
Arch Comput Methods Eng (2010) 17: 253–297
DOI 10.1007/s11831-010-9045-2

O R I G I NA L PA P E R

An Object-oriented Environment for Developing Finite Element

Codes for Multi-disciplinary Applications

Pooyan Dadvand · Riccardo Rossi · Eugenio Oñate

Received: 15 December 2009 / Accepted: 15 December 2009 / Published online: 22 July 2010
© CIMNE, Barcelona, Spain 2010

Abstract The objective of this work is to describe the de-
sign and implementation of a framework for building multi-
disciplinary finite element programs. The main goals are
generality, reusability, extendibility, good performance and
memory efficiency. Another objective is preparing the code
structure for team development to ensure the easy collab-
oration of experts in different fields in the development of
multi-disciplinary applications.

Kratos, the framework described in this work, contains
several tools for the easy implementation of finite element
applications and also provides a common platform for the
natural interaction of different applications. To achieve this,
an innovative variable base interface is designed and imple-
mented. This interface is used at different levels of abstrac-
tion and showed to be very clear and extendible. A very
efficient and flexible data structure and an extensible IO
are created to overcome difficulties in dealing with multi-
disciplinary problems. Several other concepts in existing
works are also collected and adapted to coupled problems.
The use of an interpreter, of different data layouts and vari-
able number of dofs per node are examples of such ap-
proach.

In order to minimize the possible conflicts arising in the
development, a kernel and application approach is used. The
code is structured in layers to reflect the working space
of developers with different fields of expertise. Details are
given on the approach chosen to increase performance and
efficiency. Examples of application of Kratos to different

P. Dadvand (�) · R. Rossi · E. Oñate
International Center for Numerical Methods in Engineering
(CIMNE), Technical University of Catalonia, Campus Norte
UPC, 08034 Barcelona, Spain
e-mail: pooyan@cimne.upc.edu
url: http://www.cimne.com

multidisciplinary problems are presented in order to demon-
strate the applicability and efficiency of the new object ori-
ented environment.

1 Introduction

One of the open topics in the finite element method (FEM),
is the combination of solvers in different fields (thermal,
fluid dynamics, structural, etc.) in order to solve multi-
disciplinary problems. The ideal approach to achieve this
goal is to develop a unified software environment. This re-
quires however a high investment in terms of software de-
velopment.

Kratos, the object oriented framework described in cur-
rent paper, has been designed from scratch to address such a
challenge.

1.1 Problem

Conventional finite element codes encounter several diffi-
culties in dealing with multi-disciplinary problems involv-
ing the coupled solution of two or more different fields.
Many of these codes are designed and implemented for solv-
ing a certain type of problems, generally involving a single
field. For example, to solve just structural, fluid mechanic,
or electromagnetic problems. Extending these codes to deal
with another field of analysis usually requires large amounts
of modifications.

A common approach is to connect different solvers via
a master program which implements the interaction algo-
rithms and also transfers data from one solver to another.
This approach has been used successfully in practice but
has its own problems. First of all having completely sepa-
rate programs results in many duplicated implementations,

254 P. Dadvand et al.

which causes an additional cost in code maintenance. In
many cases the data transfer between different solvers is not
trivial and, depending on the data structure of each program,
may cause a redundant overhead of copying data from one
data structure to another. Finally, this method can be used
only for master and slave coupling and not for monolithic
coupling approaches.

Some newer implementations have used modern software
engineering concepts in their design to make the program
more extendible. They usually achieve extendibility to new
algorithms in their programs. However, extensions to new
fields is beyond their usual intent.

The typical bottlenecks of existing codes for dealing with
multi-disciplinary problems are:

• Predefined set of dofs per node.
• Data structure with fixed set of defined variables.
• Global list of variables for all entities.
• Domain based interfaces.
• IO restriction in reading new data and writing new results.
• Algorithm definition inside the code.

These shortcomings require extensive rewriting of the
code in order to extend it to new fields.

Many programs have a predefined set of degrees (dofs)
per node. For example, in a three dimensional (3D) struc-
tural program each node has six dofs dx, dy, dz,wx,wy,wz

where d is the nodal displacement and w the nodal rota-
tion. Assuming all nodes to have just this set of dofs helps
developers to optimize their codes and also simplifies their
implementation tasks. This assumption, however, prevents
the extension of the code to another field with a different set
of dofs per node.

Usually the data structure of FEM programs is designed
to hold certain variables and historical values. The main rea-
sons for this are: easier implementation, better performance
of data structure and less effort in maintenance. In spite of
these advantages, using rigid data structures usually requires
important changes revision to include new variables from
other fields.

Another problem arises when the program’s data struc-
ture is designed to hold the same set of data for all entities.
In this case adding a nodal variable to the data structure im-
plies adding this variable to all the nodes in the model. In
the Kratos implementation adding variables of one domain
to data structure causes redundant spaces to be allocated for
them in another domain. For example, in a fluid-structure in-
teraction problem, this design requires each structural node
to have pressure values and all fluid nodes to have displace-
ment values stored in memory. Even though this is not a
restriction, it severely affects the memory efficiency of pro-
gram.

Additionally, in single purpose programs, it is usual to
create domain specific interfaces in order to increase the

code clarity. Let us consider as an example a thermal prob-
lem for this purpose. In a classical approach one would de-
fine a variable, possibly named Conductivity to allow
the element to access its conductivity. This leads to follow-
ing interface:

c = Conductivity()

Though this enhances code clarity, it is incompatible with
extendibility to new fields. For example if we wish to add the
“permeability”, another method has to be defined for all ele-
ment class hierarchy. This is a point of conflict when adding
new formulations.

Another bottleneck in extending the program to new
fields is IO. Each field has its sets of data and results, and
a simple IO usually is unable to handle new set of data. This
can cause significant implementation and maintenance costs
that come from updating IO for each new problem to solve.

Finally introducing new algorithms to existing codes re-
quires internal implementation. This causes closed programs
to be nonextensible because there is no access to their source
code. For open source programs, this requires the external
developers learn about the internal structure of the code.

1.2 Solutions

Applying the object-oriented paradigm has shown to be very
helpful in increasing the flexibility and reusability of codes.
In this work, object-oriented design is used to organize dif-
ferent parts of the code in a set of objects with clear inter-
faces. In this way the flexibility of the code increases, and
reusing an object in some other places also becomes more
practical.

Design and implementation of a multi-disciplinary con-
ceptual interface is another solution for previous problems.
In the Kratos design, interfaces are defined in a very generic
way and independent from any specific concept. The vari-
able base interface resulting from this design is very general
and solves the interface problems arising when extending
the program to new fields.

A flexible and extendible data structure is another solu-
tion to guarantee the extendibility of the code to new con-
cepts. The proposed data structure is able to store any type
of data associated to any concept. It also provides different
ways for global organization of data required when dealing
with multi-domains problems. The same strategy is applied
to give flexibility in assigning any set of dofs to any node for
solving new problems.

An interactive interface is provided in order to increase
the flexibility of the code when implementing different al-
gorithms. In this way a new algorithm can be introduced
without the need to be implemented inside the program.
This gives a high level of extendibility to the code and it

An Object-oriented Environment for Developing Finite Element Codes for Multi-disciplinary Applications 255

is very useful for the implementation of optimization and
multi-disciplinary interaction algorithms.

An automatic configurable IO module is added to these
components providing the complete set of solutions neces-
sary for dealing with multi-disciplinary problems. This IO
module uses different component lists to adjust itself when
reading and writing new concepts originating from different
fields of analysis.

2 Background

The history of object-oriented design for finite element pro-
grams turns back to the early 1990’s or even earlier. In 1990,
Forde et al. [33] published one of the first detailed descrip-
tions of applying object-oriented design to finite element
programs. They used the essential components of FEM to
design the main objects. Their structure consists of Node,
Element, DispBC, ForcedBC, Material, and Dof as
finite element components and some additional objects like
Gauss, and ShapeFunction for assisting in numerical
analysis. They also introduced the element group and the list
of nodes and elements for managing the mesh and construct-
ing system. Their approach has been reused by several au-
thors in organizing their object-oriented finite element pro-
gram structures. This approach focused on structural analy-
sis only and the objects’ interfaces reflect this fact.

In those years other authors started to write about the
object-oriented paradigm and its applications in finite ele-
ment programming. Filho and Devloo [32] introduced ob-
ject oriented design in FEM codes and applied it to element
design. Mackie [53] gave another introduction to the object-
oriented design of finite element programs by designing a
brief hierarchial element. Later he published a more detailed
structure for a finite element program providing a data struc-
ture for entities and also introduced the use of iterators [54].
Pidaparti and Hudli [69] published a more detailed object
oriented structure with objects for different algorithms in dy-
namic analysis of structures. Raphael and Krishnamoorthy
[71] also used object-oriented programming and provided
a sophisticated hierarchy of elements for structural applica-
tions. They also designed some numerical expressions for
handling the common numerical operations in FEM. The
common point of all these authors was their awareness about
the advantages of object oriented programming with respect
to traditional Fortran approaches and their intention to use
these advantages in their finite element codes.

Miller [58–60] published an object-oriented structure for
a nonlinear dynamic finite element program. He introduced
a coordinate free approach to his design by defining the
geometry class which handles all transformations from local
to global coordinates. The principal objects in his design are
Dof, Joint, and Element. TimeDependentLoad and

Constrain are added to them in order to handle boundary
conditions. He also defines a Material class with ability
to handle both linear and nonlinear materials. The Assem-
blage class holds all these components and encapsulates
the time history modeling of structure.

Zimmermann et al. [24, 25, 90] designed a structure for
linear dynamic finite element analysis. Their structure con-
sists of three categories of objects. First the FEM objects
which are: Node, Element, Load, LoadTimeFunc-
tion, Material, Dof, Domain, and LinearSolver.
The second includes some tools like GaussPoint, and
Polynomial. The third category refers to the collection
classes like: Array, Matrix, String, etc. They imple-
mented first a prototype of this structure in Smalltalk and
after that an efficient one in C++. The latter version pro-
vides a comparable performance versus to a Fortran code.

In their structure Element calculates the stiffness ma-
trix Ke , the mass matrix Me , and the load vector f e in
global coordinates for each element. It also assembles its
components in the global system of equations and updates
itself after its solution. Node holds its position and manages
dofs. It also computes and assembles the load vector and fi-
nally updates the time dependent data after the solution. Dof
holds the unknown information and also the dofs values. It
stores also its position in the global system and provides
information about boundary conditions. TimeStep imple-
ments the time discretization. Domain is a general manager
for components like nodes and elements and also manages
the solution process. It also provides the input-output fea-
tures for reading the data and writing the results. Finally
LinearSystem holds the system of equation components:
left hand side, right hand side and solution. It also performs
the equation numbering and implements the solver for solv-
ing the global system of equations.

They also developed a nonlinear extension to their struc-
ture which made them redefined some of their original
classes like Domain, Element, Material, and some
LinearSystems [57].

Lu et al. [49, 50] presented a different structure in their
finite element code FE++. Their structure consists of small
number of finite element components like Node, Element,
Material, and Assemble designed over a sophisticated
numerical library. In their design the Assemble is the cen-
tral object and not only implements the normal assembling
procedure but also is in charge of coordinate transforma-
tion which in other approaches was one of the element’s
responsibilities. It also assigns the equation numbers. The
Element is their extension point to new formulations.
Their effort in implementing the numerical part lead to an
object-oriented linear algebra library equivalent to LAPACK
[8]. This library provides a high level interface using object-
oriented language features.

Archer et al. [10, 11] presented another object-oriented
structure for a finite element program dedicated to linear and

256 P. Dadvand et al.

nonlinear analysis structures under static and dynamic loads.
They reviewed features provided by other designs on that
time and combined them in a new structure adding also some
new concepts.

Their design consists of two level of abstractions. In
the top level, Analysis encapsulates the algorithms and
Model represents the finite element components. Map re-
lates the dofs in the model, to unknowns in the analysis
and removes the dependency between these objects. It also
transforms the stiffness matrix from the element’s local co-
ordinate to the global one and calculates the responses. Ad-
ditional to these three objects, different handlers are used
to handle model dependent parts of algorithm. Reorder-
Handler optimizes the order of the unknowns. Matrix-
Handler provides different matrices and construct them
over a given model. Finally ConstraintHandler pro-
vides the initial mapping between the unknowns of analysis
and the dofs in the model.

In another level there are different finite element com-
ponents representing the model. Node encapsulates a usual
finite element node, its position and its dofs. ScalarDof
and VectorDof are derived from the Dof class and
represent the different dof’s types. Element uses the
ConstitutiveModel and ElementLoad to calculate
the stiffness matrix Ke , the mass matrix Me and the damp-
ing matrix Ce in the local coordinate system. LoadCase
includes loads, prescribed displacements and initial element
state objects and calculates the load vector in the local coor-
dinate system.

Cardona et al. [17, 42, 43] developed the Object Ori-
ented Finite Elements method Led by Interactive Execu-
tor (OOFELIE) [66]. They designed a high level language
and also implemented an interpreter to execute inputs given
in that language. This approach enabled them to develop a
very flexible tool to deal with different finite element prob-
lems. In their structure a Domain class holds data sets like:
Nodeset, Elemset, Fixaset, Loadset, Materset,
and Dofset. Element provides methods to calculate the
stiffness matrix Ke , the mass matrix Me , etc. Fixaset and
Loadset which hold Fixations and Loads handle the
boundary conditions and the loads.

They used this flexible tool also for solving coupled prob-
lems where their high level language interpreting mech-
anism provides an extra flexibility in handling different
algorithms for coupled problems. They also added
Partition and Connection classes to their structure in
order to increase the functionality of their code in handling
and organizing data for coupled problems. Partition is
defined to handle a part of domain and Connection pro-
vides the graph of dofs and also sorts them out.

Touzani [83] developed the Object Finite Element Li-
brary (OFELI) [82]. This library has an intuitive structure

based on the FEM and can be used for developing finite el-
ement programs for different fields like heat transfer, fluid
flow, solid mechanics and electromagnetics.
Node, Element, Side, Material, Shape and Mesh

are the main components of its structure and different prob-
lem solver classes implement the algorithms. This library
also provides different classes to form a FEEqua class
which implements formulations for different fields of analy-
sis. It uses a static Material class in which each parameter
is stored as a member variable. Element just provides the
geometrical information and the finite element implemen-
tation is encapsulated via FEEqua classes. Element pro-
vides several features which makes it useful for even com-
plex formulations but keeping all these members data makes
it too heavy for industrial implementations.

Bangerth et al. [12, 14, 15] created a library for imple-
menting adaptive meshing finite element solution of partial
differential equations called Differential Equations Analysis
Library (DEAL) II [13]. They were concerned with flexibil-
ity, efficiency and type-safety of the library and also wanted
to implement a high level of abstraction. All these require-
ments made them to use advanced features of C++ lan-
guage to achieve all their objectives together.

Their methodology is to solve a partial differential
equation over a domain. Triangulation, Finite-
Element, DoFHandler, Quadrature, Mapping, and
FEValues are the main classes in this structure.
Triangulation, despite its name, is a mesh generator
which can create line segments, quadrilaterals and hexahe-
dra depending on given dimensions as its template parame-
ter. It also provides a regular refinement of cells and keeps
the hierarchical history of the mesh. FiniteElement en-
capsulates the shape function space. It computes the shape
function values for FEValues. Quadrature provides
different orders of quadratures over cells. Mapping is in
charge of the coordinate transformation. DoFHandler

manages the layout of dofs and also their numbering in
a triangulation. FEValues encapsulates the formulation
to be used over the domain. It uses FiniteElement,
Quadrature and Mapping to perform the calculations
and provides the local components to be assembled into the
global solver.

Extensive use of templates and other advanced features of
C++ language increases the flexibility of this library with-
out sacrificing its performance. They created abstract classes
in order to handle uniformly geometries with different di-
mensions. In this way, they let users create their formulation
in a dimension independent way. Their approach also con-
sists of implementing the formulation and algorithms and
sometimes the model itself in C++. In this way the library
configures itself better to the problem and gains better per-
formance but reduces the flexibility of the program by re-
quiring it to be used as a closed package. In their struc-
ture there is no trace of usual finite element components like

An Object-oriented Environment for Developing Finite Element Codes for Multi-disciplinary Applications 257

node, element, condition, etc. This makes it less familiar for
developers with usual finite element background.

Patzák et al. [68] published an structure used in the
Object Oriented Finite Element Modeling (OOFEM) [67]
program. In this structure Domain contains the complete
problem description which can be divided into several
Engineering Models which prepare the system of
equations for solving. Numerical Method encapsulates
the solution algorithm. Node, Element, DOF, Boundary
condition, Initial condition, and Material

are other main object of this structure. This program is ori-
ented to structural analysis.

2.1 Discussion

A large effort has been done to organize finite element codes
trying to increase their flexibility and reducing the mainte-
nance cost. Two ways of designing finite element program
can be traced in literature. One consists of using the finite
element methodology for the design which leads to objects
like element, node, mesh, etc. Another approach is to deal
with partial differential equations which results in object
functions working with matrices and vectors over domains.

The work of Zimmermann et al. [24, 25, 90] is one of
the classical approaches in designing the code structure on
the basis of the finite element methodology. However there
is no geometry in their design and new components like
processes, command interpreter etc. are not addressed.

The effort of Miller et al. to encapsulate the coordinate
transformation in geometry is useful for relaxing the depen-
dency of elemental formulation to an specific geometry.

