
International Journal of Computer Theory and Engineering, Vol. 1, No. 1, April 2009
1793-8201

- 35 -

Abstract—Object-oriented software development matured

significantly during the past ten years. The Unified Modeling

Language (UML) is generally accepted as the de facto standard

modeling notation for the analysis and design of the object

oriented software systems. This language provides a suitable

framework for scenario acquisition using use case diagrams and

sequence or collaboration diagrams. In this paper, we suggest a

requirement engineering process that composes UML scenarios

for obtain a global description of a given service of the system

and implementation code from the UML use case (service). We

suggest four operators: sequential operator, concurrent

operator, conditional operator and iteration operator to

compose a set of scenarios that describe a use case of a given

system. We developed algorithm and tool support that can

automatically produce a global sequence diagram representing

any way of composing them and to offer a code generation of

sequence diagram resulting.

Keywords—UML, Sequence diagrams, Scenario

engineering, Scenario composition, code generation.

I. INTRODUCTION

Scenarios have been identified as an effective means for
understanding requirements and for analyzing human
computer interaction. A typical process for requirement
engineering based on scenarios has two main tasks. The first
task consists of generating from scenarios specifications that
describe system behavior. The second task concerns scenario
validation with users by simulation and prototyping. These
tasks remain tedious activities as long as they are not
supported by automated tools.

This paper suggests an approach for requirements
engineering that is based on the Unified Modeling Language
(UML) [1, 2, 3, 4] and high-level Petri nets. In this paper, we
suggest to compose scenarios that describe a given system in
a natural way based directly on sequence diagrams. The
approach provides an iterative, four-step process with limited
manual intervention for deriving a prototype from scenarios
and for generating a formal specification of the system. As a
first step in the process, the use case diagram of the system as
defined by the UML is elaborated, and for each use case
occurring in the diagram, scenarios are acquired in the form
of UML sequence diagrams and can be enriched with user
interface [5], time, security, etc… constraints [4]. In the
second step, the use case diagram and all sequence diagrams
are transformed into Hierarchical Colored Petri Nets (CPNs)

A. Jakimi, , M. Elkoutbi are with ENSIAS, university Mohammed V,

Rabat, Morrocco. address: FPE, B..P 512, Boutalamine, Errachidia,
Morocco.

[6, 7]. In step three, the sequence diagrams describing one
particular use case are composed into one single sequence
diagram, and the sequence diagrams obtained in this way are
linked with the single sequence diagram derived from the use
case diagram to form a global single sequence diagram
capturing the behavior of the entire system. Finally, in step
four, a system prototype and code is generated from the
global single sequence diagram and can be embedded in a
user interface (UI) builder environment for further
refinement [5].

Section 2 of this paper gives a brief overview of the
scenario aspects. Section 3 offers a general idea of the UML
diagrams relevant to our work. Section 4 provides an
overview of the iterative process that derives a formal
specification and code generation for the system from use
cases and scenarios. Section 5 gives an illustration of the
tools have been used in this work. Section 6 gives related
work and
discussion of approach. Section 7 concludes the paper and
provides an outlook into future work.

II. SCENARIO ASPECTS

Scenarios have been evolved according to several aspects,
and their interpretation seems to depend on the context of use
and the way in which they were acquired or generated. In a
survey, Rolland [8] proposed a framework for the
classification of scenarios according to four aspects: the form,
contents, the goal and the cycle of development.

The form view deals with the expression mode of a
scenario. Are scenarios formally or informally described, in a
static, animated or interactive form?

The contents view concerns the kind of knowledge which
is expressed in a scenario. Scenarios can, for instance, focus
on the description of the system functionality or they can
describe a broader view in which the functionality is
embedded into a larger business process with various
stakeholders and resources bound to it.

The purpose view is used to capture the role that a scenario
is aiming to play in the requirements engineering process.
Describing the functionality of a system, exploring design
alternatives or explaining drawbacks or inefficiencies of a
system are examples of roles that can be assigned to a
scenario.

