
This article appears in the Proceedings of the 7th International Working Conference on Scientific and Statistical Database Management;
Charlottesville, Virginia USA, Sept. 28-30, 1994.

An Object-Oriented Data Model for a Time Series Management System

Werner Dreyer, Angelika Kotz Dittrich, Duri Schmidt
{dreyer, dittrich, schmidt}@ubilab.ubs.ch

UBILAB, Union Bank of Switzerland, Zurich

Abstract

The analysis of time series is a central issue in econo-
mic research and many other scientific applications. Ho-
wever, the data management functionality for this field is
not provided by general-purpose DBMSs. Therefore, we
propose a data model of a specialized Time Series Mana-
gement System (TSMS) which accounts for these needs.
The model is centered around an object-oriented kernel
that offers the classes and value types needed for the tar-
get applications. The model provides base classes for mul-
tivariate time series and for groups as a means to hierar-
chically partition the time series space. The system offers
a computationally complete data manipulation language
including capabilities to query time series and groups. An
elaborate array model is supported to account for the
functional needs of statistical computations. Furthermore,
a customizable calendar system providing a variety of
predefined calendars is included.

1 Introduction

Time series management is important for many rese-
arch areas such as economic and finance research, but also
for various non-research related activities like portfolio
management in banking. The reason for this importance is
the increasing application of empirical methods with more
and more data. However, the data intensity causes several
problems (see [4] for a detailed discussion):

• Time series bases contain thousands of time series.
For this data volume, ad hoc management is in-
adequate. Traditional database management systems
do not provide the appropriate functionality for time
series management, either.

• Statistics programs provide sophisticated analysis
methods. Yet, they are not designed for the manage-
ment of large quantities of time series data.

• Existing systems do not provide reasonable search
mechanisms for finding relevant time series.

• Many tools in which time series are used do not pro-
vide the functionality necessary for filtering and trans-
formation existing time series, nor for computing new
time series out of existing ones.

According to our opinion, the commercially available
time series management systems do not address all the re-
levant issues adequately. Furthermore, earlier research
work in related fields, namely in temporal and statistical
databases, does not sufficiently consider the special requi-
rements of time series.

Considering the problems and the available solutions,
we decided to develop a new, object-oriented time series
management system. The following paper presents the
data model of this system. Firstly, we discuss an example
of a time series database. Next, we give a survey of the
main features of the data model. Then, we discuss related
work. Afterwards, we explain the data model in detail. Fi-
nally, we present our conclusions and future work.

2 Example: the Zurich Stock Exchange time
series base

In this section, we describe a time series base contai-
ning daily securities prices of the Zurich Stock Exchange.
We will use this example throughout the article to illu-
strate various concepts.

2.1 Characteristics of a time series

In our example, financial researchers are interested in
collecting the following data:

• The name, security number, start date, end date, ca-
lendar, and total trading volume. These data are valid
for the time series as a whole.

• The daily opening, closing, high, and low prices, plus
the daily trading volume. These data are valid for a
single day.

Fig. 1 shows an example of such a time series.

2.2 Categorization

A time series base which models the entire Zurich
Stock Exchange would contain thousands of different se-
curities, and therefore thousands of time series. This ma-
kes it difficult for a database user to find the time series he
or she needs for a particular task. For our purposes, we
need to categorize these time series (group them according
to certain characteristics). An obvious categorization

Date Open Close High Low Daily_vol.

20.12.93

21.12.93

22.12.93

23.12.93

328 330 35845331 327

319 323 23249324 319

322 328 19403322329

331 328 331 328 12372

136 102

20.12.93

23.12.93

Business week

xyz

Security_number:

Start_date:

End_date:

Calendar:

Total_trading_vol.:

Business week

90869

UBS registeredName:

Fig. 1: An example time series

would be to apply the same categories as in the stock
exchange price lists of newspapers, for example:

• Swiss vs. foreign securities
• Type of security: stocks, bonds, options, indices, …
• Industry: banking, insurance, transport, chemistry, …
Fig. 2 shows part of such a categorization structure.

The names written in italics are time series, the other na-
mes are categorization criteria. Fig. 3 shows the "Ban-
king"-group in more detail.

This example shows only satirically and hierarchically
grouped time series. A financial analyst could also group
the time series according to his or her individual criteria
like the performance of the shares (such as above, equal
to, or below an index). This categorization should be
usable in coexistence with the previously described struc-
ture, so that individual time series can belong to different
categories. Besides, categorization according to perfor-
mance is dynamic because this structure may vary daily.

3 Main features

In the following, we will give a survey of our data mo-
del. We will later discuss the characteristics in detail and
present examples where appropriate. The main features
are as follows:

• Specialized object-oriented data model with time
series and group as root classes: Our data model is
object-oriented and it is specialized for the domain of
time series management. It has two base classes: the
time series class and the group class. These classes
have a rich functionality adapted to the problem do-
main. Therefore, a user is not concerned with the im-
plementation of the basics of time series or groups but
only with their adaptation to his or her special needs.