Cardona et al. [17, 42, 43] added an interpreter to manage
the global flow of the code in a very flexible way. The inter-
preter was used for introducing new solving algorithms to
the program without changing it internally. This code is also
extended to solve coupled problems using the interpreter for
introducing interaction algorithms which gives a great flexi-
bility to it. The drawback of their approach is the implemen-
tation of a new interpreter with a newly defined language
beside binding to an existing one. This increases the main-
tenance cost of the interpreter itself and makes it difficult to
using other libraries which may have interfaces to chosen
script languages.

Touzani [83] designed an structure for multi-disciplinary
finite element programs. His design is clear and easy to
understand but uses field specific interfaces for its compo-
nents which are not uniform for all fields. This reduces the
reusability of the algorithm from one field to the other.

The approach of Lu et al. [49, 50] is in line with design-
ing a partial differential solver with emphasizes on numer-
ical components. Archer et al. [10, 11] extended this ap-
proach to make it more flexible and extendible. More re-
cently Bangerth et al. used the same approach for designing

their code. However the structure results from this design
can be unfamiliar to usual finite element programmers. For
instance, in the latter design there are no objects to repre-
sent nodes and elements, which are the usual components
for finite element programmers.

In this work the standard finite element objects like
nodes, elements, conditions, etc. are reused from previous
designs but modified and adapted to the multi-disciplinary
analysis perspective. There are also some new components
like model part, process, kernel and application which are
added to account for new concepts mainly arising in multi-
disciplinary problems. A new variable base interface is de-
signed providing a uniform interface between fields and in-
creasing the reusability of the code. The idea of using an in-
terpreter is applied by using an existing interpreter. A large
effort has also been invested to design and implement a fast
and very flexible data structure enabling to store any type
of data coming from different fields and guarantee the uni-
form transformation of data. An extendible IO is also created
to complete the tools for dealing with the usual bottlenecks
when working with multi-disciplinary problems.

In the following sections we start with a brief descrip-
tion of FEM in Sect. 3 and continues in Sect. 4 with a
short presentation of common techniques for the solution of
multi-disciplinary problems. Section 5 gives an overview of
the Kratos environment and its general structure. The new
Variable Base Interface is described in Sect. 6. Section 7
is dedicated to the data structures. The next two sections
describe the parts related to finite element method and the
input output. Finally some validation examples of the pos-
sibility of Kratos for solving multidisciplinary are presented
in Sect. 11.

3 Finite Element Method

3.1 Basic Concepts of FEM Discretization

The finite element method typically solves problems gov-
erned by differential equations with the appropriate bound-
ary conditions. The more general setting can be expressed
as:

– Solve the set of different equations

A(u) = 0 in � (1)

subjected to the boundary conditions

B(u) = 0 in Ŵ (2)

where A and B are matrices of differential operators defined
over the analysis domain � and its boundary Ŵ and u(x, t) is
the vector of problem unknowns which may depend on the

258 P. Dadvand et al.

space dimension and the time. Indeed, for multidisciplinary
problems A and B define the equations in the different in-
teracting domains and their boundaries. Details of the form
of the operators A and B for each particular problem can be
found in standard FEM books [89].

The FEM solution is found by approximating the un-
known polynomial expansions defined within each element
discretizing the analysis domain �, i.e.

u ≃ uh =

N
∑

i=1

Niui (3)

where N is the number of nodes in the mesh, Ni is the shape
functions matrix and ui are the approximate values of u at
each node. Typically, (3) is written on an element by element
form.

The matrix system of equation is obtained by substituting
(3) into (1) and (2) and using the Galerkin weighted residual
form which can be written as
∫

�

Nir�d� +

∫

Ŵ

NirŴdŴ = 0, i = 1,N (4)

where

r� = A(uh), rŴ = B(uh) (5)

are the so called “residuals” of the governing equations over
the domain and the boundary, respectively. Indeed (4) can
be adequately transformed by integration by parts of many
terms over the analysis domain, to give the so called weak
integrals form which is more convenient for some prob-
lems [89]. In any case, the element structure of the FEM
allows computing and assembling the integrals of (4) on an
element by element manner. The resulting system of dis-
cretized equation can be written (for the static case) as

Ka = f (6)

where

K = AK(e), f = Af(e) (7)

where A denotes the assembly operation which allows to
obtaining the global stiffness matrix K and the equivalent
nodal force vector f from the element contributions. In (7) a

is the vector of unknowns which lists the values of ui at all
the nodes in the mesh.

The solution of the system of (6) requires prescribing the
value of the unknown variables ui at specific points (the so
called Dirichlet boundary condition).

It is not the objective of this paper to explain the basis
of the FEM which can be found in many text books. Instead

we will focus in describing the details of the implementa-
tion of the FEM equations into an object-oriented environ-
ment with the aim of solving problems of multidisciplinary
nature, where the differential operators A and B are defined
over adjacent or overlapping domain, therefore leading to
a coupled solution strategy. Typical examples of these situa-
tions are thermal-mechanical problems, fluid-structure inter-
action problems, electro-magnetic problems, aeroacoustic,
etc.

3.2 Solution of FEM Equations

3.2.1 Calculating Components

This step consist of calculating the elemental integrals usu-
ally using the Gaussian Quadrature method. The integrand
function contains the shape functions and their derivatives,
which should be computed for each element. A common
technique is to calculate these functions in local coordinates
of the element and transform the result to global coordinates.

3.2.2 Creating the Global System

Once the elemental matrices and vectors Ke and f e have
been computed, they are assembled in the global system of
equations. This requires finding the position of each elemen-
tal component in the global equations system and adding its
value to its position.

This procedure first assigns a sequential numbering to all
dofs. Sometimes is useful to separate the prescribed dofs,
those with Dirichlet conditions, from the others. This can be
done easily at the time of assigning indices to dofs. After
that, the procedure goes element by element and adds their
local matrices and vectors to the global equations system
using the assembly operator

⊔

, i.e.:

Kij

⊔

Ie

Ke
ij = KIei Iej

+ Ke
ij (8)

fi
⊔

Ie

f e
i = fIei

+ f e
i (9)

where Ie is the vector containing the global position, which
is the index of the corresponding dof, of each row or col-
umn.

Another task to be done when building the global sys-
tem of equations is the application of essential boundary
conditions by eliminating prescribed dofs or using a penalty

method [74].
The global system matrix obtained in the FEM typically

has many zeros in it. So it is convenient to use structures
which hold a useful portion of the matrix to be solved like
compressed sparse row (CSR) [80]. Another common struc-
ture is the symmetric matrix structure that uses the symme-
try property of the matrix to hold approximately half of the
elements.

An Object-oriented Environment for Developing Finite Element Codes for Multi-disciplinary Applications 259

3.2.3 Solving the Global System

There are two categories of solvers: direct solvers and itera-

tive solvers.
Direct solvers solve the equation system by transform-

ing the coefficient matrix in an upper triangular form, lower
triangular, a diagonal form. Solvers like Gaussian elimina-

tion [70], frontal solution [16], LU decomposition [70] are
examples of this category.

Iterative solvers start with some initial values for the un-
known and find the correct solution by calculating the resid-
ual and minimize it over a number of iterations. Conjugate

gradient (CG) [80], Biconjugate gradient (BCG) [80], Gen-

eralized minimal residual method (GMRES) [80] are exam-
ples of this category of solvers.

It is common to use a reordering procedure for reduc-
ing the bandwidth of the system matrix or make it more
cache efficient. In practice these algorithms can be applied
to renumber the dofs in an optimum way once they are cre-
ated and then solve the system as usual. The Cuthill McKee

[80] algorithm is a classical example of this type of algo-
rithms.

Sometimes it is recommended to transform the system of
equations to and equivalent but better conditioned one for
using iterative solvers. This procedure is called precondi-

tioning. Diagonal and Incomplete LU preconditioners [80]
are examples of preconditioners. Unfortunately, finding the
best combination of solver and preconditioner for a certain
problem is a matter of experience and there is not a single
best combination for all problems.

3.2.4 Calculating Additional Results

This step consist of calculating some additional results from
the primary ones obtained by solving the global system. For
example, calculating the stresses from the displacements in
a structural problem.

These additional results can be discontinuous over the
domain. This means that, for example, the stresses at a node
are different for each of the element corrected to it. Differ-
ent averaging methods are typically implemented to smooth
the discontinuous results. An alternative is to use recovery
methods which try to reproduce continuous gradient results
with a better approximation [89].

3.2.5 Iterating

Several algorithms in FEM contain iterations in different
ways. Some examples are Newton method, Modified Newton

method, Line search [89], etc. for solving nonlinear prob-
lems.

4 Multi-disciplinary Problems

In this work a multi-disciplinary problem, also called cou-

pled problem, is defined as solving a model which consists

of components with different formulations and algorithms

interacting together. It is important to mention that this dif-
ference may come not only from the different physical na-
ture of the problems, but also from their different type of
mathematical modeling or discretization.

A field is a subsystem of a multi-disciplinary model rep-
resenting a certain mathematical model. Typical examples
are a fluid field and a structure field in a fluid-structure inter-
action problem. In a coupled system a domain is the part of a
modeled space governed by a field equation, i.e. a structure
domain and a fluid domain.

4.1 Categories

One may classify multi-disciplinary problems by the type
of coupling between the different subsystems. Consider a
problem with two interacting subsystem as shown in Fig. 1.

The problem is calculating the solutions u1 and u2 of sub-
systems S1 and S2 under applied forces F(t). There are two
types of dependency between the subsystems:

Weak Coupling Also called one-way coupling where one
subsystem depends on the other but this can be solved in-
dependently. Figure 2 shows this type of coupling.

Strong Coupling Also referred as two-way coupling when
each system depends on the other and hence none of them
can be solved separately. Figure 3 shows this type of cou-
pling.

Fig. 1 A general multi-disciplinary problem with two subsystems

Fig. 2 A weak coupled system where subsystem S2 depends on the
solution of subsystem S1

260 P. Dadvand et al.

Fig. 3 A strong coupled system where not only subsystem S2 depends
on the solution of subsystem S1 but also subsystem S1 depends on S2

Another classification can be done by looking not on how
the subsystem interact but where they interact with each
other. There are two categories of multi-disciplinary prob-
lems within this criteria [89]:

Class I In this category the interaction occurs at the bound-
ary of the domains.

Class II This category include problems where domains
can overlap totally or partially.

4.2 Solution Methods

The solution of one-way coupled problems is straightfor-
ward. Considering the problem of Fig. 2 with two subsys-
tems S1 and S2, where S2 depends on u1 (the solution of S1).
This problem can be solved by solving S1 first and using its
solution u1 for solving S2.

Monolithic and staggered methods can be used for solv-
ing two-way coupled problems. The monolithic approach
consists of modeling the interacting fields together in one
global system of equations and solve them together. Con-
sider the problem with strong coupling in Fig. 3 where not
only S2 depends on S1, but also S1 depends on S2. Using
the monolithic approach results in the following system of
equations:

[

K1 H1

H2 K2

][

u1

u2

]

=

[

f1(t)

f2(t)

]

(10)

where K1 and K2 are the field system matrices correspond-
ing to the field variables and H1 and H2 are the field sys-
tem matrices corresponding to the interaction variables. The
monolithic approach is robust and stable but introduces a
difficulty of the formulation, larger size matrices and an in-
crease in the bandwidth of the global system.

Staggered approach aim to solving each field separately
and deal with the interaction by applying different tech-
niques for transferring variables from one field to another.
Some common techniques used for staggered methods are
described below:

Prediction Predicting the value of the dependent variables
in the next step.

Advancing Calculating the next time step of a subsystem
using the calculated or predicted solution of the other sub-
system.

Substitution Using the calculated value of one field in an-
other field for solving it separately.

Correction Substituting the obtained result in place of the
predicted value and solve it again for obtaining a better
result. This procedure can be repeated several times.

More information about staggered methods and their
techniques can be found in [30, 31]. Staggered approaches
often use less resources than the monolithic approaches be-
cause in each step solve only one part of problem. Another
advantage is the possibility of reusing existing single field
codes for solving multi-disciplinary problems using mas-
ter and slave technique. This approach also enables the use
of different discretizations for each field. Beside all these
advantages this approach requires a careful formulation to
avoid instability and obtain an accurate solution. In general,
staggered methods are less robust than monolithic one and
need more attention and time for modeling and solving.

5 Programming Concepts

This section describes different software engineering solu-
tions and programming techniques useful for designing a fi-
nite element program.

There are several classical problems that appear during
the design and can be solved easily by applying existing De-

sign Patterns [34]. Several patterns are used in this work
in order to increase the quality of the design. Examples are
Strategy Pattern, Bridge pattern, Composite Pattern, Tem-

plate Method Pattern, Prototype Pattern, Interpreter Pat-

tern, Visitor Pattern and Curiously Recursive Template Pat-

tern. Description of other patterns and also more detailed
explanation of the patterns mentioned above can be found
in [34].

Performance and memory efficiency are two crucial re-
quirement for finite element programs. It has been shown
that an optimized implementation of numerical methods in
C++ can provide the same performance as Fortran imple-
mentations [86] and that usually the inefficiency of C++

codes comes from the developer’s misunderstanding of the
language [43]. For this reason we briefly review some tech-
niques used for implementing high performance and effi-
cient numerical algorithms in C++. These techniques are
used extensively in the Kratos to improve its efficiency while
providing a clear and easy-to-use interface.

Expression Templates is a technique used to transfer ex-
pressions to a function argument in a very efficient way [84].
For example passing a function to an integration module
for its integration. The idea is to create a template object
for each operator and constructing the whole expression by

An Object-oriented Environment for Developing Finite Element Codes for Multi-disciplinary Applications 261

combining these templates and their relative variables. This
technique is also used in high performance linear algebra
libraries to evaluate vectorial expressions [85]. In this way
expressions consisting of operations over matrices and vec-
tors can be evaluated without creating any temporary object
and in a single loop.

Templates were added to C++ for a better alternative to
existing macros in old C. Eventually they did not eliminate
the use of macros but performed much better than anyone
could expect. An example is template meta programming.
Everything began when Erwin Unruh tricked the compiler
to print a list of prime numbers at compile time. This ex-
tends the algorithm writing from standard form in C++ to a
new form which makes the compiler run the algorithm and
results in a new specific implementation to run.

The Template Metaprogramming technique can be used
to create an specialized algorithm at the time of compil-
ing. This technique makes the compiler interpret a subset
of the C++ code in order to generate this specialized algo-
rithm. Different methods are used to simulate different pro-
gramming statements, like loops or conditional statements,
at compiling time. These statements are used to tell the com-
piler how to generate the code for an specific case.

This technique uses recursive templates to encourage the
compiler into making a loop. When a template calls itself
recursively, the compiler has to make a loop for instantiat-
ing templates until a specialized version used as stop rule is
reached.

Template specialization can also be used to make com-
piler simulate conditional statements or switch and cases.
These statements can be used to generate different codes ac-
cording to some conditions. For example an assignment op-
erator for matrices may change its algorithm depending on
the row or column majority of a given matrix.

6 General Structure of Kratos

Kratos is designed as a framework for building multi-
disciplinary finite element programs [21]. Generality in de-
sign and implementation is the first requirement. Flexibility
and extensibility are other key points in this design, enabling
developers to implement very different formulations and
algorithms involving in the solution of multi-disciplinary
problems.

Kratos as a library must provide a good level of reusabil-
ity in its provided tools. The key point here is to help users
develop easier and faster their own finite element code us-
ing generic components provided by Kratos, or even other
applications.

Another important requirements are good performance
and memory efficiency. This features are necessary for en-
abling applications implemented using Kratos, to deal with
industrial multi-disciplinary problems.

Finally it has to provide different levels for developers
to contribute to the Kratos system, and match their require-
ments and difficulties in the way they extend it. Developers
may not want to make a plug-in extension, create an appli-
cation over it, or using IO scripts to make Kratos perform a
certain algorithm. Some potential profiles for Kratos users
are:

Finite Element Developers These developers are consid-
ered to be more experts in FEM, from the physical and
mathematical points of view, than C++ programmers.
For them, Kratos has to provide solution to their require-
ments without involving them in advanced programming
concepts.

Application Developers These users are less interested in fi-
nite element programming and their programming knowl-
edge may vary from very expert to higher than basic. They
may use not only Kratos itself but also any other appli-
cations provided by finite element developers, or other
application developers. Developers of optimization pro-
grams or design tools are typical users of this kind.

Package Users Engineers and designers are other users of
Kratos. They use the complete Kratos package and its ap-
plications to model and solve their problem without get-
ting involved in internal programming of this package. For
these users, Kratos has to provide a flexible external inter-
face to enable them use different features of Kratos with-
out changing its implementation.

Kratos has to provide a framework such that a team of
developers with completely different fields of expertise as
mentioned before, can work on it in order to create multi-
disciplinary finite element applications.

6.1 Object Oriented Design

History of object-oriented design for finite element pro-
grams turns back to early 90’s, and even more. Before that,
time many large finite element programs were developed in
modular ways. Industry demands for solving more complex
problems from one side, and the problem of maintaining
and extending the previous programs from the other side,
has lead developers to target their design strategy towards
an object-oriented one [32, 33, 53, 69, 71].

The main goal of an object-oriented structure is to split
the whole problem into several objects and to define their
interfaces. There are many possible ways to do this for each
kind of problem we want to program and the functional-
ity of the resultant structure depends largely on it. In the
case of finite element problems there are also many ap-
proaches such as constructing objects based on partial dif-
ferential equations solvers methods [15] or in the FEM itself
[24, 25, 33, 90].

