
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this

document without permission of its author may be prohibited by law.

CMU-CS-80-146

University Libraries

Carnegie Mellon Universify

Pittsburgh PA 1 5 2 1 3 - 3 8 9 0

An Object-Oriented Command Language

Richard Snodgrass

Depa r tmen t of Compu te r Sc ience

Carneg ie -Me l lon Un ivers i t y

P i t t s b u r g h , PA 1 5 2 1 3

October 1980

C 2 % n

Copyright © 1980 Richard Snodgrass

This research was sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA

Order No. 3597, monitored by the Air Force Avionics Laboratory Under Contract F33615-78-C-1551.

The views and conclusions contained in this document are those of the author and should not be

interpreted as representing the official policies, either expressed or implied, of the Defense Advanced

Research Projects Agency or the US Government.

Abstract

This report describes Cola, an object-oriented command language for Hydra; Hydra is a capability-

based operating system that runs on C.mmp, a tightly-coupled multiprocessor. Cola was designed to

effect a correspondence between capabilities in Hydra and objects that are supported by the

language. Cola is based on Smalltalk in that it uses message-passing as a control structure to allow

syntactic freedom in the expression of commands to the system. Cola objects are arranged in a

hierarchy, and the message-passing mechanism was designed to exploit this structure by

automatically forwarding an unanswered message up the hierarchy. Two ramifications of this

mechanism, automatic inheritance and shadowing, are discussed. An evaluation of the design

decisions is also given. The second part of the paper discusses the syntax and semantics of the

language in more detail, and the appendices contain a few examples of Cola objects.

Acknowledgements

The CL [Reiner 77] provided valuable insight into some of the inherent advantages and

disadvantages of a command language under Hydra. Most of the underlying language concepts can

be traced directly back to Smalltalk-72 [Goldberg 78]. The concept of classes and instances

originated with Simula [Birtwistle 73], and some of the concepts of the class hierarchy (especially the

concept of shadowing) were developed independently by Scott Fahlman [Fahlman 79] and were

hinted at in the Pygmalion system [Smith 75]. Many people contributed both directly and indirectly

through helpful discussions and comments on earlier versions of this paper, and through

explanations of the intricacies of Hydra and Smalltalk. I would especially like to thank Gail Kaiser,

Joseph Newcomer, Karsten Schwans, Philip Wadler, and William Wulf for their help.

Table of Contents

1 . I n t r o d u c t i o n 1

Part 1: Overview

2. Cola as a C o m m a n d Language 5

2.1 Overview of Hydra 5

2.2 Objects and Message Passing 6

2.3 The Cola/Hydra Correspondence 7

2.4 Non-object-based Operating Systems 8

3. The O b j e c t H ie ra r chy 9

3.1 Simula Subclassing 9

3.2 Naming 10

3.3 Instances 10

3.4 Execution Semantics and the Binding Mechanism 12

3.5 Automatic Inheritance and Shadowing 13

4 . S u m m a r y 15

Part 2: The Language

5. The I n t e rp re ta t i on Loop 19

6 . Messages 21

7. C o m m a n d Syn tax and S e m a n t i c s 23

7.1 Comments 23

7.2 Assignment 23

7.3 Literals 24

7.4 Control Structures 24

7.5 Conditionals 25

7.6 Integer Expressions 25

7.7 Input/Output 26

7.8 Delimiters 27

7.9 Returning a Value 27

7.10 Defining Subclasses and Instances 28

8. P rede f i ned C lasses 31

8.1 Atom 31

8.2 Integer 31

8.3 Object 31

8.4 False 32

8.5 True 32

8.6 Nil 32

8.7 String 32

8.8 Wordvec 33

8.9 Vector 33

8.10Capa 34

8.11 Catalogue 34

8.12 File 35

8.13 Terminal I/O 36

8.14 Kernel Call 37

9. U t i l i t y o b j e c t s

9.1 At(@)

9.2 Attach

9.3 ClassDefined

9.4 Classlnvoked

9.5 Definelnstance

9.6 DefineSubClass

9.7 Driver

9.8 Instances

9.9 Newlnstance

9.10 Self

9.11 Show

9.12Six12

9.13 Subclasses

9.14 Super

B i b l i og raphy

Part 3 : Examples

I. Rec tang le C lass

I I . P r o t e c t e d c a p a C lass

I I I . B o o t s t r a p C lass

1

1 . Introduction

Cola is an object-oriented command language which grew out of a need for a comfortable user

interface for Hydra [Wuif 81], a capability-based operating system that runs on C.mmp [Wulf 72], a

tightly-coupled multiprocessor. Hydra provides a comprehensive set of facilities to the user, yet the

previous command language for Hydra (called the CL 1) presented these facilities as an unrelated

collection of procedures. The overall character of the operating system was not reflected in the way

that the user interacted with the command language. In the design of Cola, much effort was

expended to mirror the philosophy of the operating system in the command language. The

incorporation of objects, similar to Simula classes, in the command language was a result of this

objective.

That the concept of class might by a valuable addition to command languages is suggested by an

analogy between the development of command languages and general purpose languages. When

the hardware is first introduced, one programs in assembly language, due in part to a lack of higher

level software, an inadequate understanding of what structuring concepts are useful, and a desire to

make the most of a scarce resource. Assembly language programs can be characterized by their

utilization of the full power of the hardware by building on only the basic facilities available. One

command language analogue to assembly languages is the OS/360 Job Control Language [Mealy

66], which shares these same properties. As with assembly language, anything is possible in JCL,

and almost everything is difficult. The first step toward making the machine easier to program was

Fortran, which provides a few basic control structures, such as DO-loops and subroutines, as well as

a few data structures, such as arrays and COMMON storage. The George 3 Command

Language [Ostreicher 67], which includes conditional and looping statements, as well as user-defined

macros, embodies some of the advances found in Fortran.

Algol was the next major development in programming languages; concepts such as data types,

block structure, and recursive procedures first appeared in this language. Similar ideas can be found

in the Burrough's Work Flow Language [Cowan 75], IBM's CMS language [IBM 80], OSL/2 [Alsberg

71], SCL [Brunt 76], and the CL, al thoughthey have been adapted for a command language domain 2 .

For example, SCL uses the block structure of a control program to limit both the scope of variables

(as in Algol) and the scope of operating system resources, and the CL interprets certain names to

refer to objects in the file system rather than in main memory. The next major step in programming

The CL [Reiner 77] is a general expression -oriented block structures programming language. The syntax resemoles Bliss

[Wuif 75], the system implementation language Hydra itself was written in. Some features have beer, added (such as a capability

data type) or altered (such as a more versatile assignment statement) to allow access to specific Hydra facilit ies.

Lisp has also been taken as a starting point in the design of a command language [Ellis 80, Levine 80]
2

2

languages (one that is currently still in progress) is the introduction of abstract data types [Shaw 80].

The concept of class first appeared in Simula [Birtwistle 73], with Euclid [Lampson 77], Alphard [Wuif

76], and CLU [Liskov 77] continuing the emphasis on abstraction and modularization. Despite the

advantages inherent in these developments, the concept of abstract data types has not yet appeared

in command languages.

A similar analogy between general purpose languages and operating systems also suggests

incorporating classes into the command language. In one sense, an operating system is merely a

large, complex runtime system for the user's program. This was true before multiprocessing, and

applies even more with the advent of operating systems for personal computers, which are usually

single language machines [Lampson 79, Redell 80]. The concepts introduced in programming

languages tend to be transfered to the runtime systems, as well as the operating systems, which

support them [Jones 77]. Thus, there has been a flurry of activity in recent years concerning object-

based operating systems [Jones 79, Ousterhout 80, Wilkes 79]. In systems such as these where the

concept of object pervades the programming ianguage, its runtime system, and the operating system

itself; the command language should provide consistency by also supporting objects.

3

Part 1: Overview

This document is divided into three parts. The first provides an overview of Cola by examining the

Implications its design has on its usage as a command language and on the ability to organize objects

in a coherent fashion. The second part is more concrete, describing an informal syntax and

semantics for the language. The third part, the appendices, contains several examples that are used

to illustrate some of the constructs that appear in the language.

The first part begins by motivating the character of Cola through a discussion of the facilities that a

command language for Hydra should contain. Cola and the CL are compared, and it is argued that

Cola is more successful at incorporating the abstractions present in the operating system in a uniform

manner. The third chapter investigates the rich structuring mechanisms for objects available in Cola.

These mechanisms facilitate efficient storage of both static knowledge (in the form of data structures)

and dynamic knowledge (in the form of control structures). The rest of this part sums up what has

been learned through this effort and what still remains to be done.

4

5

2. Cola as a Command Language

As indicated above, much progress has been made in providing more powerful command

languages. There are, however, arguments for eliminating the command language completely, and

instead embedding the functionality previously provided by the command language in the

programming system, resulting in a programming environment with a uniform syntax and

semantics [Feiler 80, Habermann 80, Lauesen 73, Sandewall 78, Teitelbaum 79, Teitelman 78]. These

arguments include not having to learn a different command language, being able to utilize the control

and data structures present in the existing language when writing job control programs, and aiding

the standardization task for command languages.

Despite these advantages, such an approach is not always appropriate. Each programming

environment must be developed separately for each language that is desired. Also, it is very difficult

to write a system in several different languages if each is supported by its own environment. Due to

these reasons, plus the lack of existing systems that provide operating system primitives within the

language, it is necessary to provide some kind of user-level interface that can interact with all these

language systems. Since the operating system is the one entity shared by the users of the various

languages, and it is the operating system that is providing the services that the command language

refers to, it is appropriate to align the command language as closely as possible with the operating

system [Treu 75].

