints, the one composed of fewer nodes has higher weight.

3. Equivalence of solutions : cliques associated with the same number of visibility constraints and composed

of the same number of nodes have the same weight.

A weight function that satisfies all the properties above is w : NF → N+ with w(n)=(|V| · |n.V |)− 1, where

|V| is the number of visibility constraints, n is a node in NF , and |n.V | is the number of visibility constraints

associated with n. The weight of a set N ′
F ⊆ NF of nodes is the sum of the weights of the nodes composing it,

that is, w(N ′
F)=

∑
n∈N ′

F
w(n). We first prove that our weight function satisfies the properties above, and then

we show that such properties guarantee the equivalence between the minimum set of truth assignments problem

and the maximum weighted clique problem.

Property 4.3 (Weight function) Given a fragmentation graph GF (NF , EF), a weight function w : NF →

N+ with w(n)=(|V|·|n.V |)−1, and two cliques of GF , Ci = {ni1 , . . . , nix} and Cj = {nj1 , . . . , njy}, the following

conditions hold:

1.
∑x

k=1 |nik .V | >
∑y

k=1 |njk .V | =⇒ w(Ci)>w(Cj) (monotonicity of w with respect to the number of visibility

constraints);

2.
∑x

k=1 |nik .V | =
∑y

k=1 |njk .V | and x < y =⇒ w(Ci)>w(Cj) (anti-monotonicity of w with respect to the

number of nodes);

3.
∑x

k=1 |nik .V | =
∑y

k=1 |njk .V | and x = y =⇒ w(Ci)=w(Cj) (equivalence of solutions).

Proof:

1. Let us assume, by contradiction, that w(Ci)≤w(Cj), that is
∑x

k=1 w(nik) ≤
∑y

k=1 w(njk). Since w(n) =

(|V|·|n.V |) − 1, the above equation can be rewritten as
∑x

k=1(|V| · |nik .V |− 1) ≤
∑y

k=1(|V| · |njk .V |− 1),

which is equivalent to |V| ·
∑x

k=1 |nik .V |− x ≤ |V| ·
∑y

k=1 |njk .V |− y. This equation can be rewritten as

|V| · (
∑x

k=1 |nik .V |−
∑y

k=1 |njk .V |)− x+ y ≤ 0. Since, by assumption,
∑x

k=1 |nik .V | >
∑y

k=1 |njk .V |, we

have that |V| · (
∑x

k=1 |nik .V | −
∑y

k=1 |njk .V |) is greater than |V|. Also, 1 ≤ x ≤ |V| and 1 ≤ y ≤ |V|.

As a consequence, considering the worst case scenario,
∑x

k=1 |nik .V | −
∑y

k=1 |njk .V | = 1, x = |V|, and

16

y = 1, the equation becomes |V| − |V| + 1 ≤ 0, which is a contradiction proving the monotonicity of w

with respect to the number of visibility constraints.

2. Let us now assume, by contradiction, that w(Ci)≤w(Cj), that is |V|·
∑x

k=1 |nik .V |−x ≤ |V|·
∑y

k=1 |njk .V |−

y. Since by assumption
∑x

k=1 |nik .V | =
∑y

k=1 |njk .V |, the above inequality holds only if x > y, which

contradicts our hypothesis and proves the anti-monotonicity of w with respect to the number of nodes.

3. Let us now assume, by contradiction, that w(Ci)%=w(Cj), that is |V|·
∑x

k=1 |nik .V |−x %= |V|·
∑y

k=1 |njk .V |−

y. Since by assumption
∑x

k=1 |nik .V | =
∑y

k=1 |njk .V |, the above inequality holds only if x %= y, which

contradicts our hypothesis and proves the equivalence of solutions. "

To illustrate Property 4.3, consider the fragmentation graph in Figure 9, and cliques

C1={〈snBrZjID,{v1,v3}〉, 〈snbRZJId,{v2}〉}, C2={〈sNbRZJid,{v1}〉, 〈snbRZJId,{v2}〉},

C3={〈sNbRZJid,{v1}〉, 〈snbRZJId,{v2}〉, 〈snbRZjID,{v3}〉}, and C4={〈snBrZJId,{v1,v2}〉,

〈snbRZjID,{v3}〉}, with weight w(C1)=7, w(C2)=4, w(C3)=6, and w(C4)=7, respectively. According to

the monotonicity of the weight function with respect to the number of visibility constraints, w(C1)=7 >

w(C2)=4 since the nodes in C1 are associated with three visibility constraints, while the nodes in C2 are

associated with two constraints only. According to the anti-monotonicity of the weight function with respect to

the number of nodes, w(C1)=7 > w(C3)=6 although C1 (composed of two nodes) and C3 (composed of three

nodes) are associated with all the visibility constraints in Figure 3. According to the equivalence of solutions,

w(C1)=w(C4)=7 since the nodes in C1 and in C4 are associated with all the visibility constraints, and C1 and

C4 are composed of two nodes.

Given a fragmentation graph GF , a clique C of GF represents a correct set of truth assignments iff C is

associated with all the visibility constraints in V. It is interesting to note that, according to the definition of

weight function w of the fragmentation graph GF as w(n)=(|V| · |n.V |) − 1, C is associated with (and then

satisfy) all the visibility constraints only if the weight of C is higher than or equal to |V| · (|V| − 1). Formally,

this property can be formulated as follow.

Property 4.4 Given a fragmentation graph GF (NF , EF), a weight function w : NF → N+, with w(n) =

(|V| · |n.V |)− 1, and a clique C of GF :

∀v∈V, ∃n∈C s.t. v∈n.V ⇐⇒ w(C)≥|V| · (|V|− 1).

Proof: The weight of a clique C={n1,. . . ,ni} is computed as:
∑i

j=1(|V| · |nj .V |− 1) = |V| ·
∑i

j=1 |nj .V |− i.

Since, by hypothesis, C includes a node associated with v for each visibility constraint v∈V then
∑i

j=1 |nj .V | =

|V| and therefore w(C) = |V| · |V|− i. In the worst case, each node in the clique is associated with one visibility

17

constraint and the clique is then composed of |V| nodes. The weight of the clique is then w(C)=|V|·|V|−|V|=|V|·

(|V|− 1). Therefore, by Property 4.3, all cliques of GF associated with less than |V| visibility constraints have

weight lower than |V| · (|V|− 1). "

Property 4.4 guarantees that it is sufficient to check if the weight of the maximum weighted clique of GF

is higher than or equal to |V| · (|V| − 1) to determine whether a correct set of truth assignments exists for

the considered instance of the problem. To illustrate, consider the fragmentation graph in Figure 9. Clique

C1 = {〈sNbRZJid,{v1}〉, 〈snbRZJId,{v2}〉} is associated with two out of the three visibility constraints in V,

and has weight 2+2=4, which is lower than 3·(3−1)=6. Clique C2 = {〈sNbRZJid,{v1}〉, 〈snbRZJId,{v2}〉,

〈snbRZjID,{v3}〉} is associated with all the visibility constraints, and has weight 2+2+2=6.

We now formally prove that Properties 4.3 and 4.4 discussed above guarantee that the problem of computing

a minimal set of truth assignments (Problem 3.3) is equivalent to the problem of computing a maximum weighted

clique of a fragmentation graph with weight at least |V| · (|V|− 1).

Theorem 4.5 (Problem equivalence) The minimal set of truth assignments problem (Problem 3.3) is equiv-

alent to the problem of determining a maximum weighted clique of weight at least |V|·(|V|−1) of the fragmentation

graph GF (NF ,EF) (Definition 4.1), with weight function w : NF → N+ s.t. w(n)=(|V| · |n.V |)− 1.

Proof: The proof of this theorem immediately follows from Properties 4.3 and 4.4. Indeed, the maximum

weighted clique C = {n1,. . . ,ni} of the fragmentation graph GF satisfies the maximum number of visibility

constraints, according to the monotonicity of w with respect to the number of visibility constraints associated

with the nodes in C. If there are different cliques in GF associated with the same number of visibility constraints,

C is the one composed of the minimum number of nodes, according to the anti-monotonicity of w with respect

to the number of nodes. Let us now suppose that the set of nodes composing the clique C having maximum

weight is associated with all the visibility constraints. Property 4.4 guarantees that w(C) is, in the worst case,

equal to |V| · (|V|− 1). "

Since the minimal set of truth assignments problem and the minimal fragmentation problem are equiva-

lent, the minimal fragmentation problem is also equivalent to the maximum weighted clique problem on the

fragmentation graph with the weight function defined above.

In the following section, we will present an algorithm for computing a minimal set of truth assignments,

exploiting the equivalence proved by Theorem 4.5. In Section 6, we will introduce a heuristic algorithm for

computing a locally minimal set of truth assignments.

18

5 Computing a Minimal Set of Truth Assignments

The algorithm we propose for computing a minimal set of truth assignments (see Figure 10) takes as input a set

B = {a1, . . . , an} of Boolean variables (representing the attributes in R), a set C = {c1, . . . , cm} of confidentiality

constraints, a set V = {v1, . . . , vk} of visibility constraints, and executes the following three steps: 1) it computes

the set of one-paths of the OBDDs representing Boolean formulas v i∧¬(c1∨. . .∨cm), i = 1, . . . , k; 2) it builds

the fragmentation graph; 3) it determines a maximum weighted clique of the fragmentation graph, and checks

if the clique represents a correct set of truth assignments. In the following, we describe these steps more in

details.

Step 1: Compute one-paths. For each visibility constraint v i∈V, the algorithm defines the OBDD O i

representing Boolean formula v i∧¬(c1∨. . .∨cm). Then, it extracts from O i the set Pvi
of one-paths (lines 1–4),

i = 1, . . . , k. If, for a given O i, the set Pvi
is empty, v i cannot be satisfied without violating the confidentiality

constraints and therefore the algorithm terminates, returning an empty set of truth assignments (line 5).