In Kratos we have chosen the second approach and have
constructed our objects based on a finite element general

262 P. Dadvand et al.

Fig. 4 Main classes defined in
Kratos. The basic components
in the rightmost column. FEM
related objects in the second

column from the right. The FEM
modeling objects in the third

column. The algorithms in
fourth column below and library
interface objects are above them

methodology. This approach was selected because our goal
was to create a finite element environment for multidiscipli-
nary problems. Also our colleagues were, in general, more
familiar with this methodology. In addition, this approach
has given us the necessary generality in the objectives of
Kratos mentioned above. Within this scope main objects are
taken from various parts of the FEM structure. Then, some
abstract objects are defined for implementation purposes. Fi-
nally their relations are defined and their responsibilities are
balanced. Figure 4 shows the main classes in Kratos.
Vector, Matrix, and Quadrature are designed by

basic numerical concepts. Node, Element, Condition,
and Dof are defined directly from finite element con-
cepts. Model, Mesh, and Properties are coming from
practical methodology used in finite element modeling.
These classes are completed by ModelPart, and
SpatialContainer, for organizing better all data nec-
essary for analysis. IO, LinearSolver, Process, and
Strategy are representing the different steps of finite el-
ement program flow. Finally, Kernel and Application
are defined for library management and defining its inter-
face.

These main objects are described below:

Vector represents the algebraic vector and defines usual
operators over vectors.

Matrix encapsulate matrix and its operators. Different
matrix classes are necessary. The most typical ones are
dense matrix and compressed row matrix.

Quadrature implements the quadrature methods used in
finite element method. For example the Gaussian integra-
tion with different number of integration points.

Geometry defines a geometry over a list of points or
Nodes and provides basic parameters, like area or center
point, to shape functions and coordinate transformation
routines.

Node It is a point with additional facilities. Stores the nodal
data, historical nodal data, and list of degrees of freedom.
It provides also an interface to access all its data.

Element encapsulates the elemental formulation in one
object and provides an interface for calculating the local
matrices and vectors necessary for assembling the global
system of equations. It holds its geometry that meanwhile
is its array of Nodes. Also stores the elemental data and
the interface to access it.

Condition encapsulates data and operations necessary
for calculating the local contributions of Condition to
the global system of equations. Neumann conditions are
example of Conditions which can be encapsulated by
derivatives of this class.

Dof represents a degree of freedom (dof). It is a lightweight
object which holds its variable, like TEMPERATURE, its
state of freedom, and a reference to its value in the data
structure. This class enables the system to work with dif-
ferent set of dofs and also represents the Dirichlet condi-
tion assigned to each dof.

Properties encapsulates data shared by different
Elements or Conditions. It can store any type of data
and provides a variable base access to them.

Model stores the whole model to be analyzed. All Nodes,
Properties, Elements, Conditions and solution
data. It also provides an access interface to these data.

ModelPart holds all data related to an arbitrary part of
model. It stores all existing components and data like
Nodes, Properties, Elements, Conditions and
solution data related to a part of model and provides inter-
face to access them in different ways.

Mesh, Node, Properties, Elements, Conditions
and represents a part of model but without additional so-
lution parameters. It provides access interface to its data.

SpatialContainer includes associated with spacial
search algorithms. This algorithms are useful for finding
the nearest Node or Element to some point or other spa-
cial searches. Quadtree and Octree are example of these
containers.

An Object-oriented Environment for Developing Finite Element Codes for Multi-disciplinary Applications 263

IO provides different implementation of input output pro-
cedures which can be used to read and write with different
formats and characteristics.

LinearSolver encapsulates the algorithms used for
solving a linear system of equations. Different direct
solvers and iterative solvers can be implemented in Kratos
as a derivatives of this class.

Strategy encapsulates the solving algorithm and general
flow of a solving process. Strategy manages the building
of equation system and then solve it using a linear solver
and finally is in charge of updating the results in the data
structure.

Process is the place for adding new algorithms to Kratos.
Mapping algorithms, Optimization procedures and many
other type of algorithms can be implemented as a new
process in Kratos.

Kernel manages the whole Kratos by initializing different
parts of it and provides the necessary interface to commu-
nicate with applications.

Application provides all the information necessary for
adding an application to Kratos. A derived class from it
is necessary to give a kernel its required information, like
new Variables, Elements, Conditions, etc.

The main intention here was to hide all difficult but com-
mon finite element implementations, like data structure and
IO programming, from developers.

6.2 Multi-layers Design

Kratos uses a multi-layer approach in its design. In this ap-
proach each object only interfaces with other objects in its
layer or in layers below its layer. There are some other lay-
ering approaches that limit the interface between objects of
two layers but in Kratos this limitation is not applied.

Layering reduces the dependency inside the program. It
helps in the maintenance of the code and also helps devel-
opers in understanding the code and clarifies their tasks.

In designing the layers of the structure different users
mentioned before are considered. The layering is done in
a way that each user has to work in the less number of lay-
ers as possible. In this way the amount of the code to be
known by each user is minimized and the chance of conflict
between users in different categories is reduced. This layer-
ing also lets Kratos to tune the implementation difficulties
needed for each layer to the knowledge of users working
in it. For example, the finite element layer uses only basic
to average features of C++ programming, but the main de-
veloper layer uses advanced language features in order to
provide the desirable performance.

Following the design mentioned before, Kratos is orga-
nized in the following layers:

Basic Tools Layer Holds all basic tools used in Kratos. In
this layer the use of advanced C++ techniques is essen-
tial in order to maximize the performance of these tools.
This layer is designed to be implemented by an expert
programmer and with less knowledge of FEM. This layer
may also provide interfaces with other libraries to benefit
from existing work in the field.

Base Finite Element Layer This layer holds the objects that
are necessary to implement a finite element formulation.
It also defines the structure to be extended for new formu-
lations. This layer hides the difficult implementations of
nodal and data structure and other common features from
the finite element developers.

Finite Element Layer The extension layer for finite element
developers. The finite element layer is restricted to use the
basic and average features of language and uses the com-
ponent base finite element layer and basic tools to opti-
mize the performance without entering into optimization
details.

Data Structure Layer contains all objects organizing the
data structure. This layer has no restriction in implemen-
tation. Advanced language features are used to maximize
the flexibility of the data structure.

Base Algorithms Layer provides the components building
the extendible structure for algorithms. Generic algo-
rithms can also be implemented to help developer in their
implementation by reusing them.

User’s Algorithms Layer This is another layer to be used
by finite element programmers but at a higher level. This
layer contains all classes implementing the different al-
gorithms in Kratos. Implementation in this layer requires
medium level of programming experience but a higher
knowledge of the program structure than the finite ele-
ment layer.

Applications’ Interface Layer This layer holds all objects
that manage Kratos and its relation with other applica-
tions. Components in this layer are implemented using
high level programming techniques in order to provide the
required flexibility.

Applications Layer A simple layer which contains the inter-
face of certain applications with Kratos.

Scripts Layer holds a set of IO scripts which can be used
to implement different algorithms from outside Kratos.
Package users can use modules in this layer or create
their own extension without having knowledge of C++

programming or the internal structure of Kratos. Via this
layer they can activate and deactivate certain functionali-
ties or implement a new global algorithm without entering
into Kratos implementation details.

Figure 5 shows the multi-layer nature of Kratos.

264 P. Dadvand et al.

Fig. 5 Dividing the Kratos
structure into layers reduces the
dependency

6.3 Kernel and Applications

In the first implementation of Kratos all applications were
implemented in Kratos and also were compiled together.
This approach at that time produced several conflicts be-
tween applications and was requiring many unnecessary re-
compiling of the code for changes in other applications. All
these problems lead to a change in the strategy and to sepa-
rating each application, not only from others, but also from
Kratos itself.

In the current structure of Kratos each application is cre-
ated and compiled separately and just uses a standard inter-
face to communicate with the kernel of Kratos. In this way
the conflicts are reduced and the compilation time is also

minimized. The Application class provides the inter-
face for introducing an application to the kernel of Kratos.
Kernel uses the information given by Application

through this interface to mange its components, configure
different part of Kratos, and synchronize the application
with other ones. The Application class is very sim-
ple and consists of registering the new components like:
Variables, Elements, Conditions, etc. defined in
Application. The following code shows a typical
Application class definition:

// Variables definition

KRATOS_DEFINE_VARIABLE(Matrix, MY_NEW_VARIABLE)

class KratosNewApplication

An Object-oriented Environment for Developing Finite Element Codes for Multi-disciplinary Applications 265

: public KratosApplication

{

public:

virtual void Register();

private:

const NewElementType mMyElement;

};

Here Application defines its new components and
now its time to implement the Register method:

// Creating variables

KRATOS_CREATE_VARIABLE(MY_NEW_VARIABLE)

void KratosR1StructuralApplication::Register()

{

// calling base class register

// to register Kratos components

KratosApplication::Register();

// registering variables in Kratos.

KRATOS_REGISTER_VARIABLE(MY_NEW_VARIABLE)

KRATOS_REGISTER_ELEMENT("MyElement",mMyElement);

}

This interface enables Kratos to add all these
Variables, Elements and Conditions in the list of
components. Kratos also synchronizes the variables num-
bering between different applications. Adding new compo-
nents to Kratos, enables IO to read and write them and also
configures the data structure to hold these new variables.

7 Variable Base Interface

Connecting different modules and solvers in different fields
of FE analysis has been always a challenge for program-
mers in the multi-disciplinary problem field.There are many
successful examples using file interface or libraries like
CORBA [87] or omniORB, though using them can cause
big overheads in the code performance [47]. Also in this ap-
proach the level of reusability is respectively low. The rea-
son is that in this manner we can reuse the whole module but
not a part of it. This is the motivation to establish a variable
base interface (see Fig. 6) which can be used at high and low
levels in the same manner.

7.1 The Variable Base Interface Definition

In many connecting points between different parts of a fi-
nite element program we are asking for the value of some
variable or the mapping of some variables and so on. The
methodology to design this interface is sending each request
with the variable or variables it involves.

In this variable base interface (VBI):

Fig. 6 Structure of the variable classes

• A variable encapsulate all information needed by differ-
ent objects to work in a generic way over different vari-
ables. Doing this helps to simplifying the module inter-
faces. Consider, for instance, a PrintNodalResult

module which normally needs a result name, an index to
retrieve nodal results and a zero value if some Nodes do
not have results. All this information can be passed by one
variable in this design.

• Each module must configure itself in terms of variable or
variables passed to it.

• Type-safety is reached by statically typing variables.
• Each of variable class has the same name as its repre-

sented variable name. This is a great added value to code
readability.

This interface can be used in different situations. Pass-
ing data from one domain to other or reusing modules in
a multi-disciplinary applications always requires a generic
and extensible interface. This can be achieved by defining
generic interfaces for modules like data structures, input-
output, mapping and interpolating algorithms, etc. using the
VBI.

7.2 Kratos Variable Base Interface Implementation

In Kratos VariableData and its derivatives Variable
and VariableComponent represent interface informa-
tion.

7.2.1 VariableData

VariableData is the base class which contains two ba-
sic informations about the variable it represents; Its name
mName, and its key number mKey. VariableData has
trivial access methods for these two attributes while also
has virtual and empty methods for raw pointer manipula-
tion. The reason of not implementing these methods here

266 P. Dadvand et al.

is the fact that VariableData has not any information
about the variable type it represents. Lack of type informa-
tion in VariableData makes it unsuitable and less us-
able to pass it in many parts of the interface. The idea of
this class, however, is to provide a lower level of informa-
tion which is common to all types of variables and their
components, and use it as a place holder when there is no
distinction between variables and their components. Also in
this implementation we use a virtual method base to dis-
patch various operations on raw pointers. This may result
in a poor performance for some cases as the function call
overhead may be considerable.

7.2.2 Variable

Variable is the most important class in this structure. It
has information represented by VariableData which is
derived from it plus the type of the variable it represents.
Variable has its data type as a template parameter. In this
manner, the interface can be specialized for each type of data
and also type-safety can be achieved. Another important ad-
vantage of having variable in template form with its data
type as template parameter is to have a restriction form in the
interface. If we want to restrict a method to accept just matri-
ces for instance, then by passing a variable<Matrix>
as its argument we can prevent users from passing another
type by mistake. This feature is particularly important for
cases when there are different types representing the same
variable. The constitutive matrix and its corresponding vec-
tor is a good example of this situation.

In Variable by knowing the data type raw pointer ma-
nipulating methods are implemented. These methods use
raw pointers to perform basic operations over its type:

• Clone creates a copy of the object using a copy con-
structor of the class. It is useful to avoid shallow copying
of complex objects and also without actually having in-
formation about the variable type.

• Copy is very similar to Clone except that it also the des-
tination pointer also passed to it. It is a helpful method
specially to create a copy of heterogeneous data arrays .

• Assign is very similar to Copy. It just differs in using an
assignment operator besides the copy constructor. Copy
creates a new object while Assign does the assignment
for two existing objects.

• AssignZero is a special case of Assign for which
variable zero value used as source. This method is use-
ful for initializing arrays or resetting values in memory.

• Delete removes an object of variable type from mem-
ory. It calls a destructor of objects to prevent memory leak
and frees the memory allocated for this object assuming
that the object is allocated in heap.

• Destruct eliminates an object maintaining the memory
it is using. However, the unlike Delete it does nothing

with the memory allocated to it. So it is very useful in
case of reallocating a part of the memory.

• Print is an auxiliary method to produce output of given
variable knowing its address. For example writing an het-
erogenous container in an output stream can be done us-
ing this method. Point assumes that the streaming opera-
tor is defined for the variable type.

All these methods are available for low level use. They
are useful because they can be called by a VariableData
pointer and equally for all type of data arranged in memory.
However, maintaining typesafety using these methods is not
straightforward and needs special attention.

Zero value is another attribute of Variable, stored in
mZero. This value is important specially when a generic al-
gorithm needs to initialize a variable without losing general-
ity. For example an algorithm to calculate the norm of a vari-
able for some Elements must return a zero value if there
is no Element at all. In case of double values there is no
problem to call default constructor of variable type but ap-
plying same algorithm to vector or matrix values can cause
a problem because default constructor of this types will not
have the correct size. Returning a zero value instead of a
default constructed value keeps generality of the algorithms
even for vectors and matrices, assuming that variables are
defined properly.

A method is StaticObject. This method just returns
None which is an static variable that can be used in case of
undefined variable (like null for pointers). It is just an auxil-
iary variable to help managing undefined, no initialized, or
exceptional cases.

7.2.3 VariableComponent

As mentioned before, there are situations that we want to
deal with just component of a variable but not all of them.
VariableComponent is implemented to help in these
situations.
VariableComponent is a template taking an adaptor

as its argument. An adaptor is the extending point of a com-
ponent mechanism. For any new component a new adaptor
(see Fig. 7) needs to be implemented. The adaptor type re-
quirements are:

• GetSourceVariable method to retrieve parent vari-
able.

• GetValue method to convert extract a component value
from a source variable value.

• StaticObject is used to create none component.

Unlike Variable, VariableComponent has not
been implemented to have zero value or raw pointer ma-
nipulators. A zero value can be extracted from the source
value so there is no need implement it. Operations over raw
pointers are not allowed on purpose. This interface manages

An Object-oriented Environment for Developing Finite Element Codes for Multi-disciplinary Applications 267

Fig. 7 Adaptor class

variables entirely and not just some part of them. In fact a
part of an object cannot be copied, cloned, deleted or de-
stroyed. So these methods are not implemented to protect
objects from unsafe memory operations.

Having adaptor as template parameter helps the com-
piler to optimize the code and eliminating overheads. In
this manner adaptor’s GetValue method will be inlined in
VariableComponent’s one so there won’t be any over-
head due to decomposition while extensibility reached.

7.3 Examples

A very first example is to access nodal values in a finite ele-
ment program:

// Getting a reference

template<class TVariableType>

typename TVariableType::Type&

Node::GetValue(TVariableType const&) {

// Accessing to database and

// returning value ...

}

Overwriting the [] operators makes the syntax easier to
use:

template<class TVariableType>

typename TVariableType::Type&

Node::operator[](const TVariableType&) {

return GetValue(rThisVariable);

}

Now it is easy to use Node in the code and access any
variable through the interface:

// Getting pressure of the center node

double pressure = center_node[PRESSURE];

// Setting velocity of node 1

Nodes[1][VELOCITY] = calculated_velocity;

// Printing temperature of the nodes

for(IteratorType i_node = mNodes.begin() ;

i_node != mNodes.end() ; i_node++)

std::cout << "Temperature of node #"

<< i_node->Id() << " = "

<< i_node->GetValue(TEMPERATURE)

<< std::endl;

The next example shows the use of the VBI for pass-
ing additional parameters needed for calculating local con-
tributions for each Element. Here a helper class named
ProcessInfo is used to pass parameters like time step,
current time, delta time and so on:

virtual void SomeElement::CalculateLocalSystem(

MatrixType& rLeftHandSideMatrix,

VectorType& rRightHandSideVector,

ProcessInfo& rCurrentProcessInfo)

{

// Getting process information

double time = rCurrentProcessInfo[TIME];

// Calculating local matrix and

// vector ...

}

Writing output files can be generalized using the VBI.
In this way any new extension to the library can write its
results using existing output procedures. Here is an example
of using the VBI to write a generic output procedure for GiD
[72, 73]:

void GidIO::WriteNodalResults(

Variable<double> const& rVariable,

NodesContainerType& rNodes,

double SolutionTag,

std::size_t SolutionStepNumber)

{

// Beginning results using variable’s name

GiD_BeginResult((rVariable.Name().c_str()),

"Kratos", SolutionTag, GiD_Scalar,

GiD_OnNodes, NULL, NULL, 0, NULL);

// Writing procedure ...

GiD_EndResult();

}

void GidIO::WriteNodalResults(

Variable<Vector> const& rVariable,

NodesContainerType& rNodes,

double SolutionTag,

std::size_t SolutionStepNumber)

{

// Writing procedure for vectors ...

