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Abstract computational simulations promise not only to reduce
the need for testing, but also to enable the rapid and
Designing and developing new aerospace propulsiorrelatively inexpensive evaluation of alternative designs
systems is  time-consuming and  expensiveearlier in the design process.
Computational simulation is a promising means for  As a result of these forces, several government-
alleviating this cost, but requires a flexible software industry cooperative research efforts have been
simulation system capable of integrating advancedestablished to develop technologies that enable the cost-
multidisciplinary and multifidelity analysis methods, effective simulation of a complete air-breathing gas
dynamically constructing arbitrary simulation models, turbine engine. In the United States, the Numerical
and distributing computationally complex tasks. To Propulsion System Simulation (NPSS) project has been
address these issues, we have developed Onyx, a Javestablished between the aerospace industry, Department
based object-oriented application framework for of Defense, and NASA. When completed, NPSS will be
aerospace propulsion system simulation. The Onyxapable of analyzing the operation of an engine in
framework defines a common component object modelufficient detail to resolve the effects of
which provides a consistent component interface for thanultidisciplinary processes and component interactions
construction of hierarchal object models. Because Onyxurrently only observable in large-scale tests [1, 2]. For
is a framework, component analysis models may bexample, more accurate predictions of engine thrust and
changed dynamically to adapt simulation behavior asefficiency would be possible if the “operational’
required. A customizable visual interface provides high-geometry of a compressor rotor, stator, and casing could
level symbolic control of propulsion system constructiondetermined based on an analysis of the combined
and execution. For computationally-intensive analysis,aerodynamic, structural and thermal loadings [3].
components may be distributed across heterogeneous
computing architectures and operating systems. Thi¢

paper describes the design concepts and object-oriente G High Performance
architecture of Onyx. As a representative simulation, a JERUEEL Affordable Computing

set of lumped-parameter gas turbine engine component
are developed and used to simulate a turbojet engine. @

1 Introduction
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As the aerospace propulsion industry moves into the m
21st century, there is increasing pressure to reduce th
time, cost and risk of jet engine development. To mee!
the harsh realities of today’s marketplace, innovative
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approaches to reducing propulsion system design cycl =
times are needed. An opportunity exists to reduce desig ‘%‘
. e,
and development costs by replacing some of the large N Engine Component Models

scale testing currently required for product developmen
with computational simulations. Increased use of Figure 1: Topology of Computational Simulation System



The topology of such as system is shown in Figure 1.
In this system, the engine component models are
integrated to couple relevant disciplines, such as
aerodynamics, structures, heat transfer, combustion,
controls and materials. These models are then integrated
at a desired level of fidelity (0-, 1-, 2-, or 3-dimensional)
to form coupled subsystems for systems analysis. For
required computing speed at a reasonable cost,
simulation models can be distributed across a networked
computing platform consisting of a variety of
architectures and operating systems, including
distributed heterogeneous parallel processors. A
simulation environment provides a user-friendly
interface between the analyst and the multitude of
complex software packages and computing systems that
form the simulation system.

The implementation of such as system is a majors
challenge. In this paper, we focus only on the design and
development of a prototypsimulation environment
being developed in NPSS-related research.

Distributed Connection and Data Transforma-
tion. The introduction of interdisciplinary models
and multimodels requires support for distributed
computing as it cannot be assumed that the higher-
fidelity software will run efficiently (or at all) on the
same computer platform as the rest of the system.
Additionally, data transferred between components
having different fidelity levels and/or data formats
must be transformed accordingly.

Portability . The environment must be capable of

operating without regard to hardware or operating
system combinations. This includes the ability to

leverage extensive amounts of Fortran, C and C++
legacy software.

User Interface. Finally, the system must provide a
user interface to reduce the efforts of developing
new models and executing simulations.

1.2 Alternatives

1.1 Design Requirements

A great number of engine simulation software

This section describes some of the high-levelpackages are currently in use. Most of these are

requirements which the gas
environment must meet:

* Component Level Modeling The primary require-

turbine  simulationproprietary software, developed and maintained by
aerospace companies. Also a number of public domain
software
Universities are also in use [4, 5]. One approach is to

packages, developed by NASA and

ment is for a platform which provides a general anddetermine the “best” software and modify it to address
flexible component view of the engine. Conceptu-the design requirements listed above. However, it has
ally, this approach allows an engineer to developbeen ours and others experience that this approach often
new and different engine simulation models inde-requires more effort and produces less desirable results
pendent of the number of components in the enginethan a completely new design [6, 7]. Generally, this is
their type, fidelity level, or even location in the net- due to the following [8]:

work.

» Customization. The environment must allow the
user to customize simulation functionality by
allowing components to be replaced by other com-
ponents having different functionality. Such “plug-
gability” is essential for keeping the architecture
current. Similarly, it must be capable of supporting
the integration of new simulation techniques and
computing methodologies with as little effort as e
possible. Specifically, this intended to address the
areas ofmultidisciplinary couplingandmultimodel-

ing.

e Component Interoperability. In order for the pre-
ceding design requirements to be possible, it is
essential that the user be guaranteed compatibility
between all components used to develop simulatiorr
models. Component interoperability is enforced
through specifications of a general component
model.