The lifecycle view considers scenarios as artefacts existing
and evolving in time through the execution of operations
during the requirements engineering process. Creation,
refinement or deletion are examples of such operations.

A. Jakimi and M. El Koutbi

An Object-Oriented Approach to UML
Scenarios Engineering and Code Generation

DOI: 10.7763/IJCTE.2009.V1.6

International Journal of Computer Theory and Engineering, Vol. 1, No. 1, April 2009
1793-8201

- 36 -

III. USE CASES AND SCENARIOS IN UML

Object oriented analysis and design methods offer a good
framework for scenarios. In our work, we adopted the
Unified Modeling Language, which is a unified notation for
object oriented analysis and design.

Scenarios and use cases have been used interchangeably in
several works meaning partial descriptions. UML
distinguishes between theses terms and gives them a more
precise definition. A use case is a generic description of an
entire transaction involving several objects of the system. A
use case diagram (Usecase D) is more concerned with the
interaction between the system and actors (objects outside the
system that interact directly with it). It presents a collection
of use cases and their corresponding external actors. A
scenario shows a particular series of interactions among
objects in a single execution of a use case of a system
(execution instance of a use case). A scenario is defined as an
instance of a given use case. Scenarios can be viewed in two
different ways through sequence diagrams (Sequence Ds) or
collaboration diagrams (CollDs). Both types of diagrams rely
on the same underlying semantics. Conversion from one to
the other is possible.

A. Use case diagram

Some authors [9, 10] and the UML reference manual agree
that a use case is a high-level description of what the system
is supposed to do, whose aim is to capture the system
requirements. However, use cases have to be specified, that is,
many particular cases of a use case can be described. In other
words, if a use case represents a user interaction, many
variants of this user interaction can be described.

The Usecase D in UML is concerned with the interaction
between the system and external actors. One use case can call
upon the services of another use case using some relations
(includes, extends, uses, etc). An example of the include
relation is given in Figure 1. This relation is represented by a
directed dotted line and the label <<include>>. The direction
of an include relation does not imply any order of execution.

Figure 1 shows three main use cases: Deposit, Withdraw
and Balance (services of the ATM: Automatic Teller
Machine) that call on the service of the use case Identify.

Identify

Withdraw

Deposit

Balance

<<include>>

<<include>>

<<include>>

User

Fig. 1 ATM use case diagram.

B. Sequence diagram

We chose to use sequence diagrams (Sequence Ds)
because of their simplicity and their wide use in different
domains. A Sequence D shows interactions among a set of
objects in temporal order, which is good for understanding
timing and interaction issues. It depicts the objects by their

lifelines and shows the messages they exchange in time
sequence. However, it does not capture the associations
among the objects. A Sequence D has two dimensions: the
vertical dimension represents time, and the horizontal
dimension represents the objects. Messages are shown as
horizontal solid arrows from the lifeline of the object sender
to the lifeline of the object receiver. A message may be
guarded by a condition, annotated by iteration or concurrency
information, and/or constrained by an expression. Each
message can be labeled by a sequence number representing
the nested procedural calling sequence throughout the
scenario, and the message signature. Sequence numbers
contain a list of sequence elements separated by dots. Each
sequence element consists of a number of parts, such as: a
compulsory number showing the sequential position of the
message, and a letter indicating a concurrent thread (see
messages (m3, m4 and m5 in figure 2), and an iteration
indicator * (see message m2 in figure 2) indicating that
several messages of the same form are sent sequentially to a
single target or concurrently to a set of targets.

Fig. 2 Example of a Sequence D

IV. SCENARIO ENGINEERING

In this section, we give an overview of the iterative process
that derives a formal specification for the system from
scenarios and code generation. Figure 3 presents the
sequence of activities involved in the proposed process.

