
The following paper was originally published in the
Proceedings of the 4th USENIX Conference on Object-Oriented Technologies and Systems (COOTS)

Santa Fe, New Mexico, April 27-30, 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

An Object-Oriented Framework for Distributed
Computational Simulation of Aerospace Propulsion Systems

John A. Reed and Abdollah A. Afjeh
University of Toledo

An Object-Oriented Framework for Distributed Computational
Simulation of Aerospace Propulsion Systems

John A. Reed and Abdollah A. Afjeh

The University of Toledo
Toledo, Ohio

{jreed, aafjeh}@eng.utoledo.edu
e
nd
s

t-
en
st-
s
al
en
ent
e
in
f
ns
or
nd

uld
ed
Abstract

Designing and developing new aerospace propulsion
systems is time-consuming and expensive.
Computational simulation is a promising means for
alleviating this cost, but requires a flexible software
simulation system capable of integrating advanced
multidisciplinary and multifidelity analysis methods,
dynamically constructing arbitrary simulation models,
and distributing computationally complex tasks. To
address these issues, we have developed Onyx, a Java-
based object-oriented application framework for
aerospace propulsion system simulation. The Onyx
framework defines a common component object model
which provides a consistent component interface for the
construction of hierarchal object models. Because Onyx
is a framework, component analysis models may be
changed dynamically to adapt simulation behavior as
required. A customizable visual interface provides high-
level symbolic control of propulsion system construction
and execution. For computationally-intensive analysis,
components may be distributed across heterogeneous
computing architectures and operating systems. This
paper describes the design concepts and object-oriented
architecture of Onyx. As a representative simulation, a
set of lumped-parameter gas turbine engine components
are developed and used to simulate a turbojet engine.

1 Introduction

As the aerospace propulsion industry moves into the
21st century, there is increasing pressure to reduce the
time, cost and risk of jet engine development. To meet
the harsh realities of today’s marketplace, innovative
approaches to reducing propulsion system design cycle
times are needed. An opportunity exists to reduce design
and development costs by replacing some of the large-
scale testing currently required for product development
with computational simulations. Increased use of

computational simulations promise not only to reduc
the need for testing, but also to enable the rapid a
relatively inexpensive evaluation of alternative design
earlier in the design process.

As a result of these forces, several governmen
industry cooperative research efforts have be
established to develop technologies that enable the co
effective simulation of a complete air-breathing ga
turbine engine. In the United States, the Numeric
Propulsion System Simulation (NPSS) project has be
established between the aerospace industry, Departm
of Defense, and NASA. When completed, NPSS will b
capable of analyzing the operation of an engine
sufficient detail to resolve the effects o
multidisciplinary processes and component interactio
currently only observable in large-scale tests [1, 2]. F
example, more accurate predictions of engine thrust a
efficiency would be possible if the “operational”
geometry of a compressor rotor, stator, and casing co
determined based on an analysis of the combin
aerodynamic, structural and thermal loadings [3].

Figure 1: Topology of Computational Simulation System

Disciplines

Model Fidelity

C
om

po
ne

nt
s

Inlet

Fan

Compressor

Combustor

Turbine

Nozzle

0-Dimensional
1-Dimensional

2-Dimensional
3-Dimensional

F
lu

id
s

S
tr

uc
tu

re
s

H
ea

t T
ra

ns
fe

r

C
on

tr
ol

s

C
om

bu
st

io
n

M
at

er
ia

ls

Simulation
Environment

High Performance
Affordable Computing

Engine Component Models

d
er-

m.
ts
s

f
g
o
+

g

e
re
y
in
d
to
s
as
ften
ults
is

l
n
.
n
d

c-
he
s.

nt
to
d-
lt,
The topology of such as system is shown in Figure 1.
In this system, the engine component models are
integrated to couple relevant disciplines, such as
aerodynamics, structures, heat transfer, combustion,
controls and materials. These models are then integrated
at a desired level of fidelity (0-, 1-, 2-, or 3-dimensional)
to form coupled subsystems for systems analysis. For
required computing speed at a reasonable cost,
simulation models can be distributed across a networked
computing platform consisting of a variety of
architectures and operating systems, including
distributed heterogeneous parallel processors. A
simulation environment provides a user-friendly
interface between the analyst and the multitude of
complex software packages and computing systems that
form the simulation system.

The implementation of such as system is a major
challenge. In this paper, we focus only on the design and
development of a prototypesimulation environment
being developed in NPSS-related research.

1.1 Design Requirements

This section describes some of the high-level
requirements which the gas turbine simulation
environment must meet:

• Component Level Modeling. The primary require-
ment is for a platform which provides a general and
flexible component view of the engine. Conceptu-
ally, this approach allows an engineer to develop
new and different engine simulation models inde-
pendent of the number of components in the engine,
their type, fidelity level, or even location in the net-
work.

• Customization. The environment must allow the
user to customize simulation functionality by
allowing components to be replaced by other com-
ponents having different functionality. Such “plug-
gability” is essential for keeping the architecture
current. Similarly, it must be capable of supporting
the integration of new simulation techniques and
computing methodologies with as little effort as
possible. Specifically, this intended to address the
areas ofmultidisciplinary couplingandmultimodel-
ing.

• Component Interoperability. In order for the pre-
ceding design requirements to be possible, it is
essential that the user be guaranteed compatibility
between all components used to develop simulation
models. Component interoperability is enforced
through specifications of a general component
model.

• Distributed Connection and Data Transforma-
tion. The introduction of interdisciplinary models
and multimodels requires support for distribute
computing as it cannot be assumed that the high
fidelity software will run efficiently (or at all) on the
same computer platform as the rest of the syste
Additionally, data transferred between componen
having different fidelity levels and/or data format
must be transformed accordingly.

• Portability . The environment must be capable o
operating without regard to hardware or operatin
system combinations. This includes the ability t
leverage extensive amounts of Fortran, C and C+
legacy software.

• User Interface. Finally, the system must provide a
user interface to reduce the efforts of developin
new models and executing simulations.

1.2 Alternatives

A great number of engine simulation softwar
packages are currently in use. Most of these a
proprietary software, developed and maintained b
aerospace companies. Also a number of public doma
software packages, developed by NASA an
Universities are also in use [4, 5]. One approach is
determine the “best” software and modify it to addres
the design requirements listed above. However, it h
been ours and others experience that this approach o
requires more effort and produces less desirable res
than a completely new design [6, 7]. Generally, this
due to the following [8]:

• Procedural design structures. Existing (public
domain) simulation software tend to utilize globa
data structures, such as FORTRAN commo
blocks, to improve simulation execution times
However, the result is a lack of data encapsulatio
and safety, making changes in design difficult an
dangerous.

• Discipline isolation. Most present-day simulation
models offer only simplified coupling of interac-
tions between, for instance, aerodynamics, stru
tures and controls. Consequently, the design of t
system reflect the bias towards these discipline
This makes it difficult to introduce new models to
couple additional disciplines.

• Assumed single processor/machine environme.
Most simulation systems were designed not
exceed perceived implementation limitations (har
ware, operating systems, memory, etc.). As a resu

n
wo

n-

”
m
n
al,
ry
t
e
re
nd
%
ary
ed

e
.
ng
s,
n

ng

th
n
s

s,
d
ld

nd
f
s

the software’s design impedes transport to modern
parallel and distributed computing platforms.

