
10(2013) 1267 – 1291	

Abstract

The Generalized Finite Element Method (GFEM) is a numerical

method based on the Finite Element Method (FEM), presenting

as its main feature the possibility of improving the solution by

means of local enrichment functions. In spite of its advantages, the

method demands a complex data structure, which can be especial-

ly benefited by the Object-Oriented Programming (OOP). Even

though the OOP for the traditional FEM has been extensively

described in the technical literature, specific design issues related

to the GFEM are yet little discussed and not clearly defined. In

the present article it is described an Object-Oriented (OO) class

design for the GFEM, aiming to achieve a computational code
that presents a flexible class structure, circumventing the difficul-

ties associated to the method characteristics. The proposed design

is evaluated by means of some numerical examples, computed

using a code implemented in Python programming language.

Keywords

Object-Oriented programming; Generalized Finite Element Meth-

od; Python programming language

An Object-Oriented class design for the General ized

Finite Element Method programming

1 INTRODUCTION

The Generalized Finite Element Method (GFEM) is a numerical approach that explores the parti-

tion of unity (PU) framework to generate enriched approximated solutions for differential equations.
Similarly to the Finite Element Method (FEM), the problem domain is described by means of a

mesh of elements, defined by discrete points named nodes, for which the numerical solution is
searched. Each node of the mesh can be considered the vertex of a cloud, defined by the set of ele-

ments sharing it. The GFEM shape function is then constructed by performing the product between

the partitions of unity shape functions and an adopted enrichment function, resulting in an extra
degree of freedom for the vertex node. The enrichment function can be a polynomial or any generic

function, which turns the method powerful to solve problems for which the solution characteristic is
known, since the enrichment function can be chosen to fit with the local characteristic of the differ-

ential equation solution.

Dorival Piedade Neto
*

Manoel Dênis Costa Ferre i ra

Sergio Pers ival Baroncin i Proença

Department of Structural Engineering, School of

Engineering at São Carlos,

University of São Paulo, São Carlos, Brazil

Received 19 Jan 2013

In revised form 26 Feb 2013

*
Author email: dpiedade@sc.usp.br

1268 D. P. Neto et al./ An Object-Oriented Class Design for the Generalized Finite Element Method programming

Latin American Journal of Solids and Structures 10(2013) 1267 – 1291

 The support of the GFEM shape function defines a region named cloud, in which the enrichment

function is applied. Due to such characteristic, it is possible to apply ‘enrichments’ only in specific
vertex nodes of the domain. This local enrichment feature, usually referred as selective enrichment

refinement, represents a more flexible numerical strategy, when compared to the h and p-refinement

of the conventional FEM, which allows one to achieve better results without modifying the mesh
topology or inserting additional nodes in the mesh, see Duarte and Oden (1996a) and Duarte and

Oden(1996b).
 Despite of these advantages, the GFEM computational implementation can be considered nota-

bly more complex than the FEM implementation. One of the main reasons for that is the fact that

the number of degrees of freedom for each node varies according to number of enrichment functions
applied to it. In addition, in order to fully achieve the GFEM benefits, it is important to have a

framework capable to deal virtually with any kind of enrichment function, or at least, that allows
one to easily add new enrichment functions to the code. Yet, another GFEM characteristics demand

a computational data structure substantially more difficult to conceive, and turn the method spe-

cially beneficiated by the Object-Oriented Programming (OOP) paradigm.
 The OOP application for finite element analysis codes started to be presented in the technical

literature in the beginning of the 1990s, see for instance, Forde et al. (1990) and Alves Filho and
Devloo (1991). In the first paper, the basic concepts of the OOP are introduced, followed by a de-

scription of an OO design for the FEM. The described OO code is also compared to an equivalent

procedural program, identifying the advantages of the OO approach.
 Such works were followed by Zimmermann et al. (1992) and Dubois-Pélerin et al. (1992), in

which the paradigm is described in more details using Smalltalk programming language. Next it was
published a paper describing an efficient OO implementation using C++, see Dubois-Pélerin et al.

(1993). The use of advanced features of C++ to implement finite element classes is presented later
in Bittencourt (2000).

 Many other papers on the use of the OOP for numerical analysis were published, like, for in-

stance, Mackie (2000), and the subject has been intensively discussed along the last decades. Skip-
ping from a detailed review of the OOP for FEM, which is not the focus of the present paper, w

just refer to Mackerle(2000), which lists hundreds of references on the subject, also including a list
of OOP applications to the Boundary Element Method.

 The application and detailed description of the OOP for other variants of non-conventional nu-

merical methods is clearly limited in the available literature. For instance, among the works re-
viewed regarding exclusively to the GFEM, its implementation by OOP was found by the authors

only in one dissertation, Pereira (2004), written in Portuguese, and in which one may find a de-
scription of one possible structure of classes composing this kind of computational framework. Re-

garding technical periodicals, the only reference addressing to a closer method to the GFEM, the

eXtended Finite Element Method (XFEM), is presented by Bordas et al(2007). Even thought im-
portant contributions are given in such works, none of them presents a detailed description of the

class structure to efficiently support the GFEM analysis, circumventing the difficulties addressed
before.

 The present paper is devoted to describe an object-oriented (OO) class structure designed to

deal with the GFEM characteristics, resulting in a computational code capable to take advantage of

D.P. Neto et al./ An Object-Oriented Class Design for the Generalized Finite Element Method programming 1269

Latin American Journal of Solids and Structures 10(2013) 1267 – 1291

the method’s flexibility and power. Departing from a conventional FEM general class structure, new

classes and features are inserted in such framework. The code design description is complemented
by a discussion about the adopted programming language. We advocate the use of Python pro-

gramming language to implement such framework. The previous statement is technically justified

by the fact that its dynamic nature fits perfectly with the problem characteristics, as it is shown in
the present text.

 On what follows, in section 2 the main features of the Generalized Finite Element Method are
addressed, underlining its flexibility and the main difficulties faced to implement it computationally,

aiming to perform two-dimensional linear structural analysis. In section 3 the OOP paradigm is

briefly addressed, and the class structure designed to implement the GFEM framework is described.
Section 4 is devoted to present numerical example to evaluate the flexibility and accuracy of the

resulting code. Also the resulting code time performance is evaluated. Next, in section 5, it is pre-
sented a brief discussion on how the presented OO design can be extended to support nonlinear

solid mechanics analysis. Also some illustrative examples of nonlinear analysis, performed using the

resulting code, are presented. It turned out that the presented structure is indeed flexible and suita-
ble enough to be used as the basis for building a complete nonlinear analysis framework. Finally, a

balance among advantages/disadvantages is presented in section 6, concluding that the presented
class structure and the advocated programming language (Python) are convenient for the develop-

ment of a general purpose GFEM analysis code.