Procedural design structuresExisting (public
domain) simulation software tend to utilize global
data structures, such as FORTRAN common
blocks, to improve simulation execution times.
However, the result is a lack of data encapsulation
and safety, making changes in design difficult and
dangerous.

Discipline isolation Most present-day simulation
models offer only simplified coupling of interac-
tions between, for instance, aerodynamics, struc-
tures and controls. Consequently, the design of the
system reflect the bias towards these disciplines.
This makes it difficult to introduce new models to
couple additional disciplines.

Assumed single processor/machine environment
Most simulation systems were designed not to
exceed perceived implementation limitations (hard-
ware, operating systems, memory, etc.). As a result,



the software’s design impedes transport to moderrsimulation environment, we need to apply OO design
parallel and distributed computing platforms. concepts to the entire architecture. In recent years, two
complementary conceptsgdesign patternsand OO
* No Graphical InterfaceAnother drawback of most application frameworks have been shown to be
presently used simulation software is the lack ofbeneficial to developing reusable and flexible domain-
graphical user interfaces (GUIs). Engine models arespecific software systems.
developed by hand through input lists. This is often A framework is a reusable, “semi-complete”
a tedious process which can also result in erroneouapplication that can be specialized to produce custom
model definition. applications [13]. In general, the gas turbine simulation
software now used are estimated to be ~80% identical,
An alternative approach which directly addresses thavith the remaining percentage due to proprietary
first limitation, and indirectly addresses the remainingmodifications of individual components. The great
limitations is to applyobject-oriented technologyp the  amount of commonality suggests that it might be
development of the simulation environment. Object-possible to develop a generalized simulation software
oriented technology is a collection of powerful design, package based on the 80% of common features, and
analysis and programming methodologies for creatingallowing the end user to customize the remaining 20%
general-purpose adaptive models and robust, flexiblas desired. Frameworks can provide the necessary
software systems [9, 10]. infrastructure to develop and mange such a generalized
An object-oriented (OO) approach is attractive for propulsion simulation system.
modeling gas turbine systems due to the natural one-to- The benefits of object-oriented frameworks are due
one correspondence between objects in the applicatioto their modularity, reusability, and extensibility.
and computational domains. Consequently, multifidelityFrameworks enhance modularity by encapsulating
and multidisciplinary representations of engine volatile implementation details behind stable interfaces,
components can be conveniently encapsulated througthus localizing the impact of design and implementation
the use of objects. Object class morphology provides thehanges [14]. These interfaces facilitate the structuring
necessary structure to accommodate a commonfcomplex systems into manageable software piéces
engineering model, and to define the essential interfacesbject-basedccomponentd] which can be developed
for component and disciplinary coupling. Inheritance ofand combined dynamically to build simulation
methods and variables in the hierarchy of classes allowapplications or composite components. Coupled with
extension and customization of simulation models withgraphical environments, they permit visual manipulation
an economy of effort. Moreover, the same structure caror rapid assembly or modification of simulation models
be used in the design, analysis, simulation andwith minimal effort. Software component modularity
maintenance phases of the engineering cycle. also permits placement across computer platforms,
Several prototyping efforts to develop object- making them well-suited for developing distributed
oriented gas turbine simulation systems have alreadgimulations. Reuse of framework components can yield
been completed. The first was developed by Holt andsubstantial improvements in model development and
Phillips [11]. In this work an object-oriented simulator interoperability, as well as quality and performance of
was developed in Common Lisp Object System (CLOS)the computational simulation system. Frameworks
with component models based on the dynamic enginenhance extensibility by providing “hooks” into the
software package called DIGTEM [4]. Similar
prototyping efforts were carried out by Curlett and
Felder [6] and Reed and Afjeh [12] in C++ and Java
programming languages, respec_tlvely. Res_ults fromr X'gs“ear:nbly ‘_ _‘_ .‘—. —‘—. _‘
these efforts were very encouraging. In particular, the = Framework . 1+ 0« 0
use of a graphical user interface in both the CLOS anc : Cor o Lo
Java simulation software greatly increased flexibility in I -
developing engine simulation models. Engine - e e e -

Component
Framework

1.3 Solution to Design Challenge

These prototyping efforts have illustrated the
flexibility and reusability of the object-oriented  ~ ccior
approach. However, this has been achieved mainly atth ~ Framework
application level. In order to develop a next-generation

Figure 2: Onyx Framework Layers



framework. Coupled with the stable interfaces, these3  Engine Component Framework

hooks allow the engineer to “plug” new functionality

into the framework as desired. This is essential for

keeping the simulation architecture current and
facilitating new analytical approaches.