• Objects and values: Our data model is a hybrid data
model with classes1 and value types. The distinction
of objects and values allows object and functional
programming style to be used where they are more
appropriate. Furthermore, the overhead of objects can
be avoided where object semantics is not necessary.

• Multivariate time series with query capabilities
and time scale conversion as basic abstraction:
Multivariate time series are pivotal for the problem
domain addressed by this project. For this reason, the
basic time series class is designed for the modeling of
multivariate time series. Furthermore, queries can be
executed on time series and time scale conversion can
easily be done. This built-in functionality solves
common time series problems without requiring the
user to make any further implementation.

• Groups as an effective categorization and aggrega-
tion instrument: A large time series base may con-
tain thousands of time series. Without partitioning all
these time series according to different criteria, it
would be difficult for users to find the time series re-
levant to their work. In our data model, groups serve
the purpose of partitioning. They have a member set
consisting of arbitrary time series and groups. Queries
may be executed on the member set and set operati-
ons are provided to manipulate it. Groups do not only
function as a means of categorizing. Because of their
methods, groups can also be used as a flexible means
to do computations on their members, such as aggre-
gate some value over all the members.

• Important role of arrays: Matrix algebra plays a
central role in statistics. In our data model, this central
role is reflected by the functionality of arrays. Arrays
can dynamically change their number of dimensions
and the size of the dimensions if not defined other-
wise. A rich set of operations, such as arithmetic, rela-
tional or logical operations, is defined for whole ar-
rays. Finally, time series, groups or records can be ac-
cessed as arrays where appropriate. This rich array
functionality makes it easy to implement stati stical
methods for transformation and filtering.

• Simple records: Records are important building
blocks for time series and groups. Records may con-
tain as elements simple values like integers or arrays
of simple values. Record elements can be accessed in
the traditional way via record labels. In order to be
able to implement generic functions which work on
different record types, access by index and access as
arrays are also provided. This simple record design is
easy to understand and provides adequate modeling
power for our problem domain.

• Extensive calendar support: A calendar is attached
to every time series. It maps time points to the corre-

1 We use the term class to denote the type of an object as opposed to
the type of a value. The word class does not imply - as is sometimes
assumed in database terminology - the extension of all instances of
the type.

Securities

Swiss

Foreign

Stocks

Bonds

Options

Banking

Chemistry

Government

Transport

UBS Registered

Sandoz Bearer

4.75% Sep. 84/96

Swissair ex Opt 87/101

UBS Bearer Call Jan. 1200

UBS Bearer
CS Registered
CS Bearer
SBC Registered
SBC Bearer

Fig. 2: A structured securities time series base

UBS_Registered

UBS_Bearer

CS_Registered

CS_Bearer

SBC_Registered

SBC_Bearer

Banking

6

Members:

No_of_members:

Name:

Fig. 3: An example group

sponding data. Our system knows about various ca-
lendars, such as Gregorian calendar, national calen-
dars, business week calendar, etc. The calendars can
be customized and sophisticated date arithmetic is
supported. The extensive calendar support is crucial
for a TSMS because it is the base for the often neces-
sary time scale conversion and for temporal queries.

• Sound data manipulation language suited for oc-
casional and experienced users: The data manipula-
tion language provides adequate features for the im-
plementation of functions and methods. Specialized
control structures facilitate the manipulation of time
series and groups. In order to further accommodate
occasional users, our data manipulation language uses
adaptive type checking, a combination of static and
dynamic type checking. Together with the flexibility
and the rich built-in functionality of our data types,
also occasional users with little programming know-
ledge can solve demanding time series problems.

4 State of the art

The data model of a TSMS is located between temporal
data models on the one side and models for statistical and
scientific databases on the other.

Most models developed in the field of temporal data-
bases (for an extensive overview see [15]) do not specifi-
cally address the problems of time series. The most ob-
vious difference is that these models use an interval ap-
proach (useful for answering questions like "When were
certain facts true in the past?") while time series manage-
ment asks for the recording of historical events associated
with discrete points in time and applying statistical me-
thods to these events. Statistical databases and scientific
databases [11], [7] address certain problems that a TSMS
has to deal with, too. However, they give no preference to
the time dimension and do not offer special functionality
for the handling of time series like time scale conversion
etc.

To our knowledge, only one model has been published
so far that comes rather close to ours, namely the model
by Segev et al. in [12] and [13]. As might be expected
from the application requirements, their notion of time se-
ries is similar to our model as far as the basic features are
concerned. The main differences are as follows: Segev et
al. develop a time series database along the lines of an ex-
tended relational DBMS. Being based on a predefined set
of operations that may be applied in a declarative way,
their model offers only restricted expressional power. In
contrast, our model is based on the object-oriented ap-
proach where the stress lies on user-defined functionality
and computational completeness [1]. Arbitrary kinds of
time series and groups can be modeled as classes profiting
from features like inheritance, reusability and extensibi-
lity. The complete spectrum of time series transformation,
filtering, statistical evaluation etc. can be handled uni-
formly. For example, the model in [12] does provide an
interpolation function for time series (the "type" of a time
series), but neither an aggregation function nor individual
interpolation functions for different attributes of the same

series. Extensions like these are easily feasible in our mo-
del.