• No Graphical Interface. Another drawback of most
presently used simulation software is the lack of
graphical user interfaces (GUIs). Engine models are
developed by hand through input lists. This is often
a tedious process which can also result in erroneous
model definition.

An alternative approach which directly addresses the
first limitation, and indirectly addresses the remaining
limitations is to applyobject-oriented technologyto the
development of the simulation environment. Object-
oriented technology is a collection of powerful design,
analysis and programming methodologies for creating
general-purpose adaptive models and robust, flexible
software systems [9, 10].

An object-oriented (OO) approach is attractive for
modeling gas turbine systems due to the natural one-to-
one correspondence between objects in the application
and computational domains. Consequently, multifidelity
and multidisciplinary representations of engine
components can be conveniently encapsulated through
the use of objects. Object class morphology provides the
necessary structure to accommodate a common
engineering model, and to define the essential interfaces
for component and disciplinary coupling. Inheritance of
methods and variables in the hierarchy of classes allows
extension and customization of simulation models with
an economy of effort. Moreover, the same structure can
be used in the design, analysis, simulation and
maintenance phases of the engineering cycle.

Several prototyping efforts to develop object-
oriented gas turbine simulation systems have already
been completed. The first was developed by Holt and
Phillips [11]. In this work an object-oriented simulator
was developed in Common Lisp Object System (CLOS)
with component models based on the dynamic engine
software package called DIGTEM [4]. Similar
prototyping efforts were carried out by Curlett and
Felder [6] and Reed and Afjeh [12] in C++ and Java
programming languages, respectively. Results from
these efforts were very encouraging. In particular, the
use of a graphical user interface in both the CLOS and
Java simulation software greatly increased flexibility in
developing engine simulation models.

1.3 Solution to Design Challenge

These prototyping efforts have illustrated the
flexibility and reusability of the object-oriented
approach. However, this has been achieved mainly at the
application level. In order to develop a next-generation

simulation environment, we need to apply OO desig
concepts to the entire architecture. In recent years, t
complementary concepts,design patternsand OO
application frameworks, have been shown to be
beneficial to developing reusable and flexible domai
specific software systems.

A framework is a reusable, “semi-complete
application that can be specialized to produce custo
applications [13]. In general, the gas turbine simulatio
software now used are estimated to be ~80% identic
with the remaining percentage due to proprieta
modifications of individual components. The grea
amount of commonality suggests that it might b
possible to develop a generalized simulation softwa
package based on the 80% of common features, a
allowing the end user to customize the remaining 20
as desired. Frameworks can provide the necess
infrastructure to develop and mange such a generaliz
propulsion simulation system.

The benefits of object-oriented frameworks are du
to their modularity, reusability, and extensibility
Frameworks enhance modularity by encapsulati
volatile implementation details behind stable interface
thus localizing the impact of design and implementatio
changes [14]. These interfaces facilitate the structuri
of complex systems into manageable software pieces
object-basedcomponents which can be developed
and combined dynamically to build simulation
applications or composite components. Coupled wi
graphical environments, they permit visual manipulatio
for rapid assembly or modification of simulation model
with minimal effort. Software component modularity
also permits placement across computer platform
making them well-suited for developing distribute
simulations. Reuse of framework components can yie
substantial improvements in model development a
interoperability, as well as quality and performance o
the computational simulation system. Framework
enhance extensibility by providing “hooks” into the

Figure 2: Onyx Framework Layers

Visual
Assembly

Engine
Component

Connector
Framework

Framework

Framework

of
-
a).
wer
up
nt

ing,
).
re

w
of
be
re
to
framework. Coupled with the stable interfaces, these
hooks allow the engineer to “plug” new functionality
into the framework as desired. This is essential for
keeping the simulation architecture current and
facilitating new analytical approaches.

In the next section, we describe the design and
implementation ofOnyx, an object-oriented framework
for aerospace propulsion simulation.

2 Overview of Onyx Framework

Onyx is structured as aframework of frameworks.
Figure 2 illustrates the major structural frameworks and
components which are described in this paper.

• Engine Component Framework -A database con-
taining collections of domain-specific component
models, such as a compressor and turbines, for use
within the Visual Assembly Framework.

• Visual Assembly Framework- The Onyx graphical
user interface (GUI) provides interactive control
over the execution of the framework. The Visual
Assembly Framework forms one part of the Onyx
GUI and provides tools to visually assemble and
manipulate a simulation model.

• Connector Framework- Provides a layered abstrac-
tion mechanism for distributed interconnection ser-
vices between component models. Connectors also
are utilized in interdisciplinary and multilevel com-
ponent connections.

Onyx was developed using the Java object-oriented
programming language and run-time platform [15]. Java
was chosen for the Onyx framework because of its
excellent object-oriented programming capabilities;
platform-independent code execution (made possible
through the use of byte-codes and a Java Virtual
Machine); free availability on all major computing
platforms; and, highly-integrated run-time class
libraries, which serve as the foundation for Onyx’s
graphical user interface, distributed computing
architecture, as well as providing future implementation
of database and native code interfacing.

To illustrate how Onyx can be used to develop gas
turbine simulations, we will present a running example
throughout this section. A transient, lumped-parameter,
aero-thermodynamic turbojet engine component model,
developed in our previous research, is integrated within
the framework. The resulting simulation system is
capable of performing steady-state and transient
analyses of arbitrarily configured jet engine models.

3 Engine Component Framework

3.1 Design Challenges

A gas turbine engine is essentially an assembly
engine components inlet, fan, compressors, combus
tor, turbine, shafts and nozzle, etc. (see Figure 3
These components operate together to produce po
(or thrust). Engine components are themselves made
of other substructures. For example, a fan compone
may be expressed as a collection of hub, stage, cas
splitter and flowfield substructures (see Figure 3b
These in turn may be further decomposed into mo
basic elements such as rotor and stator blades.

Onyx’s Engine Component Framework should allo
users to simulate these structures at the various levels
abstraction as desired. For example, a user should
able to construct an engine component model from mo
basic models, and then use that component model

Figure 3: Engine Component Abstraction Diagram

(a)

(c)

FanInlet Combustor Nozzle TurbineCompressor

hub stage

rotor blade stator blade

splittercasing

0-D

1-D

3-D

2-D

flowfield

FEA

F
id

el
ity

Disciplines

(b)

CFD

CFD

Actuator
Disk Theory

FEA

Beam Model

U
Velocity Diagram

Tabulated
Empirical
Data Maps

Tabulated
Empirical
Data Maps

2-D Grid

s.
of
an
r

tc.)

e

ses
sed

al

the
es
s
u-

he
le-
e
n-
es,
e

build an engine model. Such an approach makes the pro-
cess of developing gas turbine simulation models both
simple and intuitive. To achieve this, we have selected
an internal class structure which closely resembles the
physical structure of the domain.

The component models internal structure should:

• maintain a component models physical relation-
ship. This includes arrangement of any substruc-
tures as well as references to connected component
models.

• provide control over the execution of the compo-
nents simulation algorithm, which we call, itsanal-
ysis model.