3.1 Design Challenges

A gas turbine engine is essentially an assembly of

In the next section, we describe the design andengine components inlet, fan, compressors, combus-

implementation ofOnyx an object-oriented framework
for aerospace propulsion simulation.

2 Overview of Onyx Framework

Onyx is structured as dramework of frameworks

tor, turbine, shafts and nozzle, etc. (see Figure 3a).
These components operate together to produce power
(or thrust). Engine components are themselves made up
of other substructures. For example, a fan component
may be expressed as a collection of hub, stage, casing,
splitter and flowfield substructures (see Figure 3b).

Figure 2 illustrates the major structural frameworks andThese in turn may be further decomposed into more

components which are described in this paper.

e Engine Component FrameworkA database con-
taining collections of domain-specific component

basic elements such as rotor and stator blades.

Onyx’s Engine Component Framework should allow
users to simulate these structures at the various levels of
abstraction as desired. For example, a user should be

models, such as a compressor and turbines, for usgble to construct an engine component model from more

within the Visual Assembly Framework.

* Visual Assembly FrameworkThe Onyx graphical
user interface (GUI) provides interactive control
over the execution of the framework. The Visual
Assembly Framework forms one part of the Onyx
GUI and provides tools to visually assemble and
manipulate a simulation model.

e Connector Framework Provides a layered abstrac-
tion mechanism for distributed interconnection ser-
vices between component models. Connectors als
are utilized in interdisciplinary and multilevel com-
ponent connections.

Onyx was developed using the Java object-oriented r

basic models, and then use that component model to
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programming language and run-time platform [15]. Java
was chosen for the Onyx framework because of its
excellent object-oriented programming capabilities;
platform-independent code execution (made possible
through the use of byte-codes and a Java Virtual®
Machine); free availability on all major computing
platforms; and, highly-integrated run-time class
libraries, which serve as the foundation for Onyx’s
graphical user interface, distributed computing§
architecture, as well as providing future implementation ™
of database and native code interfacing.

To illustrate how Onyx can be used to develop gas
turbine simulations, we will present a running example
throughout this section. A transient, lumped-parameter,
aero-thermodynamic turbojet engine component model,
developed in our previous research, is integrated within
the framework. The resulting simulation system is
capable of performing steady-state and transient
analyses of arbitrarily configured jet engine models.
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Figure 3: Engine Component Abstraction Diagram



build an engine model. Such an approach makes the prasuild increasing complex elements out of simpler ones.

cess of developing gas turbine simulation models bottReturning to Figure 3b, we can combine multiple sets of

simple and intuitive. To achieve this, we have selectedotor and stator blades to form a fan component. The fan

an internal class structure which closely resembles theomponent can then be combined with other

physical structure of the domain. component-level elements (compressor, combustor, etc.)
The component models internal structure should: to form an engine model.

* maintain a component models physical relation-3.2 Engine Component Implementation
ship. This includes arrangement of any substruc-

tures as well as references to connected component Figure 4 illustrates the structure of the Engine
models. Components Framework in Onyx. For simplicity, only
the more important variables and methods in the classes
. provide control over the execution of the compo- are shown. The structure of these classes is based
nents simulation algorithm, which we call, #sal- ~ mainly on the Compositedesign pattern [16]. This
ysis model pattern effectively captures the part-whole hierarchal
structure of our component models.

In developing the component model structure, we EngElementis a Java interface which establishes the
should not have to distinguish between single elementsommon behavior for all engine component classes
and assemblies of elements in our internalincorporated into Onyx. It defines the basic methods
representation. For example, we should be able to treataeeded to initialize, run and stop engine element execu-
single rotor blade in the same manner as a fartion, as well as methods for managing Port objects. The
component comprised of several elements, thusbstract class DefaultEngElement implements EngEle-
allowing the construction of arbitrarily complex models. ment and provides default functionality for the interface

We can represent the hierarchal structure of themethods. In most cases, users will subclass DefaultEn-
engine, its components, and substructures usingElement to create concrete engine component classes,
recursive compositianThis techniques allows us to such as class XyzEngElement, to implement the

p-| << EngElement >> —| << Port >> << Connector >>
r—=-=-=-= a
add etDataSet ! . connector getDataSet()
addgort() getDataSetg ‘ DefaultPort setDataSet()
init() !
| getDataSet()
getPorts() A | setDataSet()
remove() I
removePort() b= == - /
stop()
A AeroPort StructuralPort
| getDataSet() getDataSet()
| setDataSet() setDataSet()
I
I
DefaultEngElement ports ODAeroPort 1DAeroPort 0DStructPort 1DStructPort
add() getDataSet() getDataSet() getDataSet() getDataSet()
addPort() model setDataSet() setDataSet() setDataSet() setDataSet()
init()
etPorts
?emove()o | << Model >> P - A
I .
rsir)r;)cB/ePort() execute() I DefaultModel
I
A | execute()
L - - =4
children
- AeroModel r ralModel
CompositeEngElement XyzEngElement eroMode StructuralMode!
execute() execute()
init() init()
run) O run) O
stop() ! stop() !
—— : O0DAeroModel 1DAeroModel 0DStructModel 1DStructModel
forall ¢ in children
c.run(); model.execute(); execute() execute() execute() execute()