2.1 Overview of Hydra

Cola is a command language that was designed for Hydra [Wuif 81], a capability-based operating

system that runs on C.mmp [Wuif 72], a tightly-coupled multi-processor consisting of sixteen DEC

PDP-11's. The two most important attributes of Hydra - supporting a multi-processor and

implementing an object-based protection scheme -- are relatively orthogonal. In Hydra, capabilities

are protected pointers that refer to resources, both physical and virtual, called objects. Each object

consists of an array of capabilities (a clist) and an array of words (a datapart). A particular capability is

refered to by specifying the index into a clist; similarly, data is referenced by indexing into the

datapart. Since every resource in Hydra is associated with an object, all resources can contain data

and capabilities. For instance, the datapart of a procedure object contains information relevant for

execution and debugging (such as its trap and interrupt addresses, saved registers, etc.); the clist

contains capabilities used by that procedure, including capabilities for page objects, which contain

the code for the procedure.

In addition to using capabilities to support a very flexible protection scheme [Cohen 75], Hydra

provides powerful abstraction mechanisms. Objects are typed, and associated with each type is a set

6

of procedures that can manipulate the representation of objects of that type. The user can define new

types by specifying the representation of objects of that type in terms of types that are already

defined, and by providing procedures that can perform operations on objects of the new type. In this

way, Hydra types are analogous to the abstract data types of Simula or Atphard.

Although capabilities and Hydra objects are quite different entities, the two terms are often used

interchangably. Hence, instead of refering to 'the length of the datapart of the object pointed at by the

capability called "ACapa'V one would refer to 'the length of the datapart of "ACapa" ' . This

convention will be followed in the remainder of this paper.

2.2 Objects and Message Passing

Cola is also based on the concept of objects. A Cola object is a potentially active piece of

knowledge that communicates by sending messages composed of objects [Hewitt 77]. Cola is

modeled closely after Smalltalk [Goldberg 78, Shoch 79]. Although it shares many characteristics

with conventional languages incorporating abstract data types, Cola is unusual in that it uses

message passing as a control structure to allow syntactic freedom in the expression of commands to

the system, an important consideration in the design of an interactive language.

As an example of message passing, evaluating <object> + 4 means the message ' + 4 ' 3 is sent to

<object>, which interprets the message, and returns another object as a reply. In the procedural view,

' + ' would be an infix operator defined in the types within which the plus operator was valid. In Cola,

the ' + 1 in the message is interpreted by 3 (as an example of <object>) as ordinary addition, with the

integer 7 returned; for the <object> 'a string', the plus sign is interpreted as string concatenation, with

the string 'a string4' returned. Each object can interpret a message in any way it sees fit. Message

passing is entirely consistent with, and indeed, supports, the information hiding aspects inherent in

abstract data types [Ingalls 78].

Every object in Cola belongs to a class, which is analogous to a type in other languages. The class,

also an object, defines the messages that all its members can accept, as well as the semantics for

each of the messages. It also defines the data structures that can reside in each member. The code

that is associated with a class is shared by all the members of that class. Hence, the object 4 is a

member of the class INTEGER; the object 'a string' is a member of the class STRING. The class

structure is actually much richer than described here; more will be said when the object hierarchy is

discussed in chapter 3.

3 T h e following typographical conventions will be fol lowed in this report. Names cf predefined and user-defined classes

(such as INTEGER) will be written in small capitals; messages sent to an object will be in italics, or enclosed in single quotes.

Strings will also be enclosed in single quotes; the context should disambiguate the two cases. Exampies will be in boldface,

and the names of atoms (corresponding to variables in other languages) will be enclosed in double quotes.

7

2.3 The Cola/Hydra Correspondence

Cola was designed to effect a correspondence between objects (actually, capabilities) in Hydra and

objects that are supported by the language: every object (capability) in the user's environment in

Hydra is associated with an object in the user's environment in Cola. A system call embedded in a

program can cause Hydra to perform an operation on an object referred to by the capability

mentioned in the system call. In the same way, a message can be sent to the Cola object associated

with that capability to perform the operation. In responding to the message, the Cola object, as a side

effect, executes the system call on that capability. Thus, there is no distinction between Hydra

objects (capabilities) and Cola objects, resulting in an isomorphism between the two entit ies 4 .

This correspondence is qualitatively different from the view of Hydra presented by the CL. The CL

appears to the user as a set of predefined procedures which can operate on capabilities. These

procedures correspond directly to the system calls available to Bliss programs running on

Hydra [Cohen 76]. Hence the CL is effectively an interpreted Bliss (indeed, if Bliss were an interactive

language, then the CL as implemented would have added little functionality.)

Although the use of Bliss as a base for the command language resulted a rather powerful user

interface, it suffered from the restriction that communication with the operating system can occur only

via system calls. Since objects consist of an array of integers (the datapart) and an array of

capabilities (the clist), it would be natural to access objects as arrays. Instead, one retrieves the data

of an object by executing a system call (actually, in this case an ad hoc extension was made to the CL

to allow array accessing to be done on Hydra capabilities). The CL lacks the ability to dynamically

define new types at the command level, and to define operations associated with these types which

are reflected via system calls to the Hydra objects that are referred to by the command objects.

Cola provides this functionality and, as a result, presents to the user a different perspective on the

operating system. Cola integrates the objects supported by the operating system into the language

itself (due to the Cola-Hydra object isomorphism), eliminating the cumbersome system call interface.

Note that the implementation still uses system calls, but this detail is hidden from the user. Instead,

the user interacts with the command language using the abstractions with which she is familiar with,

namely those supported by the operating system.

This is not strictly true, since there are Cola objects such as INTEGER which do not have a Hydra analogue. (Ideally, Hydra

would handle integers as objects, but the implementation makes small objects inefficient.)

8

2.4 Non-object-based Operating Systems

The object concept in Cola can be usefully incorporated into command languages for operating

systems that are not themselves based on the object model. The function of an operating system is to

provide resources for user jobs that can be manipulated by the job by executing system calls. These

resources are essentially typed objects (such as files, directories, I/O ports, memory) with operations

defined on them (such as print, add entry, send a character, reserve), although they are not always

implemented as such in the operating system. It is this thinking that has motivated research in object-

based operating systems, and the use of objects in the command language is merely an extension of

this concept, independent of the use of objects in the underlying system.

9

3. The Object Hierarchy

Although the main impetus for this research was the design of a command language for Hydra, the

language that evolved out of this effort is interesting in its own right. Cola objects are useful not only

as command language surrogates for objects (capabilities), but also have many properties that make

them useful in models of computation [Grief 75] and in personal computer languages [Goldberg

79, Kay 77, Warren 79]. Since an object is an active piece of knowledge, one aspect of this research

considered structuring objects in ways that have been found to be useful in structuring

knowledge [Minsky 75]. Cola uses a hierarchical ordering of classes coupled with an execution

semantics and binding mechanism to represent static and dynamic knowledge within the class

structure.

3.1 Simula Subclassing

Simula, the first language to incorporate classes, used a subclassing mechanism to structure

objects. A subclass is a refinement of a class: it inherits all of the procedures and data structures of

its parent class, and augments these with its own procedures and data structures. Subclasses can

also be refined further by their own subclasses, resulting in a tree structure. An instance of a class

contains the values of all the data structures defined in all of its defining classes. The subclassing

mechanism of Simula is a static, compile-time structure that almost completely disappears in the

runnable version of the program. Smalltalk-76 has a similar mechanism that is partially interpreted at

runtime [Ingalls 78].

There are several advantages inherent in such a scheme. Since the subclass inherits all of the traits

of its defining class (its superclass), the code for the superclass need not be duplicated. Instead, the

subclass uses all of the code it needs from its superclass, and adds traits of its own. Thus the

mechanism provides a powerful structuring capability to the language. Other advantages, due to the

message passing mechanism, will be discussed shortly.

The disadvantages of subclasses stem from the decision to place all of the data structures in the

instance. Information associated with a superclass is replicated in all of the instances of that class.

This arrangement complicates the modification of data associated with a class located several levels

above the instance, and invokes the traditional consistency problems associated with redundant data

(such as how does one make sure that all the instances of replicated data have been updated). There

is thus an asymmetry in the distribution of data structures and procedures in Simula: procedures are

shared by ail subclasses of the class containing the procedure; data structures are not shared at all,

but exist separately in every instance (note however that the names of the data structures are shared

in the same manner as procedures). The Cola subclassing mechanism has been designed to allow

the sharing of data structures while retaining the advantages mentioned above.

10

The Cola subclassing mechanism orders all objects in a hierarchical fashion. At the top of the

hierarchy is the class (or object, since all classes are objects) called OBJECT, OBJECT is associated

with a set of classes (called subclasses of OBJECT) through the relation subclass. Similarly, each of

these classes is associated with object through the relation superclass. Subclass is a many-to-one

relation - a class can (and usually does) have many subclasses. Superclass is a one-to-many relation

- a class is restricted to having a unique superclass, but several classes can have the same

superclass. Thus the subclass-superciass relation produces a tree structure of classes, as in Simula,

with the class OBJECT being the root node.

3-2 Naming

Associated with every class are three kinds of variables, permiting flexibility in the placement of the

values of the variables within the object hierarchy. These variables are class variables, instance

variables, and temporary variables. Class variables are named in the class and are associated with

values that reside in the class. They correspond to O w n variables, in that their value is shared by ail

instantiations of that class. (In Figure 1, " B " is a class variable of "Three", with value ".05".)