Step 2: Build the fragmentation graph. The algorithm first builds an undirected weighted graph G(N ,

M∪D, w) such that for each truth assignment I in Pvi
, i = 1, . . . , k, there is a node n ∈ N , with n.I=I,

n.V={v i}, and n.weight = (|V| · |n.V |) − 1 (lines 10–14). Then, for each pair of nodes ni and nj in N ,

the algorithm inserts edge (ni,nj) in M if ni and nj represent a pair of mergeable truth assignments that are

associated with non-overlapping sets of visibility constraints. This edge indicates that the one-paths represented

by ni and nj can be merged, thus obtaining a truth assignment associated with both the visibility constraints

in ni.V and in nj .V (lines 20–22). Edge (ni,nj) is inserted in D if ni and nj represent two disjoint truth

assignments associated with non-overlapping sets of visibility constraints. In this case, edge (ni,nj) indicates

that the one-paths represented by ni and nj can belong to the same correct set of truth assignments, and

that these one-paths guarantee the satisfaction of different subsets of visibility constraints (lines 23–25). Note

however that, as already discussed in Section 4.1, the truth assignments associated with ni and nj may also

satisfy additional (possibly overlapping) visibility constraints that are not explicitly associated with them. If ni

and the nodes to which it is connected do not satisfy all the visibility constraints in V, ni cannot belong to any

maximum weighted clique representing a correct set of truth assignments. In fact, a clique is a solution of the

fragmentation problem only when, for each visibility constraint v in V, there is a node in the clique such that

v is associated with such a node. For this reason, the algorithm removes ni from G (lines 26–29).

The algorithm then transforms the graph G representing the one-paths in P=Pv1∪ . . .∪Pvk
into a frag-

mentation graph by computing the closure of P (i.e., the nodes in N) under merging operator 1. To this

end, the algorithm creates a copy M ′ of the set M of edges and initializes M to the empty set (lines 31–32).

19

Then, the algorithm iteratively extracts an edge (ni,nj) from M ′, and determines a new node nij such that

nij .I=ni.I1nj .I and nij .V=ni.V ∪nj .V (lines 34–36). The weight nij .weight is set to |V|·|nij .V | − 1 (see Sec-

tion 4), thus reflecting the number of visibility constraints associated with the node (line 37). Before inserting

nij in G, the algorithm checks if nij satisfies all the visibility constraints (line 38). If this is the case, nij

represents a maximum weighted clique for G. Isol is then set to nij .I, don’t care variables are set to 0, and

the algorithm terminates returning Isol (lines 39–41). Otherwise, node nij is inserted in G, and the algorithm

checks if nodes adjacent either to ni or to nj are also adjacent (with a mergeable or disjoint edge) to nij , thus

possibly inserting in M or in D the corresponding edges (lines 42–46). Note that the algorithm needs only to

check nij against the nodes in N that are mergeable/disjoint with ni.I or nj .I, since satisfying any of these

conditions is a precondition for being mergeable/disjoint with nij .I. When the set M ′ of edges is empty, the

algorithm checks whether there are nodes in N that can be removed from G since they cannot belong to any

maximum weighted clique (lines 47–51). The algorithm then iteratively repeats the process of removing edges

from M (i.e., it creates a copy M ′ of M and inserts new nodes and edges in N , M , and D, respectively) until

the set M of edges is empty, that is, no edge is inserted in M during the process of merging nodes connected

through the edges in M ′ (i.e., until G is a fragmentation graph).

Step 3: Compute a maximum weighted clique. The algorithm exploits a known algorithm [23] to com-

pute a maximum weighted clique of the fragmentation graph (line 53). Function FindMaxWeightedClique

takes the fragmentation graph as input and returns a maximum weighted clique. If the weight of the clique is

lower than |V|·(|V|−1), the considered instance of the problem does not admit a correct set of truth assignments

(line 54). Otherwise, if w(C) is at least |V| · (|V|− 1), the one-paths represented by the nodes in C are inserted

in Isol , don’t care variables are set to 0 (lines 56–59), and Isol is returned (line 60).

Example 5.1 Consider relation Patients and the confidentiality and visibility constraints over it in Figure 1.

The execution of the algorithm in Figure 10 proceeds as follows.

1) Compute one-paths. The algorithm builds O1, O2, and O3 in Figure 7, representing formula

v i∧¬(c1∨. . .∨c5), i = 1, 2, 3, and extracts their one-paths, which are listed in Figure 7.

2) Build the fragmentation graph. The algorithm inserts in G a node for every one-path in Pv1 , Pv2 , and

Pv3 (see Figure 11(a)). Figure 11(b) shows the graph obtained connecting the nodes in Figure 11(a)

that represent mergeable truth assignments (dotted edges) and disjoint truth assignments (continuous

edges). Nodes 〈sNBRzJid,{v1}〉 and 〈snBRzJId,{v2}〉 in Figure 11(a) do not appear in the graph in

Figure 11(b) since they neither are associated with v3 nor could be connected with a node that is asso-

ciated with v3, and therefore cannot be part of a clique. The algorithm then computes the closure of

20

the nodes in G. It first merges nodes 〈snBrZJId,{v1}〉 and 〈snBrZJId,{v2}〉, inserts the resulting node

〈snBrZJId,{v1,v2}〉 in N , and checks if it can be connected by an edge in D with node 〈snbRZjID,{v3}〉

and/or with node 〈sNbRZJid,{v1}〉 (the nodes adjacent to the merged nodes). Since 〈snBrZJId,{v1,v2}〉

and 〈snbRZjID,{v3}〉 represent disjoint assignments and are associated with non-overlapping sets of

visibility constraints, the algorithm inserts edge (〈snBrZJId,{v1,v2}〉,〈snbRZjID,{v3}〉) in D, while it

does not insert the edge connecting 〈snBrZJId,{v1,v2}〉 with 〈sNbRZJid,{v1}〉 since v1 is associated

with both nodes. The resulting graph is illustrated in Figure 11(c), where the new node is doubly cir-

cled. The algorithm then merges nodes 〈snBrZjID,{v1}〉 and 〈snBrZjID,{v3}〉, inserts the resulting node

〈snBrZjID,{v1,v3}〉 in N , and inserts edge (〈snBrZjID,{v1,v3}〉,〈snbRZJId,{v2}〉) in D. Figure 11(d)

illustrates the resulting graph, where the new node is doubly circled. Since there are no more mergeable

edges in M , the algorithm checks whether there are nodes in N that can possibly be removed from G. Node

〈snBrZJId,{v1}〉 is only connected with a node associated with v3 and has no connections with nodes as-

sociated with v2, and therefore it is removed from G. Figure 11(d) illustrates the resulting fragmentation

graph.

3) Compute a maximum weighted clique. The algorithm calls function FindMaxWeightClique that returns

one of the two maximum weighted cliques in G, C={〈snBrZjID,{v1,v3}〉,〈snbRZJId,{v2}〉}. The weight

of this clique is w(C) = 7 and is higher than threshold |V| ·(|V|−1) = 6. Therefore, C represents a solution

to the minimal set of truth assignments problem. The algorithm extracts from C the corresponding set of

truth assignments, and the don’t care variables are set to 0, thus obtaining Isol = {[S=0, N=0, B=1, R=0,

Z=1, J=0, I=0, D=1], [S=0, N=0, B=0, R=0, Z=0, J=1, I=1, D=0]} that is finally returned. We note

that this set of truth assignments corresponds to the minimal fragmentation F={{Birth,ZIP,Disease},

{Job,InsRate}} in Figure 2.

The correctness and complexity of the algorithm in Figure 10 are stated by the following theorems.

Theorem 5.2 (Correctness of the exact algorithm) Given a set B of Boolean variables, a set C of confi-

dentiality constraints over B, and a set V of visibility constraints over B, the algorithm in Figure 10 terminates

and computes (if it exists) a minimal set of truth assignments.

Proof: See Appendix A. "

Theorem 5.3 (Complexity of the exact algorithm) Given a set B of Boolean variables, a set C of con-

fidentiality constraints over B, and a set V of visibility constraints over B, the complexity of the algorithm in

Figure 10 is O(2
∏

v∈V
|Pv |·|B|+(|V|+ |C|)2|B|) in time, where Pv is the set of one-paths of the OBDD representing

v∧¬(c1∨. . .∨cm).

21

Proof: See Appendix A. "

The computational cost of the algorithm is obtained as the sum of the cost of building the OBDDs, which is

O((|V|+ |C|)2|B|), and of the cost of determining Isol by building the fragmentation graph and searching for its

maximum weighted clique, which is O(2
∏

v∈V
|Pv |·|B|). We note that the computational cost of the construction

of the OBDDs is exponential in the worst case, but in the majority of real-world applications OBDD-based

approaches are computationally efficient [7, 18].

6 Computing a Locally Minimal Set of Truth Assignments

Since the problem of computing a minimal set of truth assignments is NP-hard, the computational complexity

of any algorithm that finds a solution to the problem is exponential in the size of the input. In this section, we

therefore propose a heuristic algorithm that computes a locally minimal set of truth assignments (Problem 3.5)

with a limited computational effort. The algorithm exploits Theorem 4.5 to take advantage of the graph

modeling of the problem but does not explicitly create the fragmentation graph. The idea consists in using

the relationships between the one-paths extracted from the OBDDs representing confidentiality and visibility

constraints to iteratively build a clique. The algorithm does not compute the closure of the one-paths in

Pv1∪. . .∪Pvk
under operator 1, but composes them when necessary. It then starts from an empty clique C

and, at each iteration, tries to insert in C a node n (possibly composing it with nodes in C) that is associated

with a visibility constraint that is not associated with any node already in C. The algorithm terminates when

it finds a clique C of weight at least |V| · (|V|− 1).

Figure 12 illustrates the pseudocode of the algorithm that takes as input a set B = {a1, . . . , an} of Boolean

variables (representing the attributes in R), a set C = {c1, . . . , cm} of confidentiality constraints, and a set

V = {v1, . . . , vk} of visibility constraints and computes, if it exists, a locally minimal set of truth assignments.

The algorithm executes four steps: 1) it extracts the set of one-paths from the OBDDs representing Boolean

formulas v i∧¬(c1∨. . .∨cm), i = 1, . . . , k; 2) it creates a node for each of these one-paths; 3) it iteratively builds

a clique of the fragmentation graph; 4) it combines the one-paths represented by the nodes in the clique, if

this combination does not violate confidentiality constraints, to minimize the number of assignments in the

computed set. In the following, we describe these steps more in details.