Figure 4: Structure of Engine Component Framework



required functional methods. The approach of providinghowever, far exceed present computer capabilities.
a default abstract class for a Java interface is use@€onsequently, it is desirable for an EngElement to be
throughout the Onyx system to give the user more flexi-capable of accommodating views having multiple levels
bility when plugging in new classes. In this case, theof fidelity and differing disciplines. Figure 3c illustrates
user may select to inherit the functionality provided by the concept of multiple views for a rotor blade and
DefaultEngElement, or to inherit from another class andflowfield objects in a fan component. The rotor blade is
implement the methods defined by the EngElementinalyzed using various mechanical-structural methods,
interface. while the flowfield is represented by various aero-fluid-
CompositeEngElement represents a composition oflynamic methods. Based on the simulation criteria, an
EngElement objects. Management operations for chilappropriate analysis model may be selected.
dren are declared in DefaultEngElement to maximize The complexity of the various analysis models
component transparency. To ensure type-safety, thessiggest that it is desirable to encapsulate the analysis
methods throw an exception for illegal operations, suchmodel, or remove it from the structure of EngElement.
as attempting to add or remove an EngElement fromlhis would protect the modularity of EngElement,
another EngElement, rather than a CompositeEngEleallowing new EngElement classes to be added without

ment. regard to the analysis model, and conversely to add new
analysis models without affecting the EngElement class.
3.3 Analysis Model Implementation We apply the Strategy design pattern [16] to

encapsulate the analysis model in an object. The

Computational simulation involves designing a DefaultModel class is an abstract class which
model of an actual or theoretical physical system,implements the Model interface. The interface defines
executing the model on digital computer, and analyzingthe methods which all Models must support to be
the execution output [17]. Models are generally integrated within Onyx. As an example, two analysis

developed by defining a given problem domain, models, 0DAeroModel and 1DAeroModel, are shown as
reducing the physical entities and phenomena in thagypclasses of AeroModel.

domain to idealized form based on a desired level of
abstraction, and formulating a mathematical model3.4 Ports
through the application of conservative laws.

Simulating complex systems requires the develop- Completing the Engine Component Framework

ment of a hierarchy of models, anultimode) which structure is the Port class. In physical terms, a Port

represent the system at differing levels of abstractior] epresents a control surface through which energy and

[18]. Selection of a particular model is based on a num Mass flow between engine components. In Onyx, Ports

ber of (possibly conflicting) criteria, including the level ge?ng an mte;falge ?_etweenbEtngI%[Ie[nents;hrr?lég?Whlct:E
of detail needed, the objective of the simulation, the ata1s passed. Fortis an abstract class which detines the

available knowledge, and given resources. For pr(_:‘“mi_default functionality, and maintains a reference to a

nary gas turbine engine design, simulation models acﬁonnector. Connectors will be discussed in section 5.

often used to determine the thrust, fuel consumptio ort is subclassed according to the discipline (e.g.
’ e?_erodynamic, structural, thermal, etc.), and these classes

rates, and range of an engine. These simulations gen T
. ¢ g are then each subclassed by fidelity (0-D, 1-D, 2-D, 3-

ally use relatively simple one-dimensional component . . :
models to predict performance. However, in other situa—.D)' Which subclass of Port an EngElement instantiates

. e o ) is determined by the discipline-fidelity combination of
tions, such asnultidisciplinary analysis higher-order he EngElements analysis model(s). For example, if

models are needed. For example, to prevent the possibil- . ) o
ity of a fan blade rubbing the cowling, an engineer ngElement has a single analysis model which is a 0-D,
' aerodynamic model, then an instance of EngElement

might perform a coupled aerodynamic, thermal and tes two ODAeroPort obiects to handle inout and
structural analysis of the blade to determine the amount'S&t€s tWo erorort objects 10 handie nput an
utput. Because the analysis model is dynamic and may

of blade bending due to the thermal and aerodynami ) ;
be changed at run-time, the Port objects also must

loading. Such an analysis would require several high change accordingly. Consequently, we apply State

fidelity analysis models using fully three-dimensional, desi " 161 to d call t d
Navier-Stokes computational fluid dynamics (CFD) and esign pattern [16] to dynamically create and manage
the Ports in an EngElement.