Instance variables, on the other hand, are named in a class, but are associated with values that reside

in the immediate subclasses of the class. They correspond to the data structures defined in Simula

classes, except that the values are stored in the next lower level, rather than in the leaves (i.e., the

instances) as in Simula. ("C" and " D " are instance variables of "Three", with values in "Four" and

"Five".) Values for temporary variables are created on every invocation of the object they are

associated with using the traditional stack discipline, and are destroyed when the object returns.

They correspond to variables designated as Loca l , Var, or Recurs i ve in other languages. ("E" and

"ThisTemp" are then temporary variables shown in Figure 1.) When a class is defined, the names of

these three types of variables are declared. The name of the superclass must also be declared when

the class is defined.

3.3 Instances

Instances are objects that differ from classes in only one way: there is no code associated with

instances, whereas there must be code associated with classes. This distinction is not necessitated

by the logical framework developed so far, but occurs because of the way that classes are defined.

The restriction that results is that instances cannot create subclasses or subinstances. Therefore,

instances appear as leaf nodes in the hierarchy produced by the subclass-superciass relation. (In

Figure 1, "Six" and "Seven" are instances, each containing values for the instance variables

declared in "Five".)

Instances correspond to values of variables, where the type of the variable is the superclass of the

Two:

Object:

One:

11 Class Name:

instance var value

class var name

class var value

instance var name

temp var name

Code for class

(instance var name)

(class var name)

Template for Classes

one instance variable named "A"

no code is shown for any of these classes

values for "A"

one class variable named "B" whose value resides in the class

two instance variables named "C" and "D"

Four:
values for the instance variables declared in "Three"

one class variable and its value

two instance variables declared here

one temporary variable declared here - space will

be allocated when "F ive" is sent a message

(G)

(H)

these are instances, hence they contain only values
for instance variables declared in their superclass, "Five"

Figu re 1 : A class hierarchy with the data structures shown

(the arcs represent the subclass-superclass relation)

12

instance. Hence the instance 3 has as a superclass the class INTEGER. The atom associated with the

instance corresponds to the variable itself.

Since instances do not have any code associated with them, they also do not have either class

variables or temporary variables associated with them. Instances contain only the values of instance

variables declared in the superclass of the instance.

Most of the statements expressed in the remainder of this chapter apply to all objects; where there

exists differences for classes and instances, the differences will be noted. Also, the detailed syntax

will be delayed until the second part of this document.

3.4 Execution Semantics and the Binding Mechanism

The control flow is tied to the object hierarchy and allows procedures contained in a class to be

shared by its subclasses (the sharing mechanism will be detailed in the next section). When an object

is sent a message, the code for that object is invoked, if there is no code associated with the object

(i.e., the object is an instance), or if the class does not recognize the message, then the superclass of

the object is sent the same message (called forwarding the message). This process continues until

some class recognizes the message, or the class OBJECT is invoked (OBJECT recognizes every

message and responds with some default reply). A class recognizes a message by returning a reply.

The binding mechanism is also tied to the object hierarchy and allows data structures to be

distributed. The binding mechanism is a combination of static binding (for class and temporary

variables) and dynamic binding (for instance variables). When a class is defined, the names of the

class, instance, and temporary variables are given, as well as the code to be associated with the class.

The binding mechanism for class variables appearing in the class code simply binds the name to the

value that resides in the class. Temporary variables are bound to the storage allocated at the time of

invocation. The binding of temporary varibles remains in effect until the object returns a reply, at that

time the storage is recovered and the binding broken.

The binding mechanism for instance variables is more complicated due to the possible forwarding

of a message. If a message is being forwarded from a subclass or instance, then the instance

variables are bound to the values which reside in that subclass or instance. If the class was the class

that was originally sent the message, then there are no values to bind to the instance variables, and an

error occurs if they are referenced.

The object CLASSINVOKED (see section 9.4) returns TRUE if the class itself was sent the message.

The object SELF refers to the object that was originally sent the message. It is thus possible to

associate different procedures with messages sent to a class and messages sent to a subclass of the

class (analogous to triggers and traps, respectively, in KRL [Bobrow 76].)

13

The binding mechanism restricts the set of variables that may be referenced by the code in any

given class. Since definitions must proceed in a top-down fashion (the superclass must be specified

in the definition of a class), it makes no sense for a class to refer to a variable declared in one of its

subclasses. Similarly, variables declared in a separate branch of the hierarchy are also inaccessible.

To access a variable that is defined in a superclass, the class must send a message to its superclass

requesting the value of the variable; this message is forwarded up to the appropriate superclass,

which responds with the value of the desired variable. This process also applies to information

contained in classes that are above the object originally sent the message, yet below the class

currently dealing with the message, since a request for that information can be sent by a class to SELF.

3.5 Automatic Inheritance and Shadowing

One of the ramifications of the execution semantics and the data structuring is the automatic

inheritance by a class of the ability to respond to all the messages that the successive superclasses of

the class can respond to.

As an example, suppose that the classes INTEGER and REAL are subclasses of the class NUMBER.

Each of the subclasses handle the messages 5 < number, = number, and print; NUMBER handles the

messages > number, > = number, <> number. Each of the subclasses of NUMBER provides a minimal

set of operations, and NUMBER augments these operations with ones that can be composed of

operations from the minimal set. In this way, NUMBER contains the mechanisms common to INTEGERS

and REALS, and each of the INTEGER and REAL classes contain only mechanisms which are unique to

them. As an example, suppose that the INTEGER 3 is sent the message '> 4'. Since INTEGERS do not

know how to respond to this message, it gets forwarded to NUMBER, NUMBER responds by sending the

message '< 4' to SELF, which is defined to be the object that was sent the original message (in this

case, the INTEGER 3). This object responds with TRUE, which NUMBER uses to respond to the original

message with the reply FALSE. (Note that if the object responds with FALSE, then NUMBER would have

to send SELF the message ' = 4'.) If a new subclass COMPLEX was defined (that included the ability to

respond to < number), it would automatically inherit the ability to respond to the message > number by

forwarding the message up to NUMBER.

This mechanism of automatic inheritance is very useful. Simula [Birtwistle 73] applied a form of

automatic inheritance to build up an entire sublanguage suited to the construction of simulation

programs. Most knowledge representation systems incorporate the concepts of prototypes (i.e.,

classes), entities (subclasses and instances), and property inheritance [Winograd 75]. KRL [Bobrow

76], for example, includes a subclassing mechanism with automatic inheritance through the use of

^number is used to represent an instance of the classes INTEGER or REAL.

14

perspectives. However, sometimes this mechanism is not desired, as in the case of a subclass that

needs to respond differently to a message than its superclass, in Cola, one can override automatic

inheritance through the use of shadowing.

To illustrate shadowing, suppose that the message realpart was to be added to all the subclasses of

NUMBER (i.e., to INTEGER, REAL, and COMPLEX). Since most subclasses of NUMBER would respond to

realpart by returning itself (SELF), we decide to add code to NUMBER which does just that. When an

instance of the class INTEGER or the class REAL is sent the message realpart, it forwards the message

up to NUMBER (by not recognizing it), and NUMBER responds with SELF. However, this mechanism is not

correct in the case of an instance of COMPLEX responding to realpart. The solution is to have

COMPLEX itself respond to realpart, by returning only the real component, without forwarding the

message up to NUMBER. This enables NUMBER to contain the commonality of its subclasses, and

enables any subclass to respond differently to any particular message if it sees fit to do so.

The general mechanism can be summarized as follows: each class represents static knowledge (in

the form of class and instance variables) and dynamic knowledge (in the form of the ability to reply to

certain messages). Subclasses and instances automatically inherit the knowledge that is found

higher in the hierarchical tree, and augment this knowledge with further knowledge. Through the use

of shadowing, it is possible for a subclass to respond differently to a particular message than its

superclass would have, thus making possible the expression of exceptions without nullifying the

knowledge that exists higher in the tree.

15

4. Summary

Essentially all of Cola has been implemented. The interpreter is written in Bliss/11 [Wuif 75], with

Cola code augmenting the low level objects. The static and dynamic structures are very similar to

Smalltalk-76 [Ingalls 78], even though they were designed independently. It should be emphasized

that Cola is an experimental system and very little effort has gone into tuning the implementation for

efficiency.

There are several conclusions to be drawn from this effort. A useful correspondence between the

entities supported by the command language (Cola objects) and those supplied by the the operating

system (Hydra capabilities) has been achieved. This correspondence is indeed M natura l " , in that

there exist facilities in the language that support typed objects and the notion of operations

(messages) that may be performed on these objects just as the operating system does. It is argued

that the Cola paradigm can be successfully incorporated into a command language for a conventional

operating system, although this premise has not been demonstrated concretely with an

implementation.

Arguments for the message passing (verses procedure call) mechanism are less conclusive. At a

basic level, this issue does not apply, since a duality exists between message-oriented languages and

procedure-oriented languages just as it does in operating systems [Lauer 79]. As an example, the

command

A p r i n t

in Cola (which sends the object "A M the message print, causing "A" to print a representation of itself

on the terminal) is equivalent to the statement

p r i n t (A)

in the CL, with the instance (in this case, "A") passed implicitly as a parameter. The entire message

forwarding mechanism can be simulated in Simula, although it must be done explicitly using

additional procedure calls.

The primary advantage of message passing is that it is simple and does not impose a strict grammar

on the language. The latter is usually considered to be a disadvantage in general purpose languages,

but is convenient for a casual user interacting with a system at a terminal instead of carefully

composing her programs before typing them in. A secondary advantage of message passing is that

the mechanism lends itself naturally to multiprocess(or) systems [Yonezawa 77]. Although C.mmp, on

which Cola runs, is a multiprocessor, this aspect was not dealt with in the design.