In developing the component model structure, we
should not have to distinguish between single elements
and assemblies of elements in our internal
representation. For example, we should be able to treat a
single rotor blade in the same manner as a fan
component comprised of several elements, thus
allowing the construction of arbitrarily complex models.

We can represent the hierarchal structure of the
engine, its components, and substructures using
recursive composition. This techniques allows us to

build increasing complex elements out of simpler one
Returning to Figure 3b, we can combine multiple sets
rotor and stator blades to form a fan component. The f
component can then be combined with othe
component-level elements (compressor, combustor, e
to form an engine model.

3.2 Engine Component Implementation

Figure 4 illustrates the structure of the Engin
Components Framework in Onyx. For simplicity, only
the more important variables and methods in the clas
are shown. The structure of these classes is ba
mainly on the Compositedesign pattern [16]. This
pattern effectively captures the part-whole hierarch
structure of our component models.

EngElement is a Java interface which establishes
common behavior for all engine component class
incorporated into Onyx. It defines the basic method
needed to initialize, run and stop engine element exec
tion, as well as methods for managing Port objects. T
abstract class DefaultEngElement implements EngE
ment and provides default functionality for the interfac
methods. In most cases, users will subclass DefaultE
gElement to create concrete engine component class
such as class XyzEngElement, to implement th
<< Connector >>

getDataSet()
setDataSet()

XyzEngElement

init()
run()
stop()

DefaultEngElement

add()
addPort()
init()
getPorts()
remove()

c.run();

removePort()

CompositeEngElement

init()
run()
stop()

stop()

model.execute();

ports

connector

forall c in children

model

<< Port >>

getDataSet()
setDataSet()

<< EngElement >>

add()
addPort()
init()
getPorts()
remove()
removePort()
stop()

DefaultPort

getDataSet()
setDataSet()

AeroPort

getDataSet()
setDataSet()

StructuralPort

getDataSet()
setDataSet()

0DAeroPort

getDataSet()
setDataSet()

1DAeroPort

getDataSet()
setDataSet()

0DStructPort

getDataSet()
setDataSet()

1DStructPort

getDataSet()
setDataSet()

<< Model >>

execute() DefaultModel

execute()

AeroModel
execute()

StructuralModel
execute()

0DAeroModel

execute()

1DAeroModel

execute()

0DStructModel

execute()

1DStructModel

execute()

Figure 4: Structure of Engine Component Framework

children

s.
e

ls

d
is
ds,
-

an

s
sis
t.
,
ut
ew
s.

he
h
es
e
is
s

k
rt
nd
rts
ich
the
a
5.

.g.
ses
3-
es
f
if

D,
nt
d
ay
st

ge

f

required functional methods. The approach of providing
a default abstract class for a Java interface is used
throughout the Onyx system to give the user more flexi-
bility when plugging in new classes. In this case, the
user may select to inherit the functionality provided by
DefaultEngElement, or to inherit from another class and
implement the methods defined by the EngElement
interface.

CompositeEngElement represents a composition of
EngElement objects. Management operations for chil-
dren are declared in DefaultEngElement to maximize
component transparency. To ensure type-safety, these
methods throw an exception for illegal operations, such
as attempting to add or remove an EngElement from
another EngElement, rather than a CompositeEngEle-
ment.

3.3 Analysis Model Implementation

Computational simulation involves designing a
model of an actual or theoretical physical system,
executing the model on digital computer, and analyzing
the execution output [17]. Models are generally
developed by defining a given problem domain,
reducing the physical entities and phenomena in that
domain to idealized form based on a desired level of
abstraction, and formulating a mathematical model
through the application of conservative laws.

Simulating complex systems requires the develop-
ment of a hierarchy of models, ormultimodel, which
represent the system at differing levels of abstraction
[18]. Selection of a particular model is based on a num-
ber of (possibly conflicting) criteria, including the level
of detail needed, the objective of the simulation, the
available knowledge, and given resources. For prelimi-
nary gas turbine engine design, simulation models are
often used to determine the thrust, fuel consumption
rates, and range of an engine. These simulations gener-
ally use relatively simple one-dimensional component
models to predict performance. However, in other situa-
tions, such asmultidisciplinary analysis, higher-order
models are needed. For example, to prevent the possibil-
ity of a fan blade rubbing the cowling, an engineer
might perform a coupled aerodynamic, thermal and
structural analysis of the blade to determine the amount
of blade bending due to the thermal and aerodynamic
loading. Such an analysis would require several high-
fidelity analysis models using fully three-dimensional,
Navier-Stokes computational fluid dynamics (CFD) and
structural Finite Element analysis (FEA) algorithms.

Ideally, one would prefer using three-dimensional
analysis for an entire engine as it provides greater detail
of the physical processes occurring in the system. The
computational requirements for such an analysis,

however, far exceed present computer capabilitie
Consequently, it is desirable for an EngElement to b
capable of accommodating views having multiple leve
of fidelity and differing disciplines. Figure 3c illustrates
the concept of multiple views for a rotor blade an
flowfield objects in a fan component. The rotor blade
analyzed using various mechanical-structural metho
while the flowfield is represented by various aero-fluid
dynamic methods. Based on the simulation criteria,
appropriate analysis model may be selected.

The complexity of the various analysis model
suggest that it is desirable to encapsulate the analy
model, or remove it from the structure of EngElemen
This would protect the modularity of EngElement
allowing new EngElement classes to be added witho
regard to the analysis model, and conversely to add n
analysis models without affecting the EngElement clas

We apply the Strategy design pattern [16] to
encapsulate the analysis model in an object. T
DefaultModel class is an abstract class whic
implements the Model interface. The interface defin
the methods which all Models must support to b
integrated within Onyx. As an example, two analys
models, 0DAeroModel and 1DAeroModel, are shown a
subclasses of AeroModel.

3.4 Ports

Completing the Engine Component Framewor
structure is the Port class. In physical terms, a Po
represents a control surface through which energy a
mass flow between engine components. In Onyx, Po
define an interface between EngElements through wh
data is passed. Port is an abstract class which defines
default functionality, and maintains a reference to
Connector. Connectors will be discussed in section
Port is subclassed according to the discipline (e
aerodynamic, structural, thermal, etc.), and these clas
are then each subclassed by fidelity (0-D, 1-D, 2-D,
D). Which subclass of Port an EngElement instantiat
is determined by the discipline-fidelity combination o
the EngElements analysis model(s). For example,
EngElement has a single analysis model which is a 0-
aerodynamic model, then an instance of EngEleme
creates two 0DAeroPort objects to handle input an
output. Because the analysis model is dynamic and m
be changed at run-time, the Port objects also mu
change accordingly. Consequently, we apply theState
design pattern [16] to dynamically create and mana
the Ports in an EngElement.

3.5 Example

To illustrate the application of the Onyx framework
and the feasibility of this approach, a small collection o

ng
his
the

st,
ce
nt
he
o

to
s is

se
ct

e
t
l

s.
e

e

nt
a
ich
al
le
l
m
is
es.
o

n
d

e
n

ly
M
t
g

ed
e

is
f
s
it

ual
component object classes representing the inlet, com-
pressor, combustor, turbine, nozzle, bleed-duct connect-
ing-duct, and shaft, of a jet engine have been developed.
An inter-component mixing volume class was also
defined which is used to connect two successive compo-
nents as well as define temperature and pressure at com-
ponent boundaries. These concrete classes are all
subclasses of the abstract DefaultEngElement class
shown in Figure 4.