In the Scenario Acquisition activity, the analyst elaborates
the Usecase D, and for each use case, he or she elaborates
several Sequence Ds corresponding to the scenarios of the
use case at hand. The Specification Building activity consists
of deriving CPNs from the acquired Usecase D and Sequence
Ds and composes them to obtain a global CPN with three
levels of hierarchy. In Scenario composition activity, the
analyst then uses some composition operators as defined in
section C to capture interaction at different levels: use cases,
scenarios and messages [11]. This activity (Scenario

composition) describes in detail the algorithm of merging
several scenarios (of a given use case) in form of sequence
diagrams into a global sequence diagram corresponding to
the behavior of that use case. During Code Generation
activity, an object-oriented approach has been proposed to

1:m1

2*:m2

2.1A:m3

2.1B.1:m4

2.1B.2:m5

2.2:m6

 O1 O2 O3

International Journal of Computer Theory and Engineering, Vol. 1, No. 1, April 2009
1793-8201

- 37 -

generate executable implementation code from UML
Sequence D in an object-oriented programming language.

SequenceDs

UseCaseD

Specification

Building

Code and User
Interface
Prototype

Real
World

Scenarios

Acquisition

Prototype
Evaluation

 CPN
Verification

Integrated
CPNs

Scenario

 Integration/

Composition

CPNs

Code

Generation

Fig. 3 Activities of the proposed process

The Composed CPNs serve as input to both the CPN

Verification and the System Prototype Generation activities.
During Prototype Evaluation, the generated prototype is
executed and evaluated by the end user. In the CPN
Verification activity, existing algorithms can be used to
check behavioral properties [5, 12].

In the following subsections, we will focus on the four first
activities this process: scenario acquisition, specification
building, scenarios composition and code generation of
resulting scenarios.

A. Scenarios acquisition

In this activity, the analyst elaborates the Usecase D
capturing the system functionalities, and for each use case, he
or she acquires the corresponding scenarios in form of
Sequence Ds.

The extension of Sequence Ds is made to support time
constraints in UML. Beyond the UML standard message
constraints found in Sequence Ds, we define eight additional
constraints to support time constraints. Note that the UML
defines two standard constraints for messages: vote and
broadcast. The vote constraint restricts a collection of return
messages, and the broadcast constraint specifies that the
constrained messages are not invoked in any particular order.
UML constraints are generally put between braces. After
studying some related work on scenarios that formalize time
constraints [13, 14], we propose to extend the UML with the
following message constraints: Time constraints and Security
constraints
Time constraints

To model real-time constraints in early stages of
development, we defined eight additional constraints which
can be are summarized in Table I. The four first constraints
are applied to a single message, while the remaining time
constraints concern two or more messages. This range of time
constraints gives a good modelling framework for several
communication and distributed real-time systems.

TABLE I: REAL-TIME CONSTRAINTS ASSOCIATED TO MESSAGES IN A

SEQUENCED

Constraint Significance

m{At(a)} The message m will occur at the time a

m{After(a)} The message m will occur after the time a

m{Before(b)} The message m will occur before the time b

m{Between(a,
b)}

The message m will occur at the time a, and will takes
at most b-a seconds

m1{Starts(m2)} The messages m1 and m2 start at the same time

m1{Ends(m2)} The messages m1 and m2 finish at the same time

m1{Equals(m2)} The messages m1 and m2 start and finish at the same
time

m1{Meets(m2)} m1 starts before the end of m2

Security constraints

Today, security has become a major issue for information
systems (e-business, e-trade, etc). It will be convenient to be
able to define and represent these constraints in the step of
requirement engineering. We were interested to the major
security aspects: authenticity and confidentiality.
Authenticity means the proof of identity and confidentiality
relates to the privacy of information. Using UML, when a
message is sent from a source to a target object, it can carry
some information (message parameters). We aim to express
that the exchange is private using some encryption
algorithms (RSA, AES, 3DES, etc). This can be specified as a
parameter of the constraint. The two constraints defined to
model security aspects are given below (Table II):

TABLE II: SECURITY CONSTRAINTS

Constraint Signification

m{Auth} The message m must be signed by the sender
object to proof its identity to the receiver
object.

m{Crypt(algo)} The message content (message parameters)
must be encrypted using the algorithm (algo).

These defined constraints are very useful for the purpose
of code generation from UML models.