Step 1: Compute one-paths. Like for the exact algorithm (Section 5, step 1), for each v i∈V the algorithm

extracts from the OBDD O i representing Boolean formula v i∧¬(c1∨. . .∨cm) the set Pvi
of one-paths (lines

2–4). If, for a given O i, the set Pvi
is empty, the algorithm terminates and returns an empty solution (line 5).

22

Step 2: Generate nodes representing one-paths. The algorithm inserts a node n=〈I,{v }〉 in graph G for

each one-path I∈Pv1∪. . .∪Pvk
. Unlike the exact algorithm, it does not explicitly insert the edges inG connecting

pairs of nodes that represent mergeable and disjoint truth assignments. In contrast, it implicitly considers these

relationships in the building process of a clique. The algorithm then partitions nodes in G according to the

visibility constraint associated with them, and orders the obtained sets of nodes Ni, i = 1, . . . , |V|, by increasing

cardinality (lines 10–13). The reason for this ordering is to consider first the visibility constraints that can be

satisfied by a smaller set of truth assignments (represented by a smaller set of nodes in the graph). Nodes in Ni,

i = 1, . . . , |V|, are ordered by decreasing number of don’t care variables in the truth assignments they represent

(lines 14–15). The intuition is that nodes representing truth assignments with a higher number of don’t care

variables implicitly represent a larger set of complete truth assignments (where don’t care variables can be set

to either 0 or 1) and therefore they impose less constraints on subsequent choices of the nodes that can be

inserted in a clique with them. Indeed, as already noted in Section 3.3, don’t care variables do not affect the

linkability or the mergeability of truth assignments.

Step 3: Build a clique for the fragmentation graph. The algorithm iteratively builds a clique by

calling recursive function DefineClique (line 17). Function DefineClique receives as input a clique C of the

fragmentation graph and an integer number i , 1 ≤ i ≤ k, indicating that C either includes a node in Nj ,

j = 1, . . . , (i − 1), or a node resulting from the combination of a node in Nj with another node in Nl, with

l < j (i.e., C includes a node n such that v∈n.V , for each visibility constraint v associated with the nodes in

N1, . . . , Nj). For each node nj in Ni, function DefineClique verifies whether nj can be inserted in C, that

is, if: i) for each node n in C, n.I and nj .I are disjoint; or ii) nj .I is mergeable with a subset of the truth

assignments represented by the nodes in C and the resulting truth assignment is disjoint from all the other

truth assignments represented by nodes in C. To efficiently check if nj satisfies one of the conditions above, the

function first identifies the set LinkableNodes of nodes in C representing truth assignments linkable with nj .I

(line 33). For each nl in LinkableNodes , if nl.I is mergeable with n.I (with n initialized to nj), n.I is set to

n.I1nl.I, and n.V is set to n.V ∪nl.V (lines 37–39). If nl.I is linkable but not mergeable with n.I, n cannot

be part of clique C since nl.I and n.I are not disjoint (line 39). We note that nodes in C representing truth

assignments that are mergeable and disjoint to nj .I are not combined in a unique node. In fact, by composing

a pair of disjoint truth assignments, the algorithm would discard, without evaluation, all the correct solutions

where the two truth assignments are represented by distinct nodes. If all the nodes in LinkableNodes can be

combined with nj (i.e., the one-paths they represent are all mergeable), the algorithm then determines a new

clique C′ obtained by removing LinkableNodes from C and inserting n in C′ (lines 40–41). If i=|V|, C′ satisfies

all the visibility constraints, has a weight at least equal to |V| · (|V| − 1), and is returned (line 42). Otherwise,

23

function DefineClique is recursively called with C′ and i + 1 as input (line 43). If the clique resulting from

this recursive call is not empty, it represents a correct set of truth assignments and is therefore returned (line

44). If no node in Ni can be inserted in C, an empty clique is returned and the algorithm looks for a different

clique of the fragmentation graph.

Step 4: Minimize the number of assignments. The clique C computed by function DefineClique may

represent a correct set of truth assignments that is not locally minimal. In fact, it may include one-paths that

can be combined without violating confidentiality constraints. Every pair of nodes in C is then checked and

their truth assignments are ORed whenever they can be combined without violating confidentiality constraints

(i.e., the algorithm performs the union of the corresponding fragments). To this purpose, the algorithm first

assigns value 0 to don’t care variables in the truth assignments represented by the nodes in C (line 20). Then,

it iteratively extracts a node ni from C, assigns ni.I to Ii and, for each nj in C, it checks if Ii can be composed

with one-path Ij , with Ij = nj .I without violating confidentiality constraints (lines 21–28). If this is the case,

Ii is set to Ii∨Ij , and nj is removed from C. When the algorithm has checked if Ii can be combined with

all the one-paths represented by nodes in C, it inserts Ii in Isol (line 29). It is important to note that the

algorithm does not check if Ii can be combined with the truth assignments already in Isol . In fact, all the truth

assignments in Isol have already been checked against all the assignments in C, and therefore also against Ii .

Finally, the algorithm returns Isol (line 30).

Example 6.1 Consider relation Patients and the confidentiality and visibility constraints over it in Figure 1.

The execution of the algorithm in Figure 12 proceeds as follows.

1) Compute one-paths. The algorithm first builds O1, O2, and O3 in Figure 7, representing

v i∧¬(c1∨. . .∨c5), i = 1, 2, 3, and extracts their one-paths, which are listed in Figure 7.

2) Generate nodes representing one-paths. The algorithm creates a node for each one-path in Pv1 , Pv2 , and

Pv3 , obtaining the set N of nodes illustrated in Figure 13(a). The algorithm partitions N in three sets

N1, N2, and N3 depending on the visibility constraint associated with each node in N , and orders these

sets by increasing cardinality (i.e., |N1| ≤ |N2| ≤ |N3|). N1 includes the nodes associated with v2, N2

includes the nodes associated with v3, and N3 includes the nodes associated with v1. The nodes in N1,

N2, and N3 are then ordered by decreasing number of don’t care variables, as illustrated in Figure 13(a).

3–4) Build a clique for the fragmentation graph and minimize the number of assignments. Figure 13(b) il-

lustrates the recursive calls to function DefineClique showing for each execution: the value of input

parameters C and i; the candidate node nj in N i to insert in C; its relationships with nodes already in

C; and the computed clique C′. The clique finally returned by the function includes three nodes: C =

24

{〈sNbRZJid,{v1}〉, 〈snbRZJId,{v2}〉, 〈snbRZjId,{v3}〉}, which cannot be further combined without vio-

lating confidentiality constraints. The corresponding set of truth assignments is Isol = {[S=0, N=1, B=0,

R=0, Z=0, J=0, I=0, D=0], [S=0, N=0, B=0, R=0, Z=0, J=1, I=1, D=0], [S=0, N=0, B=0, R=1, Z=0,

J=0, I=0, D=1]}, which corresponds to locally minimal fragmentation F = {{Name}, {Job,InsRate},

{Race,Disease}}. We note that this fragmentation is not minimal, since there exists at least a correct

fragmentation composed of two fragments (Example 5.1).

The correctness and complexity of the algorithm in Figure 12 are stated by the following theorems.

Theorem 6.2 (Correctness of the heuristic algorithm) Given a set B of Boolean variables, a set C of

confidentiality constraints over B, and a set V of visibility constraints over B, the algorithm in Figure 12

terminates and computes (if it exists) a locally minimal set of truth assignments.

Proof: See Appendix A. "

Theorem 6.3 (Complexity of the heuristic algorithm) Given a set B of Boolean variables, a set C of

confidentiality constraints over B, and a set V of visibility constraints over B, the complexity of the algorithm

in Figure 12 is O(
∏

v∈V |Pv | · |B| + (|V| + |C|)2|B|) in time, where Pv is the set of one-paths of the OBDD

representing v∧¬(c1∨. . .∨cm).

Proof: See Appendix A. "

We note that the computational cost of the algorithm includes, like the exact algorithm, the (exponential)

cost of building the OBDDs. Indeed, both the algorithms first transform the input of the fragmentation problem

into a set of one-paths, which represents the input to the problem of computing a (maximum weighted) clique

of the fragmentation graph. The advantage of our heuristic over the exact algorithm illustrated in Section 5 is

related to the search of the clique, which is exponential in the number of one-paths in the exact approach, and

polynomial in the number of one-paths in the heuristic approach.

7 Experimental Results

The exact and heuristic algorithms presented in Sections 5 and 6, respectively, have been implemented as C

programs to experimentally assess their behavior in terms of execution time and quality of the solution. To

efficiently manage OBDDs we used the CUDD libraries [27], and to compute the maximum weighted clique of

our fragmentation graph we used the implementation of the algorithm described in [23]. The experiments have

been carried out on a laptop equipped with Intel 2 Duo 2GHz processor, 4 GB RAM, running Windows 7, 32

bit version.

25

As formally proved by Theorems 5.3 and 6.3, the computational complexity of both the exact and heuristic

algorithms depends on the number of one-paths extracted from the OBDDs representing the constraints. As a

consequence, we compared the execution time and the quality of the solution computed by the two algorithms

varying the number of one-paths in the range between 10 and 30,000. The configurations considered in our

experiments have been obtained starting from a relation schema composed of a number of attributes varying

from 10 to 40. For each configuration, we randomly generated sets of confidentiality and visibility constraints.

The number of confidentiality and visibility constraints varies from 5 to 25 and from 2 to 10, respectively. Each

confidentiality and visibility constraint includes a number of attributes that varies from 2 to 8 and from 2 to

4, respectively. In line with real world scenarios, constraints include a limited number of attributes. Also, the

number of visibility constraints is lower than the number of confidentiality constraints, since this choice reflects

most real world scenarios, where the need for privacy imposes more constraints than the need for data release.

Our experimental results evaluate three aspects: i) the number of one-paths extracted from the OBDDs

representing the constraints; ii) the execution time of the exact and heuristic algorithms; and iii) the quality

of the solution, in terms of number of fragments, computed by the exact and the heuristic algorithms.