structural Finite Element analysis (FEA) algorithms.
Ideglly, one unld pr_efer using three-dlmensmnal‘?’_\,_-) Example

analysis for an entire engine as it provides greater detai

of the physical processes occurring in the system. The To illustrate the application of the Onyx framework

computational requirements for such an analysisand the feasibility of this approach, a small collection of



component object classes representing the inlet, conmanagement, displaying objects, moving and dragging
pressor, combustor, turbine, nozzle, bleed-duct connectsisual elements, tracking mouse movements, etc. This
ing-duct, and shaft, of a jet engine have been developededuces the programming burden for engineers using the
An inter-component mixing volume class was alsoframework.
defined which is used to connect two successive compo- In addition to these goals are some constraints. First,
nents as well as define temperature and pressure at cortire framework should decouple the visual user interface
ponent boundaries. These concrete classes are dlUI) objects from their counterparts in the component
subclasses of the abstract DefaultEngElement clasBamework. Although the visual elements represent the
shown in Figure 4. component, we would like to allow a component’s Ul to
Each class implements a specific mathematicabe changed easily, possibly at run-time.
(analysis) model which describes its physical operation. Second, our implementation should allow the user to
In this example, the analysis models are all relativelyoverride the default visual representations as much as is
simple differential-algebraic equations (DAE) devel- practically possible.
oped from an space-averaged treatment of the conserva- We have selected the Java platform in part because
tive laws of thermo- and fluid dynamics. These areof its integrated graphical support. Java’'s Abstract
patterned after the work of Daniele et al., [4]. A com- Window Toolkit (AWT) is part of the core classes which
plete description of the models can be found in the workare available in every Java Virtual Machine (JVM). The
of Reed [7]. The analysis model for each component iSAWT provides a collection of platform-independent
encapsulated in an appropriate subclass of Defaultgraphical components for building graphical
Model, and present specific implementations of theapplications in Jav@One drawback of the AWT is that it

init(), run() andstop() methods which initial- provides only basic low-level graphical components.
ize the component and execute its analysis modelAnother drawback is the heavyweight nature of the
respectively. AWT, due to implementing graphical objects with the

Appropriate Port objects are created in each componative windowing system.
nent object depending on the number and type of con- We have opted instead to use the Swing component
nections required. For example, a compressor classet to implement our graphic interface [19]. Swing is a
defines two AeroPort objects to pass aero-thermodysubset of the new Java Foundation Classes (JFC), which
namic data to adjoining components, and a Structuris itself a subclass of the AWT. Therefore, our graphical

alPort to pass data to a connecting shaft object. interface will retain the same portability made possible
with AWT. Swing however, adds more high-level
4 Visual Assembly Framework graphic components, as well as the ability to select from

multiple Look-and-Feel standards. However, this
selection raises some immediate implementation issues.
One attractive feature of Java is its capability to
Aerospace engineers often use schematic drawingdevelopappletsd] compiled Java programs which can
to represent propulsion systems and subsystems. It ise dynamically downloaded from a Web server and run
then natural to represent computational simulations ofocally on the client's machine using a Java-enabled
such systems using this visual metaphor. browser. The ubiquity of Web browsers make
In the previous section, we developed an objectimplementing Onyx’s visual assembly framework as an
oriented component model which allows us toapplet very attractive.
dynamically assemble arbitrarily complex engine  One drawback of using an applet is the relatively
system models. We now consider the development of éong time needed to implement new versions of the JVM
framework which supports visual assembly of thoseinto web browsers. Currently, the JFC is not
component models. implemented in any browser, meaning that the Swing
The main requirement of the Visual Assembly classes used in Onyx would have to be downloaded
Framework is to provide visual analogs for the along with the visual assembly framework each time the
component model objects, and support for assemblingpplet was accessed.
them. This has several implications. The first is obvious:  Another drawback associated with using an applet is
we need visual elements to represent the objects whichis security restrictions which affect the partitioning of
form Onyx’s engine component model. The second, les©nyx’s structure. Generally, this limits communications
obvious requirement, is that the concept of componenbetween the applet to only the web server from which it
composition developed previously must also bewas downloaded.
supported visually. Finally, the framework must take  Because of these issues, we have designed the visual
care of managing basic graphical functiddswindow  assembly framework as a Japlication Applications

4.1 Design Challenges



VEngElement of Schematiclcon represented in the framework will

[ likely have different Icons, display names and VPorts.
One solution is to define Schematiclcon as an abstract

class, and use inheritance to define subclasses which

Jlit} Conpressor

B \ represents visually the various concrete Schematiclcon
T - \ VPort classes. Each class would then redefine the Icon image,
\\ display name, and VPort location and type. This
VConnector Label approach however, typically leads to a very broad and
shallow inheritance tree, indicating little use of inherit-
Figure 5: Schematiclcon ance.

A more useful approach would be to create an

are similar to stand-alone programs. As the issues ofiPPropriate Schematicicon using object composition.
browser-JVM integration and applet security issues ard his is accomplished through the use of the

addressed, we will modify Onyx to permit the visual Parameterized Factory design pattern [16], in
assembly framework to be distributed as an applet.  conjunction with Java’s reflection mechanism. This also

allows us to address one of the design constraints listed
4.2 Visual Assembly Framework Design previously: decoupling a component's Ul from its
) ) ) ) component model representation. Our solution is to
A simulation model is constructed by creating Sche-apply a variation of the JavaBedns“Info” class
maticicon objects and connecting them to form anconcept [20].
engine schematic. A Schematiclcon is composed of a We will i . :
e will illustrate this approach by creating a Sche-
VEngElement and one or more VPorts. VConnectors bp y g

d to “wire” the Sch ticl toaether. Fi %naticlcon object for an XyzEngElement object (see Fig-
are used to ‘wire"the schematicicons together. Figure 3, .o 6). When a user creates an instance of
illustrates these relationships.