}

In above examples the GiD interface has different rules
for scalar and vectorial variables. Knowing the type of vari-
able helps to implement customized versions of Write-
NodalResults for each type of variable. This is an im-
portant feature of this interface which can handle excep-
tional cases for certain types with a uniform syntax for users:

// Writing temperature of all the nodes

gid_io.WriteNodalResults(TEMPERATURE,

mesh.Nodes(), time, 0);

// Writing velocity of all the nodes

gid_io.WriteNodalResults(VELOCITY,

mesh.Nodes(), time, 0);

Finally, writing an error estimator is another example of
making a generic and reusable code using the VBI. Here is
an example of a simple recovery error estimator [89] imple-
mented in a generic way:

void

EstimateError(const VariableType& ThisVariable,

ModelPart& rModelPart)

{

// initializing ...

268 P. Dadvand et al.

for(i_element = rModelPart.ElementsBegin();

i_element != rModelPart.ElementsEnd();

++i_element)

i_element->GetValue(ERROR) =

CalculateError(ThisVariable,*i_element);

}

double

CalculateError(const VariableType& ThisVariable,

Element& rElement)

{

typedef typename VariableType::type data_type;

// initializing ...

for(i_node = element_nodes.begin() ;

i_node != element_nodes.end() ; ++i_node)

{

error = i_node->GetValue(ThisVariable) -

rElement.Calculate(ThisVariable, *i_node);

result += sqrt(error * error);

}

return result * area / element_nodes.size();

}

In this manner the error estimator is not depending on the
domain and can work in the same way for a thermal flow or
a pressure gradient.

8 Data Structure

The data structure is one of the main parts of a finite el-
ement program. Many restrictions in functionality of finite
element codes comes from their data structure design. Usu-
ally several classical containers like static and dynamic ar-
rays, link lists and trees are used to construct a data structure
[7, 35, 44]. In Kratos beside these containers some new
containers suitable for multi-disciplinary finite element pro-
gramming are designed and implemented. The organization
of the data is also prepared for storing multi-disciplinary
data.

8.1 Designing New Containers

Standard C++ containers are homogeneous due to the sta-
tic typing of C++ language. In this section some hetero-
geneous containers capable to store different types of data
are introduced. Also the VBI is used to make their interface
more generic, more clear and easier to use.

8.1.1 Combining Containers

Finite element developers usually work with integers and
real numbers, vectors, matrices and sometimes complex
numbers as their data. So making a new container capable to
hold just these data types can cover a large part of finite ele-
ment programming needs. A very fast an easy way to imple-
ment a quasi heterogeneous containers holding above data

Fig. 8 Combining containers
for holding doubles, vectors,
matrices and complex numbers

types is to take different containers and put them together
as a new container. Figure 8 shows an example of this con-
tainer.

Advantages for Combining Containers

• Fast and easy implementation. Standard containers can be
reused.

• Very rigid and errorless structure. Everything relies on
C++ static type checking without dangerous type cast-
ing and raw pointer manipulation.

• Keeping separated different types of data allows more
specialization for each case. For example in time of copy-
ing the containers for built in types.

• Less searching time as the number of data in each con-
tainer is less than the total number of data in container.

Disadvantages of Combining Containers

• Extra memory overhead is needed for supporting any new
type. Supporting any new data type still increases more
this overhead.

• Adding new types needs modifying the container. A good
implementation can minimize this modification.

Implementation There are different ways to implement
this type of container. One way is implementing the contain-
ers with sub-containers as its attributes. A better approach
is to use multiple hierarchy to group different containers in
a combined one. In this way supporting any new variables
only needs another parent class to be added and modification
in some other methods like copy constructor to incorporate
the new base class. Figure 9 shows this approach. Finally,
the VBI provides a uniform template model for accessing
an element by variable.

8.1.2 Data Value Container

A data value container is a heterogeneous container with a
variable base interface designed to hold the value for any
type of variable.

Usually a container needs to do some basic operations
over its data like: creating, copying, deleting, etc. which
may vary from one type to other. A heterogenous container
therefore needs a mechanism to handle each different type
with its corresponding process. A common way to deal with
this problem is to encapsulate all necessary operations into
a handler object and associate it to its corresponding data. In

An Object-oriented Environment for Developing Finite Element Codes for Multi-disciplinary Applications 269

Fig. 9 Combining different
containers using multiple
hierarchy

Fig. 10 Data value container
uses the Variable class to
process its data

our approach the variables are used as the handlers to help
the container in its data operations. The data value container
uses the Variable class not only to understand the type of
data but also to operate over it via its raw pointer methods.
Figure 10 shows the relationship between a container and
the Variable class.

Data Value Container Advantages

• Extendibility to store any type of data without any imple-
mentation cost. One can store virtually any type of data,
from simple data like an integer to a complex one like a
dynamic array of pointers to neighbor elements.

• Usually extensive use of void pointers and down casting
make heterogeneous container open to type crashing. Us-
ing the VBI protects users from unwanted type conversion
and guarantees the type-safety of this container.

Data Value Container Disadvantages

• Heterogeneous containers are typically slower than ho-
mogeneous ones, at least in some of their operations.

Implementation The first step to implement a data value
container is designing the structure of data in memory. One
approach is to group each data with a reference to its variable
and put them in a dynamic array as shown in Fig. 11.

Having a pointer to each variable and not copying it is
necessary for eliminating the unnecessary overhead of du-
plicated variables.

Another approach is to allocate each data separately and
keep the pointer to its location in the container. Figure 12
shows a container with this structure in memory.

The first approach is typically more efficient in use of
cache but adding new data to it may invalidate all the ref-
erences to its elements. The second approach lets user to
get a reference of its data once and use it several times
without worrying about its validness. In this work the sec-
ond approach is used because of its advantage in reducing
the repeated accesses to the container which can increase
significantly its overall performance in practice. Finally, a
brute-force search over unsorted containers has been used
for searching the keys as this has given the best performance
in practice (Fig. 13).

270 P. Dadvand et al.

Fig. 11 A data value container
with continuous memory

Fig. 12 A data value container with discontinuous memory

Now a VBI completes our design. Access methods use
Variable or VariableComponent as data informa-
tion as described for the VBI. Each access consist of a find
process for given variable key and then convert the data to
the given variable type. It is important to mention here that
using the VBI not only increases the readability of the code
but also protects users from unwanted type crashing.

8.1.3 Variables List Container

In finite element programs it is common to store the same
set of data for all Nodes of a domain. For example in a
fluid domain each Node has to store velocity and pressure.
The previous heterogeneous container can be used to store
these data but the searching procedure in order to access data
makes it inefficient. So another container is designed which
stores only a specific set of data but with an efficient access
mechanism.

The main idea is to use an indirection mechanism to ac-
cess the elements of the container. A shared variable list
gives the position of each variable in the containers sharing
it. The mechanism is very simple. There is an array which
stores the local offset for each variable in the container and
assigns the value −1 for the rest of the variables. Offsets
are stored in the position of variables key using a zero base
indexing. In other words, if the key of a variable is k, then
its offset is stored as the k + 1’th element of this array. This
offset can be used to access the data in memory by offsetting
the data pointer. For example to find temperature in this con-
tainer, the key of the TEMPERATURE variable in example 2
indicates that the third element of the offset array contains
the offset for temperature which is 1. Then this offset is used
to get the value of temperature in the data array. Figure 14
shows this procedure.

Variables List Container Advantages

• The accessing and finding processes are very efficient.
• Extendibility to store any type of data without any imple-

mentation cost.
• Using the VBI protects users from unwanted type conver-

sion and guarantees the type-safety of this container.

Variables List Container Disadvantages

• Having a shared variable list imposes an extra effort to
group related containers and manage them in different
groups which makes them practically less independent.

• Erasing a variable from this container is a complex and
difficult task.

Implementation The first approach to implement this con-
tainer is to encapsulate everything in the container and tak-
ing a simple list of variables to work. This approach looks
attractive but requires recalculation of the offset for each ac-
cess which imposes an unacceptable overhead.

Another approach is to divide the mechanism in two
parts. One part for calculating the position and another for
handling the memory. In this design the VariablesList
class keeps the list of variables to be stored and also pro-
vides their local position by giving the necessary offset for
each one. The container is in charge of allocating memory,
copying itself and clearing the data in a correct way using a
variables list. Figure 15 shows this structure.

An important decision here is to let the container add new
variables to the shared list or not? When each container is
enable to add a new variable to the list of stored variables,
this list also changes for all other containers sharing it. This
change implies that for each access to a container, it must
check if the list is changed or not and, in the case of new
variables, update itself. This procedure introduces an over-
head in all accesses to the container’s elements. Also this up-
dating invalidates all references to its elements which com-
plicates more its use and increases the number of accesses
to its data.

In Kratos the inserting strategy was enabled to make this
container compatible with previous ones. In practice the
problem was not only the check and updating overhead. The
updating makes debugging a difficult task. References are
not reliable because there is no guarantee that some other
container has not changed the list. This can be even worse in
case of parallel computation because this change can happen

An Object-oriented Environment for Developing Finite Element Codes for Multi-disciplinary Applications 271

Fig. 13 Time comparison for different searching algorithms over
sorted and unsorted small containers. (a) Comparing perfor-
mance of vector<double> with brute-force, list<double>
with brute-force, set<double> binary tree search and sorted

vector<double> with binary search. (b) Comparing performance
of vector<pair<int,double> > with brute-force key finding,
list<pair<int, double> > with brute-force key finding and
map<int,double> binary tree search

Fig. 14 Accessing to a value in
the variables list container

Fig. 15 The
VariablesList class
provides the list of variables and
their local positions for the
VariablesListData-

ValueContainer

in another thread just after a reference is taken. So finally the
inserting feature was removed from this container to reduce
problems using it.

8.2 Organization of Data

In a finite element program several categories of data has to
be stored. Nodal data, elemental data with their time histo-
ries and process data are examples of these categories. Also
in a multi-disciplinary applications, Nodes and Elements

can be stored in different categories representing domains or
other model complexities. In this section the global distrib-
ution of data in Kratos will be discussed.

8.2.1 Global Organization of the Data Structure

Kratos is designed to support an element-based formulation
for multi-disciplinary finite element applications. Also han-
dling mesh adaptivity is one of its goals. So the entity based
data structure becomes the best choice. First because ele-

272 P. Dadvand et al.

Fig. 16 ModelPartholds
Mesh with some additional data
referred as ProcessInfo

mental algorithms are usually entity based and can be opti-
mized better using this type of structure. The second reason
is the good performance and flexibility this structure offers,
in order to add or remove Nodes and Elements. Beside
this entity base structure, Kratos also offers different levels
of containers to organize and group geometrical and analy-
sis data. These containers are helpful in grouping all the data
necessary to solve some problems and for simplifying the
task of applying a proper algorithm to each part of the model
in multi-disciplinary applications. Figure 16 shows the con-
tainers in the Kratos data structure.

Nodal, elemental and conditional data containers are the
basic units of this entity base structure. In Kratos each Node
and Element has its own data. In this manner an Element
can access easily the nodal information just by having
a reference to its Node and without any complications.
Properties is also a block of this structure, as a shared
data between Elements or Conditions.

Separate containers for Nodes, Properties,
Elements and Conditions are the first level of contain-
ers defined in Kratos. These containers are just for grouping
one type of entity without any additional data associated to
them. These containers can be used not only to work over
a group or entities but also to modify their data while each
entity has access to its own data. These containers are useful
when we want to select a set of entities and process them.
For example giving a set of Nodes to a nodal data initializa-
tion procedure, sending a set of Elements to assembling
functions, or getting a set of Conditions from a contact
procedure.
Mesh is the second level of abstraction in the data struc-

ture which hold Nodes, Elements and Conditions and
their Properties. In other words, Mesh is a complete
pack of all type of entities without any additional data as-
sociated with them. So a set of Elements and Condi-

tions with their Nodes and Properties can be grouped
together as a Mesh and send to procedures like mesh refine-
ment, material optimization, mesh movement or any other
procedure which works on entities without needing addi-
tional data for their processes.

The next container is ModelPart which is a complete
set of all entities and all categories of data in the data struc-
ture. It holds Mesh with some additional data referred as
ProcessInfo. Any global parameter related to this part
of the model or data related to processes like time step, iter-
ation number, current time, etc. can be stored in Process-
Info. Each ModelPart can hold more than one Mesh

which can be used to keep trace of different categories of
entities like interface, local, ghost etc. ModelPart also
manages the variables to be hold in Nodes. For example, all
the Nodes belonging to one ModelPart sharing its nodal
variables list. ModelPart is the nearest container to the
domain concept in the multi-disciplinary FEM.

Finally Model is a group of ModelPart’s and repre-
sents the finite element model to be analyzed. It can be use-
ful for some procedures that require the whole data structure
like saving and loading procedures. As processes in Kratos
use ModelPart as their work domain, this container is not
implemented yet but it is necessary to complete the data
structure of Kratos.

Spatial containers are separated so can be used just when
they are needed. This strategy also allows Kratos to use ex-
ternal libraries implementing general spatial containers like
Approximate Nearest Neighbor (ANN) library [62].

8.2.2 Nodal Data

The first implementation of Kratos had a buffer of data value
containers to hold all the nodal variables. This nodal con-
tainer was very flexible but with considerable memory over-
head for nonhistorical variables. For example for saving two
time steps in history (a buffer with size 3) there were two
redundant copies of all nonhistorical variables in memory as
shown in Fig. 17. It also had fair access performance due to
the searching process of the container. All these made us to
redesign the way data are stored in Nodes.

The new structure is divided into two different con-
tainers: nodal data and solution step nodal

data. A data value container is used for the nodal data
(no historical data) and a buffered variables list container is

An Object-oriented Environment for Developing Finite Element Codes for Multi-disciplinary Applications 273

Fig. 17 Using buffer for all
variables results in memory
overhead due to redundant
copies of no historical variables

Fig. 18 The current structure
allocates all buffer data in a
block of memory to reduce the
cache misses produced by
memory jumps and also to
provide a compatible data with
other libraries

used for the solution step nodal data (historical data). In this
way the memory overhead is eliminated because no redun-
dant copy is produced. Also accessing to historical variables
is much faster than before due to the indirecting process of
accessing the variables list container instead of the search-
ing process in the data value container. This structure of-
fers good performance and also is memory efficient, but is
slightly less robust and somehow less flexible to use.

Using the variables list container for historical variables,
requires the user to define its historical variables in order
to construct the nodal data container. For example a fluid
application must define velocity and pressure as its historical
variables at the program startup. The rest of variables can
be added any time during the program execution, as a no
historical variable, but not as a historical one.

In this implementation the buffer was introduced inside
the variables list data value container instead of using a
buffer of this containers. In this way cache misses are re-
duced and the data array can be given to other application
without any conversion. Figure 18 shows this structure.

Dividing the nodal data in two categories also changes
the access interface to data. Now the user has to know were
to put each variable, and more important, where to retrieve
them from afterwards. A sophisticate interface is needed in
order to provide a clear and complete control over these two
categories of data. In general, three type of accessing meth-
ods are necessary:

• Methods for accessing only historical data. These meth-
ods guarantee to give the value of the variable if and only
if it is defined as a historical variable and produce error if
it is not defined. These methods are very fast because they

do not need to search in the data value container and also
give error for logical errors in the code.

• Methods for accessing no historical data only. Another
set of methods are implemented to give access only to
no historical data. Due to the flexibility of the data value
container any variable can be added at any time as a nodal
variable using these methods.

• Hybrid accessing also can be done using another set of
methods. These methods try to find the variable in the so-
lution steps container and if it does not exist, then they
provide access to the nodal data container. These methods
are helpful for accessing to some input variables that may
come from input files as nodal data, or variables which are
calculated in another domain and stored as a solution step
variable. For example temperature for structural problem
can be a parameter coming from the input data or calcu-
lated by the thermal elements and stored in Node. This
method guarantees the access to the proper temperature
stored at each Node.

8.2.3 Elemental Data

Another basic unit of Kratos data structure is the elemen-
tal data. Elemental data is divided into three different cate-
gories:

properties These are all parameters that can be shared be-
tween Element. Usually material parameters are com-
mon for a set of element, so this category of data is re-
ferred as properties. But in general it can be any common
parameter for a group of Elements. Sharing these data

274 P. Dadvand et al.

Fig. 19 Different elements or
conditions use Properties as
their share data container. This
avoids redundant copies of data
in memory

as properties reduces the memory used by the application
and also helps updating them if necessary.

data includes all variables related to an Element and
without history keeping. Analysis parameters and some
inputs are elemental but there is no need to keep their his-
tory. These variables can be added any time during the
analysis.

historical data are data stored with historical information
which may be needed to be retrieved. Historical data in
integration points are fall in this category. These data must
be stored with a specific size buffer.

As mentioned above Properties are shared between
elements. For this reason Element keeps a pointer to its
Properties. This connection lets several elements to use
the same properties.

A DataValueContainer holds no historical data
in Element. Using a DataValueContainer provides
flexibility and robustness which is useful in transferring el-
emental data from one domain to another. As an example,
one may want to set a flag over elements say active or inac-
tive. The DataValueContainer can be used easily for
this purpose. On the other hand a damage function may need
history of some internal variable. This second result is best
achieved by implementing an application specific data base
inside Element.

8.2.4 Conditional Data

Conditional data is very similar to elemental data and is
also divided into three different categories: properties, data
and historical data. It is also keeps a pointer to its shared
Properties and uses a DataValueContainer to
hold all data without keeping its history. Any Condition
derived from this class can use this container to hold its data
without any additional implementation. This base class also
provides an standard interface to these data which helps for
transferring some data from one Condition to another,
for example in the interaction between two domains.