Number of one-paths. One of the main advantages of OBDDs is that the number of their one-paths is

not related to the complexity of the Boolean formulas they represent. Complex Boolean formulas expressed

on a high number of variables may therefore be characterized by an extremely low number of one-paths. We

then experimentally measure the number of one-paths of configurations with a growing number of attributes

and of confidentiality and visibility constraints. Figure 14 illustrates the number of one-paths characterizing

configurations with a number of attributes varying from 10 to 40 (the scale of the y-axis is logarithmic). The

results illustrated in the graph have been computed as the average of the number of one-paths obtained with

30 simulations for each configuration, where the number of constraints in each configuration varies as explained

above. Note that the overall number of simulations is more than 30 since we discarded the best and worst

cases, and those configurations characterized by visibility constraints that are in contrast with confidentiality

constraints (i.e., configurations that do not admit a solution). As expected, the average number of one-paths

grows more than linearly with the number of attributes. It is however interesting to note that the number of

one-paths remains considerably lower than 2|B| in all the considered configurations. This is consistent with real

world scenarios, where confidentiality constraints (visibility constraints, respectively) involve a limited number

of attributes.

Execution time. As expected from the analysis of the computational complexity of our algorithms (see

Theorems 5.3 and 6.3), the heuristic algorithm outperforms the exact algorithm. Indeed, consistently with

26

the fact that the minimal fragmentation problem is NP-hard, the exact approach requires exponential time in

the number of one-paths, that is, of nodes in the fragmentation graph, which is even higher than the number

of one-paths extracted from OBDDs. We run the exact algorithm only for configurations with at most 1,000

one-paths, since this configuration is characterized by a fragmentation graph including more than 6,000 nodes

and more than 190,000 edges. To further confirm the exponential growth of the computational time required by

the exact algorithm, we compute the fragmentation graph also for larger configurations (up to 5,000 one-paths,

for which the computation of the fragmentation graph takes more than 806.99 seconds). Figure 15 compares the

execution time of our heuristic and exact algorithms (for configurations with up to 1,000 one-paths), varying

the number of one-paths represented by the OBDDs (the scale of both the x-axis and the y-axis is logarithmic).

The figure also reports the time required for computing the fragmentation graph for configurations including

between 1,000 and 5,000 one-paths, and the execution time of the heuristic algorithm for configurations including

between 5,000 and 30,000 one-paths, highlighting the benefit of the heuristic approach that does not explicitly

build the fragmentation graph.

To better understand the impact of building the OBDDs modeling the constraints and extracting their

one-paths, we measure the execution time required by this step, which is common to the exact and heuristic

algorithms. It is interesting to note that the impact of this step on the overall execution time of both our

algorithms is negligible. In fact, it remains under 454 milliseconds in all the considered configurations.

Quality of the solution. Figure 16 reports the comparison between the number of fragments obtained by

the execution of the exact and the heuristic algorithms (the scale of the x-axis is logarithmic). The comparison

shows that, in the majority of the configurations where the comparison was possible (i.e., for configurations

with less than 1,000 one-paths), our heuristic algorithm computes a locally minimal fragmentation that is

also minimal since the fragmentations computed by the two algorithms have the same number of fragments.

Figure 16 reports the number of fragments in the locally minimal fragmentations computed by the heuristic

algorithm also for configurations with a number of one-paths between 1,000 and 5,000. It is interesting to note

that also for these configurations, characterized by a considerable number of attributes and of confidentiality

and visibility constraints, the number of fragments in the locally minimal fragmentation remains limited (in

our experiments, it varies between 1 and 3 fragments). We can then conclude that our heuristic algorithm is

efficient, computes a solution close to optimum, and can therefore be conveniently adopted in many scenarios.

27

8 Related Work

Data fragmentation has been studied as a solution to enforce confidentiality constraints in outsourcing scenarios,

where data are stored and managed at external honest-but-curious servers [13, 16, 26]. In fact, most of the

proposals in this scenario are based on the assumption that data are all equally sensitive and therefore must be

entirely encrypted to protect their confidentiality.

The proposals based on fragmentation can be classified as solutions that: 1) combine fragmentation and

encryption [1, 9, 11]; and 2) depart from encryption and satisfy confidentiality constraints by splitting the

data over two fragments, one of which is stored at the data holder site [8, 10, 28, 29]. Among the first

class of solutions, the approach introduced in [1] relies on the presence of two non-communicating servers.

Confidentiality constraints are satisfied by splitting data between two fragments and resorting to encryption

to protect sensitive attribute values and sensitive associations whenever two fragments are not sufficient to

break all of them. The approach in [9, 11] enforces association constraints by splitting the data among multiple

unlinkable fragments, which can also be stored on a single server, and encrypting only the attributes in singleton

constraints. The fragmentation approach in [9, 11] is aimed at minimizing query execution costs for the client.

The solutions that exploit storage space resources at the data holder side are aimed at completely departing

from encryption, to avoid key management overheads. The approach in [8, 10] adopts vertical fragmentation

to split the data between two fragments, in such a way to minimize the storage and/or computational burden

of the data holder caused by the direct management of one of these fragments. The technique in [29] adopts

instead horizontal fragmentation to protect sensitive associations possibly specified at the instance level (i.e.,

that depend on attribute values). Although the approach presented in this paper shares with these proposals

the use of fragmentation for properly protecting sensitive data and/or associations, we take into consideration

a different scenario and address a different problem. In fact, our solution considers a data publishing scenario,

in contrast to data outsourcing, and aims at satisfying, besides confidentiality, also visibility constraints, which

have been introduced in [14] where the authors adopt SAT solvers to compute a correct fragmentation. All

these approaches are based on the assumption that an attacker does not have any additional knowledge on the

original data collection. Therefore, she cannot infer sensitive information by combining her a-priori knowledge

with the published fragments. Note that in [4] the authors prove that, for solutions that exploit storage at the

data holder side, the impossibility of inferring sensitive information also holds when the knowledge of a possible

attacker is limited to Equality and Tuple Generating Dependencies (which include both functional and join

dependencies).

The work presented in this paper has some affinities with the proposals that introduce a policy-based

classification of the data to protect their confidentiality (e.g., [2, 3, 5, 6]). The solution in [3] guarantees

28

confidentiality of sensitive data through a policy-based classification of databases. The confidentiality policy is

described through a classification instance representing the combinations of values that need to be protected.

The result of the evaluation of a query is then released to the requesting user only if it does not contain values

that are considered sensitive according to the classification instance. Since a user’s prior knowledge could be

exploited to infer sensitive information, in [5, 6] the authors propose a model for the modification of the database

instance visible to the user. This solution guarantees both data confidentiality (as specified by the data holder’s

policy) and consistency with a user’s prior knowledge while ensuring maximum visibility of correct database

answers. The approach in [2] aims instead at defining privacy constraints by reducing the problem of protecting

the data from inference to the problem of enforcing access control in relational databases. These approaches

differ from the proposal in this paper since they do not use fragmentation to protect confidentiality, but are

concerned with returning to users query results that do not contain combinations of values that are sensitive or

that can be exploited to infer sensitive information.

The problem of fragmenting relational databases while maximizing query efficiency has already been stud-

ied and some approaches have been proposed (e.g., [21, 22]). However, these techniques are not applicable

to our problem, since they are only aimed at performance optimization and do not take into consideration

confidentiality and visibility constraints.

Other related work is represented by proposals that introduce OBDD-based approaches for solving constraint

satisfaction problems (e.g. [15, 17, 19]). These approaches compute a truth assignment for a set of variables that

satisfies a set of constraints among the Boolean variable values. The solution described in this paper differs from

the techniques proposed for general constraint satisfaction problems, since our approach takes advantage of the

monotonicity of confidentiality and visibility constrains and therefore fully exploits the implicit representation

of sets of truth assignments provided by OBDDs. These peculiarities of the fragmentation problem permit to

limit the computational effort required to compute an optimal solution.

9 Conclusions

We addressed the problem of fulfilling both the needs of properly protecting sensitive data and of guaranteeing

visibility requirements in data publishing scenarios. The proposed solution relies on a graph-based modeling of

the fragmentation problem that takes advantage of a novel OBDD-based approach compactly representing con-

fidentiality and visibility constraints. The fragmentation problem is then reformulated in terms of the problem

of computing a maximum weighted clique over a graph modeling the fragments that satisfy confidentiality and

(a subset of) visibility constraints. The set of fragments in the graph are efficiently computed adopting OBDDs

that represent the Boolean formulas corresponding to confidentiality and visibility constraints. We presented

29

both an exact and a heuristic algorithm to solve the fragmentation problem and experimentally compared their

efficiency and the quality of the fragmentations computed by the heuristics. Our work leaves space for further

investigations, including: dynamic datasets, where data in the original relation change over time; multiple input

relations; and possible dependencies among attributes in the original relation, which observers can exploit for

reconstructing the association between data in different fragments.

Acknowledgements

This work was partially supported by the Italian Ministry of Research within the PRIN 2008 project “PEPPER”

(2008SY2PH4).

References

[1] G. Aggarwal, M. Bawa, P. Ganesan, H. Garcia-Molina, K. Kenthapadi, R. Motwani, U. Srivastava,

D. Thomas, and Y. Xu. Two can keep a secret: A distributed architecture for secure database services. In

Proc. of CIDR 2005, Asilomar, CA, USA, January 2005.

[2] J. Biskup, D.W. Embley, and J. Lochner. Reducing inference control to access control for normalized

database schemas. Information Processing Letters, 106(1):8–12, March 2008.

[3] J. Biskup and J. Lochner. Enforcing confidentiality in relational databases by reducing inference control

to access control. In Proc. of ISC 2007, Valparáıso, Chile, October 2007.

[4] J. Biskup, M. Preuß, and L. Wiese. On the inference-proofness of database fragmentation satisfying

confidentiality constraints. In Proc. of ISC 2011, Xi’an, China, October 2011.

[5] J. Biskup and L. Wiese. Combining consistency and confidentiality requirements in first-order databases.

In Proc. of ISC 2009, Pisa, Italy, September 2009.

[6] J. Biskup and L. Wiese. A sound and complete model-generation procedure for consistent and

confidentiality-preserving databases. Theoretical Computer Science, 412(31):4044 – 4072, June 2011.

[7] R.E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE TC, 35(8):677–691, August

1986.

[8] V. Ciriani, S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Samarati. Enforcing

confidentiality constraints on sensitive databases with lightweight trusted clients. In Proc. of DBSec 2009,

Montreal, Quebec, Canada, July 2009.

30

[9] V. Ciriani, S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Samarati. Fragmen-

tation design for efficient query execution over sensitive distributed databases. In Proc. of ICDCS 2009,

Montreal, Canada, June 2009.