The primary disadvantage of message passing is that it is inefficient when implemented in the

obvious fashion. This drawback is not as worrisome as might first be expected, for several reasons.

16

In a command language, efficiency is not a primary concern, since, on the average, a relatively small

number of statements are executed as a result of a command typed by the user [Kernighan 79]. It can

be argued that a command language procedure that is unacceptably slow should be rewritten in one

of the languages supported by the operating system [Bourne 78]. In addition, the general message

passing mechanism can be avoided most of the time in the interpreter (the semantics of the language

would, of course, still be defined in terms of message-passing) by applying a few relatively simple

transformations to the source before it is interpreted and by designing the interpreter so that it uses

the local state to circumvent the message assembly mechanism except for special cases, primarily

when an error occurs [Kay 80].

The object hierarchy, coupled with the message-passing and -forwarding mechanism, has been

shown to have several useful attributes concerning the structuring of objects. Static knowledge, in

the form of class and instance variables, is stored as high in the hierarchy as possible, eliminating

redundancy at lower levels. Similarly, dynamic knowledge, encoded in the ability to respond to

certain messages, is shared among many classes and instances. The mechanism allows flexibility in

the placement of both procedures and data structures within the hierarchy.

One disadvantage is the restriction that the vaiues of instance variables declared in a class must

reside in each subclass of the class. This restriction can be removed by allowing more flexibility in the

sharing of names of data structures within the objext hierarchy. The names of class variables, for

instance, are not shared at all, since both the names and the values reside in the class they were

declared in. In Cola, the names (but not the values) of instance variables are shared by the immediate

subclasses of the class they were declared in. In Simula, the names of instance variables are shared

by all the subclasses. However, the optimal placement of the value (and the name) of an instance

variable depends to a large extent on the semantics desired for the information contained in that

variable (and the sharing of the name of the variable), and mechanisms for allowing more variability

for the binding and storage of instance variables need to be developed.

There are several other areas where additional research is needed. It is not clear how one would

incorporate multiple process(or) concepts into the language. Several possible alternatives seem

likely, including utilizing the message-passing mechanism and/or allowing multiple objects to execute

concurrently, but the ramifications these various schemes have on the language has not been

investigated at all. More work is necessary to make the paradigm of objects communicating via

messages a viable one in terms of efficiency (although much has been done in this area by the

Learning Research Group at Xerox PARC [Ingalls 78]). Lastly, the techniques used to mirror the

abstractions provided by Hydra in the command language should be applied to other operating

systems, including more conventional ones, in order to assess the applicability of these concepts.

17

Part 2: The Language

The first part of this document gave an overview of the Cola paradigm and some implications this

paradigm has on the use of Cola as a command language and on the structuring of knowledge in

Cola. This part discusses the syntax and semantics of the language in more detail. The first two

chapters describe how the language handles messages; the next chapters describe the various

commands and predefined objects available in Cola. Much of the first half of this part is devoted to

the underlying structure of Cola, which closely resembles Smalltalk [Goldberg 78]. This material has

been included primarily for completeness. The third part (the appendices) concludes with several

examples of Cola objects.

18

19

5. The Interpretation Loop

Cola Is an interpreted language. In most interpreted systems, the interpretation loop is very simple:

w h i l e system - s t m - running do

token : s g e t n e x t t o k e n ()

e x e c u t e (t o k e n)

Although a great deal of the action has been hidden behind the two operations getnexttoken and

execute, the above construct is fairly accurate for most systems. Cola's basic interpretation loop is

also very simple:

proc Basic-Loop 3

w h i l e s y s t e m - s t i l l - r u n n i n g do

o b j e c t g e t n e x t o b j e c t ()

message := getmessage()

send(message, o b j e c t)

This very high-level view of Cola illustrates the main control mechanism in Cola: objects receiving

messages. The getnextobject operation retrieves the object pointed to by the codepointer

(associated with each context) and increments the codepointer to point to the next object. Since the

message that is sent to an object is defined to be the stream of objects that follow the given object

(see chapter 6), the getmessage operation bundles up the rest of the objects into a message.

The third operation, that of sending a message to an object, is considerably more complicated:

proc send (message, o b j e c t) 3

o b j e c t f l a g : a t r u e

w h i l e t r u e do

i f o b j e c t - h a s - c o d e

then i n s t a n t i a t e (m e s s a g e t o b j e c t)

IDoes the o b j e c t r e t u r n a r e s u l t ?

i f m e s s a g e - i s - r e c o g n i z e d

then o b j e c t : s r e s u l t

e l s e o b j e c t : a s u p a r (o b j e c t) !go up the t r e e

o b j e c t f l a g := f a l s e

e l s e o b j e c t := s u p e r (o b j e c t) Ian ins tance

First, a few remarks on notation. Super(object) returns the superclass of object. The objectf lag

(a boolean value local to each context) indicates whether this class was originally sent the message.

Comments are preceeded by an T .

The ins tan t ia te (ob jec t , message) operation creates a new context with a new codeptr and

recursively calls Basic-Loop.

The interpretation loop has now been specified, except for one small detail. As it now stands, it

20

seems that the system continues to recurse indefinitely, since Basic -Loop calls send , which calls

Basic-Loop, etc., etc. This recursion is broken by returning a result (see chapter 6) or by running out

of code in the object. (Some objects, such as the class OBJECT (see chapter 3), return a reply when

they don't recognize a message. Since OBJECT is a superclass of all objects, the recursion is

guaranteed to stop at some point.) Returning a result causes the current context to be popped off the

execution stack, and the result becomes the next object a message is sent to.

Consider the following stream of objects:

3 + 4 ;

The instance 3 is sent the message ' + 4 ;'. 3 recognizes the message +, and calls send (4 , ' ; ') . 4

does not recognize the message, so it calls its superclass, OBJECT, OBJECT recognizes the message

as a message delimiter (see section 7.8), so it replies with SELF, which is defined to be the original

object that was sent the message (in this case, the instance 4 -- see section 9.10). This object is the

reply of 4 to the message and is received by 3. 3 adds 4 to itself, and replies with ' 7 ' , which is the

expected response when 3 is sent the message 1

 + 4 ; '. An understanding of this example indicates

an understanding of the basic paradigm of objects sending messages and receiving replies.

21

6. Messages

As mentioned previously, objects can receive messages and send replies. To send a message to an

object, syntactically follow the object by the message. To send the object 3 the message 4 + 4 ' , the

user would execute

3 + 4

When a Cola object is sent a message, there are ways to retrieve objects from the message and to

send a reply. All message commands treat the message as a linearly ordered list of objects.

Messages are received by executing one of the following commands:

evaluate the message and return the value

get return the next object in the message

The first two commands excise part of the message, in the sense that the part of the message that is

fetched is no longer available to the object. The command

peek return the next object in the message

does not alter the message in any way. The command

see xyz if the next object is xyz, then fetch the object and return TRUE, otherwise

return FALSE and do not fetch (note that xyz is not evaluated)

conditionally fetches the next object.

To send a reply, use the command

return <value>

If the class does not return a reply, then the class' superclass is sent the rest of the message (see

section 7.9).

This view of messages is a pervading one in Cola. When Cola is at the top level, it waits for the user

to specify an object and a message to be sent to that object. The object's reply is then typed back for

the user to see. In effect, the user is merely another "object" that can receive messages and send

replies (see section 8.13).

22

23

7. Command Syntax and Semantics

When the system is not executing commands, it continually executes the following sequence of

tasks:

1. print the prompt, and read characters until a linefeed is typed;

2. assemble the characters in an object called a string;

3. evaluate the STRING; and

4. print whatever object the STRING returns.

Cola does these tasks by executing a special object called the Driver (see section 9.7). Whenever an

error occurs, the appropriate message is printed out, and a new driver is invoked. Thus, at any point

in time, there may be many drivers stacked up, each in a particular phase of execution. Performing a

forward call on an error ensures that the state of the computation is reserved for interrogation,

modification, and re-execution. Systems employing this mechanism (such as InterLisp [Teitelman

78]) often provide sophisticated debuggers which benefit from the information on the stack when the

error occurred.

Whenever a new context is entered (i.e., a new driver is invoked, a left parenthesis is processed,

etc.) the level number is incremented. Whenever a context is exited (i.e., a return or done (see below)

is executed, or a right parenthesis is processed), the level number is decremented. The prompt

consists of the level number followed by a '>'. The level number is printed to aid in determining the

current relative position in the execution stack.

7.1 Comments

A comment consists of text delimited on the left by a T and on the right by a line terminator. Any

characters between the T and the carriage return or the line feed are ignored. Multi-line comments

are surrounded with '%'s. The T and '%' characters inside a STRING are treated normally.

7.2 Assignment

a := 3

This statement causes " a " to be considered an object of class INTEGER, with value 3. (See section

7.3 for further elaboration.) Any object can be assigned to a variable; in general, there is no type

checking or type declarations (however, see sections 8.7, 8.8, and 8.9).

The result of an assignment statement is the value of the right hand side, so the statement

24

a := b : a c

is valid (see section 8.1) 6 .

7.3 Literals

Literals are converted into instances of predefined classes by Cola. When the object 3 (an INTEGER

literal) is mentioned, for instance, an instantiation of the object INTEGER is created with the value three.

INTEGER literals can be of two types: decimal and octal. Octal literals are preceeded with a sign.

INTEGER literals may be negative.

There are several other types of literals (STRING, VECTOR, and WORDVEC are examples) that will be

discussed when their particular class is introduced.