For Conditions, historical data is considered to be an
internal data as is related to its formulation and usually is
used only by formulation inside and not from outside. So
to minimize unnecessary overhead and also to increase the
performance, no general container is provided for historical
data and each Condition has to implement one for itself
if necessary.

8.2.5 Properties

As mentioned before Properties is a shared data con-
tainer between Elements or Conditions. In finite ele-
ment problems there are several parameters which are the
same for a set of elements and conditions. Thermal conduc-
tivity, elasticity of the material and viscosity of the fluid are
examples of these parameters. Properties holds these
data and is shared by elements or Conditions. This elim-
inates memory overhead due to redundant copies of these
data for each element and Condition as shown in Fig. 19.
Properties also can be used to access nodal data if

it is necessary. It is important to mention that accessing the
nodal data via Properties is not the same as accessing
it via Node. When user asks Properties for a variable
data in a Node, the process starts with finding the variable
in the Properties data container and if it does not exist
then get it from Node. This means that the priority of data
is with the one stored in Properties and then in Node.

8.2.6 Entities Containers

Let us go one level higher in the Kratos data structure. The
next level consists of four entities containers:

• Nodes Container
• Properties Container
• Elements Container
• Conditions Container

An Object-oriented Environment for Developing Finite Element Codes for Multi-disciplinary Applications 275

Fig. 20 Iterating time for 109 steps of iterations with different
containers. (a) Comparing the performance of double*, vec-

tor<double>, list<double> and set<double>. (b) Com-

paring the performance of vector<pair<int,double> >,
list<pair<int, double> > and map<int,double>

These containers are created to help users in grouping a
set of entities and work with them. For example to put all
Nodes in the boundary into a Nodes container and change
some of their data in each step. As mentioned earlier, each
entity has access to its data, so having a set of entities in a
container also gives access to their data which make these
containers more useful in practice. a suitable container for
holding entities must provide the following features:

Sharing Entities There are some situations when an entity
may belong to more than one set of entities. For exam-
ple a boundary Node belongs to the list of all Nodes
and also to the list of boundary Nodes. So the Nodes
Container has to share some its data with other Nodes
Containers. In general, sharing entities is an important
feature of these containers.

Fast Iterating Several procedures have to make a loop over
all the elements of a given container and use each element
or its data in some algorithms. So these containers must
provide a fast iterating mechanism in order to reduce the
time of element by element iteration.

Search by Index Finding an entity by an index is a usual
task in finite element programs. So entities containers
must provide an efficient searching mechanism to reduce
the time of these tasks.

Sharing entities is the first feature to be provided by
these containers. Holding pointers to entities and not entities
themselves can solve this problem. Different lists can point
to the same entity without problem. Using an smart pointer

[26] instead of a normal pointer increases the robustness of
the code. In this way entities that do not belong to any list

anymore will be deallocated from memory automatically. So
a container of smart pointers to entities is used.

Arrays are very efficient in time of iterating as shown in
Fig. 20. So using an array to hold pointers to entities can
increase the iteration speed. In contrary, trees are very slow
in time of iterating but efficient for searching by index and
using them can increase the searching performance of the
code. A good solution to this conflict can be an ordered ar-
ray. It is fast in iteration like an array and also fast in search-
ing like a tree as shown in Fig. 21. Its only draw back is that
its less robust and its construction it can take considerable
time depending on the order of input data. For example con-
structing an array of Nodes with Nodes given by inverse or-
der can take a very long time. However a buffer of unordered
data can significantly reduce the construction overhead. So
an ordered array can fit properly into our problem.
PointerVectorSet is a template implementation of

an ordered array of pointers to entities. This template is used
to create different containers to hold different type of enti-
ties.

8.2.7 Mesh

The next level in Kratos’ data structure is Mesh. It contains
all the entities containers mentioned before. This structure
makes it a good argument for procedures that work with dif-
ferent entities and their data. For example an optimizer pro-
cedure can take a Mesh as its argument and change geome-
tries, nodal data or properties. Mesh is a container of con-
tainers with a large interface that helps users to access each
container separately.

276 P. Dadvand et al.

Fig. 21 Time comparison for different searching algorithms
over sorted and unsorted containers. (a) Comparing the perfor-
mance of vector<double> with brute-force, list<double>
with brute-force, set<double> binary tree search and sorted

vector<double> with binary search. (b) Comparing the perfor-
mance of vector<pair<int,double> > with brute-force key
finding, list<pair<int, double> > with brute-force key find-
ing and map<int,double> binary tree search

Fig. 22 Different Meshes can share their entities’ containers

First of all Mesh provides a separate interface for each
type of entity it stores.
Mesh holds a pointer to its container. In this way several

Meshes can share for example a Nodes or an Elements
Container. This helps in updating Meshes of different
fields in multidisciplinary applications but over the same do-
main. Figure 22 shows this ability of sharing components
between Meshes.

8.2.8 Model Part

ModelPart is created with two different tasks in mind.
The first task is encapsulating all entities and data categories

of Kratos which makes it useful as an argument of global
procedures in Kratos. The second task is managing the vari-
ables lists of its components.
ModelPart can hold any category of data and all type

of entities in Kratos. It can hold several Meshes. Usually
just one Mesh is assigned to it and used in the computations.
However this ability can effectively used for partitioning the
model part and send it for example to a parallel process.
Beside holding different Meshes, it also stores the solution
information encapsulated in the ProcessInfo object.
ProcessInfo holds not only the current value of dif-

ferent solution parameters but also stores their history. It can
be used to keep variables like time, solution step, non lin-
ear step, or any other variable defined in Kratos. Its variable
base interface provides a clear and flexible access to these
data. ProcessInfo uses a linked list mechanism to hold
its history as shown in Fig. 23.
ModelPart uses pointers to its Meshes. In this way it

can share them with any other model parts if necessary, so
that the same node or element can be part of two different
ModelParts. A typical use of this feature is defining two
different domains over the same Meshes. Figure 24 shows
this sharing mechanism.
ModelPart manages the variables lists of its compo-

nents. In Sect. 8.1.3 the mechanism of the variables list
container was described. These we also mentioned that a
shared variables list specifies the data which can be stored
in them. ModelPart holds this variables list for all its en-
tities. In other words, all entities belonging to a model part
sharing the same list of variables. For example all Nodes in

An Object-oriented Environment for Developing Finite Element Codes for Multi-disciplinary Applications 277

Fig. 23 ProcessInfo’s
linked list mechanism for
holding the history of solution

Fig. 24 ModelPart can share
its Meshes with other model
parts

Fig. 25 ModelPart manages
the variables list for its entities

ModelPart can store the same set of variables in their so-
lution steps container. It is important to mention that this
variables list is assigned to the entities which belong to the
model part and is not changed when that model part share
them with other model parts. Figure 25 shows this scheme.

8.2.9 Model

Model is the representation of the whole physical model to
be analyzed with the FEM. The main purpose of defining
Model is to complete the levels of abstraction in the data
structure and a place to gather all data and also hold global
information. This definition makes it useful for performing
global operations like save and loading. It holds references
to model parts and provides some global information like
the total number of entities and so on.

9 Finite Element Implementation

9.1 Elements

Elements and Conditions are the main extension points
of Kratos. New formulations can be introduced into Kratos
by implementing a new Element and its corresponding
Conditions. This makes Element an special object in
our design.

In Kratos an Element is an object which holds its data
and calculates elemental matrices and vectors to be assem-
bled and also can be used to calculate local results after the
analysis. For example a thermal element calculates the lo-
cal stiffness matrix and the mass matrix (if necessary) and
give it to Kratos for assembly process. Also it can be used
to calculate a thermal flow after solving the problem. This
definition provides a good isolation for Element related to
rest of the code which is helpful for the proper encapsulation
of Element.

The strategy [34] pattern is used to design Element

structure as can be seen in Fig. 26. Using this pattern each
Element encapsulates one algorithm separately and lets
new algorithms to be added easily to Kratos without chang-
ing other parts. Also this pattern keeps them compatible with
each other in order to let users interchange them, or even mix
them together in a complex model.

In Kratos Geometry holds a set of points or Nodes and
provides a set of common operations to ease the implemen-
tation of Elements and Conditions. The bridge pattern
is used to connect Geometrywith Elements. Introducing
this pattern to our Element’s structure design results in the
structure shown in Fig. 27.

This pattern allows each Element to combine its for-
mulation with any geometry. In this way less implementa-
tion is needed. Also having a pointer to geometry allows an
Element to share its geometry with other ones. The only

278 P. Dadvand et al.

Fig. 26 Elements’ structure
using strategy pattern

Fig. 27 Element’s structure
using the bridge pattern

drawback of this structure is the time overhead comes from
pointer redirection in memory. Having a pointer to geometry
beside deriving from it creates a small overhead in accessing
geometrical data respect to an Element derived directly.
Though efficiency in Element is crucial, the complexity
of the first approach which one’s the first and which one is
the second approach imposes accepting the small different in
performance and therefore we have implemented this second
approach. A better solution is to make Element a template
of its geometry. Using templates provides good performance
and also enough flexibility but it was considered to be too
complex to be used by finite element users. As mentioned
earlier an Element has to be easy to program with the less
possible advanced features of programming language. So fi-
nally the bridge pattern structure was selected.

There are some designs in which different Elements
can be composed to create a more complex Element [58].
This approach can be simulated here using a Composite

pattern. However this structure is not implemented yet in
Kratos.

The finite element methodology is used for designing
a generic interface for Element. According to the fi-
nite element procedure, the Strategy asks Element to
provide its local matrices and vectors, its connectivity in
form of equation id, and after solving also calls Element
to calculate the elemental results. So Element

provides three sets of methods. Calculate-
LocalSystem, CalculateLeftHandSide and
CalculateRightHandSide for calculating local sys-
tem matrices and vectors. EquationIdVector and
GetDofList are designed to provide assembling informa-
tion for Strategy. Finally, Calculate and
CalculateOnIntegrationPoints are devoted to
calculating elemental variable which are used mainly for
calculating post-analysis results.

A VBI is used to provide a clear but flexible interface
for these methods.To ensure the extensibility of these meth-

An Object-oriented Environment for Developing Finite Element Codes for Multi-disciplinary Applications 279

Fig. 28 Process structure
using strategy pattern

ods a ProcessInfo is passed to these methods. In this
way users can pass any parameter like time, time increment,
time step, non-linear iteration number, some global norms
which are calculated over the domain, etc. to these methods.
Using ProcessInfo guarantees the flexibility which is
necessary for Element to be an extension point of Kratos.
In these methods passing the resulting matrices or vectors
by reference as additional arguments improves the perfor-
mance.

Providing an standard way to access neighbors of an ele-
ment can be very useful for some algorithms. The problem is
that for the rest of algorithms keeping the list of neighbors
results in large overhead in total memory used. In Kratos
neighbor nodes and elements are stored inside the elemental
data container exactly if they were standard variables. This
is indeed an interesting example of the flexibility of the VBI.
In this way the overhead of empty containers is eliminated
and the existing container is reused to hold this information.
This solution can be used for any other feature that must be
provided optionally but without any overhead for other ele-
ments.

9.2 Conditions

Condition is defined to represent the conditions applied
to boundaries or to the domain itself. Neumann conditions
and interfaces between domains in multi-disciplinary prob-
lems are represented by Condition. The only exception
is the Dirichlet condition which is applied by dof due to
the applying procedure described in Sect. 3.2.2. In Kratos
Condition is designed very similar to Element. They
interact with Strategy in the same way as Elements.
The reason of using a different type and not Element itself
is to clarify the different purpose of these two objects. In a
usual finite element model, there are much more Elements
than Conditions. For this reason some features that are
considered to be too expensive in performance or memory
consuming for Elements can be used for Conditions.
Making Element and Condition two independent types
allows additional features to be added to Condition with-
out affecting Element.

9.3 Processes

Creating a finite element application consists of implement-
ing several algorithms for solving different problems. In
practice, each set of problems has their own solving al-
gorithms. A possible approach to handle algorithms in a
finite element code is to provide some high level classes
to handle different tasks in the code [23]. In Kratos, the
Process class and its derived classes are defined to imple-
ment different algorithms and handle different tasks. Dif-
ferent processes may be used to handle a very small task
like setting a nodal value to some complex one, like solv-
ing a fluid structure interaction problem. Grouping some
processes in a larger one is also helpful, specially to make a
pack of small processes for handling a complex algorithm.
Process can be considered as a function class.

Process is created and executed just like calling a func-
tion. The strategy pattern is used to design the family
of processes. Figure 28 shows this pattern applied to the
Process structure.

Applying this pattern allows Process to encapsulate
an algorithm independently and also provide an standard
interface which makes them to be replaceable with each
other. Encapsulating each algorithm in one Process with-
out modifying other parts of the code makes adding a new
Process very easy and increases the extendibility of the
library to new algorithms. The compatibility of processes
with each other helps to customize the program flow and is
useful in cases when user wants to interchange some algo-
rithms.

The process interface is relatively simple. Execute is
used to execute the Process algorithms. While the pa-
rameters of this method can be very different from one
Process to other there is no way to create enough over-
ridden versions of it. For this reason this method takes no
argument and all Process parameters must be passed at
construction time. The reason is that each constructor can
take different set of arguments without any dependency to
other processes or the base Process class.

280 P. Dadvand et al.

9.4 Solving Strategies

After designing Process and its derived classes, we will
focus in an important family of processes which manage the
solution task in the program.

The SolvingStrategy is the object demanded to im-
plement the “order of the calls” to the different solution
phases. All the system matrices and vectors will be stored
in the strategy, which allows to deal with multiple LHS
and RHS. Trivial examples of these strategies are the linear
solver strategy and the Newton-Raphson iterative strategy.
SolvingStrategy is derived from Process and use

the same structure. Deriving SolvingStrategy from
Process lets users to combine them with some other
processes using composition in order to create a more com-
plex Process.

Like for Process users can combine different strate-
gies in one. For example a fractional step strategy can
be implemented by combining different strategies used
for each step in one composite strategy. The interface of
SolvingStrategy reflects the general steps in usual
finite element algorithms like prediction, solving, conver-
gence control and calculating results. This design yields in
the following interface:

Predict: A method to predict the solution. If it is not
called, a trivial predictor is used and the values of the so-
lution step of interest are assumed equal to the old values.

Solve implements the solving procedure. This means
building the equation system by assembling local com-
ponents, solving them using a given linear solver and up-
dating the results.

IsConverged is a post-solution convergence check. It
can be used for example in coupled problems to verify
if the solution has converged or not.

CalculateOutputData calculates non trivial results
like stresses in structural analysis.

Strategies sometimes are very different from each other
but usually the global algorithm is the same and only
some local steps are different. The template method pat-
tern helps to implement these cases in a more reusable
form. As mentioned before, this pattern defines the skele-
ton of an algorithm separately and defers some steps to
subclasses. In this way the template method pattern lets
subclasses redefine certain steps of an algorithm without
changing the algorithm’s structure. Applying this pattern to
SolvingStrategy results in the structure shown in
Fig. 29.

This structure is suitable when the algorithm is not
changing at all. However, in our case the algorithm varies
from one category of strategies to another. For this reason
in order to reduce the dependency of the algorithm and its
steps, a modified form of the bridge pattern is applied to

Fig. 29 Template method pattern applied to the solving strategy

this structure. Different steps for solving template meth-
ods are deferred to two other objects which are not derived
from Strategy: BuilderAndSolver and Scheme.
Figure 30 shows this structure.

The main idea of using these two additional set of objects
is to increase the reusability of the code and prevent users
from implementing a new Strategy from scratch. In prac-
tice this structure can support usual cases in finite element
methodology but still advanced developers have to config-
ure their own Strategy without using BuilderAnd-

Solver or Scheme. For this reason in the current Kratos
structure both approaches can be used to implement a solu-
tion algorithm.

9.4.1 BuilderAndSolver

The BuilderAndSolver is the object demanded to per-
form all of the building operations and the inversion of the
resulting linear system of equations. The choice of grouping
together the solution and the building step is not necessarily
univocal. This choice was made in order to allow a future
parallelization of the code, which should involve both the
linear system solution and the Building Phase.

Due to its features BuilderAndSolver covers the
most computational intensive phases of the overall solution
process. This will clearly require low level tuning in order
to ensure high performance. A typical user is not required to
understand the implementation details for this class. Never-
theless the comprehension of the role of this object is neces-
sary.

In order to give the possibility of assigning any lin-
ear solver to any BuilderAndSolver a bridge pattern
is used to connect these two sets of classes. In this way
BuilderAndSolver can use any linear solver available.

The interface of BuilderAndSolver provides a com-
plete set of methods to build the global equation system
or its components separately. It also provides methods for
building the system and solving it or rebuilding just the
left hand side or the right hand side and solve the up-
dated equation system. BuildLHS, BuildRHS, Build,
ApplyDirichletConditions, SystemSolve,

An Object-oriented Environment for Developing Finite Element Codes for Multi-disciplinary Applications 281

Fig. 30 Deferring different
parts of the algorithm to
BuilderAndSolver and
Scheme

BuildAndSolve and CalculateReactions are pro-
vided for this purpose. There are also several other meth-
ods for initializing the internal system matrices and vectors
and also to remove them from memory if it is necessary.
Strategy can use this interface to implement its algo-
rithm using any of the procedures defined above.

9.4.2 Scheme

Scheme is designed to be the configurable part of
Strategy. It encapsulates all operations over the local
system components before assembling and updating of re-
sults after solution. This definition is compatible with time
integration schemes, so Scheme can be used for example to
encapsulate the Newmark scheme. The definition of scheme
is quote general and can be used to encapsulate other similar
operation over a solution component.