2 THE GENERALIZED FINITE ELEMENT METHOD

The Generalized Finite Element Method, Duarte and Oden(1996a), is based on the concept of en-
riched partition of unity (PU), see Melenk and Babuška (1996). Formally, a PU is mathematically

defined as a set of compact support, smooth and continuous functions φi such that:

∑
i∈I

ϕ
i
ξ() = 1,

ϕ
i
: ξ → 0,1⎡

⎣
⎤
⎦
.

(1)

(2)

 Basically, a set of functions defined in a certain domain constitutes a PU if its sum is equal to

one for all points in the domain, as indicated in equation (1). In addition to it, all functions must

present values in the closed interval from 0 to 1 of its compact support,according to equation (2).
 Partitions of unity are used in the Finite Element Method (FEM) to interpolate function fields

from values at discrete points of the continuum attached to nodes, extending the local value ap-
proximations to the whole domain. The linear Lagrange polynomials set, used in the classical dis-

placement based finite elements, is an example of PU, and in general, these polynomials are the

ones used in the GFEM implementation.
 Once a mesh of Lagrangian elements is defined, the generalized interpolations can be constructed

by multiplying the PU to polynomials or any other special purpose functions. These shape functions
are then employed according to the Galerkin method to compute approximate solutions to bounda-

ry value problem, as it happens in the standard FEM. Actually, as it is shown next, the procedure

1270 D. P. Neto et al./ An Object-Oriented Class Design for the Generalized Finite Element Method programming

Latin American Journal of Solids and Structures 10(2013) 1267 – 1291

adopted to construct the shape functions allows that the same computational framework can be

used to implement both FEM and GFEM codes.On what follows one focus on the main features of
the GFEM framework keeping in mind that the code herein described is restricted to two dimen-

sional linear solid mechanicsanalysis.

 The weak form of the boundary value problem can be obtained using the Principle of Virtual
Work, being represented as:

σ : δεdΩ
Ω
∫ = p ⋅ δudΓ

Γ
σ

∫ + b ⋅ δudΩ,∀
Ω
∫ δu.

(3)

 The left hand side of equation (3) is the internal virtual work given by the product of the stress

field σ and the virtual strain field δε in the solid domain, while the right hand side represents the

external virtual work, in which p is the vector of forces applied at the solid boundary (i.e., Neum-

man boundary condition), b is the vector of body forces and δu is the virtual displacement field.

 Once the Galerkin approximations provided by the GFEM are adopted to approximate the

boundary value problem, the global system of equation is assembled by the contributions of the
element or local stiffness matrices, each one computed by the following expression:

K
l
= Β

T
DBdΩ

Ω
e

∫ .
(4)

 In equation (4) B is a matrix containing the partial derivatives of the approximation field, and

relates the strain tensor ε to the displacement field u, while D is the constitutive stiffness matrix,

relating the stress tensor σ to the ε tensor. In a similar fashion, the global force vector is also de-

rived from the external virtual work term. One can observe that the assembling procedure is essen-
tially analogous to the one described in the classical FEM literature, as for instance, Hughes (2000)

or Bathe(1996).
 As already mentioned before, the GFEM explores the FEM mesh to build its shape functions.

The ‘enriched’ shape functions are obtained by multiplying the PU shape functions by polynomial

or special purpose functions. These functions are generally referred as enrichment functions, since
they are used to achieve a better field interpolation. Each of these shape functions is associated to a

given vertex node α, to which a region ω named cloud is attached. In the general sense the cloud is
the region in which the shape function presents nonzero values, i.e., the region of its support, being

defined by the set of elements containing the vertex as a common node.

 A GFEM cloud for the two dimensional case is depicted in Figure 1. The cloud radius is defined
as the radius h of the circle surrounding the cloud’s elements. The cloud radius is introduced as a

dimensional factor in the enrichment functions for avoiding numerical conditioning problems in the
system of equation.

D.P. Neto et al./ An Object-Oriented Class Design for the Generalized Finite Element Method programming 1271

Latin American Journal of Solids and Structures 10(2013) 1267 – 1291

Figure 1 A node’s cloud and its radius, in a two dimensional domain.

 The PU function of a given cloud α is represented by the union of the nodal shape functions of

each element attached to the common vertex node. In order to achieve the enriched shape function,

it is usual to employ a (nenrx1) column matrix L, containing nenr enrichment functions Lenr. It is

also common that the first component of the L matrix is equal to 1 (one). This is useful in order to

keep apart the regular interpolation of the FEM and the additional enriched interpolation terms.
Thus, the regular GFEM approximation preserves the FEM fields while including additional en-

riched interpolation terms, resulting in:

u
aprox .

= ϕ
i
u
i

i=1

n
c

∑
⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
L = ϕ

i
u
i

i=1

n
c

∑ + ϕ
i
L
j
enr

j=2

n
enr

∑ u
ij
=

i=1

n
c

∑ ϕ
i
u
i

i=1

n
c

∑

regular interpolation

+ ϕ
ij
enr

j=2

n
enr

∑ u
ij

i=1

n
c

∑

enriched interpolation

.
(5)

 In the previous relation, nc is the number of clouds, uij are the additional nodal parameters in
correspondence to each one of the enrichment function, φi represents the regular PU and nenr is the

number of enrichment functions.
 In general there are no restrictions on the choice of the enrichment function, so one may use any

type of function. In the present work we have employed polynomial functions aiming at results simi-
lar to the ones achieved by means of higher order partitions of unity. These functions are defined by

means of the Cartesian coordinate system variables, and they are evaluated according to the dis-

tance to the cloud center. An example of a set of polynomials functions to be used in a complete
‘second degree enrichment’ is

L = 1,
(x−x

α
)

h
,
(y−y

α
)

h
,
(x−x

α
)2

h
2
,
(x−x

α
)(y−y

α
)

h2
,
(y−y

α
)2

h
2{ }. (6)

 In this paper these functions are referred as ‘bubble like functions’, since they are equal to zero

in the cloud’s center (xα, yα). This characteristic is useful to preserve the meaning of the original
nodal parameters once the enrichment is adopted. Moreover, it becomes easier to impose Dirichlet

boundary conditions in nodes enriched only with functions like these ones.

cloud

cloud center
cloud radius

1272 D. P. Neto et al./ An Object-Oriented Class Design for the Generalized Finite Element Method programming

Latin American Journal of Solids and Structures 10(2013) 1267 – 1291

 If one intends to use a first degree polynomials set, only the three first terms of (6) must be

used; for higher degrees, the set is generated according to the degrees of the Pascal’s triangle poly-
nomial expansion.