Another major difference is that the notion of "Con-
cept" found in [12] is not equivalent to what is called a
group in our model. Concepts try to combine three ideas:
inheritance (IS-A hierarchy of Concepts), the grouping of
time series according to some common feature or usage
and a view mechanism based on event construction. In our
model, these features are kept separately and may be com-
bined as needed (inheritance is supported by the class
hierarchy, groups serve to collect time series into an arbi-
trary set hierarchy, event construction is done by applying
transformation methods). Furthermore, events within one
time series can be combined more flexibly as we do not
require all attributes of an event to have the same interpo-
lation function.

Beside looking into related research work, we also
evaluated solutions for time series management currently
applied in practice. Solutions based on file systems or re-
lational databases are common, but in both cases the data
management functionality is unsatisfactory, a major part
of it being implemented inside the applications. There are
very few commercial DBMSs specialized for time series
management (e.g. the FAME system [6]). These products
offer some really useful special features, but do not offer a
comprehensive solution including powerful data mode-
ling, general retrieval facilities, mechanisms for data qua-
lity management etc. From a practical point of view, there
is an obvious need for more research in the field of time
series data management.

5 Type system of the data model

This chapter will describe the type system of the TSMS
data model in detail. As has been motivated in chapter 3,
the model is hybrid in that it supports value types and cl-
asses. We start by describing the value types being the ba-
sic constituents and continue with the presentation of the
classes for time series and group objects.

5.1 Value types

General characteristics: Value types serve as elementary
building blocks from which classes are constructed. The
header type and event type of a time series class, for ex-
ample, are record types. Accordingly, a time series con-
sists of a record value as the header and a sequence of re-
cords as the events. Similarly, a group consists of a record
value as the header and a set of references.

In contrast to objects as instances of classes, values as
instances of value types do not have identity. Conse-
quently, it is not possible to share values. In value assign-
ment or in passing values as parameter therefore always
copy semantics are applied. Values do not have methods.
However, a rich set of operators and functions is provided
for their manipulation and more functions may be imple-
mented by the users.

The reasons for the distinction between classes and va-
lue types are as follows: It is a natural differentiation for
the types of our problem domain. According to our valua-
tion, object-based programming is a very adequate pro-
gramming style for the treatment of time series and
groups. However, because values (and especially arrays)
play a central role as elements of algebraic computations,
it is sensible to make them suitable for a more functional
programming style, i.e. to define basic operations such as
arithmetic on whole arrays.

Our data model contains three value type families: sim-
ple value types, array value types and record value types.
The latter two type families are types which are composed
from simple value types.

Simple value types: The simple value types family cur-
rently includes the data types character, integer, float, time
stamp, time span, and reference. For all these data types,
the usual operations are predefined, i.e. for integer and
float, there are arithmetic, relational and logical operati-
ons, for character, there is comparison, for time stamp and
time span, there is date arithmetic, and for reference, there
are the equality and the dereference operation.

Reference types are further divided into reference to
time series, reference to group, and unspecified reference.
An unspecified reference can refer either to a time series
or a group. References to time series and groups can be
more specialized. They can be defined to refer to an in-
stance of a specific class. A reference variable defined for
a certain class may also be assigned a reference to an in-
stance of a direct or indirect subclass.

Array types: Arrays play a central role in our data model
because matrix algebra is of pivotal importance for statisti-
cal methods like filtering. Our array model is influenced
by the APL-array model [8] [9]. For every simple type, a
corresponding array type is defined. The type of an array
is set at definition time and cannot be changed. The num-
ber of dimensions and the size of each dimension, i.e. the
shape of an array, are instance properties and they are eit-
her restricted at definition time or they are variable. If a
user specifies restrictions concerning the shape more
checking at compile time can be done.

The same operations as for simple types are also defi-
ned for the corresponding array types For arrays of inte-
gers, for example, there are arithmetic, relational and logi-
cal operations. Therefore, a user can formulate matrix al-
gebra operations on a high, convenient level of abstraction
without being concerned with how to iterate over all the
elements (see example).

Other operations are defined to manipulate the structure
of an array. Examples are functions to reshape an array, to
ravel the elements of an array or to transpose an array.
Furthermore, a variety of selection operations provide ac-
cess to the elements (see example).