According to the template method pattern the impor-
tant steps of the solving procedure in standard finite ele-
ment strategies is used to design the interface of scheme.
Usually a finite element solving strategy consists of several
steps like: initializing, initializing and finalizing solution
steps, initializing and finalizing non linear iterations, pre-
diction, update and calculating output data. Initialize,
InitializeSolutionStep, FinalizeSolution-
Step, InitializeNonLinIter-ation, Finalize-
NonLinIteration and Update represent these main
steps.

9.5 Elemental Expressions

The finite element methodology usually consists of first
converting the governing differential equation to its weak
form. This is discretized over an appropriate approximation
space, and finally global system of matrix equation is built
from the elemental contributions. Different approaches in

order to automatize this process can be found in literature
[27–29, 48, 91].

Nowadays several computer algebra systems like Matlab

[56], Mathematica [88], and Maple [55] can do this type of
symbolic derivations. In Kratos the first part of changing the
variational equation to weak form is dedicated to previous
tools and only a set of tools is designed and implemented
to help users converting their weak form to matrix form as
elemental contributions.

Elemental expressions are designed and implemented
to help users in writing their weak form expressions in
Element. The main idea is to create a set of classes and
overloaded operator to understand a weak form formulation
and calculate the local matrices and vectors according to it.

For example in a simple heat conduction problem with
isotropic coordinates, the elemental stiffness matrix Se can
be calculated as follows:

Se
ij = k

∫

�

(∇Ni)
T I∇Njd�

or:

Se
ij = k(∇iNl,∇jNl)

This equation can be implemented in Element by the
following code:

for(int i=0 ; i < nodes_number ; i++)

for(int j=0 ; j < nodes_number ; j++)

for(int l=0 ; l < gauss_points_number ; l++)

{

Matrix const& gn=shape_functions_gradients[l];

for(int d=0 ; d < dimension ; d++)

rLeftHandSideMatrix(i,j) += k*gn(i,d)

*gn(j,d)*wdj;

}

Using elemental expressions the same formulation can be
written in a simpler form as:

282 P. Dadvand et al.

KRATOS_ELEMENTAL_GRAD_N(i,l) grad_Nil(data);

KRATOS_ELEMENTAL_GRAD_N(j,l) grad_Njl(data);

rLeftHandSideMatrix = k*(grad_Nil, grad_Njl)*wdj;

It can be seen that the later form is conforming with the
symbolic notation of equations which makes it much easier
to implement. The overloading operators provided in C++

is the start point for implementing the code. Simple over-
loading results in poor performance due to the redundant
temporary objects that creates. Expression template tech-
nique can be used to convert above expression to previous
hand written form automatically. Template metaprogram-
ming also is used to impose the tensorial notation. All these
techniques are used to evaluate the symbolic notation and
generate an specialized code for each case.

In the current version of Kratos, element expressions are
still in experimental phase. However some benchmarks have
shown that their efficiency is comparable with hand coded
Elements as supposed to be.

9.6 Formulations

Kratos has been designed to support element approaches in
finite element methods. For some problems an element ap-
proach is less suitable than other approaches like nodal for-
mulations. Formulation is defined as a place for imple-
menting all these approaches. Formulation is not imple-
mented yet, but will be one of the future features of Kratos.

10 Input-Output

In general most finite element applications have to commu-
nicate with pre and post processors, except in some special
cases for which the application generates its own input. This
makes the input-output (IO) operation an essential part of
the application. For a multi-disciplinary code IO must deal

with new variables and data types. Also providing some ad-
ditional features like multi format and media support, seri-

alization [1] and script language support are very useful.

10.1 IO Structure Design

The Strategy pattern is used to encapsulate each format sep-
arately and make it extensible to any new format easily. The
same structure can be used for supporting different media
separately. Then the Bridge pattern can be used to
connect them to the format structure. However a simpler ap-
proach is to treat the media like formats and use the same
structure for both and enrich it via templates or several lev-
els of hierarchy as shown in Fig. 31.

There are different concepts (like temperature, displace-
ment, viscosity, etc.) and data types in a FEM data. Support-
ing different concepts and data type is very important for a
multi-disciplinary code. Here the VBI comes handy and it is
used to generalize the IO.

The first step is providing IO extendibility to new con-
cepts. This can be done by introducing a lookup table which
relates the concept names and their internal handlers. A sim-
ple list of Variables is enough for IO to take as its
lookup table. Each Variable knows its name and also
its reference number. In time of reading IO reads a tag and
searches in the list for the Variable whose name coin-
cides with the tag. Then use the variable to store the tagged
value in the data structure. For example, when IO reads
a "NODES[29](TEMPERATURE,0)=418.651" state-
ment from input, it takes the "TEMPERATURE" tag and
searches in the list to find the TEMPERATURE variable.
Having this variable is enough to use the variable base in-
terface of the data structure to store the value in it. For writ-
ing results there is no need to search in the table. IO can use
the variable to get its value in the database and use its name
as the tag. Here is an example of WriteNodalResults
method.

Fig. 31 Extended Multi format
and Medium IO structure

An Object-oriented Environment for Developing Finite Element Codes for Multi-disciplinary Applications 283

Fig. 32 Using
KratosComponents in IO

template<class TDataType>

void WriteNodalResults(

Variable<TDataType> const& rVariable,

NodesContainerType& rNodes,

std::size_t SolutionStepNumber)

{

NodesContainerType::iterator i;

for(i=rNodes.begin() ; i!=rNodes.end() ; ++i)

Output << rVariable.Name() << "="

<< i->GetSolutionStepValue(rVariable,

SolutionStepNumber))

<< std::endl;

}

Each new Element or Condition also is a new type
which implies that IO does not know how to create it.
Here we need a table for each Element or Condition
and their relative factory method. Prototype pattern helps to
manage this situation in a generic way. Here we reuse each
object as its prototype by adding a Clone method to it.

IO uses a lookup table to find the object prototype for
any component name. This table consists of representative
names and their corresponding prototype. Encapsulating this
table introduces the new KratosComponents class to

our structure. KratosComponents class encapsulates a
lookup table for a family of classes in a generic way. Proto-
types must be added to this table by unique names to be
accessible by IO. These names can be created automati-
cally using C++ RTTI or given manually for each com-
ponent. In this design the manual approach is chosen, so
shorter and more clear names can be given to each compo-
nent and also there is a flexibility to give different names
to different states of an object and create them via different
prototypes. For example having TriangularThermal-
Element and QuadrilateralThermalElement both
as different instances of 2DThermalElement, initializing
with a Triangle or a Quadrilateral.

This structure allows us to create any registered object
just by knowing its representative name. But sometimes it
is useful to know the family which an object belongs to.
For example at the time of reading Elements there is no
need to search in Variables and Conditions and to put
all of them together can slow down the parsing process un-
necessarily. Dividing the lookup table into three family of
classes: Variables, Elements and Conditions helps

284 P. Dadvand et al.

to distinguish them in the time of search. Doing this also
eliminates unnecessary type casting and makes the imple-
mentation easier and clearer. Figure 32 shows the resulting
structure.

Finally an interpreter is necessary to provide the script
language input feature for this module. This feature provides
a high level of extensibility in algorithms which is very use-
ful in order to deal with different algorithms as is typical in
multi-disciplinary applications.

10.1.1 IO Interface Design

The input interface is quite straightforward and consists
of methods to read Nodes, Properties, Elements,
Conditions, initial values, Meshs and ModelParts.
The two latter ones are useful for reading multi-disciplinary
data for various domains.

The output interface consists of methods for writing
Nodes, Properties, Elements, Conditions, Meshs
and ModelParts and also results for postprocessing. The
VBI is used to define the result methods interface in a
generic way.

10.2 Writing an Interpreter

In modern applications an interpreter is used to read the in-
put file and understand the input grammar [43, 66]. An inter-
preter usually is divided into two parts as shown in Fig. 33.

The first part is the lexical analyzer. This part reads the
input characters, for example a source file or given com-
mand line statement, and converts it to a sequence of to-

kens, like digits, names, keywords, etc., usable for parser.
Since white spaces (like blank, tab and newline characters)
and comments are not used in parsing the code, there is a
secondary task for a lexical analyzer to eliminate all white
spaces and also the comments during the analysis. The lexi-
cal analyzer may also provide additional information for the
parser to produce more descriptive error messages.

A token is a sequence of characters having a logical
meaning or making a unit in our grammar. One can divide

Table 1 Some typical tokens with examples of matching sequences

Token’s Type Examples

INTEGER 1 34 610

REAL 4.57 2e-4

IF if

FOR for

LPARENTHESES (

RPARENTHESES)

tokens in different categories depending on the grammar
working with. Table 1 shows some examples of tokens.

If more than one sequence of input characters matches to
a token then this token must provide a value field to store the
input data represented by it.

The second part is the parser. A parser does the syntax
analysis. It takes the tokens from the lexical analyzer and
tries to find their relation and meaning due to its grammar.
A parser produces a parse tree by putting together recog-
nized statements and their sub-operations. This tree can be
used to execute the given source. For example passing the
above sequence of tokens to a C parser would result in a
parse tree as presented in Fig. 34.

There are several reasons to separate the lexical analyzer
from the parser. The first one is simplifying the design and
reducing the parser complexity. Creating a parser over sepa-
rated tokens without any comments or whitespaces is easier
than a parser over input characters. The second reason is
improving the performance of the interpreter. Large amount
of interpreter time spent in the lexical analysis, separating
it and using techniques like buffering can decrease signifi-
cantly the performance. Another reason is related to porta-
bility and reuse ability of the interpreter. Any problem due
to the different character maps in different devices can be
encapsulated in the lexical analyzer without changing the
parser.

In some cases, the lexical analyzer is divided into two
phases. A scanner which does simple tasks like removing
comments and whitespaces, and an analyzer which does the
real complex job.

Fig. 33 Global structure of an
interpreter

Fig. 34 Parse tree for an if
statement

An Object-oriented Environment for Developing Finite Element Codes for Multi-disciplinary Applications 285

There are various ways to implement a lexical analyzer
and a parser in the literature [5, 6, 9]. Also there are some
tools to generate them. Some classical ones are Lex and
Yacc, and their derivatives like Fast lexical analyzer genera-

tor (Flex) and Bison and their C++ variations Flex++ and
Bison++.

The first interpreter for Kratos was implemented using
Flex++ and Bison++. They are great tools to generate an
interpreter but they have been put aside from this work for
mainly two reasons. The first was changes in the strategy
of code development creating a sophisticated interpreter to
using an existing one. For reading data still a simple parser
was necessary, but these tools were too heavy to be used for
this case. The other reason was portability and maintainabil-
ity issues, specially in Windows, due to the incompatibili-
ties between the Linux and Windows compilations of these
tools. The current interpreter is implemented using Spirit.

Spirit is an object-oriented parser generator framework
implemented in C++ using template meta-programming
techniques which enable us to write the context free gram-
mar directly in C++ code and compile it with a C++ code
to generate the parser. In this way the translation step from
context free grammar to a parser implemented in C++ by
an external tool is omitted. This interpreter can be used to
read a data file containing nodes, elements, properties, con-
ditions, and initial values and automatically reads any new
variable in the variables list.

10.3 Using Python as Interpreter

Implementing an interpreter is a hard work. From the man-
agement point of view, it introduces a significant overhead
to project cost and time. Maintaining it is even harder and re-
sults in more overhead in the code cost. Also implementing
an interpreter requires knowledge of different concepts like
grammar notations, some tools and libraries usage and com-
piler implementation techniques. Finite element program-
mers usually are not familiar with most of these concepts
and in many cases even do not like to deal with them. So in
developing a finite element program it is not easy to share
the implementation and maintenance of an interpreter with
others due to this lack of experience. In practice, this can
lead to longer implementation times and extra cost.

During the development of Kratos all these facts affected
the implementation of an interpreter and made its develop-
ment more and more difficult to the point that it became one
of the bottlenecks of the project. Consequently, the strategy
changed by stop writing an interpreter and looking for an
existing one.

For selecting a script language, the following require-
ments are used as selection criteria: interface to C++ or
at least to C. Portability. To be object-oriented. Language
syntaxes and its readability. Flexibility and extendibility and
popularity

From the long list of languages first some of more pop-
ular ones were selected: Lisp, Perl, Ruby, Tcl and Python.
Python was finally selected due to some details and also our
background. Tcl was a good choice as it is already used at
CIMNE for example in GiD [72, 73] and a large amount of
experience was available. Lack of object-oriented features
however prevented this choice. Perl also was considered for
its maturity and performance, but again it is less object-
oriented than Python and does not support multi-threading.
Ruby at that time was completely new to us and also was
considered to be somehow young. An existing well designed
interface to Python and some practical use of Python in finite
element applications [3, 4] were another reasons for choos-
ing Python.

Binding Kratos to Python makes it extremely flexible and
extendible. New algorithms can be implemented using ex-
isting Kratos tools and methods without even recompiling
the code. Interaction between domains and planning differ-
ent staggered strategies to solve a coupled problem also can
be performed easily at this level without changing Kratos
or its applications. Also Python it can be used as a small
lab for testing new algorithms and formulations before pro-
gramming it into the Kratos. The list of added features is
unlimited and many complex tasks can be done easily using
this interface.

10.3.1 Binding to Python

Boost Python library is used for binding Kratos to Python.
This library provides an easy but powerful way to connect a
C++ code to Python.

11 Validation Examples

In this chapter some applications developed using Kratos are
presented to test the desired flexibility and extensibility of
the framework.

11.1 Incompressible Fluid Solver

The Kratos features an incompressible CFD solver, im-
plemented in an “incompressible fluid application”. Both
monolithic and fractional step solvers (see [22]) are imple-
mented in the same application. Most of the examples de-
scribed in the following section were run using a Fractional-
Step type approach, in order to achieve maximal efficiency.

11.1.1 Implementation in Kratos

The main CFD solvers of the Kratos are based on an Ar-
bitrary Lagrangian Eulerian (ALE) formulation. The solver
used in the examples is based on a fractional step method

286 P. Dadvand et al.

[18] using equal order pressure-velocity elements stabilized
by Orthogonal SubScales (OSS) [19], or Finite Increment
Calculus (FIC) [63].

The fractional step method chosen consists of four so-
lution steps, of which the first one involves a nonlinear loop
for solving the nonlinearity in the convection term, while the
rest are linear and the third one involves the explicit calcu-
lation of projection terms.

This method was implemented by creating a new
SolvingStrategy combining existing ones for different
steps. The strategy was hard coded in C++, however the
implementation was such that all the different steps could
be solved separately. This allowed the definition of a flex-
ible Python interface which in turn permits the end-user to
control the flow of the program. This flexibility in particular
provides major advantages in defining new fluid structure
interaction coupling strategies based on the existing ALE
solver.

For the present application a combined Strategy is
created to handle the solution process. The following code
shows the Solve method of this Strategy which calls
other methods for implementing different steps:

double Solve()

{

// Assign the correct fractional step

// coefficients

InitializeFractionalStep(m_step, mtime_order);

double Dp_norm;

// predicting the velocity

PredictVelocity(m_step,mprediction_order);

// initialize projections at the first steps

InitializeProjections(m_step);

// Assign Velocity To Fract Step Velocity

// and Node Area to Zero

AssignInitialStepValues();

if(m_step <= mtime_order)

Dp_norm = IterativeSolve();

else

{

if(mpredictor_corrector == false)

Dp_norm = FracStepSolution();

else //iterative solution

Dp_norm = IterativeSolve();

}

if(mReformDofAtEachIteration == true)

Clear();

m_step += 1;

mOldDt =

GetModelPart().GetProcessInfo()[DELTA_TIME];

return Dp_norm;

}

double FracStepSolution()

{

// setting the fractional velocity to

// the value of the velocity

AssignInitialStepValues();

// solve first step for

// fractional step velocities

SolveStep1(mvelocity_toll, mMaxVelIterations);

// solve for pressures

// (and recalculate the nodal area)

double Dp_norm = SolveStep2();

ActOnLonelyNodes();

//calculate projection terms

SolveStep3();

//correct velocities

SolveStep4();

return Dp_norm;

}

This strategy can be exported to Python without loss of
performance, by providing access to the specific methods
implementing each step. We can write in Python an equiva-
lent solution step as shown in Table 2.

It can be seen that the Python code is self explanatory and
simple. Providing this interface also has the great advantage
of allowing users to customize the global algorithm without
accessing the internal implementation in Kratos.

In order to implement the elemental formulation a new
Element has to be created. This Element should pro-
vide different contributions for each solution step. This is
achieved by passing the current fractional step number as a
variable of the ProcessInfo to the calculation method of
Element. Interestingly, this can be done without any mod-
ification of the standard elemental interface. This is one of
the cases where the generality of the interface helps to inte-
grate new types of formulations. The following code shows
the structure of the calculation method for Element:

void Fluid3D::CalculateLocalSystem(

MatrixType& rLeftHandSideMatrix,

VectorType& rRightHandSideVector,

ProcessInfo& rCurrentProcessInfo)

{

KRATOS_TRY

int FractionalStepNumber =

rCurrentProcessInfo[FRACTIONAL_STEP];

if(FractionalStepNumber <= 3)

{

Stage1(rLeftHandSideMatrix,

rRightHandSideVector,

rCurrentProcessInfo,

FractionalStepNumber - 1);

}

else if (FractionalStepNumber == 4)

{

Stage2(rLeftHandSideMatrix,

rRightHandSideVector,

rCurrentProcessInfo);

}

KRATOS_CATCH("")

}

Where Stage1 and Stage2 are private methods.