 Aiming to use the same computational framework both for the FEM and the GFEM, one may

also compute the local GFEM stiffness matrices by means of an element by element systematic

assembling procedure, according to equation (4). However, for the GFEM, the B matrix order is

dependent on the enrichment set L adopted. Then, the resulting local matrix contains more terms

than the original one for no enrichment status. Actually, additional lines and columns appear in

correspondence to the new nodal parameters introduced by the enrichment fields. Figure 2 illus-

trates some schemes of the local stiffness matrix for a displacement based linear triangular element
in correspondence to different enrichment possibilities. In the FEM, each node has two degrees of

freedom. If both degrees of freedom of one of its nodes is enriched with a L={1, Le}, the original

(6x6) matrix expands to a (8x8) shape matrix. If the same enrichment is applied to all the nodes, it

results an (12x12) matrix.

Figure 2 Local stiffness matrix form according to the enrichment used in its nodes.

 Even though the basic idea seems quite simple, its implementations in not straightforward, re-
quiring a substantially complex algorithm design.The efforts demanded in order to implement it are

justified by the fact that, in general, the GFEM demands much coarser meshes than the ones re-

quired by the FEM. On the other hand, the computing of the enriched element stiffness matrix is
usually more time expensive, demanding a well designed computational code, in order to obtain a

flexible and yet efficient computational code. The main actor in this framework is the element class

method, which must be able to build generic B matrices. The proposed design allows one to imple-

ment methods to compute such matrix in a generic and yet efficient fashion.

3 FEM AND GFEM OBJECT-ORIENTED DESIGN

The Object-Oriented Programming (OOP) is a programming paradigm in which one creates ab-

stract models by defining data structures named objects. Objects are data instances defined by

means of classes, which enclose the description of the internal variables describing a category of
objects, plus the functions and procedures relating to it, referred to as methods. Such objects may

be used to represent real world objects or even theoretical model entities. The objects’ methods are
used to change its own variables or to send messages to other objects, requesting data or even ask-

ing other objects to perform tasks. Following such strategy, the computational program is then

stiffness matrix

Conventional degree of freedom Enriched degree of freedom

D.P. Neto et al./ An Object-Oriented Class Design for the Generalized Finite Element Method programming 1273

Latin American Journal of Solids and Structures 10(2013) 1267 – 1291

executed by means of a set of different classes’ objects, interchanging messages in order to perform

the tasks requested by the software user.
 Since the concept of class provides a manner of grouping variables, constants and methods alto-

gether in the same data structure, the OOP provides a logical framework in which the data ma-

nipulation is restrict to the module in which the data is defined. This is essentially the attribute of
encapsulation, which provides modularity to the code. One consequence of encapsulation is that a

detailed knowledge about the internal implementation of the module is no longer necessary to the
external actors, and only the definition of its public method interface suffices for using it. If the

module is designed properly, it can be used in different situations in the same manner by means of

the same interface, providing flexibility and re-usability of the code.
 Such as for other programming paradigms, for the OOP there is not a unique way to create the

computational code. For each adopted design, different characteristics are obtained. Different per-
formance results (both for processing time and memory storage), code flexibility, readability and

many other characteristics can be observed in the resulting code. For instance, the OOP design is

known for its modularity and expansibility, specially desired characteristics to perform collaborative
programming. Many other advantages of the OOP can be stated, but we refer to Cross et al(1999)

which advocates the use of such paradigm for finite element analysis codes.
 Nevertheless each developed code present specific characteristics, some data structures are basi-

cally the same for any code of a given type of software, and so, it is possible to define a general

class design for it. For instance, Figure 3 depicts a generic class design for a finite element linear
analysis code.

Figure 3 General FEM object-oriented design.

 In such scheme, the diamond symbol in the connecting lines indicates a composition, i.e., one
class instance contains instances of the other class. For instance, the structure may contain instanc-

es of nodes, materials and so on.

 The triangle symbol indicates a relation of inheritance, i.e., that one class derives from another.
The inheritance is observed when a specific type of object is a subtype of a generic object. This is

the case of the ‘beam element’, for instance, which is a type of element, and so, inherits some com-

Node

Structure

Force

Pressure

Imposed_displacement

<Element>

Truss_element Beam_element

Material Thickness

Cross section

(andmany other elements)

1274 D. P. Neto et al./ An Object-Oriented Class Design for the Generalized Finite Element Method programming

Latin American Journal of Solids and Structures 10(2013) 1267 – 1291

mon methods and variables from the generic element class. It is important to note that in such case,

the generic element does not exist in practice, i.e., one cannot instantiate an object of such class.
This is called an abstract class, and it is represented in Figure 3 putting its name between angle

brackets (<Element>).

 Finally, it is important to explain the meaning of the dashed line arrows that connect the ele-
ment class to the ‘material’, ‘thickness’ and ‘cross section’ classes. As it can be observed, instances

of such classes are instantiated inside the ‘structure’ object (observe the diamond symbol in Figure
3). It is clear that such objects are used to define different types of materials, cross sections and

thicknesses to describe a set of elements, and that in general, several elements share the same mate-

rial and geometric characteristics. It would be a waste of memory instantiate one instance of them
for each of the elements of a structure. So, one just needs to define the materials, thickness and

cross sections objects once, which are stored in the structure instance, and then, in order to associ-
ate an element to such object, it is just necessary to point to such material or thickness instance.

This is the meaning of the dashed line arrows: it indicates that the element’s material type and

cross section data, for instance, is defined by pointing to the previously defined material and cross
section instances, which are stored in the structure object.