Each class implements a specific mathematical
(analysis) model which describes its physical operation.
In this example, the analysis models are all relatively
simple differential-algebraic equations (DAE) devel-
oped from an space-averaged treatment of the conserva-
tive laws of thermo- and fluid dynamics. These are
patterned after the work of Daniele et al., [4]. A com-
plete description of the models can be found in the work
of Reed [7]. The analysis model for each component is
encapsulated in an appropriate subclass of Default-
Model, and present specific implementations of the
init(), run() andstop() methods which initial-
ize the component and execute its analysis model,
respectively.

Appropriate Port objects are created in each compo-
nent object depending on the number and type of con-
nections required. For example, a compressor class
defines two AeroPort objects to pass aero-thermody-
namic data to adjoining components, and a Structur-
alPort to pass data to a connecting shaft object.

4 Visual Assembly Framework

4.1 Design Challenges

Aerospace engineers often use schematic drawings
to represent propulsion systems and subsystems. It is
then natural to represent computational simulations of
such systems using this visual metaphor.

In the previous section, we developed an object-
oriented component model which allows us to
dynamically assemble arbitrarily complex engine
system models. We now consider the development of a
framework which supports visual assembly of those
component models.

The main requirement of the Visual Assembly
Framework is to provide visual analogs for the
component model objects, and support for assembling
them. This has several implications. The first is obvious:
we need visual elements to represent the objects which
form Onyx’s engine component model. The second, less
obvious requirement, is that the concept of component
composition developed previously must also be
supported visually. Finally, the framework must take
care of managing basic graphical functions window

management, displaying objects, moving and draggi
visual elements, tracking mouse movements, etc. T
reduces the programming burden for engineers using
framework.

In addition to these goals are some constraints. Fir
the framework should decouple the visual user interfa
(UI) objects from their counterparts in the compone
framework. Although the visual elements represent t
component, we would like to allow a component’s UI t
be changed easily, possibly at run-time.

Second, our implementation should allow the user
override the default visual representations as much a
practically possible.

We have selected the Java platform in part becau
of its integrated graphical support. Java’s Abstra
Window Toolkit (AWT) is part of the core classes which
are available in every Java Virtual Machine (JVM). Th
AWT provides a collection of platform-independen
graphical components for building graphica
applications in Java. One drawback of the AWT is that it
provides only basic low-level graphical component
Another drawback is the heavyweight nature of th
AWT, due to implementing graphical objects with th
native windowing system.

We have opted instead to use the Swing compone
set to implement our graphic interface [19]. Swing is
subset of the new Java Foundation Classes (JFC), wh
is itself a subclass of the AWT. Therefore, our graphic
interface will retain the same portability made possib
with AWT. Swing however, adds more high-leve
graphic components, as well as the ability to select fro
multiple Look-and-Feel standards. However, th
selection raises some immediate implementation issu

One attractive feature of Java is its capability t
developapplets compiled Java programs which can
be dynamically downloaded from a Web server and ru
locally on the client’s machine using a Java-enable
browser. The ubiquity of Web browsers mak
implementing Onyx’s visual assembly framework as a
applet very attractive.

One drawback of using an applet is the relative
long time needed to implement new versions of the JV
into web browsers. Currently, the JFC is no
implemented in any browser, meaning that the Swin
classes used in Onyx would have to be download
along with the visual assembly framework each time th
applet was accessed.

Another drawback associated with using an applet
its security restrictions which affect the partitioning o
Onyx’s structure. Generally, this limits communication
between the applet to only the web server from which
was downloaded.

Because of these issues, we have designed the vis
assembly framework as a Javaapplication. Applications

ill
s.
act
ich
on
ge,
is
nd
-

n
n.
e

o
ted

to

-
g-
of
r),
-

s

h-
nd
es
are similar to stand-alone programs. As the issues of
browser-JVM integration and applet security issues are
addressed, we will modify Onyx to permit the visual
assembly framework to be distributed as an applet.

4.2 Visual Assembly Framework Design

A simulation model is constructed by creating Sche-
maticIcon objects and connecting them to form an
engine schematic. A SchematicIcon is composed of a
VEngElement and one or more VPorts. VConnectors
are used to “wire” the SchematicIcons together. Figure 5
illustrates these relationships.

• VEngElement is the visual analog of the EngEle-
ment class in the component framework. VEngEle-
ment is a subclass ofjava.swing.JButton ,
and thus contains an Icon which presents an image
of the engine component; a Label which displays
the name of the EngElement object instance.

• One or more VPorts are attached to the VEngEle-
ment, and represent connection points between
components. VPorts are color-coded to represent
the type of Port it represents.

• A VConnector is the visual analog of the Connector
object. It is represented as a line drawn between two
VPorts.

Each VEngElement, VPort and VConnector has a
popup menu associated with it. The menu allows the
user to access various functions such as moving, delet-
ing, copying, etc. In the VEngElement, the popup menu
has a special item for “customizing” the component.
When selected, the customizer object is displayed.

Customizers are graphical interfaces which allow the
user to change an EngElement’s attributes. Typically,
these are used to modify data in the EngElement analy-
sis model. They may also be used to control the distribu-
tion of the EngElement in a distributed simulation.

In designing the structure for our visual assembly we
immediately recognize from Figure 5 that each instance

of SchematicIcon represented in the framework w
likely have different Icons, display names and VPort
One solution is to define SchematicIcon as an abstr
class, and use inheritance to define subclasses wh
represents visually the various concrete SchematicIc
classes. Each class would then redefine the Icon ima
display name, and VPort location and type. Th
approach however, typically leads to a very broad a
shallow inheritance tree, indicating little use of inherit
ance.

A more useful approach would be to create a
appropriate SchematicIcon using object compositio
This is accomplished through the use of th
parameterized Factory design pattern [16], in
conjunction with Java’s reflection mechanism. This als
allows us to address one of the design constraints lis
previously: decoupling a component’s UI from its
component model representation. Our solution is
apply a variation of the JavaBeans “Info” class
concept [20].

We will illustrate this approach by creating a Sche
maticIcon object for an XyzEngElement object (see Fi
ure 6). When a user creates an instance
XyzEngElement (this process will be discussed late
the Visual Assembly Framework invokes the Sche
maticIconFactory’screate() method. This method
invokes the getEngElemInfo() method in the
XyzEngElement object which returns the info clas
name,XyzEngElementInfo.class . The Factory
instantiates this class using the
java.lang.reflect.Constructor newIn-
stance() method. XyzEngElementInfo implements
the EngElementInfo interface which defines two met
ods to create and return instances of PortDescriptor a
EngElementDescriptor. We create and return instanc

Figure 5: SchematicIcon

VConnector

VEngElement

Label

VPort

Icon

SchematicIconFactory

loadJars()
create()

XyzEngElementInfo

getEngElemDescriptor()
getPortDescriptors()

XyzEngElement

getEngElemInfo()
init()
run()
stop()

XyzEngElementInfo.class
return

new EngElemDescriptor()
return

new PortDescriptor()
return

<< EngElementInfo >>

getEngElemDescriptor()
getPortDescriptors()

Figure 6: SchematicIcon creation process

EngElementDescriptor

getCustomizerClass()
getDisplayName()

PortDescriptor

getPortLocation()
getPortType()

getIcon()

XyzCustomizer.class
return

info

n
e-

he-
to
to
r-
a-
to
.

or
t,

or
or
t’s
e
e

ity,
ce.
f
s.
h
e

s
7
y,
)

T-
ld

f
-
s-

ss

er

ges
of

us-
ts,
r-
es
of these classes instead of simply returning the class
name, since XyzEngElementInfo initializes these
instances by passing parameters in the constructor of
each class.