[10] V. Ciriani, S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Samarati. Keep a

few: Outsourcing data while maintaining confidentiality. In Proc. of ESORICS 2009, Saint Malo, France,

September 2009.

[11] V. Ciriani, S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Samarati. Combining

fragmentation and encryption to protect privacy in data storage. ACM TISSEC, 13(3):22:1–22:33, July

2010.

[12] V. Ciriani, S. De Capitani di Vimercati, S. Foresti, G. Livraga, and P. Samarati. Enforcing confidentiality

and data visibility constraints: An OBDD approach. In Proc. of DBSec 2011, Richmond, VA, USA, July

2011.

[13] E. Damiani, S. De Capitani di Vimercati, S. Jajodia, S. Paraboschi, and P. Samarati. Balancing confi-

dentiality and efficiency in untrusted relational DBMSs. In Proc. of CCS 2003, Washington, DC, USA,

October 2003.

[14] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Samarati. Fragments and loose

associations: Respecting privacy in data publishing. Proc. of the VLDB Endowment, 3(1):1370–1381,

September 2010.

[15] G. Gange, P.J. Stuckey, and V. Lagoon. Fast set bounds propagation using a BDD-SAT hybrid. Interna-

tional Journal of Artificial Intelligence, 38(1):307–338, May 2010.

[16] H. Hacigümüs, B. Iyer, and S. Mehrotra. Providing database as a service. In Proc. of ICDE 2002, San

Jose, CA, USA, February 2002.

[17] T. Hadzic, E.R. Hansen, and B. O’Sullivan. On automata, MDDs and BDDs in constraint satisfaction. In

Proc. of ECAI 2008, Patras, Greece, July 2008.

[18] D.E. Knuth. The Art of Computer Programming, Volume 4, Fascicle 1: Bitwise Tricks & Techniques;

Binary Decision Diagrams. Addison-Wesley Professional, 2009.

[19] M. Kurihara and H. Kondo. Efficient BDD encodings for partial order constraints with application to

expert systems in software verification. In B. Orchard, C. Yang, and M. Ali, editors, Innovations in

Applied Artificial Intelligence. Springer, 2004.

31

[20] C. Meinel and T. Theobald. Algorithms and Data Structures in VLSI Design. Springer-Verlag, 1998.

[21] S. Navathe, S. Ceri, G. Wiederhold, and J. Dou. Vertical partitioning algorithms for database design. ACM

TODS, 9(4):680–710, December 1984.

[22] S. Navathe and M. Ra. Vertical partitioning for database design: A graphical algorithm. In Proc. of

SIGMOD 1989, Portland, OR, USA, June 1989.

[23] P.R.J. Österg̊ard. A new algorithm for the maximum-weight clique problem. Nordic Journal of Computing,

8(4):424–436, December 2001.

[24] P.R.J. Österg̊ard. A fast algorithm for the maximum clique problem. Discrete Applied Mathematics,

120(1–3):197–207, August 2002.

[25] P. Samarati. Protecting respondents’ identities in microdata release. IEEE TKDE, 13(6):1010–1027,

November/December 2001.

[26] P. Samarati and S. De Capitani di Vimercati. Data protection in outsourcing scenarios: Issues and direc-

tions. In Proc. of the ASIACCS 2010, Beijing, China, April 2010. Invited paper.

[27] F. Somenzi. CUDD: CU Decision Diagram package – release 2.4.2. Department of Electrical and Computer

Engineering – University of Colorado at Boulder, 2009.

[28] A. Steele and K.B. Frikken. An index structure for private data outsourcing. In Proc. of DBSec 2011,

Richmond, VA, USA, July 2011.

[29] L. Wiese. Horizontal fragmentation for data outsourcing with formula-based confidentiality constraints. In

Proc. of IWSEC 2010, Kobe, Japan, November 2010.

32

A Proof of Theorems

Theorem 5.2 (Correctness of the exact algorithm) Given a set B of Boolean variables, a set C of confi-

dentiality constraints over B, and a set V of visibility constraints over B, the algorithm in Figure 10 terminates

and computes (if it exists) a minimal set of truth assignments.

Proof: To prove the correctness of the algorithm in Figure 10, we have to show that i) it terminates; ii) it

computes a correct set of truth assignments; iii) if there exists a correct set I of truth assignments with respect

to C and V, the algorithm finds it; and iv) it computes a minimal set of truth assignments.

Termination. Since the number of confidentiality and visibility constraints is finite, the for each loop in

Step 1 terminates. The first two for each loops in Step 2 (line 10 and line 16, respectively) terminate since for

each v∈V the set Pv of one-paths is finite, and N includes at most one node for each one-path in Pv1∪. . .∪Pvk
.

The while loop in Step 2 (line 30) terminates since the number of nodes that it inserts in N is finite. In fact,

let nij be a node obtained through the combination of ni and nj , which are nodes connected by a mergeable

edge: i) nij is inserted in N only if N does not include a node n associated with a truth assignment and a

set of visibility constraints equal to those of node nij (N is a set); ii) nij is adjacent to neither ni nor nj; and

iii) edge (ni,nj)∈M is removed from M when node nij is inserted in N . Therefore, at each iteration of the

while loop, at most one node is inserted in N , an edge is removed from M , and a limited number of edges is

inserted in M . Since the number of Boolean variables in B and of visibility constraints in V is finite, the number

of possible nodes generated by merging nodes in N is finite. As a consequence, the while loop terminates.

Function FindMaxWeightClique in Step 3 (line 53) terminates since it exploits a classical algorithm for

finding a maximum weight clique. The last for each loop in Step 3 (line 56) terminates since C is a subset of

N , which is a finite set of nodes.

Correctness of the set of truth assignments. Isol is correct iff it satisfies the conditions in Definition 3.2.

1. ∀c ∈ C, ∀I ∈ Isol : I(c) = 0 (confidentiality). In the last for each loop of Step 3 (line 56), the algorithm

extracts Isol from the clique C computed by function FindMaxWeightClique (the don’t care variables in

the truth assignments represented by the nodes in C are set to 0). Since function FindMaxWeightClique

does not modify the truth assignments represented by the nodes in the graph received as input, Isol does

not violate confidentiality constraints iff the nodes in the fragmentation graph resulting from Step 2 rep-

resent truth assignments that do not violate confidentiality constraints. Each node in G either represents

a truth assignment I∈Pv i
or a truth assignment resulting from the composition of a subset of one-paths

in Pv1∪. . .∪Pvk
under operator 1. In the first case, I represents a one-path in the OBDD modeling

Boolean formula v∧¬(c1∨. . .∨cm), v∈V, and therefore it satisfies all the confidentiality constraints. In

the second case, I represents in a compact way the complete truth assignments implicitly represented by

33

the composed assignments. Since the assignments composed to generate I satisfy all the confidentiality

constraints, also I satisfies all of them.

2. ∀v∈V , ∃I ∈ Isol : I(v) = 1 (visibility). In Step 3, the algorithm checks if the clique C computed by

function FindMaxWeightClique has weight at least |V| · (|V|− 1), which is equivalent to check if ∀v∈V,

∃n∈C such that v∈n.V as proved by Property 4.4. If the weight of the clique C is greater than or equal to

|V| · (|V|−1), the algorithm computes a solution Isol obtained by setting to 0 all the don’t care variables in

the truth assignments represented by the nodes in C. Therefore Isol satisfies all the visibility constraints.

3. ∀Ii ,Ij∈ Isol , i %= j, ∀a ∈ B s.t. Ii(a) = 1: Ij (a) = 0 (unlinkability). In the last for each loop of Step 3

(line 56), the algorithm extracts Isol from the clique C computed by function FindMaxWeightClique

by setting to 0 all the don’t care variables in the truth assignments represented by the nodes in the

clique. Since function FindMaxWeightClique does not modify the graph received as input, Isol sat-

isfies unlinkability iff C is a clique and G includes only edges connecting nodes representing unlinkable

truth assignments. Since the while loop in Step 2 of the algorithm (line 30) removes all the edges

in M connecting nodes representing mergeable truth assignments, the graph G given as input to the

FindMaxWeightClique function includes only edges in D, which connect nodes representing disjoint

truth assignments. Any pair of nodes in C is then connected by an edge in D (i.e., nodes in C represent

unlinkable assignments).

Completeness. Suppose by contradiction that there exists a correct set I of truth assignments and that our

algorithm returns an empty solution. The algorithm returns an empty solution only if FindMaxWeightClique

returns a clique for which at least one visibility constraint in V remains unsatisfied (line 54). Since function

FindMaxWeightClique implements a known algorithm for the maximum weighted clique problem and ac-

cording to Theorem 4.5, the function returns a clique that does not satisfy all the visibility constraints only if

a clique representing a correct set of truth assignments does not exists in G. However, since we assume that I

is a correct set of truth assignments, I has to be represented by a clique in G.

Suppose now by contradiction that I is not represented by a clique in G. Each I∈I satisfies all the con-

fidentiality constraints and at least one visibility constraint (otherwise I could be removed from I preserving

its correctness). Let v i1 ,. . .,v ik ,∈V be the visibility constraints satisfied by I. By construction of the OBDDs

O i1 , . . . ,O ik , Pi1 , . . . ,Pik must contain at least one one-path Ii1 , . . . , Iik that implicitly represents I. Since,

by Observation 3, truth assignments are mergeable only if they represent at least a common complete truth

assignment, Ii1 , . . . , Iik are mergeable (they all implicitly represent I). For each I∈I and for each subset V ⊆

{v i1 ,. . .,v ik} of visibility constraints satisfied by I, the fragmentation graph computed by our algorithm will

then include a node n implicitly representing I, with n.V=V . Since I is a correct set of truth assignments,

34

there is at least a complete truth assignment I∈I that satisfies v for each v∈V. Therefore, V can be partitioned

in non-empty and non-overlapping subsets Vi, i = 1, . . . , |I|, such that each Ii∈I is associated with Vi and Vi

includes only visibility constraints satisfied by Ii . As a consequence, there exists a set N of nodes in G with

a node ni for each Ii∈I such that ni implicitly represents Ii and ni is associated with the set Vi of visibility

constraints. For each pair Ii ,Ij∈I, Ii and Ij are neither mergeable nor in conflict. As a consequence, nodes

ni and nj in N implicitly representing Ii and Ij , respectively, are not in conflict (i.e., they do not associate

conflicting values to the same variable) and are then connected by an edge in D. Therefore, N is a clique for G

that implicitly represents I, thus contradicting the initial hypothesis.