 Regarding to the generic FEM OO design of Figure 3, within such scheme, the node class is one
of the main actors, representing the discrete points of the continuum at which the desired result is

computed. Therefore, each node is represented by its Cartesian coordinates and must store the re-

sults achieved by means of the numerical method.
 The continuum regions between the nodes constitute finite dimension elements, which define

another fundamental class in the FEM/OOP approach. Beyond the set of nodes defining it, the
elements instances must also hold information about the material and additional geometric charac-

teristics, such as its thickness (plane and shell elements) or cross section data (beam and truss ele-
ments). As already mentioned, such characteristics are defined by means of additional classes as

‘thickness’/‘cross section’, which also constitute the data structure presented in Figure 3.

 Also boundary conditions data are necessary to define the problem, and so classes to describe
them are demanded. For solid mechanics problems using displacement based formulation, classes

like ‘force’, ‘pressure’ and ‘imposed displacement’, for instance, are related to the boundary condi-
tions.

 This basic class framework design is completed by the ‘structure’ class. The structure is the

main instance in such data structure, and constitutes the main interface to the rest of the code. In
fact, it is used to define the finite element model characteristics and to manage the other classes’

instances. Nevertheless, depending on the desired usage for the code, a more general name for such
class is ‘structural set’ or ‘structural problem’, which makes sense if one thinks about problems

treating a set of solids, as, for instance, the solid mechanics contact problems. Departing from the

general OO design (Figure 3), the modifications demanded in order to comport the GFEM are pre-
sented in the following section.

3.1The OOP for the GFEM

The major changes in the present FEM structure in order to support the GFEM are related to the
node class. As already discussed previously, in the GFEM, the number of degrees of freedom (DOF)

D.P. Neto et al./ An Object-Oriented Class Design for the Generalized Finite Element Method programming 1275

Latin American Journal of Solids and Structures 10(2013) 1267 – 1291

associated to a given node varies according to the number of enrichment functions applied to it. In

addition, for all computations, each specific enrichment data must be directly associated to the new
DOF.

 In fact, it turns out that the enrichment function, which does not even exists for the FEM, is an

important actor within this framework. Furthermore, given its generic nature, such ‘abstract’ entity
can be better described by means of defining an abstract <enrichment> class, the basis for a poly-

morphic set of different enrichment classes.
 By taking all these aspects into account, in the proposed OO design a set of classes replaces the

FEM node class, as indicated in Figure 4.

Figure 4 Node, generalized degree of freedom and enrichment class.

 In order to associate a new nodal degree of freedom with enrichment function instances, we pro-

pose the definition of a ‘generalized degree of freedom’ class. Regarding its functionality, this class

basically holds the scalar value of the degree of freedom, computed by means of the numerical
method, its numbering in the system of equations (global_index), and an instance of the ‘enrich-

ment function’ class, if any enrichment is applied to such DOF. If no enrichment is applied, such
instance must be null, resulting in a regular FEM degree of freedom. It is important to mention

that for the GFEM, due to the variable number of DOF for each node, the numbering association
to the system of equations is fundamental to perform the element stiffness matrices and element

load vectors contributions in the global system of equations.

 Since the new data structure for the node class must be able to hold a variable number of gener-
alized degrees of freedom, it demands intrinsically the usage of a dynamic data structure, like, for

instance, the linked lists. Even though linked lists can be constructed in any programming language
by using pointers and user defined data types, we have explored the use of native dynamic list pro-

vided by Python programming language, avoiding extra work in such data structure implementa-

tion.
 Python is a multiplatform programming language, being considered by some authors, such as

Tucker et al(2008), a multi-paradigm language, which supports imperative and object oriented pro-
gramming paradigms. It is a script language, which means that the resulting code is interpreted in

the run-time and not compiled, as required by Fortran or C languages, for instance. This fact leads

to some advantages and some possible drawbacks.

Node

Generalized_dof

<Enrichment>

id: node identification (int)

* int - integer number; float - floating point number

(polymorphic - data structure depends on function type)

coord: coordinates (float)

gdof: instances of the generalized_dof class

global_index: numbering in the system of equation (int)

value: degree of freedom value (float)

enrichment: instance of the enrichment function class

1276 D. P. Neto et al./ An Object-Oriented Class Design for the Generalized Finite Element Method programming

Latin American Journal of Solids and Structures 10(2013) 1267 – 1291

 According to Langtangen(2008), the higher abstraction level inserted in scripting can turn pro-

gramming more convenient. Actually, scripting languages allow for connecting different applica-
tions, as scripts are efficient in receiving inputs and formatting them to outputs to another applica-

tion. Such use of Python is applied by Layman et al (2008). In fact Python is nowadays being used

by many Finite Element Packages such as Abaqus, as reported by Kuutti and Kolari (2012).
 On the other hand, one of the main concerns with script languages, especially for numerical

computation applications, is the performance issue. However, thanks to the existence of a set of
numerical support libraries, like NumPy, TheSciPy Community (2010), SciPy, The SciPy Commu-

nity(2011), and Matplotlib, Dale et al(2011), Python can be used to develop efficient numerical

applications. In fact, the performance of the developed code is shown in section 5, and proved to be
sufficient for the purposed application.

 Even though a GFEM code could be developed in any other programming language, the main
Python characteristic that defined it as the programming language to develop the proposed OO

framework is its dynamic native data structure, which fits exactly with the nature of the generalized

degrees of freedom sets of the GFEM. The previous statement becomes clear in the next para-
graphs, in which other native Python data structures are applied to compose the proposed classes.

 Turning back to the OO design, the ‘node’ class demands a data structure that is capable to
hold any type of degree of freedom, such as displacement, temperature or magnetic field, for in-

stance, and for each of them hold any number of generalized DOF instances.

 In order to do so, the proposed design uses a Python dictionary named ‘gdof’. The dictionary is
another native Python data structure in which ‘keys’ (in practice, any immutable Python object)

are associated to any other type of Python objects, including mutable native Python variables or
even user defined data types. The ‘gdof’ dictionary keys represent the type of DOF, while the relat-

ed value is a Python list in which one can insert any number of ‘generalized degree of freedom’ in-
stances, depending on the number and type of enrichment defined by the user. Such scheme is indi-

cated in Figure 5.

Figure 5 The nodal generalized degree of freedom data structure.