PortDescriptor encapsulates information concerning
the type, initial placement, and constraints of the VPorts
for XyzEngElement. EngElementDescriptor defines
methods which return the Icon image and display name
String used in the VEngElement button. The method
getCustomizerClass () returns the class name for
the XyzEngElement’s Customizer. This class name is
stored in the VEngElement object, and is lazily initial-

ized using thenewInstance() method.
The combination of theFactory pattern and Java

reflection gives considerable freedom and flexibility i
creating SchematicIcons. The composition of a Sch
maticIcon can easily be redefined by subclassing Sc
maticIconFactory. We can also use Java reflection
alter the specific classes that get instantiated in order
build the SchematicIcon without subclassing. Furthe
more, we have effectively separated the UI implement
tion from component implementation. One drawback
this approach is the level of indirection introduced
However, the user sees little of this complexity as he
she is only required to define the XyzEngElemen
XyzEngElementInfo and a Customizer class.

4.2.1 Customizers

We face another dilemma in creating customizers f
each EngElement. Customizer represents a UI f
defining and editing the attributes of an EngElemen
analysis model. Because it is strongly coupled to th
data structure for each specific type of EngElement, w
will likely end up with many different Customizer
classes. These may or may not have any commonal
so we may not be able to take advantage of inheritan
In order to be flexible, Onyx must be capable o
integrating each of these specific Customizer
Furthermore, we would like to allow users as muc
flexibility as is possible to customize the data UI, so w
do not want to limit their options through inheritance.

Our solution is to provide an interface which define
a plug-point for user-defined customizers. Figure
shows the Customizer structure. To maximize flexibilit
the Visual Assembly Framework allows the user to 1
program a new customizer, or 2) to use the Basic
abbedCustomizer. A user-defined customizer wou
inherit from java.awt.Component and implement
the Customizer interface methods directly. Thecom-
mitChanges () andsetTarget () methods are called
from the Visual Assembly framework. The constraint o
inheriting fromComponent is necessary as all custom
izers are automatically added to an instance of VCu
tomizerDialog which expects its child to be a subcla
of Component . VCustomizerDialog wraps the Cus-
tomizer and provides a set of buttons to accept us
input. ThesetTarget () method identifies the object
to be updated, while thecommitChanges () method is
used to update the object when the user accepts chan
to the customizer data. XyzCustomizer is an example
a user-defined customizer.

In the second approach, the user can subclass VC
tomizerPage, compose it with the desired UI objec
and add it to BasicTabbedCustomizer. VCustomize
Page can provide methods to handle common issu

VCustomizerDialog

createButtonPanel()

<< Customizer >>

commitChanges()
setTarget()

Figure 7: Customizer structure

VCustomizerPage

commitChanges()
setTarget()

BasicTabbedCustomizer

commitChanges()
setTarget()

XyzCustomizer

commitChanges()
setTarget()

addTab()

makeLayout()

DesignPointDataPage

commitChanges()
setTarget()

TransientControlPage

commitChanges()
setTarget()

customizer

Figure 8: Onyx Customizer

m-

.
b-

to
a

I-
a
of

z-
s a
es
in

ide
v-
e
-

-
e

such as laying out components. Since BasicTabbedCus-
tomizer adds instances of Customizer, it is also possible
to add classes which inherit fromjava.awt.Compo-
nent and implement Customizer. Figure 8 shows a pic-
ture of an instance of DefaultTabbedCustomizer,
including several VCustomizerPage page objects.

The Customizer structure provides considerable
flexibility. It allows the user select to compose the UI or
inherit functionality and structure when developing a
customizer. By adhering to an interface, users can
develop different customizers and plug them in as

desired. This process is made relatively easy with a si
ple change to the class name returned by thegetCus-
tomizerClass () method in EngElementDescriptor
Furthermore, since the VCustomizerDialog accepts su
classes ofjava.awt.Component , users can use
Java Integrated Development Environments (IDEs)
quickly construct customizers from AWT or Swing Jav
Bean GUI components.

4.2.2 Frames, Panes, Managers and SchematicIcons

Engine schematics are built by adding Schematic
cons to a EngSchematicPane which is contained in
SchematicFrame. EngSchematicPane is a subclass
java.swing.JLayeredPane , and maintains a list-
ing of the SchematicIcons it contains, as well as their
order (i.e., their layer). EngSchematicPane also keep
reference to an EngSchematicManager, which provid
support for selecting and moving SchematicIcons with
the EngSchematicPane (see Figure 9).

The SchematicFrame and related classes prov
required support for user interactions: dragging, mo
ing, etc. We also support in the visual framework, th
hierarchal composition concept introduced in the com
ponent framework.

In our requirements for a visual assembly frame
work, we indicated our desire to support visually th

SchematicPane

getAllIcons()

<< SchematicManager >>

beginDragIcon()
dragIcon()

Figure 9: SchematicFrame structure

SchematicIcon

getVEngElement()
getVPorts()

EngSchematicPane

EngSchematicPane()

manager

engDragIcon()

DefaultSchematicManager

beginDragIcon()
dragIcon()
engDragIcon()

EngSchematicManager

beginDragIcon()
dragIcon()
engDragIcon()

icons
Figure 10: SchematicFrames showing visual composition

g

r-
in
nt
on
ic-
n-
d

as
so

nd
In

by

nd
an
ge

is
e
n
e
x
re

re
nt
,
an
in

of
re
ed

rly
ort

f
r

g

composition of EngElements in the Engine Component
Framework. This is implemented using the Schematic-
Frame, EngSchematicPane and SchematicIcons classes.
We illustrate it with an example (see Figure 10).

4.3 Example

In section 3.5, the EngElement classes representing
engine components found in a turbojet engine were
developed. We now demonstrate using the classes in the
Visual Assembly Framework to create a simple turbojet
engine. For each EngElement class, the user also defines
an EngElementInfo class with appropriate descriptor
information; including the icon, display name, custom-
izer, and VPort locations. The customizer, EngEle-
mentInfo, and EngElement model and port classes for
each EngElement are then collected into a Java archive
(jar) file.

When the Visual Assembly Framework is started,
Onyx searches the default loading directory, and loads
the classes for each of the jar files. The EngElement
classes are extracted and stored for instantiation by a
factory object. The EngElementInfo classes are also
extracted and used to obtain the display names and icons
for each of the loaded EngElements. The icons and dis-
play names are listed in the Visual Assembly Toolbox
which is displayed alongside the initial Schematic-
Frame, calledMain (see Figure 10). From theMain
window, the user selects theCreate Composite
menu command, which creates a new SchematicFrame
and places a Composite SchematicIcon in the Main win-
dow. This SchematicIcon represents the top-level view
of the turbojet engine, and the user names itTurbo-
jet . This also sets the title name of the new Schematic-
Frame toTurbojet .