// definition of 4 arrays with 3 rows and 4 columns
int A[3 4]; int B[3 4]; int C[3 4]; int D[3 4];

// Arithmetic with whole, compatible arrays
A = B + C - D;
// select the elements of the intersection of rows 1 3
// and columns 1 4 2
A[1 3; 1 4 2]

Record types: Record types are used for the definition of
the header of time series and group classes as well as for
the definition of the event type of time series classes. Our
record model is simple. The elements of a record type may
be either simple value types or array types. Therefore, re-
cord types are flat, i.e. record types cannot be elements of
record types. Our requirements analysis showed that this
record model provides adequate modeling power for the
problem domain and that the additional modeling power
of a nested record model is not required.

Because records are intended to be mostly used in con-
junction with time series classes and group classes, new
record types are only implicitly defined via the definition
of time series or group headers and via the definition of
the event structure.

Two record types are equal and their instances are assi-
gnment compatible if they have the same number of ele-
ments and the corresponding elements have compatible
types.

We provide assignment, i.e. element wise copy, and test
of equality as operations for records. Other operations
may be carried out on records by accessing their elements.

The most simple way of accessing record elements is
by their label (see example).

In order to make it possible to write generic functions
working with different record types, all elements also have
an index and the elements may be accessed by this index
(see example).

Finally, because of the importance of arrays, records
may be accessed as arrays if the accessed elements have
homogeneous data types, and in the case of arrays, if they
have the same shape (see example). With these various
access variants, records can be used in a flexible way. In
other languages, records merely coexist with other types.
In contrast, our access features lead to a tight integration
of the two types.

// let "aRecord" be a record with the elements
// "high", "low"

// access of the record element "high" by label
aRecord.high
// record element access by index
aRecord.<1>;
// access of the record elements "high" and "low" as
array; returns a vector of 2 elements
aRecord.[high low];
// access the whole record as an array; returns a
// vector of 2 elements
aRecord.[]

5.2 Classes

General characteristics: Our data model is a specifically
tailored object-oriented model that supports the central
concepts time series and group. On the one hand, it provi-
des all the benefits of an object-oriented model like inheri-
tance and polymorphism. Modeling by classes and objects
is intuitive and easy to understand and the functionality
can be extended and adapted to user needs. On the other
hand, the user does not have to cope with a general object
model, but with specific abstractions for time series ma-
nagement. The common functionality of the problem do-
main like calendar functionality, data aggregation, catego-
rization etc. is predefined, such that the user may con-
centrate on application-specific details.

Technically speaking, there are two root classes: Ti-
meseries and Group . From these, subclasses with more
specialized functionality for time series and groups can be
derived recursively. Each time series or group is an in-
stance of a class derived from the root classes. Class deri-
vation is by single inheritance because ease of use is our
foremost aim and the targeted applications do not exhibit a
strong need for multiple inheritance.

Each time series and group is an object with a unique
identity by which it may be referenced and shared. Each
class has a name, a superclass, a header description and a
number of methods as well as further elements that are
different for time series and groups.

In the sequel, a general formalization of the class struc-
tures is presented. We do not introduce a concrete DDL
(data definition language) syntax as the TSMS will sup-
port data definition via direct manipulation with graphical
editors.

Time series classes: Time series classes serve to model
multivariate time series. The corresponding root class co-
mes with all the functionality for the manipulation, retrie-
val, and conversion of such time series. By using the va-
rious access features, it is easy to apply statistical analysis.

A time series class is defined to be a 5-tuple:

(name, superclass name, header type,
event type, {methods}, calendar)

name is a string denoting the name of the time series
class.

superclass name is the name of the time series class
from which this class is derived. For the root time series
class, this is not defined. A derived time series class inhe-
rits from its superclass the header type, the event type, the
calendar as well as the set of methods. Additionally, the
header type and the event type may be enhanced by fur-
ther attributes. Inherited methods may be overwritten and
additional methods may be defined. Overloading of
methods with different parameter types is also supported.
The calendar may not be overwritten, i.e. as soon as a
calendar is defined for a class, all direct and indirect
subclasses of this class have the same calendar. The

reason is that the implementation of methods that are not
overwritten may rely on the calendar.

header type is a record type defining the name and
data type of the attributes describing each time series as a
whole. In the root class, there are some predefined attribu-
tes which are the same for all time series classes (e.g. an
attribute name). Derived classes may have arbitrary fur-
ther attributes.

event type is a record type defining the name and type
of each attribute in the multivariate time series events.

{methods} is a set of methods, each defined by spe-
cifying method name, formal parameters, return type and
implementation (i.e. associated code). There are a number
of predefined methods in the root time series class.

calendar is the calendar associated with time series of
this type. The calendar serves to interpret the time points
of the events. The calendar of a class may be undefined.
However, in this case, the class can only be used to derive
further subclasses and may not have instances of its own.

A time series is a 4-tuple of the form

(time series class name, header, events,
start time stamp)

time series class name identifies the class of the time
series (as described above).

header is a record of the attributes that characterize the
whole time series.

events is a sequence of records, each record represen-
ting one event.

start time stamp is the time point of the first event.
The time stamps of all following events are interpreted
with respect to this time stamp and the calendar of the
time series class.