An Object-oriented Environment for Developing Finite Element Codes for Multi-disciplinary Applications 287

Table 2 The fractional step strategy written in Python

def SolutionStep1(self):

normDx = Array3(); normDx[0] = 0.00; normDx[1] = 0.00; normDx[2] = 0.00;

is_converged = False

iteration = 0

while(is_converged == False and iteration < self.max_vel_its):

(self.solver).FractionalVelocityIteration(normDx);

is_converged = (self.solver).ConvergenceCheck(normDx,self.vel_toll);

print iteration,normDx

iteration = iteration + 1

def Solve(self):

if(self.ReformDofAtEachIteration == True):

(self.neighbour_search).Execute()

(self.solver).InitializeFractionalStep(self.step, self.time_order);

(self.solver).InitializeProjections(self.step);

(self.solver).AssignInitialStepValues();

self.SolutionStep1()

(self.solver).SolveStep2();

(self.solver).ActOnLonelyNodes();

(self.solver).SolveStep3();

(self.solver).SolveStep4();

self.step = self.step + 1

if(self.ReformDofAtEachIteration == True):

(self.solver).Clear()

11.1.2 Benchmark

Kratos is a general purpose code. Therefore, it is expected to
show a slightly lower performance than codes optimized for
a single purpose. A well optimized implementation can re-
duce the performance overhead to the amount introduced by
Kratos. An effort was made to optimize the implementation
mentioned above, so it is interesting to compare its perfor-
mance against existing fluid solvers in order to estimate the
order of performance overhead introduced by Kratos.

As usual it is not trivial to perform a good benchmark
as each program implements a slightly different formula-
tion. Nevertheless a comparison was possible here with the
code Zephyr, an in house program developed at UPC, and
with FEFLO a highly optimized fluid solver developed at
the Laboratory for Computational Physics and Fluid Dy-
namics (LCPFD) in George Washington University at Wash-
ington, DC [45]. For the first case the formulation is exactly
the same with only minor differences in the implementation.
The second solver is an edge based formulation and the only
possible comparison was with a predictor corrector scheme.

The benchmark represents the analysis of a three dimen-
sional cylinder at Reynolds number Re = 190. Figure 35
shows the model used. The no slip boundary condition is
used at the walls of the cylinder, while slip conditions are
used everywhere else. The inflow velocity is set to 1 m/s.
The mesh generated by FEFLO has a resolved boundary
layer and contains 30000 nodes and 108000k tetrahedral el-
ements. The values computed were the lift and drag history

for the cylinder. Figure 36 shows a view of velocity field
obtained.

The results showed an excellent agreement with the val-
ues calculated by FEFLO both in term of peak values and of
shedding frequency, as can be seen in Fig. 37. Note that the
initiation of the shedding is not deterministic and may hap-
pen at any time which justifies the phase difference between
the two codes.

The timing results are interesting. FEFLO appeared to be
50% faster than Kratos. This is considered a good result tak-
ing in account that FEFLO features a highly optimized edge
based data structure while Kratos is purely element based.

On the other hand, Zephyr features an element based for-
mulation and implements the same fractional method step.
The main difference was the treatment of the projection
terms and the use of four integration points for the calcu-
lation of the element contributions in Zephyr. The results
showed that Kratos is about twice as faster than Zephyr.

11.2 Fluid-structure Interaction

Coupled problems can be naturally implemented inside
Kratos via the Python interface. The fluid solver and the
structural solver can be implemented separately and coupled
using this interface. The first action required to solve a fluid
structure interaction (FSI) problem is to load the different
applications involved. The code in Table 3 shows this step
in Python. Then a very simple explicit coupling procedure
can be expressed by a Python script as shown in Table 4.

288 P. Dadvand et al.

Fig. 35 (a) Geometry of cylinder example, domain dimension
19.0 × 8.0 × 0.2 and Rc = 0.5. (b) Detail of the mesh used for the
cylinder example

Of course many different alternative coupling schemes
exist, see for example [40, 77]. Many of them can be imple-
mented without making changes to the single field solvers.
An example of fluid-structure interaction is given in Fig. 38.

11.3 Particle Finite Element Method

The Particle Finite Element Method (PFEM) [37–39, 64, 65]
is a method for the solution of fluid problems on varying
domains in time. The basic concept is that each particle is
followed in a Lagrangian way and the mesh is regenerated
at each time step.

The main computational challenges faced are the efficient
regeneration of the mesh and the optimized recalculation of
all element contributions. Good performance is achieved by
linking with an external mesh generation library and by us-
ing the optimized Kratos fluid solver. The solution sequence
is controlled by the Python interface. A part of the Python
script is given in Table 5.

This example shows how a previously implemented fluid
solver can be reused when implementing a new algorithm.

Fig. 36 Velocity at different time steps

This reusability allows the fast development of new formu-
lations which can be tested by solving large scale real-life
problems. Examples of simulations done with the PFEM im-
plemented in Kratos can be found in [46].

Figure 39 shows an object (an unmanned vehicle) which
floats on the surface of the water after landing. This is a
good example of application of the PFEM for dealing with
a Fluid-Structure Interaction problem.

Two validation examples showing the impact of wedges
with different shapes on the surface of the water are showed
in Fig. 40 on the top of the experimental results. These last
two examples were run in Kratos using a different CFD
solver as described in [78].

An Object-oriented Environment for Developing Finite Element Codes for Multi-disciplinary Applications 289

Fig. 37 (Color online) The comparison of results obtained by Kratos (red line) using a predictor corrector scheme and FEFLO (blue line). (a) Lift
calculated for the cylinder. (b) Drag calculated for the cylinder

Table 3 Importing different applications involved in solving the FSI coupled problem

#including kratos path

kratos_libs_path = ’kratos/libs/’

kratos_applications_path = ’kratos/applications/’

import sys

sys.path.append(kratos_libs_path)

sys.path.append(kratos_applications_path)

#importing Kratos main library

from Kratos import *

kernel = Kernel() #defining kernel

#importing applications

import applications_interface

applications_interface.Import_ALEApplication = True

applications_interface.Import_IncompressibleFluidApplication = True

applications_interface.Import_StructuralApplication = True

applications_interface.Import_FSIApplication = True

applications_interface.ImportApplications(kernel, kratos_applications_path)

11.4 Thermal Inverse Problem

Inverse problems are found in many areas of science and
engineering. They can be described as being opposite to di-
rect problems. In a direct problem the cause is given, and
the effect is determined. In an inverse problem the effect is
given, and the cause must be estimated [41]. There are two
main types of inverse problems: input estimation problems,
in which the system properties and output are known and
the input is to be estimated; and properties estimation prob-
lems, in which the system input and output are known and
the properties are to be estimated [41].

Mathematically, inverse problems fall into the more gen-
eral class of variational problems. The aim of a variational
problem is to find a function which minimizes the value of a

specified functional. By a functional, we mean a correspon-
dence which assigns a number to each function belonging
to some class. Also, inverse problems might be ill-posed in
which case the solution might not meet existence, unique-
ness or stability requirements.

While some simple inverse problems can be solved ana-
lytically, the only practical technique for general problems is
to approximate the solution using direct methods. The fun-
damental idea underlying the so called direct methods is to
consider the variational problem as a limit problem for some
function optimization problem in many dimensions. Unfor-
tunately, due to both their variational and ill-posed nature,
inverse problems are difficult to solve.

Neural networks is one of the main fields of artificial in-
telligence [36]. There are many different types of neural net-

290 P. Dadvand et al.

Table 4 A very simple explicit FSI coupling procedure implemented in Python

class ExplicitCoupling:

def Solve(self):

solve the structure (prediction)

(self.structural_solver).Solve()

map displacements to the structure

(self.mapper).StructureToFluid_VectorMap(DISPLACEMENT,DISPLACEMENT)

move the mesh

(self.mesh_solver).Solve()

set the fluid velocity at the interface to

be equal to the corresponding mesh velocity

self.CopyVectorVar(MESH_VELOCITY,VELOCITY,self.interface_fluid_nodes);

solve the fluid

(self.fluid_solver).Solve()

map displacements to the structure

(self.mapper).FluidToStructure_ScalarMap(PRESSURE,POSITIVE_FACE_PRESSURE)

solve the structure (correction)

(self.structural_solver).Solve()

works, of which the multilayer perceptron is an important
one [81]. Neural networks provide a direct method for the
solution of general variational problems and, consequently,
inverse problems [20].

In this example neural networks are used to solve thermal
inverse problems. In order to solve this problem we need to
solve the heat transfer equation. The Flood library [51] de-
veloped at CIMNE is an open source neural networks library
written in C++. Flood was used to create the neural network
necessary for solving this problem. While the Flood library
does not include utilities for solving partial differential equa-
tions, it uses Kratos and its thermal application to solve the
thermal problem. This example validates the integrability of
Kratos as a library into another project. It also demonstrates
its robustness due to the fact that the Neural Network algo-
rithm runs Kratos to analyze the same model several times.
In this situation any small problem (for example, in memory
management) might cause an execution error.

11.4.1 Methodology

The general solution of variational problems using Neural
networks consists of three steps [20]:

• Definition of the functional space. The solution here is
represented by a multilayer perceptron.

• Formulation of the variational problem. For this perfor-
mance functional F(y(x, a)) must be defined. In order
to evaluate the functional we solve a partial differential
equation using the FEM within Kratos.

• Solution of the reduced function optimization problem
f (a). This is achieved by the training algorithm. The

training algorithm will evaluate the performance function
f (a) many times.

This algorithm provides an example of how Kratos can be
embedded into an optimization application in which differ-
ent steps of finite element analysis are necessary to achieve
the solution.

Kratos has been embedded inside the Flood library as its
solving engine in order to calculate the solution of partial
differential equations.

Here this methodology is applied to solve two different
thermal inverse problems.

11.4.2 Implementation

The Flood library uses Kratos to solve a thermal problem
several times with different properties and boundary condi-
tions. In order to do this it access the internal data of Kratos
and change the boundary conditions assigned to the different
Nodes. This is done without any file interface which would
dramatically reduce the performance. The first task is imple-
ment the interface for the direct solution using Kratos. The
following code shows the main part of this interface:

// Initializing Kratos kernel

Kernel kernel;

kernel.Initialize();

// Initializing Kratos thermal application

KratosThermalApplication thermal_application;

kernel.AddApplication(thermal_application);

// Read mesh

GidIO gidIO("thermal_problem");

gidIO >> mesh;

// Set properties to optimization values d,c,k

An Object-oriented Environment for Developing Finite Element Codes for Multi-disciplinary Applications 291

Fig. 38 Flag flatter simulation using fluid structure interaction with mesh movement

Properties& r_properties = mesh.GetProperties(1);

r_properties[DENSITY] = d;

r_properties[SPECIFIC_HEAT_RATIO] = c;

r_properties[THERMAL_CONDUCTIVITY] = k;

// Assign initial temperature to nodes

// with fixed temperature

MeshType::NodeIterator i_node;

for(i_node = mesh.NodesBegin() ;

i_node != mesh.NodesEnd() ; i_node++)

if(!(i_node->IsFixed(TEMPERATURE)))

i_node->SetSolutionStepValue(TEMPERATURE,

initialTemperature);

// Creating solver

// ...

// Main loop

for(int i = 1; i < numberOfTimeSteps; i++) {

// Obtain time

time[i] = time[i-1] + deltaTime;

// Obtain boundary temperature

// Gaussian function

double mu = 0.5;

double sigma = 0.05;

double numerator = exp(-pow(time[i]-mu,2)

numerator /= (2.0*pow(sigma,2)));

double denominator = 8*sigma*sqrt(2.0*pi);

boundaryTemperature[i] = numerator/denominator;

// Assign boundary temperature

for(i_node = mesh.NodesBegin() ;

i_node != mesh.NodesEnd() ; i_node++)

if(i_node->IsFixed(TEMPERATURE))

i_node->SetSolutionStepValue(TEMPERATURE,

boundaryTemperature[i]);

// Solving using thermal solver

Solve();

// Now updating the nodal temperature values

// by result of solved equation system.

Update();

292 P. Dadvand et al.

Table 5 Implementation in Kratos of particle finite element method
(PFEM)

def Solve(self,time,gid_io):

self.PredictionStep(time)

self.FluidSolver.Solve()

def PredictionStep(self,time):

domain_size = self.domain_size

performing a first order prediction

of the fluid displacement

(self.PfemUtils).Predict(self.model_part)

self.LagrangianCorrection()

(self.MeshMover).Execute();

(self.PfemUtils).MoveLonelyNodes(self.model_part)

(self.MeshMover).Execute();

ensure that no node gets too close to the walls

(self.ActOnWalls).Execute();

move the mesh

(self.MeshMover).Execute();

smooth the final position of the nodes to

homogenize the mesh distribution

(self.CoordinateSmoother).Execute();

move the mesh

(self.MeshMover).Execute();

regenerate the mesh

self.Remesh()

Fig. 39 An unmanned vehicle floats on the surface of the water after
landing

// Obtain center node temperature

nodeTemperature[i] =

center_node.GetSolutionStepValue(TEMPERATURE);

equation_system.ClearData();

}

The part initializing the solver has been removed to make
the sample code shorter and only the parts that Flood uses
to interact with Kratos are kept. This code shows the flex-

ible but clear and intuitive interface that Kratos provides
for other applications to communicate with it. First, applica-
tion changes the Element properties to its prescribed val-
ues. Then, it changes the temperature value for all Nodes
to some initial value. Afterwards it tries to solve the FEM
problem using different boundary conditions assigning fixed
values of temperature to Nodes. Finally it retrieves the tem-
perature at a specific Node. It can be seen that some steps
are directly inside the time loop. This restrict us from solv-
ing the problem using usual time integration algorithms.

The inverse problem also involves similar steps but in the
form of performance functions of the Flood library. In this
case Kratos is adapted to the working methodology of Flood

without any problem.
The tool obtained by combining these two application has

been successfully used for solving boundary temperature es-

timation problems and diffusion coefficient estimation prob-

lems [20, 52].
Some results can be seen in Fig. 41 which shows the

agreement between the estimated diffusion coefficient and
the diffusion coefficient estimated by the neural network for
a square domain problem.

The results of a different inverse problem are shown in
Fig. 42. The graphs shown distribution a comparison of the
actual boundary temperature and the one estimated by the
neural network for a square domain.

Full details of the examples, as well as a complete de-
scription of the theory used can be found in [52].

Further applications and other class of problems imple-
mented in Kratos can be found in [2, 61, 74–76, 79].

12 Conclusions and Future Work

12.1 Conclusions

Kratos, a framework for developing multi-disciplinary FEM
programs has been designed and implemented. This frame-
work provides a high level of flexibility and generality
which is required for dealing with multi-disciplinary prob-
lems. Developers in different areas can adapt Kratos for their
needs without altering the standard interface used to com-
municate with other fields in coupled analysis. The applica-
tions already implemented in the Kratos framework can be
used for solving multi-disciplinary problems using any mas-
ter and slave strategies or even by solving simultaneously.
Finally a python interface gives extra flexibility in handling
nonstandard algorithms.

Several reusable components are provided to help de-
velopers allowing easier and faster implementation of their
applications. Data structure, IO, linear solvers, geometries,
quadrature tools, and different strategies are examples of
these reusable components. Use of these components makes

An Object-oriented Environment for Developing Finite Element Codes for Multi-disciplinary Applications 293

Fig. 40 Impact of wedges with different shapes on the surface of the water

the application development not only faster, but also ensures
compatibility with other tools for solving multi-disciplinary
problems.

Kratos is also extensible at different levels of implemen-
tation. Each application can add its variables, degrees of
freedom, Properties, Elements, Conditions, and
solution algorithms to Kratos. The object-oriented structure
and appropriate patterns used in its design make these ex-
tensions easy while reducing the need for modifications.

Last but not least, the performance of Kratos is compa-
rable even to single purpose programs and different bench-
marks has shown this in practice. This makes Kratos a prac-
tical tool for solving industrial multi-disciplinary problems.

All these objectives were achieved not only by a num-
ber of innovative development, but also by collecting and
reusing several existing works. Some of these aspects are as
follow:

Kratos has an object-oriented and multi-layer structure
which reduces the dependency between different parts of
program. It helps in maintenance of the code and also helps
developers in understanding the code. These layers are de-
fined in a way such as each user has to work in the smallest
number of layers as possible. The implementation difficul-
ties needed for each layer are also tuned for the knowledge
of users.

A new variable base interface has been designed and im-
plemented. This interface is used at different levels of ab-
straction and has proven to be clear, flexible, and extensible.

New heterogeneous containers have been implemented
in order to hold different types of data without any modi-
fications. The DataValueContainer is designed to be
very flexible while the VariablesListContainer is
designed to be fast but less robust. In Kratos these two con-

tainers are used alternatively in places where performance or
flexibility are more important. Being able to store even the
list of neighbor Nodes or Elements shows their flexibility
in practice.

An entity base data structure has been developed in
Kratos. This approach gives more freedom in partition-
ing the domain or in creating and removing Nodes and
Elements. Several levels of abstraction like Mesh,
MoldePart and Model are provided to help users group
model and data information in different ways. These objects
are effectively used for separating domains information in
multi-disciplinary problems or sending a single part to a
process.

The Element and Condition classes are designed
as the extension points of Kratos. Their generic interfaces
provide all information necessary for calculating their local
components and also are flexible enough for handling new
arguments in the future.

Several processes and strategies has been developed to
handle standard procedures in finite element programming.
These components increase the reusability of the code and
decrease the effort needed to implement new finite element
application using Kratos.

Some experimental work has been done to handle ele-
mental expression using a higher level of abstraction. In this
way elemental expressions can be written in C++ but with
a meta language very similar to mathematical notations and
then can be compiled with the rest of the code using the
C++ compiler. These expressions have been successfully
tested and their performance is comparable to manually im-
plemented codes.