B. Specification Building (Scenario specification)

This activity consists of deriving formal specifications
from both the acquired Usecase D and interaction diagrams
modeling scenarios (Sequence Ds). In our work, the resulting
specification captures the behavior of the entire system in
form of Petri nets. We consider separately specifications at
scenario levels to capture hierarchy in the resulting
specification. Indeed, this activity consists of deriving CPNs
from the acquired Sequence Ds. We consider one level in
building the system specification: the specification at
scenario level.

For each scenario of a given use case, we first derive the
CPN structure, and then the CPN semantic is built in
association with the analyst. The CPN structure is obtained
from the graph representing the sequence of messages in the
scenario by adding places between each pair of sequential
messages. Figure 4(a) gives an example of such graph
derived from the scenario of the Figure 4, and Figure 4(b)
shows the inserted places.

International Journal of Computer Theory and Engineering, Vol. 1, No. 1, April 2009
1793-8201

- 38 -

m1

m3

m4

m6

m2

m5

m1

m2

m3 m4

m5

m6

(c)
(a) (b)

Fig. 4 (a) graph of messages, (b) Structure of CPN third level of hierarchy
(corresponding to message interactions)

Note that more detail in Elkoutbi et al [6].

C. Composition of UML scenarios and code generation

In this section, we focus on the composition scenarios and
code generation process. Figure 5 gives an overview of the
scenarios fusion and the code generation from the result
operation of the fusion (Sequence D resulting).

Fig. 5 Process of scenario fusion and code generation

Composition of UML scenarios

UML scenarios are considered as partial descriptions. To
obtain a global description of a given service of the system or
the description of the whole system, an operation of
integration or composition is needed. The difficulty of
scenarios composition comes in the fact that the scenarios are
being described independently one to another.

The operation of integration looks like a generalization,
where the analyst tries to identify and abstract some common

parts in the system behaviour.
Composition constructs new behaviours from existing

ones. This operation (composition) can be applied to
different interaction objects like use cases, scenarios or
messages. The difficulty of composition comes from the fact
that interaction objects (use cases or scenarios specially) are
being described independently one to each others.

Figure 5 gives an overview of the merging algorithm based
on scenarios represented in the form of sequence diagrams.

Fig. 6 Composing UML Scenarios

We consider four operators (;: sequential operator, ||:
concurrent operator, * :iteration operator and if-else operator)
to compose a set of interaction objects that describe a part of
a given system. Our developed algorithms can automatically
produce a global interaction object representing any way of
composing scenarios. For example, we can compose three
scenarios S1, S2 and S3 to obtain the resulting scenario Sr. Sr
= (S1 ; S2 || S3)*[5], means to compose S1 and S2
sequentially, the obtained scenario will be composed
concurrently with S3, then the obtained scenario will be
iterated five times. Given a set of scenarios, our algorithms
can produce any composing form of the given scenarios. The
same operators can be applied to use cases. The scenarios
composition is described in detail in [15].

The sequential operator. This operator is the simplest one
to implement. The interactions between objects (or actor and
objects) of two Sequence Ds are ordered in such a way that
the interactions of first Sequence D (sd1) will occur before
those of the second Sequence D (sd2). To compose
sequentially two Sequence Ds, they need to have at least one
common object. The principle of composing two scenarios
using this operator is described as follows. Put initially the
resulting Sequence D sdf equal to the first sequenced sd1,
calculate the maximum sequence numbers (maxns) in sd1,
add this number (maxns) to all sequence numbers in the
second Sequence D sd2 before merging them in sdf and add
to sdf objects that only belong to sd2.

The conditional operator. This operator allows us to define
a choice between two possible scenarios when executing a
service of the system. In this case, a condition [X] is allotted
to the Sequence D sd1 and the complement [NonX] will allot
the second Sequence D sd2. This operator gathers two
scenarios into one Sequence D with keeping the conditions
behind messages in the resulting Sequence D.