 In Figure 5, ‘dx’ and ‘dy’, for instance, stand for ‘displacement in x direction’ and ‘displacement

in y direction’, respectively. As already mentioned, this allows one to include any other type of
DOF in such data structure. Specifically, we find out in our implementation that such tool is effi-

cient to hold Lagrange multipliers variables used for imposing displacements efficiently in the

GFEM.
 The proposed data structure allows that the generalized element’s stiffness matrix and load vec-

tor computations still being performed by means of the same strategy of the traditional FEM, i.e.,

gdof = {‘dx’ :[gdof, gdof ,...], ‘dy’:[gdof, gdof, gdof...], ...}

[] – Python’s list { } – Python’s dictionary

dictionary key dictionary value

generalized degree of freedom instances

D.P. Neto et al./ An Object-Oriented Class Design for the Generalized Finite Element Method programming 1277

Latin American Journal of Solids and Structures 10(2013) 1267 – 1291

by applying equation (4). The enriched terms contributions is taken into account in the routine that

computes the B matrix, in which it is verified whether the generalized degree of freedom is enriched

or not. In none of the DOF of a given element is enriched, the FEM B matrix is obtained.

 Finally, an important aspect towards a generic framework is the fact that the enrichment func-

tion is represented by a set of polymorphic classes. Such an abstract representation allows that vir-
tually any type of function can be included in the code. This advantage is especially convenient for

scripting languages, like Python, since one can include new enrichment function without needing to
compile the code again.

 Another important aspect focused in the proposed class design is related to the shape functions

used as partitions of unity. As discussed previously, if one follows strictly the definition of partition
of unity, only the linear (triangular) or bi-linear (quadrilaterals) Lagrangian shape functions can be

used as PU for the GFEM. In such context, polynomial enrichments functions are fully justified
since such basic PU’s generally provide poor quality results. In fact, these PU often demand a hier-

archical strategy (h-refinement) for the traditional FEM, resulting in refined meshes in order to

achieve an accurate result. A comparison on the efficiency of GFEM-refinement and conventional h-
refinement strategies is presented in section 4, justifying the convenience of the polynomial enrich-

ment for the GFEM.
 On the other hand, even though the bubble like enrichment increases significantly the quality of

the results, as it is verified in section 4, the use of linear isoparametric elements in order to accu-

rately describe the geometry of curved boundary solids is not possible. So, within the present con-
text, the possibility to have linear PUs associated to curved geometry elements is very relevant. In

order to do so, the proposed OO design solution is based on the definition of a polymorphic class
named ‘Partition of Unity’, basically defining generic PUs of any desired domain, which can be one-

dimensional, two-dimensional (triangular or quadrilateral) or even three-dimensional.

 Even though it might seem abstract to have a generic shape function class, such idea allows one
to employ different approximation PUs to describe the elements geometry and the physical behavior

(field interpolation) by defining different PU instances inside the element data structure, as indicat-
ed in the Figure 6. As it can be noticed, by adopting this design, both isoparametric FEM elements

and curved geometry linear GFEM PU can be supported using the same code framework.

Figure 6 Different PU approximation to describe the geometry and the field interpolation.

 When considered altogether, the hereby proposed set of changes in the classical FEM OO class

design allows that basically the same framework can be efficiently extended to the GFEM purposes,

1278 D. P. Neto et al./ An Object-Oriented Class Design for the Generalized Finite Element Method programming

Latin American Journal of Solids and Structures 10(2013) 1267 – 1291

then preserving the generality of the original methods. In fact, the other classes presented in Figure

3 remain practically the same, requiring at most little or even no changes in order to support both
FEM and GFEM models. Figure 7 presents the complete proposed OO class design for the GFEM.

Figure 7 The proposed object-oriented design for the GFEM.

 In Figure 7, T3, T6 and T10 are triangular domain two-dimensional PUs, while Q4, Q8 and Q12

are quadrilateral PUs. The L2, L3 and L4 classes are one-dimensional PUs. The numbering in their

names makes reference to the number of nodes needed to define such PU.
 As it can be noticed we also propose the union of the force, pressure and imposed displacement

classes in a single class named ‘boundary condition’, searching to achieve a more generic representa-
tion of such data. This unification is a straightforward modification and present no major details to

be described, but improves significantly the code generality, especially if one aims to employ the

same framework not only to solid mechanics analysis code, but to solve other types of partial differ-
ential equation problems.

4 NUMERICAL EXAMPLES

In order to test the computational code accuracy and to evaluate its flexibility and capability of

treating both the traditional finite element and the generalized finite element analysis, next follows
a simple cantilever beam and a solid with a hole examples, both modeled under plane stress hy-

pothesis. Then, a last example to evaluate Python’s processing time performance is presented.

4.1 Cantilever beam

A 24.0x6.0x0.1 (dimensionless) cantilever beam subjected to a distributed load q=1.0 is stated, as

illustrated in Figure 8.

Node

Generalized_dof

<Enrichment>

Bubble_like_function

Structural_problem

Boundary Conditions

<Element>Material Thickness

T10

<Partition_of_unity> Q8

L2 L4L3

T3 Q4

T6

Q12

Cross section

(and any additional

enrichment function)

(and any additional PU)

D.P. Neto et al./ An Object-Oriented Class Design for the Generalized Finite Element Method programming 1279

Latin American Journal of Solids and Structures 10(2013) 1267 – 1291

Figure 8 Cantilever beam scheme.

 In order to verify the accuracy in the conventional isoparametric finite element formulation im-

plemented in the code, the structure is modeled by means of quadrilateral regular meshes contain-
ing 16 elements (bi-linear, bi-quadratic and bi-cubic). The horizontal stress component achieved

results are indicated in Figure 9.

(a) (b)

(c)

Figure 9 Horizontal stress component field map achieved employing bi-linear (a), bi-quadratic (b) and bi-cubic (c) isoparametric elements.

 In order to evaluate the GFEM implementation, the same mesh of bi-linear elements is used.

Appling a second degree enrichment in all its nodes (except the ones in which the Dirichlet bounda-

ry condition is applied), one observe a stress field map close to the ones achieved for the higher
order isoparametric finite elements (see Figure 10).

q = 1.0

E = 5,000.00
v = 0.3

24.0

6
.0

1280 D. P. Neto et al./ An Object-Oriented Class Design for the Generalized Finite Element Method programming

Latin American Journal of Solids and Structures 10(2013) 1267 – 1291

Figure 10 Horizontal stress component field map for a second order bubble like enrichment applied in a bi-linear element mesh.