For an example of a time series see fig. 1 in chapter 2.1.
The upper part of the picture shows the header, the lower
part the sequence of events. The header attributes
Start_date and Calendar are implicit in the model.

Direct time series data access: The elements of a time
series may be accessed directly in various ways. All ac-
cess constructs presented below can be used on the left
hand side as well as on the right hand side of an assign-
ment. In the sequel, we distinguish between three kinds of
access to a time series: access to the header, access to
single event records and access to multiple events by con-
version to arrays.

Header access: The header of a time series can be acces-
sed just like a record using a dot notation, for example:

// returns the whole header of time series
// Sandoz_Bearer
Sandoz_Bearer.
// returns the header attribute Start_date
Sandoz_Bearer.Start_date

Single event access: Single events can be accessed as re-
cords quite similar to the header access. The event is inde-

xed by specifying an expression returning an index or a
time stamp, for example:

// returns the 100th event of time series
// UBS_Registered
UBS_Registered [100]
// re turns the low price of UBS_Registered
// on the 1/1/93
UBS_Registered [1/1/93].Low

As in any record (cf. chapter 5.1.4), homogeneous attri -
butes of an event may be accessed as an array. The fol-
lowing example selects the event of January 1st, 1990,
from time series CS_Bearer and returns its Open and
Close price as a 2-element array:

CS_Bearer [1/1/1990].[Open Close]

While access via record elements will mainly be used
for element wise modification and assignment, the conver-
sion into arrays will be used for computations and statisti-
cal analysis.

Multiple event access: It is also possible to access a se-
quence of several events (or of selected homogeneous at-
tributes thereof) as an array. For this kind of access, the
time series is indexed by a one dimensional array or by an
interval of integer or time stamp values. The resulting ar-
ray is obtained by first converting the single events into
arrays (see above) and then concatenating them along a
further dimension.

// Return a 4 x 2 matrix with the values of Open
// and Close in the 1st, 3rd, 5th and 10th event
CS_Bearer [1 3 5 10].[Open Close]
// Return an array with all events between
// January and December 1990
CS_Bearer [1/1990 .. 12/1990].[]

Predefined methods: Common operations on time series
are predefined as methods of the root class Timeseries.
These methods provide the basic protocol to update and
query time series. This protocol may be changed and/or
enhanced in derived classes by overwriting and adding
methods as needed. In the sequel, we will present the most
important parts of the functionality, including methods for
modifying time series, retrieval of events, time scale con-
version as well as meta data access.

Modification of time series: There are methods for adding,
removing and updating the events recorded in a time se-
ries. Addition of new events as well as removal of events
may happen either at the beginning or at the end of the
time series. Any event within the time series may be mo-
dified. In addition, a whole time series or part of it may be
copied to another time series (provided both time series
have compatible calendars).

Examples:2

// For the example, we first define and initialize
// a record ev of the event type of class Security
// (for the variable declaration see chapter 6.1).
EventTypeOf (Security) ev = <319, 323, 324,
319, 23249>;
// Insert one new event (i.e. a compatible record) at
// the end/the beginning of
// time series UBS_Registered.
UBS_Registered→Append (ev)
UBS_Registered→Prepend (ev)
// Remove all events that have been recorded
// forJanuary 1993 or later.
UBS_Registered→RemoveFrom (1/1993)
// Remove the first 20 events.
UBS_Registered→RemoveFirst (20)
// Modify the 100th event of UBS_Registered. The
// new attribute values of this event will be those of
// the variable ev defined above.
UBS_Registered→Update (100, ev)
// Copy 200 events from UBS_Registered to UBS1
// starting on 1/1/1990.
UBS_Registered→Copy (UBS1, 1/1/1990,
200)

Event retrieval: For queries on time series, i.e. selection of
events satisfying a condition, a set of retrieval methods is
provided. There are methods that select a vector of the in-
dices or time stamps of all events satisfying a given condi-
tion (selectIndex and selectTimestamp methods). You
may also choose to retrieve only the first event fulfilling a
condition (detectIndex and detectTimestamp methods).

As an example, think of selecting all events from time
series SBC_Registered where Low is smaller than 250. As
the result, an array of time stamps is returned.

SBC_Registered→SelectTimestamp ("Low <
250")

The following expression is used to find the index of
the first event after 1st January, 1990, where opening and
closing price were the same. The expression will return
the index of the event as an integer value or 0 if no event
was found). The attribute $timestamp used in the condi-
tion is implicit in every event.

SBC_Registered→DetectIndex ("$timestamp
> 1/1/1990 and Open == Close")

Time scale conversion: A transformation method is provi-
ded to convert a time series into another one, taking into
account different time scales, i.e. calendars with different
granularity. Conversion involves either aggregation (from
finer to coarser granularity, like daily to monthly data) or

2 The syntax for method invocation is
receiver object→methodName (parameterList)

interpolation (from coarser to finer granularity, like quar-
terly to monthly data).