The concurrency operator. This operator allows us to
define a competition between scenarios. This kind of
composition can be used to describe the independence or the
interleaving between two sequences of interactions. Two
cases have to be considered. The first case, when the two

Scénario résultant
Scénario 1

Scénario 2

Algorithme de Algorithme de

compositioncomposition

Composition

Algorithm

Resulting
Scenario

Scenario 1

Scenario 2

 EQUENCEDS

CLASSD
USECASED

Scenarios

fusion

A
O

m
O

m
mm
m

A
O

m
O

m
mm
m

A
O

m
O

m
mm
m

Act1

O1

m1

O2

m2

m3
M4

m5

SEQUENCED
FUSION

Requirements

acquisition

Code

Generation

JAVA CODE

International Journal of Computer Theory and Engineering, Vol. 1, No. 1, April 2009
1793-8201

- 39 -

scenarios have some common objects. The second case
relates to two scenarios having different objects acting for
separate sub systems. we were interested by the first case
which is more complex to implement than the second.

We need to review sequence numbers of the two Sequence
Ds that will be merged by the concurrent operator (||).The
principle of composing two scenarios using this operator is
described as follows. Update all sequence numbers of sd1 by
adding a letter, that is not yet used in sd1 or sd2, representing
a new thread of execution, update all sequence numbers of
sd2 by adding a letter, that is not yet used in sd1 or sd2,
representing the second thread of execution and compose
sequentially the updated Sequence Ds sd1 and sd2.

The iteration operator. This operator gives the possibility
to iterate a given scenario many times. The condition that
guards the iteration must be indicated *[cond-iteration] as we
do it in an iterative message in a Sequence D. Sdr = sd1*[3]
means that the scenario sd1 will be executed three times. The
condition of iteration must be propagated globally to all
messages of the scenario sd1. Suppose that sd1 contains two
sequential messages m1 and m2. We note that sd1 = (1:m1 ;
2:m2). If we propagate the iterative condition directly to all
messages of the scenario sd1, we will obtain the resulting
scenario sdr that is equal to (*[3]1:m1 ; *[3]2:m2). This
means that the message m1 will be iterated three times then
the message m2 will do the same. This is naturally different
of what we want sdr = *[3](1:m1 ; 2:m2). To solve this
problem, we have considered that the scenario sd1 is
represented by one abstract message m sent by the first object
of the scenario to itself and all concrete messages will be
viewed as are refinement of this message m. Thus, sd1 can be
seen as equal to one message sd1 = 1:m and this message is
refined with 1.1:m1 and 1.2:m2 (1:m = 1.1:m1; 1.2:m2). The
resulting scenario sdr can be seen as equal to *[3] m which is
equal to *[3](1.1:m1; 1.2:m2).

Code generation

The emergence of UML as a standard for modeling
systems has encouraged the use of automated software tools
[16, 17, 18, 19, 20] that facilitate the development process
from analysis through coding.

There are two major approaches used for object-oriented
model based code generation, namely structural and
behavioral.

The structural approach is based on using models of object
structure (static relationships). It generates code frames (such
as class interface specifications) from models of static
relationships among objects. Class diagrams concepts can be
implemented in a programming language supporting
concepts like classes and objects, composition and
inheritance.

In contrast to the static structural diagram, the main
problems in generating Java [21] code covering system
behavior are that UML does not have a unified behavioral
diagram and many concepts from these diagrams are not
supported by Java. As a result, the mapping from the
behaviour diagrams to Java code is not as smooth or direct as
that in static structural diagram.

Based on the partial models of object dynamics,

developers then explicitly program object behavior and
communications in the target language. Many works [22, 23,
24, 25] generate limited skeleton code from such models. The
main drawback of this approach is that there is no code
generation for object behavior and thus the code generated is
not complete.

The final goal of this research is to automatically generate
implementation code from the UML SequenceDs in an
object-oriented programming language such as Java. Our
code generation approach and tool will help in bridging the
gap between the design and development phase and will
support the developers in the software development process.

In the operation of code generation from resulting
SequenceD that representing a use case of the system, it is
necessary to identify the elementary operators of interaction
between objects of the diagram.