 Since the developed code supports both FEM and GFEM models, the stated example can be

used to perform a comparison among the polynomial (p) and hierarquic (h) refinement of the FEM,
and the one attained by the GFEM enrichment using bubble like functions, here referenced as selec-

tive (s) refinement. The convergence of the maximum deflection value of the given beam is shown

in Figure 11.

Figure 11 Convergence of the maximum deflection value for the hierarquic, polynomial and selective refinement.

 The enrichment also enhances the quality of the stress field results. Figure 12 indicates the nor-
mal stress field in the horizontal and vertical directions, and the shear stress graphics distribution

across the cross section positioned in the middle of the beam (x=12.0).

D.P. Neto et al./ An Object-Oriented Class Design for the Generalized Finite Element Method programming 1281

Latin American Journal of Solids and Structures 10(2013) 1267 – 1291

(a) (b)

(c)

Figure 12 Normal horizontal (a), vertical (b) and shear (c) stress distribution across the cross section x = 12.0.

 The same solid is finally used to test the code capability of treating different order triangular

and quadrilateral elements to describe its geometry, all mixed in the same mesh. In order to do so,
the non conventional mesh indicated in Figure 13 is then employed to solve the same problem.

Figure 13 Non conventional mesh containing different order approximation triangular and quadrilateral elements.

 The white nodes in Figure 13 are only used to define higher order geometries, i.e., present no

degree of freedom associated, while the black ones are in fact nodes, and present conventional and

enriched degrees of freedom associated, according to the enrichment applied. The horizontal normal
stress results for a second order bubble like enrichment applied over it resulted in a field map close

to the ones achieved before, by means of the regular mesh (Figure 14).

1282 D. P. Neto et al./ An Object-Oriented Class Design for the Generalized Finite Element Method programming

Latin American Journal of Solids and Structures 10(2013) 1267 – 1291

Figure 14 Horizontal normal stress field for a second order bubble like function enrichment achieved for the non conventional mesh

4.2 Two dimensional solid with a hole

The usefulness of the capability of using different order geometry description in the same mesh

turns clear for problems containing circular shapes, as the one depicted in Figure 15.

Figure 15 Solid with a hole (plane stress) model scheme.

 The proposed mesh to solve it is a bilinear regular mesh, employing bi-cubic approximation for
describing the geometry of the elements that surrounds the hole, as it is shown in Figure 16. As it

can be observed, such elements present ‘white’ nodes in their facets, defining a cubic polynomial

description for such elements’ sides.

Figure 16 Bi-linear regular mesh used to describe the solid with a circular hole.

E = 1,000.00
v = 0.3

q = 10.00

r = 11.3137

80.0

(80.0 x 80.0 x 1.0)

A

B

C D

D.P. Neto et al./ An Object-Oriented Class Design for the Generalized Finite Element Method programming 1283

Latin American Journal of Solids and Structures 10(2013) 1267 – 1291

 In order to attain good stress distribution results, the solids nodes are enriched using a full se-
cond degree enrichment (see equation (6)). The horizontal normal stresses in the solid, across the

line A-B, and the vertical normal stress in the solid, across the line C-D, both indicated in Figure
15, are illustrated in Figure 17 and Figure 18, respectively.

Figure 17 Horizontal normal stress in the solid, across the line A-B.

Figure 18 Vertical normal stress in the solid, across the line C-D.

 Even though near the hole it is observed a great stress concentration, in both cases, the applied

enrichment is sufficient to result in stresses values close to the reference solution. The reference
solution results from a very fine mesh of second degree approximation triangular isoparametric ele-

ments, containing 13,662 elements and 27,637 nodes for a quarter of the solid. It is important to

mention that the same region of the enriched solid results in circa 430 degrees of freedom, just a
little fraction of the 55,274 degrees of freedom resulting from the discretization of the numerical

reference solution.
 The stresses field results are indicated in Figure 19 and are close to the ones of the reference

numerical solution.

1284 D. P. Neto et al./ An Object-Oriented Class Design for the Generalized Finite Element Method programming

Latin American Journal of Solids and Structures 10(2013) 1267 – 1291

(a) (b)

(c)

Figure 19 Normal horizontal (a), vertical (b) and shear (c) stress field maps.

4.3 Computational Performance

Once confirmed the code accuracy and flexibility to treat the geometry description using different
approximation orders, the time performance turns out as another important aspect to be evaluated.

As the computational effort depends basically on the total number of degrees of freedom involved, a

problem with a simple geometry is hereby stated, as indicated in Figure 20.

Figure 20 A simple compression problem to test the code performance.

5.0

E=1,000.00

v=0.3

q=1.0

D.P. Neto et al./ An Object-Oriented Class Design for the Generalized Finite Element Method programming 1285

Latin American Journal of Solids and Structures 10(2013) 1267 – 1291

 The total processing time results are relative to a 2.6 version Python interpreter in an Intel Core

i7 running at 2.80 GHz with 12GB RAM, on a GNU/Linux Ubuntu 10.04 64 bits Operating Sys-
tem. The achieved results in the proposed example are illustrated in Figure 21.

Figure 21 Computational performance (processing time, in seconds) for the different number of degrees of freedom and different polyno-

mial enrichment degrees.

 Even though the total processing time is a relative parameter, since it varies according to a vari-

ety of reasons, the main purpose of such evaluation is to demonstrate that the resulting processing
time is suitable enough for the proposed application. It is important to notice that the number of

degrees of freedom tested is much greater than the ones used in the previous stated examples, in
which the results were accurate.

 In addition to it, the GFEM requires relatively less degrees of freedom in order to achieve accu-

rate results. For instance, to mention another case, the example addressed in section 4.2 demanded
only 1,440 degrees of freedom in order to converge to the reference solution, which demands less

than a second in order to solve it.
 Moreover, analyzing the time reports generated by the program, by far the most time consuming

task is the local stiffness matrix computation. This is due to the fact that each of its terms is com-

puted in pure Python, which is not efficient for this kind of computation.
 Actually, the results presented in Figure 21 can be optimized in several ways. For instance, the

bottleneck tasks can be developed in a compiled programming language as C, once Python is effi-
cient for calling and accessing other executable codes. Remarkable speed-ups are also related in

Python’s documentation, see Rossum(2011), using Python’s Standard Library packages as, for in-

stance, ‘weave.inline’, which allows inserting C codes inside the Python script. A good discussion
about performance optimization can be found in Langtangen(2008).