7.4 Control Structures

a) Do statement

ofo <expr> (.. .) the (...) is evaluated <expr> times (the <expr> is evaluated once)

do 5 (...)

do (...) do 1 is the default

Repeat statement

repeat (...) repeats until a done or return statement is executed

c) Done statement

done with <expr> terminates a loop with the value <expr>

done with 5

done with nil is the default the object NIL is discussed later

d) Return Statement

Return <expr> returns from an invocation with <expr> as the reply

Return 3 + 4 replies with the object 7

6 BL ISS also returns the right hand side, but Planner (a language incorporating actors) returns the left hand side

assignment. There are arguments supporting both views.

25

7.5 Conditionals

The syntax for a conditional statement is

(< i f d a u s e > then (<then c lause>) <e lse d a u s e >)

The <if clause> is simply an expression. If the expression returns FALSE, then the <else clause> is

executed. Otherwise, the <then clause> is executed, and the <else clause> is skipped. Conditionals

return a value, and may be nested; the statement

a : * ((3 > 5) then (5) (4 < 6) then (7) 4)

assigns 7 to a (the parentheses are necessary in this case for a correct parse of the statement).

The conditional statement lends itself well to chaining. A construction that is common in Cola

programs i s 7

(see a then (. . .)

see b then (. . .)

see c then (. . .)

r e t u r n <var>

)

In this statement, the <else clause> of the first conditional is

see b then (. . .)

see c then (. . .)

r e t u r n <var>

Notice that the nested parentheses can be omitted; the fully parenthesized version would be

(see a then (. . .)

(see b then (. . .)

(see c then (. . .)

r e t u r n <var>

)

)

)

As another example:

see a

is equivalent to

(peek 3 a than (g e t ; r e t u r n t r u e) r e t u r n f a l s e)

7.6 Integer Expressions

Integer expressions in Cola are similar to those in other programming languages. The operations

allowed are + , - , * , / (integer division), mod, = ,< ,> , and t (integer exponentiation).

See is a predefined object used for receiving messages; see chapter 6.

26

Due to the paradigm of objects sending and receiving messages (see chapter 6 for further

elaboration), evaluation is right to left with no precedence. The statement

3 + 9 / 6

sends the message * + 9 / 6 ' to 3. This results in the message ' / 6 ' being sent to the INTEGER 9,

which returns the INTEGER 1, that gets added to 3, resulting in the INTEGER 4. To change the order of

evaluation, use parentheses. Hence, for left to right evaluation of the above statement, execute

(3 + 9) / 6

instead (which returns the INTEGER 2).

7.7 Input/Output

Some of the input/output facilities of Cola have already been discussed. When an object followed

by a message is typed on the keyboard, the object picks up the message by executing get, peek, or

see. When the object returns a reply to the top level, the reply is printed. Terminals (and more

generally files) are objects that have useful side effects when sent messages (for a more detailed

explanation of files and terminals, see sections 8.12 and 8.13).

To request input from the keyboard, use the statement

t t y read

This returns a STRING consisting of the characters typed on the keyboard ending with the line

terminator. For single character input, use

t t y ge tchar

This returns a STRING instance whose length is 1 containing the next character typed on the

keyboard 8 .

The message

output

is a general message that can be sent to any object 9 . For instance, if M abc " is an instance of INTEGER

with value 17 and "crl f" is a STRING composed of a carriage return and a linefeed and + is the

concatenation operator for STRINGS (see section 8.7), then

t t y w r i t e 'The answer i s ' + abc output + c r l f ;

prints

The answer i s 17

The following class makes output much easier (see section 8.3 for more information on OBJECT):

8 S i n c e this object temporarily enables single character input (rather than the normal line-oriented input), there can be

lexpected interactions with the normal buffered line editing (back space or line cancel) provided by the operating system.

9 User-def ined classes should reply to output in some meaningful way by returning an appropriate STRING.

27

type : - o b j e c t " / /
(r e p e a t (t t y w r i t e : o u t p u t ; see , then () r e t u r n)

)
M

;

Thus, the above statement can be rewritten:

type 'The answer i s 1 , abc, c r l f ;

7.8 Delimiters

There are several different kinds of delimiters, depending on the context. Hopefully the following

explanation makes it clear where a particular delimiter applies.

Delimiter Application

<space> delimits atoms, but is otherwise ignored

<comma> delimits atoms; returns NIL if invoked

<period> delimits atoms; returns NIL if invoked

(treated like a space; Cola matches left and right parentheses

<carriage return> treated like a space

; marks the end of the message (get, peek, see, or : cannot read past a

semicolon)

) treated like a semicolon, except Cola checks for balanced parentheses

<linefeed> treated like a semicolon, used for an end-of-command when entering

commands from the keyboard

' enclose STRINGS, see section 8.7

[] enclose WORDVECS, see section 8.8

{ } enclose VECTORS, see section 8.9

7.9 Returning a Value

The code for a class can stop executing in one of three ways: returning a value, returning NIL, or

ending with an object with no message.

A value is returned by using the return command. This command sends the rest of the message to

the object that is returned.

28

If a class returns NIL (a predefined object; see section 8.6), then the message is forwarded to the

class' superclass. Returning NIL is equivalent to not recognizing the message.

If the evaluation of the code in a class finally results in an object with no corresponding message,

then the same thing happens as if that object was returned by the class, except in one instance. If a

class (call it "a") was on the right side of an assignment statement, and that class recognized part of

the message and then returned another object (call it "b ") , then " b " would be assigned to the atom

on the left side of the assignment statement. However, if " a " merely ended with the object " b " (i.e.,

did not return the object), then " b " would be sent the rest of the message, and the object that "b M

returned (call it "c ") would be assigned to the atom. See the PROTECTEDCAPA class in Appendix II for

an example.

This distinction is a small one, and is not important for most applications. However, it can be very

useful at times to RETURN a value and at other times not to RETURN a value.

7.10 Defining Subclasses and Instances

In Simula, classes are defined statically, at compile time, and instances are instantiated

dynamically, at runtime, using information provided by the compiler. In Smalltalk [Goldberg 78],

classes and instances are defined interactively, although there is no facility for initializing at definition

time the instance and class variables residing in a subclass (since values of instance variables do not

reside in the subclass). Cola simplifies this process by giving the class complete control over the

creation of subclasses and instances.

To create an instance of a class, the class (call it "a") executes the object

d e f i n e i n s t a n c e

This causes the system to create an instance (call it "b") of the current class ("a"). The system then

sends the rest of the original message to the newly created instance ("b") . Since "b" contains no

code, the message is forwarded to " a " . The class knows that a new instance is executing because the

object

n e w i n s t a n c e

now returns TRUE (at any other time this object returns FALSE). The class " a " then initializes the

instance variables (which reside, of course, in "b ") , using the message, and returns. An instance of

" a " has thus been created and initialized. See the appendices for examples.

To create a subclass of a class, the class (again called "a") sends the object

d e f i n e s u b c l a s s

a message consisting of a STRING in the following form

29

"<temporary v a r i a b l e s > / < i n s t a n c e v a r i a b l e s > / <c lass v a r i a b l e s >

(<body>) "

where the (optional) variable names are separated by spaces and the slashes and parentheses are

required. This causes the system to create a subclass (call it " c ") of " a " with the specified variables

and code. The system then sends the rest of the original message to the newly created subclass

("c") . The subclass " c " knows that it has just been created, since the object

c l a s s d e f i n e d

now returns, " c " initializes its class variables using this message and returns TRUE. A subclass of " a "

has thus been created and initialized.

30

31

8. Predefined Classes

Only a few of the many predefined classes have been mentioned so far. A discussion of the more

important of them follows.

8.1 Atom

Atoms have a name and a value and are equivalent to identifiers in other languages. The name of

an atom consists of a letter, an '&', or a '$ ' , followed by any number of letters or digits or '&' or '$' .

Since the name is a STRING, there is no limit to the number of characters in a name, and all are

significant. Case folding is performed on the name. Atoms respond to the messages

name returns the STRING that is the atom's name

; = assigns a new value to the a t o m 1 0

/s<object> returns TRUE if the superclass of the atom's value is <object>, otherwise

returns FALSE

is ? returns the name of the superclass of the atom's value

anything else returns the value of the atom

8.2 Integer

The class INTEGER is a subclass of the class OBJECT. The messages that this class accepts are

given in section 7.6. INTEGERS also accept the message output, and respond with a STRING of the

value in decimal, INTEGERS have a range of [-32768, 32767]. Although INTEGER literals can be either

octal or decimal, the internal representation is the same.

8.3 Object

The class OBJECT is a superclass of every other Cola object (see chapter 3). OBJECT returns FALSE

when it receives the message Null, OBJECT responds to everything else with SELF.

If the new value is a Cola class, then NIL is returned, otherwise the new value is returned. This semantics allows

expressions such as a: = b: = c, which assigns c to a and b.

32

8.4 False

FALSE is a subclass of the class OBJECT. The message that this class accepts are and, or, xor, eqv,

not, and then.

8.5 True

TRUE is a subclass of the class OBJECT, TRUE accepts the messages xor, nott or, and, eqv, and then.

8.6 Nil

NIL is the empty value in Cola, NIL returns TRUE when given the message null, NIL prints out nothing

when sent the message output.