The general syntax of message in SequenceD is given in
the form:
*[CI] [CE] Name := Message (parameters): returned type
* : iteration.; [CI] : iteration condition;
[CE]: send message condition;
Name: name of the object returned

Just the once an interaction identified, the Java code
corresponding will be generated according to the type of the
interaction. The generation will have to take into all the
operations in a scenario (sequence, condition, iteration or
concurrence).

The example (figure 6) explains the code generation to part
of a resulting Sequence D (service 1) comprising a
concurrency interaction.

Fig. 7 Resulting SequenceD (service 1).

class mySystem {

 Thread A = new Thread();

 Thread B = new Thread();

 public void run(){

 If (this == A) service1-A();

 If (this == B) service1-B();

 }

 public void service1-A(){

Object 2

A: 1.m1

Object 3

B: 1.m2

A: 2.m3

A: 3.m4

B: 2.m5

Object 1

International Journal of Computer Theory and Engineering, Vol. 1, No. 1, April 2009
1793-8201

- 40 -

 Objet2.m1();

 Objet2.m3();

 Objet1.m4();

 }

 Public void service1-B() {

 Objet3.m2();

 Objet3.m5();

 }

 Public void service1 () {

 A.start();

 B.start();

 }

}

V. TOOL SUPPORT

To implement the four operators described above and
explain our automatic code generating system, , we have used
the Eclipse environment, the Together J [26] plug-in for
UML modeling and the application programming interface
(API) JDOM for XML manipulation. Figure 7 gives a picture
of how these tools have been used in this work.

Fig. 8 Tool support for scenario composition and code generation

Eclipse has been chosen because of its modular integrated
environment of development (IDE). Many modules
(plug-ins) are provided by Eclipse and it is very easy to add
others developed either by the Eclipse community or by
software companies. We used the plug-in for UML diagrams
(from Together) which makes it possible for us to create use
case and sequence diagrams. Moreover, our composition
algorithm can be used with any plug-in of UML diagrams as
shown in figure 7.

Scenarios are first acquired throw the UML diagram
plug-in, and then there are transformed in form XML files.
These XML files serve as input to our developed composition
operators that produce a merged XML file related to the
resulting composed scenario. This XML file can also be
imported via the UML diagram plug-in for purposes of
visualization and annotation. Finally we develop a code
generator for automatic Java code generation from UML
Sequence D resulting (Usecase D or service).

VI. RELATED WORK

In this section we will discuss some approaches for
scenarios engineering and implementing UML diagrams.

A. Scenarios Engineering

the work of Koskimies et al. [27] aim to derive a set of
specifications for the system or objects from scenarios,
whereas all other approaches are interested in synthesizing
one description or specification for a service of the system or
the whole system. These various approaches differ in the
notations that they support for the description of scenarios
and specifications. Some, such as Dano [28] and the SCR
method [29], use a tabular notation for capturing scenarios,
whereas others, such as Whittle and Schumann [30] and
ourselves, use SequenceDs or CollDs. In contrast, Deharnais
[31] describe scenarios with relations. For the specification
description, a variety of notations are used. For example,
StateDs are supported by some approaches as by Elkoutbi [5],
Koskimies et al. [27], whereas Petri nets are used by Elkoutbi
and Keller [5].

One of the most prominent features of our approach is that
it supports many kinds of scenarios (sequential, iterative and
concurrent), whereas most of the other approaches can
handle only sequential scenarios. Most of the related
approaches are semi-automatic whereas our approach is fully
automatic and offers either algorithmic or tool support.

B. Code Generation

Metz et al [32] proposed an approach to implement
statechart diagrams based on switch statement [33]. States
are represented as constant attributes, events and actions as
methods. Douglass [33] proposed the State Table Pattern to
implement the statechart diagrams. States and transitions are
modeled as classes. Shlaer and Mellor [34] proposed an
implementation of statecharts which is based on a linked list
of transitions.

Chow et al. [32] developed two main steps in translating
code from dynamic behaviour of the system. Translate an
object's state diagram into Java code and Generate method
body based on the pre/post condition of an operation and
specify the order of language statements based on the
message passing sequence in the interaction diagram.