 Within this paper, we have chosen another alternative to illustrate Python’s optimization poten-
tial. As each of the stiffness matrix computations is independent of the other elements, its parallel-

ization is straightforward and demands changes only in few lines of the code. Therefore, the local

stiffness matrix computations were performed in parallel, using a package of the Python’s Standard
Library called ‘Multiprocessing’, see Rossum(2011). It provides high level functions to easily support

parallel programming. Considering that nowadays most of the desktop computers have multiple
processing cores, this is an important programming tool that enables one to take full advantage of

the used computer. A detailed description of this parallelization can be found in Piedade Neto et
al(2011)

1286 D. P. Neto et al./ An Object-Oriented Class Design for the Generalized Finite Element Method programming

Latin American Journal of Solids and Structures 10(2013) 1267 – 1291

 After these changes, one can process the same examples using more than one processing core.

The results achieved for the same example stated in Figure 20, using four processing cores, are de-
picted in Figure 22.

Figure 22 Processing time, in seconds – 4 processing cores, parallelization using Python’s Multiprocessing package.

 Finally, just to illustrate the potential for solving problem containing even larger number of de-

grees of freedom, Figure 23 indicates the total processing time to solve the same problem for meshes

containing around 50,000 and 120,000 degrees of freedom, and first degree enrichment. The used
computer is a Xeon X5660 running at 2.8 GHz and 48 GB RAM, containing 12 processing cores. In

fact, problems up to 500,000 degrees of freedom were processed by means of the developed code.

Figure 23 Total processing for meshes containing around 50,000 and 120,000 degrees of freedom, varying the number of processing cores

from 1 to 12.

5 NONLINEAR SOLID MECHANICS ANALYSIS USING THE PROPOSED OO DESIGN

Analogously to the traditional FEM design presented in Figure 3, it is fully possible to extend the

GFEM proposed OO design to add dynamic and nonlinear analysis features. It is important to
mention that the nonlinear solid mechanics analysis using GFEM is a subject yet little discussed in

the technical literature, reinforcing the importance of a GFEM OO design which allows one to solve
such kind of problem. In order to do so for both cases, the first step is the inclusion of a class to

control the time evolution. Just by including such class and adding some new methods to the ‘ele-

ment’ and ‘structural problem’ classes, linear dynamic analysis can be performed using the same
code framework proposed before. The use of the GFEM for dynamic analyses of trusses was already

evaluated in Torri and Machado (2012).

D.P. Neto et al./ An Object-Oriented Class Design for the Generalized Finite Element Method programming 1287

Latin American Journal of Solids and Structures 10(2013) 1267 – 1291

 Obviously, for nonlinear analysis, some numerical strategies for solving the nonlinear system of

equation are necessary, as for instance the Newton-Raphson Method. Also, it is needed to include
some new methods in the ‘structural problem’ class, but they are basically the same that would be

necessary in a conventional FEM/OO code framework. In what follows, the main necessary changes

in order to consider nonlinear solid mechanics are briefly commented.

 - Nonlinear kinematics: it can be directly implemented in the proposed OO design, demand-

ing only few additional methods to compute the stiffness matrices and load vectors in the deformed

solid configuration. In fact, such methods were implemented in the element class in a short period
of time, using a total Lagrangian description. An example of the Euler column is illustrated in Fig-

ure 24, showing both the deformed solid configuration and the numerical results of the relation be-
tween the axial force and the lateral deflection, depending on the amplitude of the initial imperfec-

tion ‘e’ in the mid span (i.e., post-buckling equilibrium path).

Figure 24 Euler column example relating the vertical force applied to the column to the maximum horizontal displacement, depending on

the value of the initial imperfection ‘e’ (L is the column length).

 - Elasto-plastic constitutive behavior: the material class requires methods to verify the

hardening criterion, to compute the plastic strain evolution in time and the secant and tangent
elasto-plastic constitutive relation. During the solution process, one also needs to store the plastic

strain and hardening parameters state at the integration point. In order to do so, many different

OO design solutions can be employed. For the current implementation of the proposed code a
‘stress/strain state’ class is defined, and instances of such class are then instantiated for each of the

element's integration points, i.e., inside the element's instances. Such features were implemented in
the code developed following the proposed OO design and were already validated using commercial

FEM codes.
 Figure 25 shows the nonlinear elasto-plastic behavior of a square shaped solid (plane strain hy-

pothesis), illustrated by the nonlinear relation between the vertical displacementof a point located

at the solid’s top and the total force due a compression pressure applied over it.The depicted results

1288 D. P. Neto et al./ An Object-Oriented Class Design for the Generalized Finite Element Method programming

Latin American Journal of Solids and Structures 10(2013) 1267 – 1291

are related to a nonlinear hardening plastic von Mises like material model. Linear polynomial en-

richment was applied to the set of non constrained nodes.

Figure 25 Nonlinear force x displacement relation for a nonlinear hardening von Mises material model and GFEM enriched square solid.

 - Contact problems: it is necessary to create new classes to describe the contact elements and

its targets. Such elements can be attached to the solid nodes or parts of its boundary, resulting in

node-to-segment or segment-to-segment elements, for two-dimensional modeling. The targets, as the
segment-to-segment contact elements, have its geometry and its physical behavior interpolation

defined by means of one-dimensional PU, which already exists in the proposed OO design. In fact,

the PU class instances of the proposed GFEM OO design were employed in order to implement
segment-to-segment contact elements for frictionless contact problems, in the developed code. We

find out that the generic proposed PU class promotes remarkable code reusability. Moreover, it
naturally allows one to generate enriched contact elements, just following a similar strategy used for

the enriched element’s stiffness matrices. Even though such additional features demand major inclu-

sions in the proposed OO class framework, it demands practically no changes in the overall pro-
posed OO linear framework. Some illustrative examples of contact problems solved by means of it

are shown in Figure 26.

Figure 26 Contact problems solved using a nonlinear analysis code based on the proposed OO design.