8.7 String

STRINGS enable the user to manipulate character data, STRINGS are declared either with the

statement 1 1

a : - s t r i n g 15

which defines " a " to be a STRING of length 15 , initialized to NIL characters, or the statement

b : s ' a b c '

which defines " b " to be a STRING of length 3, initialized to 'abc'. STRINGS can be delimited by double

quotes, allowing single quotes to appear in the STRING, or by single quotes, allowing double quotes to

appear in the STRING. Single and double quotes may not appear in the same STRING, STRINGS can be

concatenated using the ' + ' operator; the statements

a : s 'abc* ;

b := ' d e f ;

c := b + a;

result in a STRING of length 6, with the characters 'abcdef. Substring selection is also possible:

b [l to 2] := c [2 to 3]

results in the STRING 'bc f . As many characters as are needed to fill the slice are removed from "c " ; if

" c " is not long enough, then only the characters in " c " are transferred. Other operations on STRINGS

include lexical ordering (> and <) 1 2 , equivalence (=), value (returns the ASCII value of the first

character in the STRING), and length (<string> length). Notice that the first character in <string> is

1 1 Since STRINGS can be expanded (using the ' + ' operator), this construct is not really necessary, but is useful when

initializing STRINGS containing control codes. If the length is not specif ied, it is assumed to be 0.

1 2 A STRING (or slice) of length 1 can also be compared with an INTEGER, but not vice versa.

33

<string>[1]. <string>[*] is equivalent to <string>[1 to <string> length]; <string>[3 to *] is equivalent to

<string>[3 to <string> length], STRINGS have no maximum length (within the bounds of available

memory restrictions, of course). If the message eval is sent to a STRING, then the STRING is evaluated

in the current context. Thus the following command

*c : a 3 f e v a l ;

is equivalent to

c : a 3 ;

See section 9.7 for another example of eval.

8.8 Wordvec

WORDVECS enable the user to handle vectors of INTEGERS. TO initialize a WORDVEC, use either of the

statements 1 3

< v a r > : s wordvec < s i z e >

or

<va r> [< i n t e g e r > < i n t e g e r > . . . < i n t e g e r >]

The statement

q : * [10 20 30 50 70 #40 #60]

creates a WORDVEC of size 7 with the specified contents and assigns it to " q " . Selections (including *)

are used to access part of a WORDVEC, analogous to STRINGS. The operation length, as well as

concatenation, also applies analogously.

8.9 Vector

VECTORS are similar to WORDVECS and STRINGS, in that all are linear, unbounded data structures

allowing selection and concatenation. However, whereas WORDVECS are composed of INTEGERS, and

STRINGS are composed of characters, VECTORS are composed of arbitrary Cola objects. To initialize a

VECTOR, use either

< v a r > :» v e c t o r < s i z e >

or

<va r> : - { < o b j e c t > < o b j e c t > . . . < o b j e c t > }

Selections (including all) are used to access part of a VECTOR, analogously to STRINGS and

WORDVECS. VECTORS also respond to the message length and concatenation. Any Cola object can be

stored into a single element of a VECTOR, and a VECTOR slice can be stored as an element of another

VECTOR.

If the <size> is omitted, it is assumed to be 0.

34

8.10 Capa

The class CAPA includes several operations that apply to all capabilities [Cohen 76]. The syntax for

these operations is similar to record accessing in Pascal (A and C denote instances of the class CAPA,

and x and y are INTEGERS):

C. data[x to y] access the data part - return a WORDVEC

C. data length return an INTEGER specifying the length of the data part

C . clist[x to y] access the CAPA part - return a VECTOR of capabilities

C. clist length return an INTEGER specifying the length of the clist

C. index return an INTEGER specifying the slot in Cola's clist (see section 2.1) where

this CAPA resides (used in KCall (see section 8.14))

C . clist[x to y] vacate remove the CAPAS in the selected slots in the clist

C = A returns TRUE if the CAPAS are identically the same (i.e., refer to the same

object), otherwise returns FALSE

In addition to operations that apply to all CAPAS, there are operations that apply only to those CAPAS of

a certain type. Each type in Hydra is represented by a subclass of the class CAPA in Cola. The type

specific operations are enumerated below. Note that every capability in the user's universe is

represented by an instance of one of the subclasses of the class CAPA.

To create a new CAPA, execute

capa <type>

which returns a new CAPA of the indicated type.

8.11 Catalogue

This is a user-defined type (rather than a kernel type), and the operations are performed by the

Catalogue Subsystem [Almes 78, Wulf 81]. The valid operations are (S is a STRING instance, and C is

an instance of the class CATALOGUE, a subclass of the class CAPA):

C[S] look up entry S in CATALOGUE C - return a CAPA of the correct type

C[S]. capa same as C[S]

C[S] . protect return TRUE if the protect bit was set for this entry, otherwise return FALSE

(The above expressions can be used as the left side of an assignment statement.)

C[S] vacate remove entry S in CATALOGUE C

35

C is catalogue returns TRUE

8.12 File

FILES enable the user to do input/output with objects supported by the Hydra File System [Reiner

77]. FILES are regarded as sequential streams of characters, and can only be read or written (but not

simultaneously). Hence, no direct access to FILES is provided.

To initialize a FILE, use

<var> : s f i l e inpu t <capa>

or

<var> := f i l e output <capa>

that initializes <var> to be either an input or an output FILE connected to a Hydra Superfile referenced

by <capa>. As an example, the statement

M y F i l e := f i l e i n p u t P u b [f t S n o d g r a s s , ,] [" T r y F i l e , .] ;

creates a new FILE instance, called "MyFi le", which can perform input on the Hydra Superfile called

TryFile ("Pub" is a predefined CATALOGUE).

The operations that are possible on FILES are (F is a FILE instance, and S is a STRING):

F close closes the FILE, SO that it is impossible to read from it or write to it until it is

initialized again

Fopened returns FALSE if the FILE is closed, otherwise returns TRUE

F input returns TRUE if the FILE is an input FILE, otherwise returns FALSE

F output returns TRUE if the FILE is an output FILE, otherwise returns FALSE

F read if F is an input FILE, returns a STRING delimited by an escape from the FILE

(Line separators are converted to a single carriage return, and any linefeed

that may be present after a carriage return is ignored.). Escapes are

converted to linefeeds on input. If there are no more characters in the FILE, a

STRING consisting of a single linefeed is returned.

F getchar if F is an input FILE, returns a STRING of length 1 containing the next character

in the FILE

F write S if F is an output FILE, writes the STRING S onto the FILE

Feci if F is an input FILE, returns TRUE if the entire FILE has been read, otherwise

return FALSE; if F is an output FILE, always returns TRUE

36

8.13 Terminal I /O

A terminal can be viewed as a type of FILE (see section 8.12). However, terminals are different from

FILES in several ways:

1. terminals can perform input and output simultaneously;

2. terminals should respond to special characters (typically, line editing commands) that

cause the "input half" to modify the "output half";

3. terminals have special characters associated with them which can signal a running

process; and

4. terminals have echoing characteristics that require special handling.

To initialize a 'tty-file', execute

<var> : a f i l e t e r m i n a l <capa>

where <capa> is a port CAPA (a type provided by the kernel) [Cohen 76] with the first two channels

(channels 0 and 1) connected to a terminal. TTY-files can respond to all messages that normal FILES

do. Note that since tty-files can both input and output, they can accept the messages read, getchar,

and write, and will respond to input, output, and eof with TRUE. <escape> characters are illegal in

terminal input; use linefeed instead.

Since tty-files need to go into single character mode to do getchar's, erratic behavior may occur if

line editing commands are typed while executing getchar.

TTY-files can also respond to the following messages (where T is a tty-file):

T prompt equivalent to T read, except that the prompt (the level number followed by '>')

is printed at the beginning of each line (after each carriage return) (this

operation is used in DRIVER (see section 9.7))

7 is terminal returns TRUE

T flush Causes the characters in the internal buffer associated with the tty-file to be

printed immediately (the buffer is flushed automatically if a 7 read or T

getchar is executed)

There is one predefined tty-file, called tty, which should suffice for performing input and output from

the terminal.

37

8.14 Kernel Call

Kernel calls (K-calls) [Cohen 76] are implemented in a very primitive fashion. The syntax is

K c a l l < a r g t > , < a r g 2 > , < a r g n > ;

or

(K c a l l < a r g 1 > , < a r g 2 > < a r g n >)

where <arg^ is either a CAPA instance, an INTEGER, or a selection of a WORDVEC 1 4 . <arg1> must be an

INTEGER; it specifies the kcall index (i.e., which system call to execute). The semantics of the rest of

the arguments depends on their type:

INTEGER simply pushed on the stack (i.e., call by value)

CAPA index is pushed on the stack (i.e., call by reference)

WORDVEC memory address is pushed on the stack (i.e., call by reference) Actually, the

contents of the WORDVEC are copied to the stack page, and a pointer to this

block is pushed onto the stack. When the KCALL returns, the block is copied

back into the WORDVEC. (Note that a selection will give unexpected results if

the WORDVEC is being written into by the kernel during the KCALL; in that case

a complete WORDVEC should be given.)

No type-checking is done on the arguments if there are invalid arguments, the KCALL will signal

an error, which is printed out. The result of the kernel call (an INTEGER) will be replied by the KCALL

object.

A selection is a subscripted WORDVEC of more than one element, since a single element of a WORDVEC is an INTEGER.

38

39

9. Utility objects

Several objects perform tasks which are useful to Cola users. Some of these objects and their

functions are given below. Examples of most of these objects can be found in the appendices.

9.1 At(@)

The '@' operator is a dereferencing operator. If the message sent to @ is <string>, then the atom

whose name is <string> is invoked. If the message is <atom>, then the value of <atom> is invoked.

9.2 Attach

This utility "attaches" a Cola class (its second argument) to a predefined class (its first argument)

provided by the Cola kernel. If the predefined class code does not recognize a message, then the

Cola class attached to it is sent the message. If ATTACH is only given one argument (a predefined

class), then the Cola class that is attached to the class is "unattached". This utility is provided to

facilitate the construction of the Cola environment from the bare kernel, and should only be used by

the maintainer of the system.