VII. CONCLUSIONS

In this work, we have presented a new approach that
produces automatically a global specification of the whole
system in form of a three level hierarchical CPN. We have
also implemented four operators for composing use cases and
scenarios: sequential, conditional, iterative and concurrent.
We have too automatically generated implementation code
from the UML SequenceDs in an object-oriented
programming language such as Java. However our approach
is general so it can be used to generate the low level code in
other object-oriented languages.

As future work, we prospect to study the possibility of
code generation from scenarios in from of SequenceDs which
will be a good plug-in to add. We plan to generate code from
UML diagrams that describe dynamic and non-functional
aspects of a system while remaining platform independent.

REFERENCES

[1] G. Booch, J. Rumbaugh and I. Jacobson. Unified Modeling Language
User Guide. Addison Wesley, 1999.

[2] J. Rumbaugh, I. Jacobson and G. Booch. Unified Modeling Language
Reference Manual. Addison Wesley, 1999.

International Journal of Computer Theory and Engineering, Vol. 1, No. 1, April 2009
1793-8201

- 41 -

[3] I. Jacobson, G. Booch and J. Rumbaugh. The Unified Software
Development Process, Addison-Wesley, 1999.

[4] Object Management OMG. Uinified modeling language specification
version 2.0: Infrastructure. Technical Report ptc/03-09-15, OMG,
2003.

[5] M. Elkoutbi, I. Khriss, R.K. Keller. “Automated Prototyping of User
Interfaces Based on UML Scenarios”. The Automated Software

Engineering Journal, 13, 5-40, 2006.
[6] K. Jensen., Coloured Petri Nets, Basic concepts, Analysis methods and

Pratical Use, Springer, 1995.
[7] designCPN: version 4, Meta Software Corp.

<http://www.daimi.aau.dk/designCPN>.
[8] C. Rolland, C. Ben Achour, C. Cauvet, J. Ralyté, A. Sutcliffe, N.A.M.

Maiden, M. Jarke, P. Haumer, K. Pohl, E. Dubois and P. Heymans. “A
Proposal for a Scenario Classification Framework”. The Requirements

Engineering Journal, Volume 3, Number 1, 1998.
[9] I. Jacobson Use cases—yesterday, today, and tomorrow. Software Syst.

Model. 2004, 3 210–220.
[10] J.M. Almendros-Jiménez and L. Iribarne. Describing Use-Case

Relationships with Sequence Diagrams. Oxford Journals, the
Computer Journal, 2007 50(1):116-128.

[11] A. Jakimi, A. Sabraoui, E. Badidi, , and Elkoutbi M., ” Use Cases and
Scenarios Engineering”, (Innovations’07) Proceedings of the IEEE 4th

International Conference on Innovations in Information Technology,
November 18-20, 2007, Dubai, United Arab Emirates.

[12] M.Elkoutbi; I. Khriss; and R.K. Keller. “Automated Prototyping of
User Interfaces Based on UML Scenarios”. Journal of Automated

Software Engineering, 13, 5-40, January 2006.
[13] Dano B., Briand H. and Barbier F. : An Approach based on the Concept

of Use Case to Produce Dynamic Object-Oriented Specifications, In

proceeding of the Third IEEE International Symposium on

Requirements Engineering, pp.54-64, Annapolis, 1997.
[14] Salah A., Dssouli R. and Lapalme G.. Intégration de scénarios

temps-réel en automates temporisés, (CFIP'2002), Montréal, Canada,
2002.

[15] A. Jakimi and M. Elkutbi, Unified model of interaction: use cases and
scenarios engineering; Accepted in International Journal of Computer

Science and Network Security (IJCSNS), VOL.8 No.12, December
2008.

[16] Gentleware AG, Poseidon for UML, http://www.gentleware.com
[17] MicroTOOL, objectiF, http://www.microtool.de /objectif
[18] No Magic Inc. MagicDraw, http://www.magicdraw.com
[19] I-Logix Inc., Rhapsody, ttp://www.ilogix.com.
[20] J. Ali, and J. Tanaka, “An Object Oriented Approach to Generate

Executable Code from OMT-Based Dynamic Model”, Journal of
Integrated Design and Process Science, vol. 2, no. 4 1998, pp. 65-77.