D.P. Neto et al./ An Object-Oriented Class Design for the Generalized Finite Element Method programming 1289

Latin American Journal of Solids and Structures 10(2013) 1267 – 1291

6 CONCLUSIONS

Despite of its flexibility and power, the Generalized Finite Element Method demands an efficient

computational implementation in order to take full advantage of such characteristics. In this paper
we present an object-oriented class design in order to obtain a computational code which circum-

vents the difficulties due to the method’s generality. Departing from a general object-oriented class
design for the traditional Finite Element Method, a few new classes and issues are included in it in

order to support the GFEM programming. Due to the methods characteristics, the use of Python

programming language for the GFEM programming is technically justified. Some results computed
using a code developed following such OO framework proves the efficiency of the propose design.

Beyond the accuracy and flexibility achieved, the performance results prove that the advocated
programming language present sufficient performance to be employed in numerical applications like

this. Finally it is presented a brief discussion on how to expand the presented OO design in order to

obtain a nonlinear analysis computational code.

References

Alves Filho, J. S. R., Devloo, P. R. B. (1991). Object Oriented programming in Scientific computations: the begin-

ning of a new era. Engineering Computations, Vol. 8, Issue 1, pp. 81-87.

Bathe, K. J. (1996). Finite Element Procedures, Prentice-Hall, Inc. Englewood Cliffs, New Jersey.

Bittencourt, M. L. (2000).Using C++ templates to implement finite element classes, Engineering Computations. Vol.

17 No. 7, pp. 775-788.

Bordas, S. P. A., Nguyens, P. V., Dunant, C., Guidoum, A., Nguens-Dand, H. (2007). An extended finite element
library, International Journal for Numerical Methods in Engineering, Vol. 71, pp. 703-732.

Cross, J. T., Masters, I., Lewis, R. W. (1999). Why you should consider object- oriented programming techniques for

finite element methods. International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 9 No. 3, 1999, pp.

333-347.

Dale, D., Droettboom, M., Firing, E. and Hunter, E. (2011).Matplotlib - Release 1.0.1.available at

http://matplotlib.sf.net/Matplotlib.pdf, (acessed April 2011).

Duarte, C. A. and Oden, J. T. (1996a).An hpadaptative method using clouds. Computer Meth. in Applied Mechanics

and Engineering, Vol 139, pp. 237-262.

Duarte, C. A. and Oden, J. T. (1996b).Hpclouds – an hpmeshless method. Numerical Methods for Partial Differen-

tial Equations, Vol. 12, pp. 673–705.

Dubois-Pélerin, Y., Zimmermann, T., Bomme, P. (1992).Object-oriented finite element programming: II A prototype
program in Smalltalk. Computer Methods in Applied Mechanics and Engineering, Vol. 98, pp. 361-397.

1290 D. P. Neto et al./ An Object-Oriented Class Design for the Generalized Finite Element Method programming

Latin American Journal of Solids and Structures 10(2013) 1267 – 1291

Dubois-Pélerin, Y., Zimmermann, T. (1993).Object-oriented finite element programming: III. An efficient implemen-

tation in C++. Computer Methods in Applied Mechanics and Engineering, Vol. 108, pp. 165-183.

Forde, B. W. R., Foschi R. O., Stiemer, S. F. (1990). Object-Oriented Finite Element Analysis. Computer & Struc-

tures, Vol. 34, No. 3, pp. 355-374.

Hughes, T. J. R. (2000). The Finite Element Method – Linear Static and Dynamic Finite Element Analysis, Dover

Publications, Inc.

Kuutii, J., Kolari, K. (2012). A local remeshing procedure to simulate crack propagation in quasi-brittle materials.

Engineering Computations: International Journal for Computer-Aided Engineering and Software, Vol. 29 No. 2 pp.

125-143. Langtangen, H. P. (2008), Python scripting for computational science, Third Edition, Springer.

Layman, R. ,Missoum, S., Geest, J. V. (2010). Simulation and probabilistic failure prediction of grafts for aortic

aneurysm. Engineering Computations: International Journal for Computer- Aided Engineering and Software, Vol. 27

No. 1, 84-105

Mackerle, J. (2000). Object-oriented techniques in FEM and BEM A bibliography (1996-1999). Finite Element in

Analysis and Design, Vol. 36, pp. 189-196.

Mackie, R. I. (2000). An object-oriented approach to calculation control in finite element programs.Computer and

Structures, Vol. 77, pp. 461-474.

Melenk, J.M. and Babuška, I. (1996). The Partition of Unity Finite Element Method: Basic Theory and Applica-

tions. Seminars fur AngewandteMathematik, EidgenossischeTechnisheHochschule, Research Report No. 96-01, Janu-

ary, CH-8092 Zurich, Switzerland.

Pereira, J. P. A. (2004). Extração de fatores de intensidade de tensão utilizando a solução do Método dos Elementos

Finitos Generalizados.Master of Science Dissertation, São Carlos Engineering School, University of São Paulo.

Piedade Neto, D. ; Ferreira, M. D. C. ; Proença, S. P. B.(2011). Generalized Finite Element Method Computation:

parallelization using Python multiprocessing package. XIX Congreso sobre Métodos Numéricos y sus Aplicaciones,

2011, Rosário. Mecánica Computacional. Rosário : Associación Argentina de Mecánica Computacional, 2011. v. 30. p.

3045-3061.

Rossum, G. V. (2011). The Python Library Reference - Release 2.7.2, 2011.available at

http://docs.python.org/download.html. (acessed July 2011).

Tucker, A. B. and Noonan, R. E. (2008). Linguagens de programação – princípios e paradigmas. SegundaEdição,
McGraw Hill.

The Scipy Community (2010). NumPy Reference – NumPy v1.5 Manual (DRAFT). available at

http://docs.scipy.org/doc/numpy-1.5.x/reference/, (acessed 08 April 2011).

D.P. Neto et al./ An Object-Oriented Class Design for the Generalized Finite Element Method programming 1291

Latin American Journal of Solids and Structures 10(2013) 1267 – 1291

The Scipy Community (2011). SciPy - SciPy v0.9 Reference Guide (DRAFT). available at http://numpy.scipy.org/,

(acessed 08 April 2011).

Torri, A. J., Machado, R. D. (2012). Structural dynamic analysis of time response of bars and trusses using the gen-
eralized finite element method.Latin American Journal of Solid and Structures. Vol. 9, pp 309 -337.Zimmermann,

T., Dubois-Pélerin, Y., Bomme, P. (1992). Object-oriented finite element programming: I. Governing principles.

Computer Methods in Applied Mechanics and Engineering, Vol. 98, pp. 291-303.