Next, the user begins to construct the turbojet engine
model. From the Toolbox, the user selects anInlet ,
Fan, Shaft , Turbine and Nozzle engine compo-
nent to add to theMain SchematicFrame. This action
creates an proper SchematicIcon for the each compo-
nent and displays them in the EngSchematicPane. At the
same time, Onyx instantiates their respective EngEle-
ments and adds them to an instance of CompositeEn-
gElement in the Engine Component Framework. Our
user next selects theMain SchematicFrame, and using
theCreate Composite command, instantiates a sec-
ond SchematicFrame, which the user namesCore .

From the Toolbox, the user now selectsCompres-
sor , Combustor, Shaft and Turbine compo-
nents to add to theCore . SchematicIcons for these
components are created and displayed in theCore Eng-
SchematicPane. Onyx instantiates their respective
EngElements and adds them to a second instance of
CompositeEngElement in the Engine Component

Framework. At this time, a SchematicIcon representin
the Core SchematicFrame is added to theMain Eng-
SchematicPane.

We now have two loosely coupled composite hiera
chal structures: one composed of EngElements with
CompositeEngElements in the Engine Compone
Framework; and its corresponding visual representati
composed of SchematicIcons within EngSchemat
Panes. Also notice, from Figure 10, that the relatio
ships between SchematicIcons, VPorts an
VConnectors are maintained in both theMain and
Core frames.

5 Connector Framework

5.1 Design Challenges

We have developed a component model for g
turbine components, as well as a compatible interface
that they can be assembled both programmatically
and visually  to form more complex systems of
objects. In order for these components to interact a
simulate the given system, they need to communicate.
the Onyx architecture, EngElements communicate
sending messages via a Port.

Consider a physical connection between a Inlet a
Fan EngElements as shown in Figure 10. Inlet and F
are physically and logically connected and exchan
messages, such asgetDataSet(), to retrieve data in
order to update their analysis models. Normally, th
process would be relatively straightforward, with th
getDataSet () request being forwarded from the Fa
via the Fan’s Port to the Inlet’s Port, and finally to th
Inlet, where the request is carried out. In the Ony
architecture, however, this process is made mo
complicated by at least two situations.

5.1.1 Multifidelity Connections

The first situation occurs when two EngElements a
connected which have analysis models with differe
discipline and/or fidelity combinations. If, for example
the Inlet component has a 1-D Fluid model and the F
has a 2-D Fluid model, then we have a mismatch
fidelity. When the Fan processes thegetDataSet ()
message, it would have some intelligence capable
transforming its 2-D data into a 1-D data set befo
returning it to the Inlet. Other methods are also need
to perform additional transformations (2-D to 0-D, 2-D
to 3-D, etc.). Such transformation methods are clea
necessary in order for the Onyx architecture to supp
interdisciplinary and multifidelity modeling

Holt and Phillips [11] introduced the concept o
connectorobjects to provide appropriate methods fo
“expanding” or “contracting” the data, and mappin

t,
e
y
n
e
the
me

e,
in

y

ts
les
in

e

a
n

in
ur

e
ch
lt
from different discipline domains. Connector objects are
essentially intelligent Command objects, as described
by the Commanddesign pattern [16]. As with the
command objects, connectors provide flexibility by
decoupling the collaborating objects, making them
easier to reuse. An EngElement no longer need know
the discipline-fidelity of the EngElement to which it is
connected. Figure 11 shows an interaction diagram
using connectors.

5.1.2 Distributed Connections

The second problematic situation results from the
fact that an EngElement is to be distributable to other
machines. The complex and intensive computational
nature of jet engine simulations require that the
framework be capable of distributing computations on a
network of computers. This permits access to high-
performance mainframe or workstation clusters for
computationally intensive tasks and, at the same time,
permits user control from the local computer. Also, this
feature allows on-line monitoring of computations and
dynamic allocation of computational resources for
optimum performance while a simulation is in progress.

Although the distribution of objects across a network
is a relatively complex task, our goal is to design Onyx
to perform this distribution in a manner totally
consistent with non-distributed simulations.
Consequently, the distribution of components across the
network should be as transparent as possible to the user.
No actions, other than selecting a remote machine on
which to run a component, should be required to
distribute the component at run-time. To illustrate the
process, we return to our Inlet-Fan example.

In this scenario, the user would like to run the Fan
component on a remote machine. In the Visual
Assembly Framework, the user creates an Inlet and Fan.
Accessing the Fan’s customizer (see Figure 8), the user

selects the “Distribution” page and selects from the lis
the name of the remote machine on which to run th
Fan. Now, the user (implicitly) creates a Connector b
drawing a connecting line between the Inlet and Fa
Ports. Notice, that with the exception of selecting th
name of the remote machine, the process is exactly
same as connecting components which run on the sa
machine.

Placing a component object on the remote machin
however, means that the two components reside
different Java Virtual Machines. This raises a difficult
since a Connector has two variables,port1 and
port2 , which keep references to the Port objec
connected to the Connector. One of these variab
would normally be referencing the Fan, but since it is
a different virtual machine, it cannot be referenced.

We can address this problem by having th
Connector reference aremote proxy, as defined in the
Proxydesign pattern [16]. The remote proxy provides
local representation for an object in another desig
space.

5.2 Connector Framework Implementation

The Connector Framework structure is shown
Figure 12. The Java interface, Connector, defines o
interface functionality. As with previous interfaces, w
provide an abstract class, DefaultConnector, whi
implements the interface, provides defau

Onyx
aConnectorFramework fanPort inletPort

new

setConnector(aConnector)

getDataSet()

transform()

getDataSet()

Fig. 11 - Interaction diagram

<< Connector >>

getDataSet()
setDataSet()

port1

<< Port >>

getDataSet()
setDataSet()

Figure 12: Structure of Connector Framework

LocalConnector

LocalConnector()

RemoteConnector

RemoteConnector()

DefaultConnector

getDataSet()

setDataSet()
isRemote()

port2

proxy

<< RemotePort >>

getDataSet()
setDataSet()

<< Transform >>

transform()
DefaultTransform

transform()

Fluid2Dto3D

transform()

1DThermaltoStruct

transform()

transform

Fluid1Dto2D

transform()

n
r,
y

er-
nt
re

eir

e.
is
)

nd
a
e

f
’s
e
.

on
ve
ns

f
to

n
d
as
e
ful
of
n

nd
the
s
e

ing
a

n
of

en
sed
to
x
s

implementation of each method, and defines the
variables port1 , port2 , and isRemote .
LocalConnector inherits all of its functionality and
variables from its superclass. It represents a normal
(non-remote) Connector. References to theport1 and
port2 objects are passed into the constructor.
RemoteConnector’s constructor takes an additional
argument to identify the remote machine.
RemoteConnector defines aproxy variable to hold the
reference to the proxy object. The constructor also
initializes Onyx’s interconnection service to bind
proxy to the remote object.