Minimality. Suppose by contradiction that the algorithm computes a correct set I of k truth assignments

and that there exists a correct set I′ of k′ < k truth assignments. We prove that, if I ′ exists, the set I of

truth assignments computed by our algorithm includes k′ truth assignments. In the last for each loop of

Step 3 (line 56), the algorithm extracts I from the clique C of maximum weight in G computed by function

FindMaxWeightClique by setting to 0 all the don’t care variables in the truth assignments represented by the

nodes in the clique. According to the anti-monotonicity of the weight function w with respect to the number of

nodes (Property 4.3), C is the clique satisfying all the visibility constraints composed of the minimum number k

of nodes. Since function FindMaxWeightClique implements a known algorithm for the maximum weighted

clique problem, there cannot exist a clique C′ of G satisfying all the visibility constraints and composed of

k′ < k nodes. In other words, there cannot exist a correct set I′ of k′ < k truth assignments, where for each

I∈I′ there exists a node n in G such that n.I implicitly represents I. However, since we assume that I′ is a

correct set of truth assignments, I′ has to be represented by a clique in G.

Suppose now by contradiction that I′ is not represented by a clique in G. Let I be a complete truth

assignment in I′. Since I′ is correct, I satisfies all the confidentiality constraints. Moreover, I is associated

with (and then satisfies) at least one visibility constraint, otherwise I could be removed from I′ preserving its

correctness, thus contradicting the hypothesis of minimality of I′. Let v i1 ,. . .,v ik ,∈V be the visibility constraints

associated with I. By construction of the OBDDs O i1 , . . . ,O ik , Pi1 , . . . ,Pik must contain at least one one-

path Ii1 , . . . , Iik that implicitly represents I. Since, by Observation 3, truth assignments are mergeable only

if they represent at least a common complete truth assignment, Ii1 , . . . , Iik are mergeable (they all implicitly

represent I). The truth assignment I′ obtained as Ii1 1 . . . 1 Iik implicitly represents I. As a consequence,

the fragmentation graph computed by our algorithm will include a node n with n.I=I′ and n.V={v i1 ,. . .,v ik}

that implicitly represents I. This is true for each complete truth assignment I∈I ′. Therefore, G includes a

clique that implicitly represents I ′ and composed of k′ nodes. As a consequence, the clique computed by our

algorithm implicitly represents I′. This contradicts the original hypothesis that our algorithm computes a set

of truth assignments that is not minimal.

35

Theorem 5.3 (Complexity of the exact algorithm) Given a set B of Boolean variables, a set C of con-

fidentiality constraints over B, and a set V of visibility constraints over B, the complexity of the algorithm in

Figure 10 is O(2
∏

v∈V
|Pv |·|B|+(|V|+ |C|)2|B|) in time, where Pv is the set of one-paths of the OBDD representing

v∧¬(c1∨. . .∨cm).

Proof: The construction of the OBDDs in Step 1 can be, in the worst case, exponential in the number of

variables in the formula they represent, that is, O(2|B|). Therefore, the construction of the OBDDs representing

the confidentiality constraints in C, the visibility constraints in V, and their combination has computational

complexity O((|V| + |C|)2|B|). The construction of the fragmentation graph in Step 2 requires to compute the

closure of the set Pv1∪. . .∪Pvk
under operator 1 since nodes in G represent, in the worst case, all the truth

assignments in P#. To this purpose, the algorithm inserts edges in M and in D, connecting pairs of nodes

representing mergeable or disjoint truth assignments, respectively, that are associated with non-overlapping sets

of visibility constraints. The cost of inserting edges in G is then O(
∏

v∈V |Pv | · |B|) since the cost of evaluating if

two truth assignments are mergeable or disjoint is linear in the number of Boolean variables composing the truth

assignments. Since for each edge in M the algorithm inserts a node in G, which can only be connected to the

nodes adjacent to the incident nodes of the removed edge, the overall cost of building G is O(
∏

v∈V |Pv | · |B|).

Also, G includes at most O(
∏

v∈V |Pv |) nodes. Function FindMaxWeightClique has exponential cost in

the number of nodes of the input graph (i.e., O(2
∏

v∈V
|Pv |·|B|)) since the maximum weighted clique problem is

NP-hard. The last for each loop in Step 3 (line 56) has computational complexity O(|C| · |B|), since it scans

all the nodes in C to set to 0 the don’t care variables in the truth assignments they represent. The cost of this

loop is however dominated by the cost of the previous steps of the algorithm. The computational complexity of

the algorithm is therefore O(2
∏

v∈V
|Pv |·|B| + (|V|+ |C|)2|B|).

Theorem 6.2 (Correctness of the heuristic algorithm) Given a set B of Boolean variables, a set C of

confidentiality constraints over B, and a set V of visibility constraints over B, the algorithm in Figure 12

terminates and computes (if it exists) a locally minimal set of truth assignments.

Proof: To prove the correctness of the algorithm in Figure 12, we need to prove that: i) it terminates; ii) it

computes a correct set of truth assignments; iii) if there exists a correct set I of truth assignments with respect

to C and V, the algorithm finds it; and iv) it computes a locally minimal set of truth assignments.

Termination. Since the number of confidentiality constraints, the number of visibility constraints, and the

number of one-paths in Pv , with v∈V, is finite, the three for each loops in Step 1 (line 2) and in Step 2 (line 8

and line 14, respectively) terminate. The recursive call to function DefineClique in Step 3 (line17) terminates

when variable i is greater than or equal to |V|. We note that at each recursive call of function DefineClique,

at most one node is inserted in C. Therefore, if function DefineClique terminates, C is a finite set. Function

36

DefineClique terminates because: i) the sets Ni, i = 1, . . . , |V|, of nodes are finite (∀v i∈V, Pvi
is a finite set

of one-paths); ii) LinkableNodes is a subset of Isol ; and iii) variable i increases by one at each recursive call.

The for loop and the while loop in function DefineClique (line 31 and line 36, respectively) terminate since

the clique C received as input includes at most i nodes and is therefore finite.

Correctness of the set of truth assignments. Isol is correct iff it satisfies the conditions in Definition 3.2.

1. ∀c ∈ C, ∀I ∈ Isol : I(c) = 0 (confidentiality). The while loop in Step 4 (line 21) computes Isol (starting

from the one-paths represented by nodes in C) by trying to compose sets of truth assignments represented

by nodes in C through ∨ operator and explicitly checking if the result of the composition violates confi-

dentiality constraints. Since truth assignments are composed only if their composition does not violate the

confidentiality constraints, Isol satisfies all the confidentiality constraints iff the truth assignments repre-

sented by nodes in the clique C computed by function DefineClique do not violate the confidentiality

constraints. Function DefineClique inserts a node n in C if n either belongs to Ni (i.e., it represents a

one-path in Pvk
) or has been obtained by composing a set of nodes in N1, . . . , Nk (i.e., it represents the

composition of a subset of one-paths in Pvx
,. . . ,Pvy

under operator 1). Since Pv represents the one-paths

in the OBDD modeling Boolean formula v∧¬(c1∨. . .∨cm), v∈V, all the truth assignments in Pv satisfy

confidentiality constraints. Also, since the truth assignment resulting from the composition of Ii and Ij

under 1 represents, in a compact way, the set of complete truth assignments implicitly represented by

both Ii and Ij , also Ii1Ij does not violate confidentiality constraints. As a consequence, each node n∈C

represents a truth assignment that satisfies all the confidentiality constraints.

2. ∀v∈V , ∃I ∈ Isol : I(v) = 1 (visibility). Recalling that in Step 4 all the don’t care variables in truth

assignments represented by nodes in C are set to 0 (line 20), and that the algorithm computes Isol by trying

to compose the truth assignments represented by nodes in C without violating confidentiality constraints

(for each loop in line 24), Isol satisfies the visibility constraints if, at the end of function DefineClique,

∀v∈V, ∃ n∈C such that v∈n.V . Function DefineClique is recursively called for i = 1, . . . , |V| and, at

each recursive call, it inserts in C a node nj∈Ni that represents a truth assignment I in Pv . In fact, node

nj is either inserted as a new node in C, or composed with a node n already in C. As already noted, the

node resulting from the composition of nj with n is associated with (and then satisfies) both the visibility

constraints in n.V and in nj .V . Therefore, at the end of the i-th recursive call, C is associated with (and

then satisfies) all the visibility constraints v such that v∈n.V and n is a node in Nj , with j ≤ i. We can

conclude that, at the end of the |V|-th recursive call, C includes, for each v∈V, at least a node n with

v∈n.V .

3. ∀Ii ,Ij∈ Isol , i %= j, ∀a ∈ B s.t. Ii(a) = 1: Ij (a) = 0 (unlinkability). Since Step 4 sets to 0 all the don’t

37

care variables in the truth assignments represented by nodes in C, Isol satisfies unlinkability iff the truth

assignments represented by the nodes in C computed by function DefineClique are disjoint. Function

DefineClique tries to insert, at each iteration of the for loop (line 31), a node nj in C. The function

does not insert nj∈Ni in C if there exists at least a node in C that represents a truth assignment linkable

but not mergeable with nj .I, and composes nj.I with all the linkable and mergeable truth assignments

represented by a node already in C. All nodes in C therefore represent disjoint truth assignments.

Completeness. Completeness is guaranteed if recursive function DefineClique computes, if it exists, a

clique C of the fragmentation graph that satisfies all the visibility constraints in V. Function DefineClique

is recursively called for i = 1, . . . , |V| and, at each recursive call, it inserts in C a node nj in Ni, which

represents a truth assignment in Pv (i.e., a truth assignment associated with and then satisfying visibility

constraint v). If there is no clique in G including C together with a node in Ni, the function uses a back-track

strategy and tries to insert in C a different node from Ni−1. Note that two nodes are combined (operator 1)

by function DefineClique iff they represent linkable truth assignments (i.e., they represent fragments with a

common attribute). Indeed, a correct set of truth assignments cannot contain two linkable truth assignments

(Condition 3 in Definition 3.2). Therefore, the composition performed in this phase is mandatory for finding

a correct set of truth assignments. Nodes representing non linkable but mergeable truth assignments are not

combined in this phase (they will be combined by Step 4 to guarantee local minimality). Recursive function

DefineClique tries all the possible subsets of nodes in G including a node for each set Ni, i = 1, . . . , k, using

the back-track strategy. Thus, if there exist a clique for G, it will be found by the recursive call.