In order to support time scale conversion to coarser
granularity, an aggregation property similar to the "obser-
ved property" in [6] can be defined for each event at tri -
bute. This property can be set as undefined, begin or end
of period stock value, flow value, average value, maxi-
mum or minimum value. The default setting is undefined.
Depending on this property, the system will automatically
calculate the aggregated values for a coarser grained time
series unless another aggregation function is explicitly
specified with the conversion method.

For the conversion to a shorter periodicity one would
also like such an automatism. Unfortunately, requirements
analysis shows that there is no such simple relationship as
for aggregation, because interpolation depends on the in-
dividual data rather than the type of time series. For ex-
ample, for stock values, the interpolation function to be
applied depends on the actual growth of the series which
may have been linear, exponential or other. For this re-
ason, the model does not provide a default interpolation
property for event attributes, but the interpolation functi-
ons is always required as a parameter of the convert func-
tion.

In the following example, we show how the daily time
series U B S _ B e a r e r can be aggregated into
UBS_Bearer_monthly . The aggregation properties defi-
ned on UBS_Bearer are

Low: minimum
High: maximum
Open: beginOfPeriod
Close: endOfPeriod

The following statement will aggregate events automa-
tically, calculating the monthly minimum for Low, the
monthly maximum for High, the first value in month for
Open and the last value for Close :

UBS_Bearer→Convert (UBS_Bearer_monthly)

The next example shows the reverse conversion. Linear
interpolation is applied for attribute L o w , square
interpolation for attribute Close.

UBS_Bearer_monthly→Convert (UBS_Bearer,
" linear Low, . . ., square Close")

Group classes: A further important abstraction of the mo-
del is the group concept. By the use of groups, the large
number of time series usually present in a time series base
can be partitioned. Partitioning can be done hierarchically
as groups may contain other groups recursively. A time
series may be part of several groups according to different
partitioning criteria. Group classes offer all the functiona-
lity for manipulating, querying and applying set operations
to groups.

A group class is defined as a 3-tuple:

(name, superclass name, header type,
{methods})

name, superclass name, header type and
{methods} are defined analogous to the time series clas-
ses above. Group classes do not have any further elements
because the member sets of all groups are of the same type
(a set of references) and need not be declared explicitly in
the class.

A derived group class inherits from its superclass the
header type and the set of methods. On class derivation,
the header type may be enhanced by further attributes, in-
herited methods may be overwritten and additional me-
thods may be defined.

A group is defined as a 3-tuple of the form

(group class name, header, member set)

group class name identifies the class of the group.
header is a record of the attributes that characterize the

whole group.
member set is a set of references to time series and

groups. By that, heterogeneous groups can be built and
groups can be nested to arbitrary depth.

For an example of a group, see fig. 3 in chapter 2.1.
The upper part of the picture shows the header, the lower
part the member set.

Predefined methods and functions: For groups, direct
access to header attributes is the same as for time series,
like in the following example:

// returns the whole header of group Swiss_Bonds
Swiss_Bonds.

The basic protocol for update, retrieval and set operati-
ons on groups is predefined by the root class Group. As
for time series, the protocol may be changed and/or en-
hanced in derived classes by overwriting and adding me-
thods as needed. We will give an overview of the functio-
nality, regarding modification of groups, retrieval of
members and set-theoretic operations. Like time series,
groups also have methods for meta data access which we
will not deal with in detail.

Modification of groups: Methods are provided to manipu-
late the member set of a group, i.e. to add and remove
elements, for example:

// Make Sandoz_Bearer a member of
// Swiss_Chemistry_Stocks.
Swiss_Chemistry_Stocks→Add
(Sandoz_Bearer)
// Make all direct members of Ciba_stocks
// members of Swiss_Chemistry_Stocks.
Swiss_Chemistry_Stocks→AddMembers
(Ciba_Stocks)
// Make all time series which are direct or indirect
// members of Swiss_Chemistry_Stocks members
// of Swiss_Stocks.
Swiss_Stocks→AddAllTS
(Swiss_Chemistry_Stocks)

// Remove Sandoz_Registered from
// Swiss_Chemistry_Stocks.
Swiss_Chemistry_Stocks→Remove
(Sandoz_Registered)

Note that there are group methods operating on one
element (like Add), methods with "flat" semantics on the
direct members (like AddMembers) and methods with
"deep" semantics dealing with all time series recursively
(AddAllTS). In the latter case, if the same member is en-
countered several times, it is dealt with only once. Cyclic
references are cut off by this rule.

Retrieval of group members: The member set of a group
can be queried using the Select and Detect methods. The
Select methods return a vector of references to members
fulfilling a given condition. The Detect methods just re-
turn a reference to the first member found.

The following expression retrieves the references to all
time series in group Swiss_Government_Bonds that
started in May 1993. The result of the method invocation
is an array of references. The second parameter of this
method is optional. It specifies the sort order of the result,
in this case sorting is by start date in descending order.