XyzEngElement (this process will be discussed later),
the Visual Assembly Framework invokes the Sche-
. maticlconFactory’screate() method. This method
ment c_Iass in the component _framework. VEngEle'invokes the getEngEleminfo() method in the
ment is a subclass gava.swing.JButton ' XyzEngElement object which returns the info class

and thus contains an Icon which presents an imag?]ame XyzEngElementinfo.class The Factory
of the engine component; a Label which displays; <t istac this " class ' using the

the name of the EngElement object instance. java.lang.reflect.Constructor  newln-

stance() method. XyzEngElementinfo implements
* One or more VPorts are attached to the VEngEleynq ngEjementinfo interface which defines two meth-
ment, and represent connection points between,yg 1, create and return instances of PortDescriptor and

components. VPorts are color-coded 10 represengngriementDescriptor. We create and return instances
the type of Port it represents.

 VEngElement is the visual analog of the EngEle-

SchematiclconFactory L» XyzEngElement
* AVConnector is the visual analog of the Connector | loadJars() _gettEngElemlnfoo Q
object. It is represented as a line drawn between two | "0 i ‘
VPorts. stop() ‘
<< EngElementinfo >> :
- t
Each VEngElement, VPort and VConnector has a gz:ggzgfsn;ﬁe;ﬁggtoro ;?y;"E"ngE.ememmfo_dass H
popup menu associated with it. The menu allows the Z
user to access various functions such as moving, delet- | PortDescriptor
ing, copying, etc. In the VEngElement, the popup menu X getPortLocation()
has a special item for “customizing” the component. | _XyzEngElementinfo getPortType()
When selected, the customizer object is displayed. getEngElemDescriptor()
; ol ; getPortDescriptors() Q! EngElementDescriptor
Customizers are graphical interfaces which allow the T
) . . [ getCustomizerClass() 6}
user to change an En_gEIeme_nts attributes. Typically,— .~ ! AT :
these are used to modify data in the EngElement analy; new PortDescriptor() ! geticon() !
sis model. They may also be used to control the distribu- ‘ t
. . . . . . I m
tion of the EngElement in a distributed simulation. hew EngElemDescriptor() XyzCustomizer.class H

In designing the structure for our visual assembly we
immediately recognize from Figure 5 that each instance Figure 6: Schematiclcon creation process



VCustomizerDialog

customizer

createButtonPanel()

<< Customizer >>

commitChanges()
setTarget()

ized using themewlnstance() method.
The combination of thdractory pattern and Java
reflection gives considerable freedom and flexibility in

creating Schematiclcons. The composition of a Sche-
b maticlcon can easily be redefined by subclassing Sche-
maticlconFactory. We can also use Java reflection to
alter the specific classes that get instantiated in order to
build the Schematiclcon without subclassing. Further-
more, we have effectively separated the Ul implementa-
tion from component implementation. One drawback to
this approach is the level of indirection introduced.
However, the user sees little of this complexity as he or
she is only required to define the XyzEngElement,
XyzEngElementinfo and a Customizer class.

r————-—-=-—-=- - - . - - = - = 14—
|
|
|
|
|
|

1
BasicTabbedCustomizer

commitChanges()
setTarget()
addTab()

1
XyzCustomizer

commitChanges()
setTarget()

1
VCustomizerPage

commitChanges()
setTarget()
makeLayout()

[ [ _

TransientControlPage DesignPointDataPagd 4.2.1 Customizers
commitChanges() commitChanges() . . . .
setTarget() setTarget() We face another dilemma in creating customizers for

each EngElement. Customizer represents a Ul for
defining and editing the attributes of an EngElement’s
analysis model. Because it is strongly coupled to the
gata structure for each specific type of EngElement, we

Figure 7: Customizer structure

of these classes instead of simply returning the clas il likel d ith aifs ¢ Customi
name, since XyzEngElementinfo initializes theseW!" 'IK€ly €nd up with many diterent tustomizer

instances by passing parameters in the constructor ocflasses. These may or may not have any cc_)mmc_mahty,
each class. S0 we may not be ablle to take advantage of inheritance.
PortDescriptor encapsulates information concerninjnt ordcir to be r]erX|?Ie:[hOnyx mus_tf_ be Cca;?[ablg of
the type, initial placement, and constraints of the VPort IS etgf]]ra Ing each o Id I'iset SFIIGC' Ic Lus om|zerf].
for XyzEngElement. EngElementDescriptor defines urtnérmore, we would like fo allow USETs as muc
methods which return the Icon image and display namélexmmty as is possible to customize the data Ul, so we
String used in the VEngElement button. The methoddo not want to limit their options through inheritance.
getCustomizerClass 0 returns the cla.ss hame for Our solution is to provide an interface which defines