Onyx’s distribution mechanism is currently based on
the Java Remote Method Invocation (RMI), a core
component of the Java platform. RMI uses client stubs
and server skeletons to interface with the local and
remote objects. The stub represents the remote proxy
object which is referenced by the RemoteConnector
proxy variable

Because RMI is designed to operate fully within the
Java environment, it is limited to connections between
machines which are running the Java Virtual Machine.
By assuming the homogeneous environment of the
JVM, Onyx can take advantage of the Java object model
whenever possible. This provides a simple and
consistent programming model. Given that most
computing platforms now provide a JVM, this should
not limit the use of the framework. However, we are also
in the progress of integrating CORBA for providing
non-Java distributed object support. This is especially
important for incorporation of the multitude of legacy
applications not written in Java which currently exist in
the aerospace industry.

Our Connector now provide two sets of
functionality: 1) it can transform data sets between two
components of different fidelity, and 2) it establishes
and maintains communications between distributed
components. Although both functions are based on
decoupling the connected components, we would prefer
that Connector has a more singular functionality. This
would make it more reusable in the future. To achieve
this, we delegate the transformation responsibility to a
separate Transform object. Connector selects an
appropriate Transform object using aStatepattern [16],
based on the fidelity-discipline combination of the
connection. The Transform object utilizes theStrategy
pattern [16], to allow different transformation
algorithms, such as Fluid1Dto2D, to be interchangeable.

The Connector makes connections between
EngElements transparent. Both distributed and
multifidelity connections can be made without regard to
location of the component, or its fidelity. Modifying the
distribution mechanism can be performed either by
subclassing DefaultConnector, or implementing

Connector directly. Also, connection implementatio
details are fully encapsulated by the Connecto
allowing EngElement and Port to remain unaffected b
an changes to the distribution mechanism.

5.3 Example

For test purposes we have established a simple pe
to-peer distribution mechanism for the EngEleme
objects in our example model. EngElement objects a
instantiated on the remote machine and export th
interface so that theirinit() , run() and stop()
methods may be called by Onyx from a local machin
In addition, a RemotePort interface was defined and
exported to allow connections from local (non-remote
Port objects. This interface allows the connectors a
ports to invoke the getDataSet() methods to return
serialized object containing necessary engin
component operating states.

Future efforts in this area will investigate the use o
mobile object technology, such as ObjectSpace
Voyager [21], to allow the user to dynamically relocat
EngElement objects to other platforms on the network

6 Concluding Remarks

Designing and developing new aerospace propulsi
technologies is a time-consuming and expensi
process. Computational simulation is a promising mea
for alleviating this cost, due to the flexibility it provides
for rapid and relatively inexpensive evaluation o
alternative designs, and because it can be used
integrate multidisciplinary analysis earlier in the desig
process [22]. However, integrating advance
computational simulation analysis methods such
CFD and FEA into a computational simulation softwar
system is a challenge. A prerequisite for the success
implementation of such a program is the development
an effective simulation framework for the representatio
of engine components, subcomponents a
subassemblies. To promote concurrent engineering,
framework must be capable of housing multiple view
of each component, including those views which may b
of different fidelity or discipline [23]. In addition, the
framework must address the challenges of manag
this complex, computationally intensive simulation in
distributed, heterogeneous computing environment.

Object-oriented application frameworks and desig
patterns help to enable the design and development
aerospace simulation systems by leveraging prov
software design to produce a reusable component-ba
architecture which can be extended and customized
meet future application requirements. The Ony
application framework described in this paper provide

va

k
le

ir
w
sis
x.
rs

y
he
d
ion

le
r
t

.
o

.

Figure 13: Onyx Aerospace Propulsion System Simulation Framework

<< EngElement >>

CompositeEngElement

<< Port >>

<< Model >>

XyzEngElementInfo

VCustomizerPage

<< Customizer >>

DefaultSchematicManager

<< SchematicManager >>

BasicTabbedCustomizer

SchematicIcon

DefaultEngElement DefaultModel

XyzModel

DefaultPort

<< EngElementInfo >>

PortDescriptor

EngElementDescriptor

<< Transform >>

DefaultTransform

DefaultConnector

<< Connector >>

EngSchematicPane

SchematicPane

EngSchematicManager

TransientControlPage

DesignPointPage

XyzCustomizer

VCustomizerDialog

SchematicIconFactory

XyzEngElement

User-defined Classes

V isual Assembly FrameworkConnector Framework

Engine Component Framework
an ensemble of framework components which, together,
form an integrated framework for propulsion system
simulation. Figure 13 shows how the individual
framework component structures combine to form the
Onyx framework.

Onyx promotes the construction of aerospace
propulsion systems, such as jet gas turbine engines, in
the following ways. First, it provides a common engine
component object model which: encapsulates the
hierarchal nature of the physical engine model, is
capable of housing multimodel and multifidelity
analysis models, and enforces component
interoperability through a consistent interface between
components. Second, it enables the construction and of
engine models and customization of the simulation at a
high level of abstraction through the use of visual
representation in the visual assembly framework. Third,
it supports both connection and transformation of data
between multifidelity components running in a
distributed network environment. Finally, the object-
oriented design, built-in support for graphical interfaces
and heterogeneous distributed processing, and
automatic memory management, in Java greatly
simplify and unify the design and development of Onyx.

In addition, Java’s byte code and widely available Ja
Virtual Machine allows Onyx to be highly portable.

The use of object-oriented application framewor
and design pattern methods in Onyx help to decoup
domain-specific simulation strategies from the
implementations. This decoupling enables ne
simulation strategies (e.g., components, analy
models, solvers, etc.) to be integrated easily into Ony
By applying these design strategies, Onyx allows use
to dynamically alter simulation models during an
phase of the simulation. The example presented in t
paper serves to illustrate the flexibility, extensibility, an
ease of using Onyx to develop aerospace propuls
system simulations.

Acknowledgments

The work described in this paper was made possib
by funding from the NASA Lewis Research Cente
Computing and Interdisciplinary System Office (Gran
No. NCC-3-207), and the University of Toledo. Mr
Reed is partially supported by a University of Toled
Doctoral Fellowship. We would like to thank Greg
Follen at NASA Lewis for his continued support

d

y

s,
le

-

,”

e

n
.

d

Special thanks also to Murthy Devarakonda for his
guidance in preparing this paper. More information on
Onyx is available at www-mime.eng.utoledo.edu/
~jreed/.

References

[1] Claus, R. W., Evans, A. L., Lytle, J. K., and
Nichols, L. D., 1991, “Numerical Propulsion
System Simulation,” Computing Systems in
Engineering,Vol. 2, pp. 357-364.

[2] Claus, R. W., Evans, A. L., and Follen, G. J.,
1992, “Multidisciplinary Propulsion Simulation
using NPSS,” AIAA Paper No. 92-4709

[3] Evans, A. L., Lytle, J., Follen, G., and Lopez, I.,
“An Integrated Computing and Interdisciplinary
Systems Approach to Aeropropulsion
Simulation,” ASME Paper No. 97-GT-303.

[4] Daniele, C. J., Krosel, S. M., Szuch, J. R., and
Westerkamp, E. J., 1983, “Digital Computer
Program for Generating Dynamic Engine Models
(DIGTEM),” NASA TM-83446.