9.3 ClassDefined

This object returns TRUE if this subclass has just been created by executing DEFINESUBCLASS;

otherwise the object returns FALSE (see section 7.10).

9.4 Classlnvoked

This object returns TRUE if the class itself was sent a message, rather than an instance of the class

(the same code is executed, in either case). Usually this boolean is tested before creating a new

subclass or instance of this class (see the appendices for examples).

9.5 Definelnstance

This object creates a new instance of the class that is currently executing, and sends the rest of the

original message to the new instance. When the new instance is executing, the object NEWINSTANCE

returns TRUE (and CLASSINVOKED returns FALSE).

40

9.6 DefineSubClass

This object creates a new subclass of the class that is currently executing, using the message (a

STRING) as code for the new subclass. The message must be of the form

! , <temp vars> / < ins tance vars> / <c lass vars> (<code>) "

where the variables are separated by spaces, and the slashes and parentheses are required (see

section 7.10).

9.7 Driver

DRIVER adds another level to the context stack, which begins with an initial invocation of DRIVER.

The definition of DRIVER is

D r i v e r : s o b j e c t " / / (r e p e a t (t t y w r i t e

t t y prompt eva l o u t p u t ; c r)) M ;

It may be instructive to compare this code for this object with the sequence of tasks listed in the

beginning of chapter 7. (CR is an object that prints a carriage return-line feed on the terminal.)

9.8 Instances

This object accepts a class as a message, and returns a VECTOR containing as elements all the

instances of a given class. This utility is useful when one wants to send a message to all the instances

of a class. The first element of the VECTOR contains the instance last created.

It is interesting to consider what happens when the following statement is executed:

a : - ins tances vec tor

First, an empty VECTOR is created. Then, the VECTOR instances are placed, one by one, in the VECTOR

that was just created. Since the first element of the VECTOR contains the instance last created, this

element is the VECTOR itself!

9.9 Newlnstance

This object returns TRUE if this instance has just been created by executing DEFINEINSTANCE;

otherwise the object returns FALSE (see section 7.10).

41

V

'This utility may be viewed as the inverse of definesubclass, although this is an oversimplif ication.

9.10 Self

SELF refers to the object that originally received the message. This object is necessary to

implement shadowing (see section 3.5).

9.11 Show

SHOW accepts a class as a message, and returns the code of that class as a STRING 1 5 .

9.12 Six12

six 1 2 invokes Six12, the BLISS/11 debugger. Exiting the debugger via the Six12 command

'go<cr>' returns the atom NIL; exiting via the Six12 command 'return <expr><cr>' returns <expr>.

9.13 Subclasses

This object accepts a class as a message, and returns a VECTOR containing all the subclasses of the

given class. This utility is useful when one wants to send a message to all the subclasses of a class.

The first element of the VECTOR contains the last subclass that was created.

9.14 Super

SUPER refers to the superclass of the currently executing class or instance. This object is useful if

an object wants to send a message to its superclass (see section 3.5).

42

43

Bibliography

[Almes 78] G. Almes and G. Robertson.
An Extensible File System for Hydra.

Technical Report, Carnegie-Mellon University, Computer Science Department,

February, 1978.

Available as CMU-CS-78-102.

[Alsberg71] P. Alsberg.
OSL/2, An Operating System Language.

PhD thesis, Center for Advanced Computation, University of Illinois at Urbana-

Champaign, 1971.

[Birtwistie 73] G.M. Birtwistle, O-J Dahl, B. Myhrtag and K. Nygaard.

Simula Begin.

Auerbach Publishers, Inc., Philadephia, PA, 1973.

D.G. Bobrow and T. Winograd.

An Overview of KRL, A Knowledge Representation Language.

Technical Report, Xerox PARC, July, 1976.

Available as CSL-76-4.

S.R. Bourne.

The Unix Shell.

The Bell System Technical Journal 57(6, Part 2):1971-1990, July-August, 1978.

R.F. Brunt and D.E. Tuffs.

A User-Oriented Approach to Control Languages.

Software-Practice and Experience 6:93-108, 1976.

E. Cohen and D. Jefferson.

Protection in the Hydra Operating System.

In Fifth Symposium on Operating System Principles, pages 141-16. ACM, Austin,

TX, November, 1975.

E. Cohen, et al.

Hydra Kernel Reference Manual.

Technical Report, Carnegie-Mellon University, Computer Science Department,

November, 1976.

R.M. Cowan.

Burroughs B6700/B7700 Work Flow Language.

In C. Unger (editor), Command Languages, pages 153-171. North Holland, 1975.

J.R. Ellis.

A LISP Shell.

SIGPIan Notices 15(5):24-34, May, 1980.

[Bobrow 76]

[Bourne 78]

[Brunt 76]

[Cohen 75]

[Cohen 76]

[Cowan 75]

[Ellis 80]

[Fahlman 79] S. E. Fahlman.

Netl, A System for Representing and Using Real-World Knowledge.

MIT Press, Cambridge, MA, 1979.

44

[Feiler 80] P.H. Feiler and R. Medina-Mora.

An Incremental Programming Environment.

Technical Report, Carnegie-Mellon University, Computer Science Department,

April, 1980.

Available as CMU-CS-80-126.

[Goldberg 78] A. Goldberg and A.C. Kay, eds.

Smalltalk-72 Instruction Manual

Xerox PARC, Palo Alto, CA, 1978.

[Goldberg 79] A. Goldberg and D. Robson.

A Metaphor for User Interface Design.

In Proceedings of the 12th Hawaii International Conference on System Science,

pages 148-157. 1979.

[Grief 75] I. Grief and C. Hewitt.

Actor Semantics of PLANNER-73.

In Proceedings of the Second Conference on Principle of Programming

Languages. January, 1975.

[Habermann 80] A.N. Habermann.

An Overview of the Gandalf Project.

In CMU Computer Science Research Review 1978-1979. Carnegie-Mellon

University, Computer Science Department, 1980.

[Hewitt 77] C. Hewitt.

Viewing Control Structures as Patterns of Passing Messages.

Artificial Intelligence 8:323-364,1977.

[IBM 80] IBM.
IBM Virtual Machine Facility/370: CMS Command and Macro Reference Manual

1980.

Order GC20-1818.

[Ingalls78] D. Ingalls.

The Smalltalk-76 Programming System: Design and Implementation.

In Proceedings of the Fifth Conference on Principles of Programming Languages,

pages 9-16. ACM, January, 1978.

[Jones 77] A.K. Jones.

The Narrowing Gap Between Language Systems and Operating Systems.

In Proceedings of the IFIP Conference. 1977.

[Jones 79] A.K. Jones, R. Chansler, Jr., I. Durham, K. Schwans and S. Vegdahl.

StarOS, a Multiprocessor Operating System for the Support of Task Forces.

In Proceedings of the Seventh Symposium on Operating System Principles, pages

117-127. Pacific Grove, CA, December, 1979.

[Kay 77] A.C. Kay and A. Goldberg.

Personal Dynamic Media.

Computer 10(3):31-41, March, 1977.

45

[Kay 80] A.C. Kay.

Personal communication.

February, 1980.

[Kernighan 79]

[Lampson 77]

[Lampson 79]

[Lauer 79]

[Lauesen 73]

[Levine 80]

[Liskov 77]

[Mealy 66]

[Minsky 75]

[Ostreicher 67]

[Ousterhout 80]

B.W. Kernighan and J.R. Mashey.

The Unix Programming Environment.

Software-Practice and Experience 9:1-15, 1979.

B.W. Lampson, J.J. Horning, R.L. Lampson, J.G. Mitchell and G.L. Popek.

Report on the Programming Language Euclid.

SIGPIan Notices 12(2), February, 1977.

B.W. Lampson and R. Sproull.

An Open Operating System for a Single-User Machine.

In Proceedings of the Seventh Symposium on Operating System Principles, pages

98-105. Association for Computing Machinery, Pacific Grove, CA, December,

1979.

H.C. Lauer and R.M. Needham.

On the Duality of Operating System Structures.

In Proceedings of the Second International Symposium on Operating Systems.

IRIA, October, 1979.

Reprinted in Operating Systems Review, 13, 2, April, 1979, pp. 3-19.

S. Lauesen.

Program Control of Operating Systems.

BIT 13:323-337, 1973.

J. Levine.

Why a Lisp-based command language?.

SIGPIan Notices 15(5):49-53, May, 1980.

B. Liskov, A. Snyder, R. Atkinson and C. Schaffert.

Abstraction Mechanisms in CLU.

Communications of the ACM 20(8):564-576, August, 1977.

G.H.Mealy.

The functional structure of OS/360.

IBM Systems Journal 5(2), 1966.

M. Minsky.

A framework for representing knowledge.

In P. Winston (editor), The Psychology of Computer Vision, pages 211-277.

McGraw-Hill, New York, 1975.

M.D. Ostreicher, M.J. Bailey and J.I. Strauss.

GEORGE 3--A General Purpose Timesharing and Operating System.

Communications of the ACM 10(11):685-693, November, 1967.

J. Ousterhout, D. Scelza and P. Sindu.

Medusa: An Experiment in Distributed Operating System Structure.

Communications of the ACM 23(2):92-104, February, 1980.

46

[Redell 80]

[Reiner 77]

[Sandewall 78]

[Shaw 80]

[Shoch 79]

[Smith 75]

[Teitelbaum 79]

[Teitelman 78]

[Treu 75]

[Warren 79]

[Wilkes 79]

[Winograd 75]

D. Redell, Y. Dalai, T. Horsley, H. Lauer, W. Lynch, P. McJones, H. Murray and

S. Purcell.

Pilot: An Operating System for a Personal Computer.