the XyzEngElement's Customizer. This class name i? plug-point for u_ser-deflned custom|z.er.s. Flgu.rgl !
stored in the VEngElement object, and is lazily initial- shows the Customizer structure. To maximize flexibility,
' the Visual Assembly Framework allows the user to 1)

program a new customizer, or 2) to use the BasicT-
abbedCustomizer. A user-defined customizer would
inherit from java.awt.Component and implement
the Customizer interface methods directly. Téwm-
mitChanges () andsetTarget () methods are called
from the Visual Assembly framework. The constraint of
inheriting fromComponent is necessary as all custom-
izers are automatically added to an instance of VCus-
tomizerDialog which expects its child to be a subclass
of Component. VCustomizerDialog wraps the Cus-
tomizer and provides a set of buttons to accept user
input. ThesetTarget () method identifies the object

. HuzEngComponent Verzion: 1.8bet.

Off-design data rTr'ansien't Contral rDis'tr'ibu‘tion
] General r

Design data

i}

0 05 ! 15 2 25 to be updated, while theommitChanges () method is
Tine oo 050 e = user:j to updat_e thz obje;;(t Wgen the.use_r accepts chlangfes
e liﬁ CRxh e & to the customizer data. XyzCustomizer is an example o

a user-defined customizer.

In the second approach, the user can subclass VCus-
tomizerPage, compose it with the desired Ul objects,
and add it to BasicTabbedCustomizer. VCustomizer-
Page can provide methods to handle common issues

| Reset | | Add Poirt | | Delete Selected Foirt

| 0K || Applw || Cahce | || Help |

Figure 8: Onyx Customizer



SchematicPane manager o, ["<< SchematicManager >3 desired. This process is made relatively easy with a sim-
getAllicons() icons beginDraglcon() ple change to the class name returned byg#eCus-
e tomizerClass () method in EngElementDescriptor.
Furthermore, since the VCustomizerDialog accepts sub-
EngSchematicPane e classes ofjava.awt.Component , users can use
EngSchematicPane() be?“Dt clema“c el Java Integrated Development Environments (IDEs) to
g ey quickly construct customizers from AWT or Swing Java
engbragicon() Bean GUI components.
Schematiclcon |« EngSchematicManager 4.2.2 Frames, Panes, Managers and Schematiclcons
getVEngElement() beginDraglcon() . i i i i
getVPorts() draglcon() Engine schematics are built by adding Schematicl-
engDraglcon()

cons to a EngSchematicPane which is contained in a
SchematicFrame. EngSchematicPane is a subclass of
Figure 9: SchematicFrame structure java.swing.JLayeredPane , and maintains a list-

ing of the Schematiclcons it contains, as well as their z-

such as laying out components. Since BasicTabbedcu&rder (i.e., their layer). EngSchematicPane also keeps a
tomizer adds instances of Customizer, it is also possibl&éférence to an EngSchematicManager, which provides
to add classes which inherit frojava.awt.Compo- support for selec’qng and moving Schematiclcons within
nent and implement Customizer. Figure 8 shows a pic-th€ EngSchematicPane (see Figure 9).
ture of an instance of DefaultTabbedCustomizer, The SchematicFrame and related classes provide
including several VCustomizerPage page objects. required support for user interactions: dragging, mov-
The Customizer structure provides considerableng, etc. We also support in the visual framework, the
flexibility. It allows the user select to compose the Ul or hierarchal composition concept introduced in the com-
inherit functionality and structure when developing aponent framework.
customizer. By adhering to an interface, users can In our requirements for a visual assembly frame-
develop different customizers and plug them in aswork, we indicated our desire to support visually the

4 File Edit Help 4 File Edit Yiews Help 4 File Edit Yiews Help
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Figure 10: SchematicFrames showing visual composition



composition of EngElements in the Engine Component-ramework. At this time, a Schematiclcon representing
Framework. This is implemented using the Schematicthe Core SchematicFrame is added to thlin Eng-
Frame, EngSchematicPane and Schematiclcons class&chematicPane.