Local minimality. Isol is locally minimal iff no pair of truth assignments in Isol can be composed through

the ∨ operator without violating confidentiality constraints. Isol is computed by the while loop in Step 4

(line 21), where the algorithm tries to iteratively combine (∨) the truth assignments represented by nodes in C,

after all don’t care variables have been set to 0. Such a combination is performed only if the disjunction of the

confidentiality constraints is not violated. As a consequence, no pair of truth assignments in Isol are combined

through the ∨ operator without violating the confidentiality constraints.

Theorem 6.3 (Complexity of the heuristic algorithm) Given a set B of Boolean variables, a set C of

confidentiality constraints over B, and a set V of visibility constraints over B, the complexity of the algorithm

in Figure 12 is O(
∏

v∈V |Pv | · |B| + (|V| + |C|)2|B|) in time, where Pv is the set of one-paths of the OBDD

representing v∧¬(c1∨. . .∨cm).

Proof: The construction of the OBDDs in Step 1 can be, in the worst case, exponential in the number of

variables in the formula they represent, that is, O(2|B|). Therefore, the construction of the OBDDs representing

the confidentiality constraints in C and the visibility constraints in V, and their combination have computational

38

complexity O((|V| + |C|)2|B|). The cost of building a node n for each one-path in Pv1∪. . .∪Pvk
is linear in the

number of one-paths. The cost of partitioning the resulting set of nodes in sets of nodes that are associated with

the same visibility constraint and of ordering these sets by their cardinality is O(
∑

v∈V |Pv |+ |V| log |V|). The

cost of further ordering the nodes in each set Ni by decreasing number of don’t care variables in the one-path

they represent is O(
∑

v∈V(|B||Pv |+ |Pv | log |Pv |)), since each set Ni includes |Pv | nodes (one for each one-path)

and each one-path in Pv has |B| variables. The overall cost of Step 2 is then O(|V| log |V| + |Pv |
∑

v∈V(1 +

|B|+ log |Pv |)). Recursive function DefineClique is invoked by the algorithm in Figure 12 at most
∏

v∈V |Pv |

times, since it needs to evaluate any possible combination of nodes (truth assignments), including a node from

each Ni (a truth assignment from each Pv , v∈V). The comparison between two truth assignments ni.I and nj .I

represented by two nodes in G has computational complexity O(|B|), since each Boolean variable in B must be

checked. In the worst case, each node in Ni (truth assignment in Pv) is compared with all the nodes in Nj

(truth assignments in all the other sets of one-paths), i %= j. The first for each loop in Step 4 has computational

complexity O(|C| · |B|), since it scans all the truth assignments represented by nodes in C to set to 0 all the don’t

care variables. The while loop in Step 4 has instead computational complexity O(|C|2 · |B|), since it compares

each pair of truth assignments represented by nodes in C. The computational complexity of the algorithm is

therefore O(
∏

v∈V |Pv | · |B|+(|V|+ |C|)2|B|), since the costs of Step 2 and of Step 4 are dominated by the costs

of Step 1 and of Step 3.

39

Figure 1: Example of relation (a) and of confidentiality (b) and visibility constraints (c) over it

Figure 2: Example of fragmentation of relation Patients in Figure 1(a) satisfying the constraints in Figures 1(b)

and 1(c)

Figure 3: Boolean interpretation of the relation schema and of the confidentiality and visibility constraints in

Figure 1

Figure 4: OBDDs representing the confidentiality constraints in Figure 3

Figure 5: OBDDs representing the visibility constraints in Figure 3

Figure 6: OBDD representing the disjunction of the confidentiality constraints in Figure 3

Figure 7: OBDDs representing the composition of each visibility constraint in Figure 5 with the negated

disjunction of the confidentiality constraints in Figure 4, and their one-paths

Figure 8: Assignment merging operator

Figure 9: Fragmentation graph representing the one-paths extracted from the OBDDs in Figure 7 and their

closure under operator 1

Figure 10: Algorithm that computes a minimal set of truth assignments

Figure 11: Example of the execution of the algorithm in Figure 10 with the inputs in Figure 3

Figure 12: Algorithm that computes a locally minimal set of truth assignments

Figure 13: Example of the execution of the algorithm in Figure 12 with the inputs in Figure 3

Figure 14: Average number of one-paths varying the number of attributes

Figure 15: Execution time of the exact and heuristic algorithms

Figure 16: Number of fragments of the solution computed by the exact and heuristic algorithms

40

Patients

SSN Name Birth Race ZIP Job InsRate Disease

123-45-6789 Alice 74/01/17 white 24201 nurse 5K diabetes
234-56-7654 Barbara 49/02/21 white 24223 clerk 9K stomach ulcer
345-67-8123 Carol 55/10/01 asian 25273 manager 7K hearth attack
456-78-9876 Donna 68/12/29 white 26134 lawyer 8K gastritis
567-89-0534 Emma 81/10/02 black 24343 chef 6K asthma

C
c1 = {SSN}
c2 = {Name, InsRate}
c3 = {Name, Disease}
c4 = {Birth, Race, ZIP}
c5 = {Job, Disease}

V
v1 = Name∨(Birth∧ZIP)
v2 = Job∧InsRate
v3 = Disease∧(Birth∨Race)

(a) (b) (c)

Figure 1:

41

F1

Birth ZIP Disease

74/01/17 24201 diabetes
49/02/21 24223 stomach ulcer
55/10/01 25273 hearth attack
68/12/29 26134 gastritis
81/10/02 24343 asthma

F2

Job InsRate

nurse 5K
clerk 9K
manager 7K
lawyer 8K
chef 6K

Figure 2:

42

B C V
SSN c1 = SSN v1 = Name∨(Birth∧ZIP)
Name c2 = Name∧InsRate v2 = Job∧InsRate
Birth c3 = Name∧Disease v3 = Disease∧(Birth∨Race)
Race c4 = Birth∧Race∧ZIP
ZIP c5 = Job∧Disease
Job

InsRate

Disease

Figure 3:

43

c1=SSN c2=Name∧InsRate c3= Name∧Disease c4=Birth∧Race∧ZIP c5=Job∧Disease

Figure 4:

44

v1=Name∨(Birth∧ZIP) v2=Job∧InsRate v3=Disease∧(Birth∨Race)

Figure 5:

45

Figure 6:

46

v1∧¬(c1∨c2∨c3∨c4∨c5) v2∧¬(c1∨c2∨c3∨c4∨c5) v3∧¬(c1∨c2∨c3∨c4∨c5)

S N B R Z J I D

0 1 0 - - - 0 0
0 0 1 0 1 0 - -
0 1 1 0 - - 0 0
0 0 1 0 1 1 - 0
0 1 1 1 0 - 0 0

S N B R Z J I D

0 0 0 - - 1 1 0
0 0 1 0 - 1 1 0
0 0 1 1 0 1 1 0

S N B R Z J I D

0 0 0 1 - 0 - 1
0 0 1 0 - 0 - 1
0 0 1 1 0 0 - 1

Figure 7:

47

1 0 1 -
0 0 n.a. 0
1 n.a. 1 1
- 0 1 -

Figure 8:

48

!" #$
%& '(snbRZJId,{v2}

!!!!!!!
!!!!!!!

!!!!!!!
!!!!!!!

!

"""""
"""""

"""""
"""""

"""""
"""""

"""""
"""""

""""
!" #$
%& '(snbRZjID,{v3}

!" #$
%& '(snBrZJId,{v2}

############################# !" #$
%& '(snBrZjID,{v3}

!" #$
%& '(snBRzJId,{v2}

!" #$
%& '(snBRzjID,{v3}

!" #$
%& '(snBrZJId,{v1,v2}

$$$
!" #$
%& '(sNbRZJid,{v1}

%%%%%%%%%%%%%%%%%

&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&

''

((

))
!" #$
%& '(snBrZjID,{v1}

!" #$
%& '(sNBrZJid,{v1}

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&

!" #$
%& '(snBrZJId,{v1}

!" #$
%& '(sNBRzJid,{v1}

,,
!" #$
%& '(snBrZjID,{v1,v3}

--

Figure 9:

49

INPUT: B = {a1,. . . ,an}, C = {c1,. . . ,cm}, V = {v1,. . . ,vk} /* Boolean variables, confidentiality and visibility constraints */
OUTPUT: Isol = {I1 ,. . . ,Il} /* minimal set of truth assignments */
MAIN

1: /* Step 1: extract the one-paths from the OBDDs representing constraints */
2: for each v i∈V do
3: let Oi be the OBDD representing v i∧¬(c1∨. . .∨cm)
4: let Pvi be the set of one-paths of Oi

5: if Pvi=∅ then return(∅) /* no solution exists */
6: /* Step 2: build the fragmentation graph G */
7: N := ∅ /* set of nodes in G */
8: M := ∅ /* set of edges connecting nodes representing mergeable truth assignments */
9: D := ∅ /* set of edges connecting nodes representing disjoint truth assignments */