A flexible and extensible IO module for finite element
programs has been developed. Any application built with

294 P. Dadvand et al.

Fig. 41 Actual diffusion
coefficient (a) and estimated
diffusion coefficient (b) for the
diffusion coefficient estimation
problem

Kratos can use IO for reading and writing its own concepts
without making any change to it. An interpreter is also im-
plemented to handle Kratos data files but the major inter-
preting task is given to the Python interpreter. This flexi-
ble interpreter with its object-oriented high level language
can be used to implement and execute new algorithms us-
ing Kratos. In this way the implementation and maintenance
cost of a new sophisticated interpreter is eliminated.

12.2 Future Work

Parallelization of Kratos framework is the main task to be
undertaken in the future. The growing size of problems and
the increase of available parallel computing machines (even
in the personal computers sector), stress the importance for
parallelization of numerical codes. Fortunately, several as-
pects of Kratos become useful in this process.

An Object-oriented Environment for Developing Finite Element Codes for Multi-disciplinary Applications 295

Fig. 42 (Color online) Actual boundary temperature (red), estimated
boundary temperature (green) and measured temperature at the center
of the square (blue) for the boundary temperature estimation problem

Creating new processes and strategies can increase the
reusability of the code and also the completeness of Kratos.
This can be done also by revising the processes and strate-
gies implemented in different applications and adding a
generic version of them to Kratos which could be usable
for a wider set of applications. Also new solvers and pre-
conditioners should be added to extend the solving abilities
of Kratos.

Implementing missing components for elemental expres-
sion and practically use them can help the fast development
of finite element formulations in Kratos, At the same time, it
can be used to optimize the new formulations or even trans-
form them automatically to parallel codes. Formulations are
another part of Kratos to explore. Adding nodal or edge
based formulations to Kratos can be a good way to refine
its design in practice.

Serialization for automatization of problem loading and
saving and passing data over network is another line of ex-
tensions. Supporting binary format for input can reduce sig-
nificantly the data reading time.

Acknowledgements We would like to thank the whole Kratos team
for their contributions and valuable feedback that was decisive for
the evolution of Kratos. In particular thanks to Pavel Ryzhakov and
Dr. Roberto Lopez for providing some of the examples. This work was
partially supported by XPRES project of the Spanish government.

References

1. Boost serialization library. http://www.boost.org/libs/serialization/
doc/index.html

2. Papadrakakis M, Oñate E, Schrefler B (eds) (2007) Updated La-
grangian formulation of a quasi-incompressible fluid element,
Ibiza, Spain, Proceedings. CIMNE, Barcelona

3. ABAQUS Inc. ABAQUS Scripting Reference Manual

4. ABAQUS Inc. ABAQUS Scripting User’s Manual
5. Aho AV, Sethi R, Ullman JD (1986) Compilers principles, tech-

niques and tools. Addison-Wesley, Reading
6. Aho AV, Ullman JD (1978) Principles of compiler design.

Addison-Wesley, Reading
7. Aho AV, Ullman JD, Hopcroft JE (1983) Data structures and algo-

rithms. Addison-Wesley, Reading
8. Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Don-

garra J, Croz JD, Greenbaum A, Hammarling S, McKenney A,
Sorensen D (1995) LAPACK users’ guide, 2nd edn. Society for
Industrial and Applied Mathematics, Philadelphia

9. Appel AW, Ginsburg M (1999) Modern compiler implementation
in C. Cambridge University Press, Cambridge

10. Archer GC (1996) Object-oriented finite element analysis. PhD
thesis, University of California at Berkeley

11. Archer GC, Fenves G, Thewalt C (1999) A new object-oriented
finite element analysis program architecture. Comput Struct
70(1):63–75

12. Bangerth W (2000) Using modern features of C++ for adaptive
finite element methods: Dimension-independent programming in
deal.II. In: Deville M, Owens R (eds) Proceedings of the 16th
IMACS World congress 2000, Lausanne, Switzerland, Document
Sessions/118-1

13. Bangerth W, Hartmann R, Kanschat G. deal.II Dif-
ferential equations analysis library, Technical reference.
http://www.dealii.org

14. Bangerth W, Hartmann R, Kanschat G (2006) deal.II—a general
purpose object oriented finite element library. Technical Report
ISC-06-02-MATH, Institute for Scientific Computation, Texas
A&M University

15. Bangerth W, Kanschat G (1999) Concepts for object-oriented
finite element software—the deal.II library. Preprint 99-43
(SFB 359), IWR Heidelberg, Oct. 1999

16. Bathe K-J (1996) Finite element procedures. Prentice-Hall, New
York

17. Cardona A, Klapka I, Geradin M (1994) Design of a new finite
element programming environment. Eng Comput 11(4):365–381

18. Codina R (2001) Pressure stability in fractional step finite element
methods for incompressible flows. J Comput Phys 170:112140

19. Codina R (2002) Stabilized finite element approximation of tran-
sient incompressible flows using orthogonal subscales. Comput
Methods Appl Mech Eng 191(39):4295–4321

20. Dadvand P, Lopez R, Oñate E (2006) Artificial neural networks
for the solution of inverse problems. In: ERCOFTAC

21. Dadvand P, Mora J, González C, Arraez A, Ubach P, Oñate E
(2002) Kratos: An object-oriented environment for development
of multi-physics analysis software. In: Proceedings of the WCCM
V fifth world congress on computational mechanics, July 2002

22. Donéa J, Huerta A (2003) Finite element methods for flow prob-
lems. Wiley, New York

23. Dubois-Pélerin Y, Pegon P (1997) Improving modularity in object-
oriented finite element programming. Commun Numer Methods
Eng 13:193–198

24. Dubois-Pèlerin Y, Zimmermann T (1993) Object-oriented finite
element programming: Iii. an efficient implementation in C++.
Comput Methods Appl Mech Eng 108(1–2):165–183

25. Dubois-Pèlerin Y, Zimmermann T, Bomme P (1992) Object-
oriented finite element in programming: Ii. a prototype program
in smalltalk. Comput Methods Appl Mech Eng 98(3):361–397

26. Edelson DR (1992) Smart pointers: They’re smart, but they’re not
pointers. Technical report, Santa Cruz, CA, USA

27. Eyheramendy D, Zimmermann T (1996) Object-oriented finite
element programming: an interactive environment for symbolic
derivations, application to an initial boundary value problem. Adv
Eng Softw 27(1–2):3–10

296 P. Dadvand et al.

28. Eyheramendy D, Zimmermann T (1996) Object-oriented finite el-
ements ii. a symbolic environment for automatic programming.
Comput Methods Appl Mech Eng 132(3):277–304(28)

29. Eyheramendy D, Zimmermann T (1998) Object-oriented finite
elements iii. theory and application of automatic programming.
Comput Methods Appl Mech Eng 154(1):41–68(28)

30. Felippa CA, Geers TL (1988) Partitioned analysis of coupled me-
chanical systems. Eng Comput 5:123–133

31. Felippa CA, Park KC, Farhat C (2001) Partitioned analysis of
coupled mechanical systems. Comput Methods Appl Mech Eng
190:3247–3270

32. Filho JRA, Devloo PRB (1991) Object oriented programming in
scientific computations: the beginning of a new era. Eng Comput
8(1):81–87

33. Forde BWR, Foschi RO, Stiemer SF (1990) Object-oriented finite
element analysis. Comput Struct 34(3):355–374

34. Gamma E, Helm R, Johnson R, Vlissides J (1995) Design patterns:
elements of reusable object-oriented software. Addison-Wesley,
Reading

35. Gonnet GH, Baeza-Yates R (1991) Handbook of algorithms and
data structures: in Pascal and C, 2nd edn. Addison-Wesley, Read-
ing

36. Haykin S (1994) Neural networks: A comprehensive fundation.
Prentice Hall, New York

37. Idelshon SR, Oñate E (2006) To mesh or not to mesh. That is the
question. Comput Methods Appl Mech Eng 195:4681–4696

38. Idelsohn SR, Oñate E, Calvo N, Pin FD (2003) The meshless finite
element method. Int J Numer Methods Eng 58:893–912

39. Idelsohn SR, Oñate E, Pin FD (2004) The particle finite element
method: a powerful tool to solve incompressible flows with free-
surfaces and breaking waves. Int J Numer Methods Eng 61:964–
989

40. Idelsohn SR, Pin FD, Rossi R, Oñate E (2009) Fluid-structure in-
teraction problems with strong added-mass effect. Int J Numer
Methods Eng 80:1261–1294. doi:10.1002/nme.2659

41. Kirsch A (1996) An introduction to the mathematical theory of
inverse problems. Springer, Berlin

42. Klapka I, Cardona A, Geradin M (1998) An object oriented im-
plementation of the finite element method for coupled problems.
Rev Eur Elements Finis 7(5):469–504

43. Klapka I, Cardona A, Geradin M (2000) Interpreter oofelie for
pdes. In: European congress on computational methods in applied
sciences and engineering (ECCOMAS 2000), Barcelona

44. Knuth DE (1998) The art of computer programming: sorting and
searching, vol 3, 2nd edn. Addison-Wesley, Reading

45. Laboratory for Computational Physics and Fluid Dynamics
(LCP&FD). FEFLO project

46. Larese A, Rossi R, Oñate E, Idelsohn SR (2008) Validation of
the particle finite element method (pfem) for simulation of free
surface flows. Eng Comput 25:385–425

47. Lindemann J, Dahlblom O, Sandberg G (2006) Using Corba mid-
dleware in finite element software. Future Gener Comput Syst
22(1–2):158–193

48. Logg A (2007) Automating the finite element method. Arch Com-
put Methods Eng 14(2):93–138

49. Lu J, White D, Chen W-F (1993) Applying object-oriented de-
sign to finite element programming. In: SAC ’93: proceedings of
the 1993 ACM/SIGAPP symposium on applied computing. ACM,
New York, pp 424–429

50. Lu J, White DW, Chen W-F, Dunsmore HE (1995) A matrix class
library in C++ for structural engineering computing. Comput
Struct 55(1):95–111

51. López R. Flood: an open source neural networks C++ library.
CIMNE

52. López R, Balsa-Canto E, Oñate E (2008) Neural networks for
variational problems in engineering. Int J Numer Methods Eng
75(11):1341–1360

53. Mackie RI (1992) Object oriented programming of the finite ele-
ment method. Int J Numer Methods Eng 35(2):425–436

54. Mackie RI (1997) Using objects to handle complexity in finite el-
ement software. Eng Comput 13(2):99–111

55. Maplesoft. Maple’s documentation
56. MathWorks. Matlab’s documentation
57. Menetrey P, Zimmermann T (1993) Object-oriented non-linear fi-

nite element analysis: application to j2 plasticity. Comput Struct
49(5):767–773

58. Miller G (1991) An object-oriented approach to structural analysis
and design. Comput Struct 40(1):75–82

59. Miller G (1994) Coordinate-free isoparametric elements. Comput
Struct 49(6):1027–1035

60. Miller GR, Banerjee S, Sribalaskandarajah K (1995) A framework
for interactive computational analysis in geomechanics. Comput
Geotech 17(1):17–37

61. Mora J, Otín R, Dadvand P, Escolano E, Pasenau MA, Oñate E
(2006) Open tools for electromagnetic simulation programs.
COMPEL 25(3):551–564

62. Mount D, Arya S (1997) Ann: A library for approximate nearest
neighbor searching. citeseer.ist.psu.edu/mount97ann.html

63. Oñate E (2004) Possibilities of finite calculus in computational
mechanics. Int J Numer Methods Eng 60(1):255–281

64. Oñate E, Idelsohn S, Celigueta M, Rossi R (2008) Advances in the
particle finite element method for the analysis of fluid-multibody
interaction and bed erosion in free surface flows. Comput Methods
Appl Mech Eng 197:1777–1800

65. Oñate E, Idelsohn S, Pin FD, Aubry R (2004) The particle finite
element method. An overview. Int J Comput Methods 1(2):267–
307

66. Open Engineering. OOFELIE
67. Patzák B. OOFEM documentation. Czech Technical University,

Faculty of Civil Engineering, Department of Structural Mechan-
ics

68. Patzák B, Bittnar Z (1999) Object oriented finite element model-
ing. Acta Polytech 39(2):99–113

69. Pidaparti RMV, Hudli AV (1993) Dynamic analysis of structures
using object-oriented techniques. Comput Struct 49(1):149–156

70. Press WH, Vetterling WT, Teukolsky SA, Flannery BP (2002) Nu-
merical recipes in C++: the art of scientific computing. Cam-
bridge University Press, Cambridge

71. Raphael B, Krishnamoorthy CS (1993) Automating finite ele-
ment development using object oriented techniques. Eng Comput
10(3):267–278

72. Ribó R, Pasenau M, Escolano E, Ronda JSP. GiD user manual.
CIMNE, Barcelona

73. Ribó R, Pasenau M, Escolano E, Ronda JSP, González LF. GiD
reference manual. CIMNE, Barcelona

74. Rossi R (2005) Light weight structures: structural analysis and
coupling issues. PhD thesis, University of Bologna

75. Rossi R, Idelsohn SR, Oñate E (2006) On the possibilities and
validation of the particle finite element method (pfem) for complex
engineering fluid flow problems. In: Proceedings of ECCOMAS
CFD 2006, Egmond aan Zee, The Netherlands

76. Rossi R, Oñate E (2010) Validation of a fsi simulation
procedure—bridge aerodynamics modelproblem. Eng Comput
(to appear)

77. Rossi R, Oñate E (2010) Analysis of some partitioned algo-
rithms for fluid-structure interaction. Eng Comput 27:20–56.
doi:10.1108/02644401011008513

78. Rossi R, Ryzhakov P, Oñate E (2009) A monolithic fe formula-
tion for the analysis of membranes in fluids. Int J Space Struct
24(4):205–210

79. Rossi R, Vitaliani R (2004) Numerical coupled analysis of flexible
structures subjected to the fluid action. In: 5th PhD symposium in
civil engineering, Delft

An Object-oriented Environment for Developing Finite Element Codes for Multi-disciplinary Applications 297

80. Saad Y (2003) Iterative methods for sparse linear systems. Society
for Industrial and Applied Mathematics, Philadelphia

81. Šíma J, Orponen P (2003) General-purpose computation with
neural networks: A survey of complexity theoretic results. Neural
Comput 15(12):2727–2778

82. Touzani R. OFELI documentation
83. Touzani R (2002) An object oriented finite element toolkit. In:

Proceedings of the fifth world congress on computational mechan-
ics (WCCM V)

84. Veldhuizen TL (1995) Expression templates. C++ Rep 7(5):26–
31

85. Veldhuizen TL (1998) Arrays in blitz++. In: Proceedings of the
2nd international scientific computing in object-oriented parallel
environments (ISCOPE’98). Lecture notes in computer science.
Springer, Berlin

86. Veldhuizen TL, Jernigan ME (1997) Will C++ be faster than For-
tran? In: Proceedings of the 1st international scientific computing

in object-oriented parallel environments (ISCOPE’97). Springer,
Berlin, Heidelberg, New York, Tokyo

87. Vinoski S (1997) CORBA: integrating diverse applications within
distributed heterogeneous environments. IEEE Commun Mag,
14(2)

88. Wolfram Research. Mathematica’s documentation
89. Zienkiewicz OC, Taylor RL, Zhu JZ (2007) Finite element

method: its basis and fundamentals. Butterworth-Heinemann,
Stoneham

90. Zimmermann T, Dubois-Pèlerin Y, Bomme P (1992) Object-
oriented finite element programming: I: Governing principles.
Comput Methods Appl Mech Eng 98(2):291–303

91. Zimmermann T, Eyheramendy D (1996) Object-oriented finite el-
ements i. principles of symbolic derivations and automatic pro-
gramming. Comput Methods Appl Mech Eng 132(3):259–276
(18)

	An Object-oriented Environment for Developing Finite Element Codes for Multi-disciplinary Applications
	Abstract
	Introduction
	Problem
	Solutions

	Background
	Discussion

	Finite Element Method
	Basic Concepts of FEM Discretization
	Solution of FEM Equations
	Calculating Components
	Creating the Global System
	Solving the Global System
	Calculating Additional Results
	Iterating

	Multi-disciplinary Problems
	Categories
	Solution Methods

	Programming Concepts
	General Structure of Kratos
	Object Oriented Design
	Multi-layers Design
	Kernel and Applications

	Variable Base Interface
	The Variable Base Interface Definition
	Kratos Variable Base Interface Implementation
	VariableData
	Variable
	VariableComponent

	Examples

	Data Structure
	Designing New Containers
	Combining Containers
	Advantages for Combining Containers
	Disadvantages of Combining Containers
	Implementation

	Data Value Container
	Data Value Container Advantages
	Data Value Container Disadvantages
	Implementation

	Variables List Container
	Variables List Container Advantages
	Variables List Container Disadvantages
	Implementation

	Organization of Data
	Global Organization of the Data Structure
	Nodal Data
	Elemental Data
	Conditional Data
	Properties
	Entities Containers
	Mesh
	Model Part
	Model

	Finite Element Implementation
	Elements
	Conditions
	Processes
	Solving Strategies
	BuilderAndSolver
	Scheme

	Elemental Expressions
	Formulations

	Input-Output
	IO Structure Design
	IO Interface Design

	Writing an Interpreter
	Using Python as Interpreter
	Binding to Python

	Validation Examples
	Incompressible Fluid Solver
	Implementation in Kratos
	Benchmark

	Fluid-structure Interaction
	Particle Finite Element Method
	Thermal Inverse Problem
	Methodology
	Implementation

	Conclusions and Future Work
	Conclusions
	Future Work

	Acknowledgements
	References