Communications of the ACM 23(2):81-91, February, 1980.

A. Reiner and J. Newcomer, eds.

The Hydra Users Manual

Carnegie-Mellon University, Computer Science Department, 1977.

E. Sandewall.

Programming in the Interactive EnvironmentThe LISP Experience.

Computing Surveys 10(1):35-72, March, 1978.

M. Shaw.

The Impact of Abstraction Concerns on Modern Programming Languages.

Proceedings of the IEEE 9(68), September, 1980.

J.F. Shoch.

An Overview of the Programming Language Smalltalk-72.

SIGPIan Notices 14(9):64-73, September, 1979.

D. Smith.
Pygmalion: A Creative Programming Environment.
PhD thesis, Stanford Artificial Intelligence Laboratory, Stanford Computer Science

Department, June, 1975.

Available as STAN-CS-75-499.

T. Teitelbaum.

The Cornell Program Synthesizer: A Microcomputer Implementation of PL/CS.

Technical Report, Cornell University, July, 1979.

Available as TR 79-370.

W. Teitelman.

INTERLISP Reference Manual

Xerox PARC, 1978.

S. Treu.

Interactive Command Language Design Based on Required Mental Work.

International Journal of Man-Machine Studies 7:135-149,1975.

S. Warren and D. Abbe.

Rosetta Smalltalk: A Conversational, Extensible Microcomputer Language.

In Proceedings of the Second Symposium on Small Systems. ACM SIGPC, Dallas,

TX, October, 1979.

M.V. Wilkes and R.M. Needham.

The Cambridge CAP Computer and Its Operating System.

Elsevier-North Holland, 1979.

T. Winograd.
Breaking the complexity barier (again).
SIGPIan Notices 10(1):13-30, January, 1975.

47

[Wulf 72] W.A. Wulf and C.G. Bell.

C.mmp-a multi-mini-processor.

In Proceedings of the 1972 Fall Joint Computer Conference, pages 765-777. AFIPS

Press, 1972.

[Wulf 75] W.A. Wulf, R.K. Johnsson, C.B. Weinstock, S.D. Hobbs and C M . Geschke.

The Design of an Optimizing Compiler.

Elsevier North-Holland, Inc., New York, N.Y., 1975.

[Wulf 76] W.A. Wulf, R. London and M. Shaw.

Abstraction and Verification in Alphardf Introduction to Language and

Methodology.

Technical Report, Carnegie-Mellon University, Computer Science Department,

June, 1976.

[Wulf 81] W.A. Wulf, R. Levin and S.P. Harbison.

C.mmp/Hydra: An Experimental Computer System.

McGraw-Hill, New York, 1981.

[Yonezawa 77] A. Yonezawa and C. Hewitt.

Modeling Distributed Systems.

In Proceedings of the Fifth International Joint Conference on Artificial Intelligence,

pages 370-376. ACM, MIT, August, 1977.

48

49

Part 3: Examples

There are three examples given in this part. The RECTANGLE class illustrates the basic concepts of

objects and instances, including sending messages, creating instances, and using class and instance

variables. The PROTECTEDCAPA class illustrates how one may define classes that are versions of

previously defined data types with added functionality. The BOOTSTRAP class is an example of an

object that doesn't have any instances. This type of class is the Cola equivalent to procedures or

macros in other command languages.

50

51

I. Rectangle Glass

This object demonstrates how one defines an object and its code and how one uses instance and

class variables. First the class definition will be given, then examples of sending messages to the

class, followed by an explanation of these examples.

r e c t a n g l e := o b j e c t " / p o s i t i o n x p o s i t i o n y / myslze

(see newsize then (r e t u r n mysize :•• :)

newinstanca then (p o s i t i o n x : s : ;

p o s i t i o n y : s : ;

r e t u r n s e l f)

c l ass invoked then (d e f i n e i n s t a n c e)

see x p o s i t i o n then (r e t u r n p o s i t i o n x)

see y p o s i t i o n then (r e t u r n p o s i t i o n y)

see s i z e then (r e t u r n mysize)

see output then (r e t u r n • (• +

(x p o s i t i o n o u t p u t) +

\ ' +

(y p o s i t i o n o u t p u t) +

') ')

Examples (Cola's responses are in italics):

72>rec tang le newsize 3

3

!2>a :« r e c t a n g l e 3 4

(3, 4)

I2>b : 3 r e c t a n g l e 6 7

(6, 7)

12>((a s i z e • b s i z e) then ("same s i z e ") "not same s i z e ")

same size

I2>a. x p o s i t i o n + b y p o s i t i o n

10

12>

52

The class RECTANGLE is a subclass of the class OBJECT (a predefined class in Cola), RECTANGLE has

two instance variables, positionx and positiony, and one class variable, size. Several messages may

be sent to RECTANGLE. The message

newsize < i n t e g e r >

sets the class variable size to the value of the INTEGER given in the message. Since size is a class

variable, all instances have the same value for size. The message

r e c t a n g l e < i n t e g e r > < i n t e g e r >

causes CLASSINVOKED to be TRUE, RECTANGLE then makes a new instance of itself, sets NEWINSTANCE

to TRUE, and executes RECTANGLE again. Since NEWINSTANCE is TRUE, positionx is set to the value of

the first INTEGER, and positiony is set to the value of the second INTEGER. The instance that was just

generated is then returned. The third assignment statement

a : s r e c t a n g l e 3 4 ;

makes " a " an instance of RECTANGLE, with a position (3, 4). The fourth statement makes " b " another

instance of RECTANGLE, with a different position: (6, 7). Notice that both " a " and " b " have size 3,

since size is a class variable. The fifth statement outputs the text 'same size'. The last statement

illustrates sending messages to instances. The instance " a " is sent the message 'xposition +

RECTANGLE is invoked with the values of positionx, positiony, and size set to 3, 4, and 3, respectively.

The condition see xposition is TRUE, SO positionx, or 3, is returned. This instance (of the class

INTEGER) grabs the 1 + ' and evaluates the next part of the message. This causes " b " to be sent the

message 'yposition'. RECTANGLE is invoked a second time, but with positionx, positiony, and size set

to 6, 7, and 3, respectively. The condition see yposition is satisfied, so positiony, or 7, is returned.

The INTEGER 3 adds 7 to itself and returns the INTEGER 10, which responds to the message output (in

DRIVER) by returning the STRING ' 10 \

53

II. Protectedcapa Class

This example 1 6 illustrates how one may define classes that are versions of previously defined data

types with added functionality. The data type extended in this example is the standard CAPA class,

with the additional property that it can be "protected" by sending it the message protect. Once

protected, an instance of this class cannot be accessed except to print its type and to be unprotected.

An unprotected instance of this class acts exactly like a normal CAPA.

p ro tec tedcapa : s o b j e c t " / mycapa p r o t e c t b i t /

(C lass lnvoked then (d e f i n e i n s t a n c e)

Newlnstance then (mycapa := : ;

p r o t e c t b i t : s f a l s e ;

r e t u r n s e l f)

see p r o t e c t than (p r o t e c t b i t : * t r u e)

see u n p r o t e c t then (p r o t e c t b i t : 3 f a l s e)

see output then (r e t u r n ' p r o t e c t e d c a p a 1)

p r o t e c t b i t then (e r r o r 'capa i s p r o t e c t e d 1)

mycapa

) " ;

Examples of the PROTECTEDCAPA in ac t i on 1 7 :

6>a :=* p r o t e c t e d c a p a &SysDi r e c t o r y
capability

6>a i s p r o t e c t e d c a p a
true

6>a output

protected capa

6>a p r o t e c t

true

6>a i s p r o t e c t e d

true

6 > a [" P u b l i c "]

Error: capa is protected

9>a u n p r o t e c t

false

9 > a [" P u b l i c "]

capability

9>

Note that PROTECTEDCAPA ends with mycapa, rather than returning mycapa, in order to send mycapa

the rest of the message (see section 7.9). The ERROR object prints the error string and invokes DRIVER,

leaving the context where the error occurred on the stack.

16

suggested by Joseph Newcomer

17&SysDirectory is a predefined CATALOGUE.

54

55

III. Bootstrap Class

This class is an example of an object which does not have any instances, BOOTSTRAP is sent either

a FILE instance or a CAPA instance which refers to a FILE. It then reads the FILE, page by page (each

page is delimited by an <escape> character), evaluating each page in turn. If the FILE contains class

definitions, then these classes will be defined when BOOTSTRAP completes.

Boots t rap : a o b j e c t ' m y f i l e a s t r i n g / /

(m y f i l e : 3 : ;

(m y f i l e i s capa then (m y f i l e := f i l e inpu t m y f i l e)) ;

r e p e a t (a s t r i n g : s m y f i l e r e a d ;

m y f i l e eof then (m y f i l e c l o s e ;

r e t u r n "Boots t rap completed")

a s t r i n g e v a l ; t t y w r i t e " x " ; t t y f l u s h

)

v
To understand why this class is called BOOTSTRAP, assume that it was not yet defined, and suppose

that a CAPA called "Startf i lecapa" references a FILE containing

Boots t rap : • o b j e c t ' m y f i l e . . .

Boots t rap a

<escape>

<o ther c l a s s d e f i n i t i o n s >

<escape>

Then the following commands would read in the FILE, defining BOOTSTRAP (as well as the other

classes in the FILE) along the way:

a := f i l e i n p u t S t a r t f i l e c a p a ; a read eva l