10: for each v∈V do /* insert nodes in G */
11: for each I∈Pv do
12: n := 〈I,{v }〉
13: N := N ∪ {n}
14: n.weight := (|V| · |n.V |)− 1
15: N ′ := N
16: for each ni∈N do /* insert edges in G */
17: N ′ := N ′ − {ni}
18: satisfied := ni.V
19: for each nj∈N ′ do
20: if ni.I!nj .I ∧ ni.V ∩nj .V=∅ then /* the nodes represent mergeable truth assignments */
21: M := M ∪ {(ni,nj)}
22: satisfied := satisfied ∪ nj .V
23: if ni.I *↔nj.I ∧ ni.V ∩nj .V=∅ then /* the nodes represent disjoint truth assignments */
24: D := D ∪ {(ni,nj)}
25: satisfied := satisfied ∪ nj .V
26: if satisfied *=V then /* remove ni from G, since it cannot be part of any solution */
27: M := M − {(ni,nj): nj∈N}
28: D := D − {(ni,nj): nj∈N}
29: N := N − {ni}
30: while M *=∅ do /* close the one-paths in N w.r.t. , operator */
31: M ′ := M
32: M := ∅
33: while M ′ *=∅ do
34: let (ni,nj) be an edge in M ′ /* choose a mergeable edge */
35: M ′ := M ′ − {(ni,nj)}
36: nij := 〈ni.I,nj.I, ni.V ∪nj .V 〉 /* compute the merged node */
37: nij .weight := |V| · |v ij .V |− 1 /* weight of the new node */
38: if nij .V=V then /* nij is a clique of size 1 */
39: Isol := {nij .I}
40: assign 0 to don’t care variables in nij .I
41: return(Isol)
42: N := N ∪ {nij} /* insert the node in the fragmentation graph */
43: for each nk∈{n∈N :(n,ni)∈M ∨ (n,nj)∈M} do
44: if nij .I!nk.I ∧ nij .V ∩nk.V=∅ then M := M ∪ {(nij ,nk)}
45: for each nk∈{n∈N :(n,ni)∈D ∨ (n,nj)∈D} do
46: if nij .I *↔nk.I ∧ nij .V ∩nk.V=∅ then D := D ∪ {(nij ,nk)}
47: for each ni∈N do
48: if

⋃
n.V : n∈{n∈N :(n,ni)∈M∪D} *=V then /* remove ni from G if it cannot be part of a solution */

49: M := M − {(ni,nj): nj∈N}
50: D := D − {(ni,nj): nj∈N}
51: N := N − {ni}
52: /* Step 3: find the maximum weighted clique */
53: C := FindMaxWeightClique(G)
54: if

∑
n∈Cw(n)<|V| · (|V|− 1) then return(∅) /* no solution exists */

55: Isol := ∅
56: for each n∈C do
57: I := n.I
58: assign 0 to don’t care variables in I
59: Isol := Isol ∪ {I}
60: return(Isol)

Figure 10:

50

!" #$
%& '(snbRZJId,{v2}

!" #$
%& '(snbRZjID,{v3}

!" #$
%& '(snBrZJId,{v2}

!" #$
%& '(snBrZjID,{v3}

!" #$
%& '(snBRzJId,{v2}

!" #$
%& '(snBRzjID,{v3}

snBrZJId, {v1, v2}
!" #$
%& '(sNbRZJid,{v1}

!" #$
%& '(snBrZjID,{v1}

!" #$
%& '(sNBrZJid,{v1}

!" #$
%& '(snBrZJId,{v1}

!" #$
%& '(sNBRzJid,{v1} snBrZjID, {v1, v3}

(a)

!" #$
%& '(snbRZJId,{v2}

!!!!!!!
!!!!!!!

!!!!!!!
!!!!!!!

!

"""""
"""""

"""""
"""""

"""""
"""""

"""""
"""""

"""""
!" #$
%& '(snbRZjID,{v3}

!" #$
%& '(snBrZJId,{v2}

############################# !" #$
%& '(snBrZjID,{v3}

!" #$
%& '(snBRzjID,{v3}

snBrZJId, {v1, v2}
!" #$
%& '(sNbRZJid,{v1}

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

//

((

)))
!" #$
%& '(snBrZjID,{v1}

00000000000000000000000000000000
!" #$
%& '(sNBrZJid,{v1}

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

!" #$
%& '(snBrZJId,{v1} sNBRzJid{v1} snBrZjID, {v1, v3}

(b)

!" #$
%& '(snbRZJId,{v2}

!!!!!!!
!!!!!!!

!!!!!!!
!!!!!!!

!

"""""
"""""

"""""
"""""

"""""
"""""

"""""
"""""

"""""
!" #$
%& '(snbRZjID,{v3}

!" #$
%& '(snBrZJId,{v2}

############################# !" #$
%& '(snBrZjID,{v3}

!" #$
%& '(snBRzjID,{v3}

!" #$
%& '(snBrZJId,{v1,v2}

22
!" #$
%& '(sNbRZJid,{v1}

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

//

((

)))
!" #$
%& '(snBrZjID,{v1}

00000000000000000000000000000000
!" #$
%& '(sNBrZJid,{v1}

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

!" #$
%& '(snBrZJId,{v1} sNBRzJid{v1} snBrZjID, {v1, v3}

(c)

!" #$
%& '(snbRZJId,{v2}

!!!!!!!
!!!!!!!

!!!!!!!
!!!!!!!

!

"""""
"""""

"""""
"""""

"""""
"""""

"""""
"""""

""""
!" #$
%& '(snbRZjID,{v3}

!" #$
%& '(snBrZJId,{v2}

############################# !" #$
%& '(snBrZjID,{v3}

!" #$
%& '(snBRzjID,{v3}

!" #$
%& '(snBrZJId,{v1,v2}

22
!" #$
%& '(sNbRZJid,{v1}

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

//

((

))
!" #$
%& '(snBrZjID,{v1}

00000000000000000000000000000000
!" #$
%& '(sNBrZJid,{v1}

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

!" #$
%& '(snBrZJId,{v1}

!" #$
%& '(
)* +,
-. /0snBrZjID,{v1,v3}

333

(d)

Figure 11:

51

INPUT: B = {a1,. . . ,an}, C = {c1,. . . ,cm}, V = {v1,. . . ,vk} /* Boolean variables, confidentiality and visibility constraints */
OUTPUT: Isol = {I1 ,. . . ,Il} /* locally minimal set of truth assignments */

MAIN
1: /* Step 1: extract the one-paths from the OBDDs representing constraints */
2: for each v i∈V do
3: let Oi be the OBDD representing v i∧¬(c1∨. . .∨cm)
4: let Pvi be the set of one-paths of Oi

5: if Pvi=∅ then return(∅) /* no solution exists */

6: /* Step 2: generate nodes representing the one-paths in Oi, i = 1, . . . , k */
7: N := ∅
8: for each v∈V do /* define a node for each one-path */
9: for each I∈Pv do

10: n := 〈I,{v }〉
11: N := N ∪ {n}
12: /* partition N depending on the visibility constraint that each node satisfies */
13: let Ni = {n∈N : n.V=v }, for all v∈V, with |Ni| > |Nj | iff i > j
14: for each v∈V do
15: order nodes in Ni by decreasing number of don’t care variables in n.I

16: /* Step 3: build a clique for the fragmentation graph */
17: C := DefineClique(∅,1)

18: /* Step 4: minimize the number of truth assignments in Isol */
19: Isol := ∅
20: for each n∈C do assign 0 to don’t care variables in n.I
21: while C *=∅ do
22: ni := ExtractNode(C)
23: Ii := ni.I
24: for each nj∈C do
25: Ij := nj .I
26: if Ii∨Ij satisfies ¬(c1∨. . .∨cm) then
27: Ii := Ii∨Ij
28: C := C − {nj}
29: Isol := Isol ∪ {Ii}
30: return(Isol)

DEFINE CLIQUE(C,i)
31: for j :=1,. . . ,|Ni| do
32: satisfied := true /* true if C includes a node that belongs to Ni */
33: LinkableNodes := {n∈C:n.I↔nj.I} /* nodes in C representing truth assignments linkable to nj .I */
34: C′ := C\LinkableNodes /* remove from C the nodes that represent truth assignments linkable to nj .I */
35: n := nj

36: while satisfied and LinkableNodes *= ∅ do
37: nl := ExtractNode(LinkableNodes) /* extract a node representing a truth assignment linkable to nj .I */
38: if nl.I!n.I then n := 〈nl.I,n.I, nl.V ∪n.V 〉 /* merge the two nodes */
39: else satisfied := false /* n.I is linkable but not mergeable with nl.I, then C′∪{n} cannot be a clique */
40: if satisfied then
41: C′ := C′∪{n}
42: if i=|V| then return(C′) /* C′ represents a clique with weight at least |V| · (|V|− 1) */
43: C′ := DefineClique(C′,i+ 1) /* recursive call */
44: if C′ *=∅ then return(C′) /* C′ represents a clique with weight at least |V| · (|V|− 1) */
45: return(∅)

Figure 12:

52

N1 N2 N3

!" #$
%& '(snbRZJId,{v2}

!" #$
%& '(snbRZjID,{v3}

!" #$
%& '(sNbRZJid,{v1}

!" #$
%& '(snBrZJId,{v2}

!" #$
%& '(snBrZjID,{v3}

!" #$
%& '(snBrZjID,{v1}

!" #$
%& '(snBRzJId,{v2}

!" #$
%& '(snBRzjID,{v3}

!" #$
%& '(sNBrZJid,{v1}

!" #$
%& '(snBrZJId,{v1}

!" #$
%& '(sNBRzJid,{v1}

DefineClique(∅,1)
n1∈N1 := 〈snbRZJId,{v2}〉
LinkableNodes := ∅
n := 〈snbRZJId,{v2}〉
C′ := {〈snbRZJId,{v2}〉}

DefineClique({〈snbRZJId,{v2}〉},2)
n1∈N2 := 〈snbRZjId, {v3}〉
LinkableNodes := ∅
n := 〈snbRZjId, {v3}〉
C′ := {〈snbRZJId,{v2}〉, 〈snbRZjId,{v3}〉}

DefineClique({〈snbRZJId,{v2}〉, 〈snbRZjId,{v3}〉},3)
n1∈N3 := 〈sNbRZJid,{v1}〉
LinkableNodes := ∅
n := 〈sNbRZJid,{v1}〉
C′ := {〈sNbRZJid,{v1}〉, 〈snbRZJId,{v2}〉, 〈snbRZjId,{v3}〉}

(a) (b)

Figure 13:

53

 1

 10

 100

 1000

 10000

 100000

 1e+006

 10 15 20 25 30 35 40

N
um

be
r o

f o
ne

-p
at

hs

Number of attributes

Figure 14:

54

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10 100 1000 10000 100000

Ex
ec

ut
io

n
tim

e
(s

)

Number of one-paths

Heuristic algorithm

Exact algorithm

Build GF

Figure 15:

55

 0

 1

 2

 3

 4

 5

 10 100 1000 10000

N
um

be
r o

f f
ra

gm
en

ts

Number of one-paths

Heuristic algorithm

Exact algorithm

Figure 16:

56