[21] Sun Microsystems Inc., Java Technology, http://java.sun.com
[22] J. Ali, and J. Tanaka, “Converting Statecharts into Java Code”, in Proc.

Fourth World Conf.on Integrated Design and Process Technology

(IDPT’99), Dallas, Texas, USA, 2000.
[23] K.O. Chow, W. Jia, V.C.P. Chan and J. Cao, Modelbased generation of

Java code, Proc. International Conf. on Parallel and Distributed

Processing Techniques and Applications (PDPTA 2000), Las Vegas,
USA, 2000.

[24] Iftikhar Azim Niaz and Jiro Tanaka, An Object-Oriented Approach To
Generate Java Code From UML Statecharts, International Journal of

Computer & Information Science, Vol. 6, No. 2, June 2005
[25] G.Pintèr, “Code genration based on Statecharts”, Oct. 1, 2003,

Budapest, Hungary, Vol. 47, No. 3–4, PP. 187–204 (2003)
[26] Borland, “Together”, www.borland.com /together.
[27] Koskimies, K. , Systä, T.; Tuomi, J. and Mannisto, T. “Automatic

Support for Modeling OO Software, ” IEEE Software, Vol. 15 Num. 1,
pp. 42-50.

[28] Dano, B.; Briand H. and Barbier F. An Approach based on the Concept
of Use Case to Produce Dynamic Object-Oriented Specifications, In

proceeding of the Third IEEE International Symposium on

Requirements Engineering, Annapolis, 1997, pp.54-64.
[29] Heitmeyer C., Kirby J., Labaw B., and Bharadwaj R., “SCR*: A

Toolset for Specifying and Analyzing Software Requirements”, Proc.

of the 10th Annual Conference on Computer-Aided Verification,
(CAV’98), pp. 526-531, Vancouver, Canada, 1998.

[30] Whittle, J. and Schumann, J. “Generating Starechart Designs from
Scenarios, ” Proceedings of the 22nd International Conference on

Software Engineering (ICSE 2000), Limerick, Ireland, ACM Press, pp.
314-323.

[31] Desharnais, J.; Frappier, M.; Khédri, R. and Mili, A. “Integration of
Sequential Scenarios, ” 1998, IEEE Transactions on Software

Engineering, Vol. 24 Num. 9, pp. 695-708.

[32] P. Metz, J. O’Brien and W. Weber, “Code Generation Concepts for
Statechart Diagrams of the UML v1.1”, Object Technology Group

(OTG) Conference, Vienna, Austria, June 1999.
[33] B. P. Douglass, “Real Time UML – Developing Efficient Objects for

Embedded Systems”, Massachusetts: Addison-Wesley, 1998.
[34] S. Shlaer and S. J. Mellor, “Object Lifecycles Modeling The World in

States”, Massachusetts: Addison-Wesley, 1992.

Abdeslam Jakimi, was born in morocco, in 1978. He received the diploma
(D.E.S.A) in Informatics from Faculty of Sciences Rabat, Mohammed V
University, Rabat, Morocco. His current research interests include
requirements engineering, user interface prototyping and design
transformations, scenario engineering. Email: ajakimi@yahoo.fr, Phone:
(+212)67250395.

Mohammed Elkoutbi is a professor at École Nationale Supérieure
d’Informatique et d’Analyse des Systèmes in Agdal, Rabat, Morocco. His
current research interests include requirements engineering, user interface
prototyping and design, and formal methods in analysis and design. He
earned a PhD in Computer Science from University of Montreal in 2000.

http://www.daimi.aau.dk/designCPN
http://www.gentleware.com
http://www.microtool.de
http://www.magicdraw.com
http://www.ilogix.com
http://java.sun.com
http://www.borland.com
mailto:ajakimi@yahoo.fr