Swiss_Government_Bonds→SelectTS
("Start_date ≥ 1/5/1993 and
 Start_date ≤ 31/5/1993",
 "Start_date descending")

The next example shows the retrieval of a group mem-
ber, i.e. either a time series or a subgroup, with name
’UBS Registered’. Only one such member is to be detec-
ted.

Swiss_Banking_Stocks→Detect (" name =
’UBS Registered’ ")

Set operations: Set operations are central in the handling
of groups. Therefore, functions are provided to calculate
the union, intersection and difference of groups. Analo-
gous to the select operations, the result of set operations is
delivered as an array of references. To apply set functions
recursively, their parameters may be either groups or ar-
rays of references.

// Return the union of Swiss banking and chemistry
// stocks.
union (Swiss_Banking_Stocks,
Swiss_Chemistry_Stocks)
// Return the Swiss banking stocks which are not
// above index.
difference (Swiss_Banking_Stocks,
Above_index)

6 Further characteristics of the data model

6.1 Calendar functionality

For time series management, elaborate calendar func-
tionality is obviously a central issue. The calendar func-
tionality has to take into account a variety of ways to im-
pose structure on time. Flexibility must be provided for
application-specific needs. In our system, we take an ap-
proach similar to [14] in that a number of various calen-
dars are defined within a general framework. However,
our approach is not tied to a specific language like SQL
and in that more resembles [3]. Taking into account the
special needs of time series management, we define calen-
dars which differ according to the criteria:

• base calendars
• granularity
• business days
• national and regional holidays
There are various base calendars like the Julian, Gre-

gorian or Islamic calendar. In addi tion to these natural ca-
lendars, there are artificial calendars, e.g. a regular calen-
dar with 360 days per year and 30 days per month, an or-
dinal calendar just counting time units as a sequence of
natural numbers and an enumerated calendar which con-
sists of an irregular sequence of single time points speci-
fied by the user.

According to various application areas, calendars vary
in their granularity , i.e. the chronon they support (for
terminology cf. [10]). Chronons currently supported in
calendars are days, weeks, months, years and multiples
thereof.

Calendars may have the mode "business" or "non-bu-
siness". A business mode calendar does not record all days
of a base calendar but working days only.

National and regional calendars take into account dif-
ferent local holidays. Such calendars can easily be obtai-
ned by parameterizing other calendars with a set of holi-
days.

Example:

Calendar
→ base: Gregorian
→ time unit: days
→ mode: business
→ holidays: Zurich regional

The TSMS calendar model allows to
• define all these kinds of calendars: Currently, the data

model offers a number of predefined calendars which
may be parameterized with specific holidays. Arbi-
trary user-defined calendars are not yet supported by
the model, though the underlying calendar system has
already been designed for this kind of extension.

• transform time units from one calendar to another :
Time stamps and time spans can be transformed bet-
ween calendars within the limits of calendar compati-
bility. For example, a time stamp of the daily Grego-
rian calendar may be transformed to the monthly

Gregorian calendar (yielding the month and year of
the date) and vice versa (yielding an array of all days
in the month).

• apply relational operators to time: Time stamps can
be compared with respect to their occurrence in time
(before, after, at the same time). Time spans can be
compared as to their duration (longer, shorter, same
duration).

• scan calendars: It is possible to iterate over all or part
of the time stamps in a calendar. For example, de-
pending on the kind of calendar, one may iterate over
all months, all working days, all days after/before a
given date etc. The data manipulation language offers
increment and decrement operators to use this functio-
nality.

• do arithmetic operations on time: Frequently needed
arithmetic operations are supported for time stamps
and time spans. For example, a span may be added or
subtracted from a time stamp, the span between two
time stamps may be calculated etc. The arithmetic
operations take into account holidays, weekends,
length of months, leap years etc.

Each time series is associated with a calendar that ser-
ves to map its events to the corresponding points in time.
For each time series, a start time stamp is specified (see
chapter 5.2.2). The sequence of events starts with this time
stamp and is implicitly incremented by the time granule of
the calendar (for enumerated calendars the time stamps are
explicitly recorded).

Example:

calendar = <Gregorian / day / business / Zu-
rich regional >
start = 1/1/1993
// The 1st and 2nd Jan. are holidays in Zurich,
// the 3rd Jan. 1993 was a Sunday)
event 1 => 4/1/1993
event 2 => 5/1/993
event 3 => 6/1/1993
event 4 => 7/1/993
event 5 => 8/1/993
event 6 => 11/1/1993
. . .
// Calendar calculation takes into account business
// days and holidays, for example:
 4/1/1993 + 10 time units => 18th Jan. 1993

6.2 Language aspects

Methods and global functions: The data model offers a
computationally complete manipulation language that ser-
ves to define methods on time series and group classes as
well as global functions.
Adaptive type checking: The language supports adaptive
type checking, i.e. a combination of static and dynamic
checking, for records, arrays and references. The idea is to
provide static type checking wherever possible without
hindering flexibility where needed. Dynamic type chec-

king is feasible because type information can be obtained
from the database at runtime.