[5] Plencer, R., and Snyder, C., 1991, “The Navy/
NASA Engine Program (NNEP89) - A User’s
Manual,” NASA TM-105186.

[6] Curlett, B. P. and Felder, J. L., 1995, “Object-
oriented Approach for Gas Turbine Engine
Simulation,” NASA TM-106970.

[7] Reed, J. A., 1993, “Development of an Interactive
Graphical Aircraft Propulsion System Simulator,”
MS Thesis, The University of Toledo, Toledo,
OH.

[8] Drummond, C., Follen, G., and Cannon, M.,
1994, “Object-Oriented Technology for
Compressor Simulation,” AIAA Paper No. 94-
3095.

[9] Taylor, D. A., 1990, “Object-Oriented
Technology: A Manager’s Guide,” Addison
Wesley Publishing Company, Inc., Reading, MA.

[10] Booch, G, 1991, “Object Oriented Design with
Applications,” The Benjamin/Cummings
Publishing Company, Inc., New York, NY.

[11] Holt, G., and Phillips, R., 1991, “Object-Oriented
Programming in NPSS Phase II Report,” NASA
CR-NAS3-25951.

[12] Reed, J. A., and Afjeh, A. A., 1997, “A Java-
based Interactive Graphical Gas Turbine
Propulsion System Simulator,” AIAA Paper No.
97-0233.

[13] Johnson, R. and Foote, B., 1988, “Designing
Reusable Classes,”Journal of Object-Oriented
Programing, Vol. 1, pp. 22-35.

[14] Schmidt, D. C., 1997, “Applying Design Patterns

and Frameworks to Develop Object-Oriente
Communications Software,” Handbook of
Programming Languages, Volume I, P. Salus, ed.,
MacMillian Computer Publishing.

[15] Arnold, K. and Gosling, J., 1996, “The Java
Programming Language,” Addison Wesle
Publishing Company, Inc., Reading, MA.

[16] Gamma, E., Helm, R, Johnson, R., and Vlisside
J., 1995, “Design Patterns: Elements of Reusab
Object-Oriented Software,” Addison Wesley
Publishing Company, Inc., Reading, MA.

[17] Fishwick, P. A., 1997, “Computer Simulation:
Growth Through Extension,”TRANSACTIONS of
The SCS, Vol. 14, pp. 13-23.

[18] Fishwick P. A. and Zeigler, B. P., 1992, “A
Multimodel Methodology for Qualitative Model
Engineering,” ACM Transactions on Modeling
and Computer Simulation, Vol. 12, pp. 52-81.

[19] Swing, 1997, “The Swing Connection,” Available
from http://java.sun.com/products/jfc/swingdoc
current/index.html.

[20] Englander, R., 1997, “Developing Java Beans
O’Reilly & Associates, Inc., Sebastopol, CA.

[21] Voyager, 1998, “ObjectSpace Voyager Cor
Package Technical Overview,” Available from
http://www.objectspace.com/.

[22] Jameson, A., 1997, “Re-Engineering the Desig
Process through Computation,” AIAA Paper No
97-0641.

[23] Irani, R. K., Graichen, C. M., Finnigan, P. M., and
Sagendorph, F., 1994, “Object-base
Representation for Multidisciplinary Analysis,”
AIAA Paper No. 94-3093.

	An Object-Oriented Framework for Distributed Computational Simulation of Aerospace Propulsion Sys...
	John A. Reed and Abdollah A. Afjeh
	The University of Toledo
	Toledo, Ohio
	{jreed, aafjeh}@eng.utoledo.edu
	Abstract
	1 Introduction
	1.1 Design Requirements
	1.2 Alternatives
	1.3 Solution to Design Challenge

	2 Overview of Onyx Framework
	3 Engine Component Framework
	3.1 Design Challenges
	3.2 Engine Component Implementation
	3.3 Analysis Model Implementation
	3.4 Ports
	3.5 Example

	4 Visual Assembly Framework
	4.1 Design Challenges
	4.2 Visual Assembly Framework Design
	4.2.1 Customizers
	4.2.2 Frames, Panes, Managers and SchematicIcons

	4.3 Example

	5 Connector Framework
	5.1 Design Challenges
	5.1.1 Multifidelity Connections
	5.1.2 Distributed Connections
	5.2 Connector Framework Implementation

	5.3 Example

	6 Concluding Remarks
	Acknowledgments
	References
	[1] Claus, R. W., Evans, A. L., Lytle, J. K., and Nichols, L. D., 1991, “Numerical Propulsion Sys...
	[2] Claus, R. W., Evans, A. L., and Follen, G. J., 1992, “Multidisciplinary Propulsion Simulation...
	[3] Evans, A. L., Lytle, J., Follen, G., and Lopez, I., “An Integrated Computing and Interdiscipl...
	[4] Daniele, C. J., Krosel, S. M., Szuch, J. R., and Westerkamp, E. J., 1983, “Digital Computer P...
	[5] Plencer, R., and Snyder, C., 1991, “The Navy/ NASA Engine Program (NNEP89) - A User’s Manual,...
	[6] Curlett, B. P. and Felder, J. L., 1995, “Object- oriented Approach for Gas Turbine Engine Sim...
	[7] Reed, J. A., 1993, “Development of an Interactive Graphical Aircraft Propulsion System Simula...
	[8] Drummond, C., Follen, G., and Cannon, M., 1994, “Object-Oriented Technology for Compressor Si...
	[9] Taylor, D. A., 1990, “Object-Oriented Technology: A Manager’s Guide,” Addison Wesley Publishi...
	[10] Booch, G, 1991, “Object Oriented Design with Applications,” The Benjamin/Cummings Publishing...
	[11] Holt, G., and Phillips, R., 1991, “Object-Oriented Programming in NPSS Phase II Report,” NAS...
	[12] Reed, J. A., and Afjeh, A. A., 1997, “A Java- based Interactive Graphical Gas Turbine Propul...
	[13] Johnson, R. and Foote, B., 1988, “Designing Reusable Classes,” Journal of Object-Oriented Pr...
	[14] Schmidt, D. C., 1997, “Applying Design Patterns and Frameworks to Develop Object-Oriented Co...
	[15] Arnold, K. and Gosling, J., 1996, “The Java Programming Language,” Addison Wesley Publishing...
	[16] Gamma, E., Helm, R, Johnson, R., and Vlissides, J., 1995, “Design Patterns: Elements of Reus...
	[17] Fishwick, P. A., 1997, “Computer Simulation: Growth Through Extension,” TRANSACTIONS of The ...
	[18] Fishwick P. A. and Zeigler, B. P., 1992, “A Multimodel Methodology for Qualitative Model Eng...
	[19] Swing, 1997, “The Swing Connection,” Available from http://java.sun.com/products/jfc/swingdo...
	[20] Englander, R., 1997, “Developing Java Beans,” O’Reilly & Associates, Inc., Sebastopol, CA.
	[21] Voyager, 1998, “ObjectSpace Voyager Core Package Technical Overview,” Available from http://...
	[22] Jameson, A., 1997, “Re-Engineering the Design Process through Computation,” AIAA Paper No. 9...
	[23] Irani, R. K., Graichen, C. M., Finnigan, P. M., and Sagendorph, F., 1994, “Object-based Repr...