Control structures: The language offers the common
control statements (if, switch, while, return, for, etc.). Be-
sides, it supports a number of special loop statements to
iterate over all events of a time series or the whole mem-
ber set of a group.

6.3 Time series bases

Time series bases are a means to coarsely partition the
universe of time series. They are the analogue of data
bases in a general DBMS. Each time series or group be-
longs to exactly one time series base. In each time series
base, there is a system-defined group serving as a root
from which all time series and groups of this base may be
reached.

Time series bases serve as unit of visibility and access
control. Read and write access for individual users and
user groups is granted on the basis of time series bases. In
a typical environment, there will be public and private
time series bases.

7 Conclusion and future work

In this paper, we presented a specialized object-oriented
data model for time series management. We showed that
the model offers multivariate time series and recursive
groups as the main class abstractions as well as a variety
of value types with arrays playing the most important role.
The model features elaborate calendar functionality, ag-
gregation properties for time scale conversion and a po-
werful data manipulation language to define methods and
global functions.

We are currently implementing this data model in a
time series management system based on an off-the-shelf
object-oriented DBMS and the application framework
ET++ [16]. A kernel version of the TSMS including the
root classes, the value types as well as the calendar system
is operable. The next implementation steps will be targe-
ted at the graphical user interface, enhanced functionality
for array types and an interpreter for the data manipulation
language.

Future work will relate to
• interoperability issues and data exchange in an envi-

ronment with heterogeneous data sources and client
applications [5]

• data quality management
• the introduction of physical properties for value types

and classes as a means for efficient data storage and
retrieval (e.g. physical event order, linearization order
of arrays, compression techniques to be applied, ex-
pected size of time series, etc.)

• language support and tools for user-defined calendars.
Of course, a central task will also be to come up with

results from the practical experiences of applying the
TSMS in various banking applications.

References

[1] R.G.G. Cattell: Object Data Management - Object-Orient-
ed and Extended Rela tional Database Systems. Addison-
Wesley, 1991.

[2] R. Chandra, A. Segev: Managing Temporal Financial Data
in an Extensible Database. Proc. of the 19th VLDB Conf.,
Dublin 1993.

[3] R. Chandra, A. Segev, M. Stonebraker: Implementing Ca-
lendars and Temporal Rules in Next Generation Data-
bases. Proc. of the Intl. Conference on Data Engineering,
Houston, Texas, February 1994.

[4] W. Dreyer, A. Kotz Dittrich, D. Schmidt: Research Per-
spectives for Time Series Management Systems. SIGMOD
RECORD, Vol. 23, No. 1, March 1994, pp. 10 - 15.

[5] W. Dreyer: Interoperability Issues in Time Series Manage-
ment. Proceedings of the Workshop on Interoperability of
Database Systems and Applications, pp. 235-246, Fri -
bourg, Switzer land, October 1993.

[6] FAME Software Corporation: User’s Guide to Fame, 1990.

[7] H. Hinterberger, J.C. French (eds.): Proc. of the 6th Intl.
Working Conference on Scien tific and Statistical Database
Management, Ascona, Switzerland, 1992.

[8] K.E. Iverson: A Programming Language. Wiley, New
York, 1962.

[9] K.E. Iverson: A Dictionary of APL. ACM Quote-Quad,
Vol. 18, No. 4, 1987.

[10] C.S. Jensen (ed.) et al.: Proposed Temporal Database Con-
cepts. Proc. of the Intl. Workshop on an Infrastructure for
Temporal Databases, Arlington, TX, June 1993.

[11] Z. Michalewicz: Statistical and Scientific Databases. Ellis
Horwood Ltd., 1991.

[12] A. Segev, R. Chandra: A Data Model for Time-Series
Analysis. Workshop on Current Issues in Databases and
Applications, Rutgers Univ., Oct 1992. In: Advanced Da-
tabase Systems, editors: N. Adam and B. Bhargava, Lectu-
res Notes in Computer Science Series, Springer Verlag,
1993.

[13] A. Segev, A. Shoshani: A Temporal Data Model Based on
Time Sequences. In [15], chapter 11, pp. 248 - 269.

[14] M.D. Soo et al.: Architectural Extensions to Support Mul-
tiple Calendars. TEMPIS Technical Report, No.32, Univ.
of Arizona, Dept. of Computer Science, 1992.

[15] A.U. Tansel et al.: Temporal Databases - Theory, Design
and Implementa tion. The Benjamin/Cummings Publ.
Comp., 1993.

[16] A. Weinand, E. Gamma, R. Marty: ET++ – An Object -
Oriented Applica tion Framework in C++. Structured Pro-
gramming, Vol. 10, No. 2, June 1989.