We illustrate it with an example (see Figure 10). We now have two loosely coupled composite hierar-
chal structures: one composed of EngElements within
4.3 Example CompositeEngElements in the Engine Component

Framework; and its corresponding visual representation

In section 3.5, the EngElement classes representingomposed of Schematiclcons within EngSchematic-

engine components found in a turbojet engine werepgnes. Also notice, from Figure 10, that the relation-

developed. We now demonstrate using the classes in théhins  petween ~ Schematiclcons, VPorts  and
Visual Assembly Framework to create a simple turbojetyyconnectors are maintained in both tiéain and

engine. For each EngElement class, the user also definggre frames.
an EngElementinfo class with appropriate descriptor
@nformation; including t_he icon, display name, custom-5 connector Framework
izer, and VPort locations. The customizer, EngEle-
mentinfo, and EngElement model and port classes for5
each EngElement are then collected into a Java archive’
(jar) file. We have developed a component model for gas
When the Visual Assembly Framework is started,turbine components, as well as a compatible interface so
Onyx searches the default loading directory, and loads¢hat they can be assemblétl both programmatically
the classes for each of the jar files. The EngElemenand visually 0 to form more complex systems of
classes are extracted and stored for instantiation by @bjects. In order for these components to interact and
factory object. The EngElementinfo classes are alsgimulate the given system, they need to communicate. In
extracted and used to obtain the display names and icortse Onyx architecture, EngElements communicate by
for each of the loaded EngElements. The icons and dissending messages via a Port.
play names are listed in the Visual Assembly Toolbox Consider a physical connection between a Inlet and
which is displayed alongside the initial Schematic- Fan EngElements as shown in Figure 10. Inlet and Fan
Frame, calledMain (see Figure 10). From thklain are physically and logically connected and exchange
window, the user selects th€reate Composite messages, such gsetDataSet(), to retrieve data in
menu command, which creates a new SchematicFramerder to update their analysis models. Normally, this
and places a Composite Schematiclcon in the Main winprocess would be relatively straightforward, with the
dow. This Schematiclcon represents the top-level viewgetDataSet () request being forwarded from the Fan

1 Design Challenges

of the turbojet engine, and the user name§Litbo- via the Fan’s Port to the Inlet’s Port, and finally to the
jet . This also sets the title name of the new Schematicinlet, where the request is carried out. In the Onyx
Frame toTurbojet . architecture, however, this process is made more

Next, the user begins to construct the turbojet enginéomplicated by at least two situations.
model. From the Toolbox, the user selectslalet
Fan, Shaft , Turbine andNozzle engine compo-
nent to add to théVlain SchematicFrame. This action  The first situation occurs when two EngElements are
creates an proper Schematiclcon for the each compaonnected which have analysis models with different
nent and displays them in the EngSchematicPane. At theiscipline and/or fidelity combinations. If, for example,
same time, Onyx instantiates their respective EngElethe Inlet component has a 1-D Fluid model and the Fan
ments and adds them to an instance of CompositeErhas a 2-D Fluid model, then we have a mismatch in
gElement in the Engine Component Framework. Ourfidelity. When the Fan processes thgetDataSet ()
user next selects thidain SchematicFrame, and using message, it would have some intelligence capable of
theCreate Composite  command, instantiates a sec- transforming its 2-D data into a 1-D data set before
ond SchematicFrame, which the user na@e® . returning it to the Inlet. Other methods are also needed

From the Toolbox, the user now sele€@smpres- to perform additional transformations (2-D to 0-D, 2-D
sor , Combustor, Shaft and Turbine compo- to 3-D, etc.). Such transformation methods are clearly
nents to add to the€Core. Schematiclcons for these necessary in order for the Onyx architecture to support
components are created and displayed inGbee Eng-  interdisciplinary and multifidelity modeling
SchematicPane. Onyx instantiates their respective Holt and Phillips [11] introduced the concept of
EngElements and adds them to a second instance abnnectorobjects to provide appropriate methods for
CompositeEngElement in the Engine Component‘expanding” or “contracting” the data, and mapping

5.1.1 Multifidelity Connections



selects the “Distribution” page and selects from the list,
Onyx _ the name of the remote machine on which to run the
Framework aConnector fanPort inletPort . .
Fan. Now, the user (implicitly) creates a Connector by
l drawing a connecting line between the Inlet and Fan
» Ports. Notice, that with the exception of selecting the
setConnector(aConnector)

name of the remote machine, the process is exactly the
same as connecting components which run on the same

machine.
getDataSet( Placing a component object on the remote machine,
getDataSet() however, means that the two components reside in
D different Java Virtual Machines. This raises a difficulty
transformQ since a Connector has two variablgsortl and

port2 , which keep references to the Port objects
connected to the Connector. One of these variables
Fig. 11 - Interaction diagram would normally be referencing the Fan, but since it is in
a different virtual machine, it cannot be referenced.
from different discipline domains. Connector objectsare We can address this problem by having the
essentially intelligent Command objects, as describedconnector reference @mote proxyas defined in the
by the Commanddesign pattern [16]. As with the Proxydesign pattern [16]. The remote proxy provides a
command objects, connectors provide flexibility by local representation for an object in another design
decoupling the collaborating objects, making themspace.
easier to reuse. An EngElement no longer need know .
the discipline-fidelity of the EngElement to which it is 2-2 Connector Framework Implementation
connected. Figure 11 shows an interaction diagram The Connector Framework structure is shown in
using connectors. Figure 12. The Java interface, Connector, defines our
o i interface functionality. As with previous interfaces, we
5.1.2 Distributed Connections provide an abstract class, DefaultConnector, which
The second problematic situation results from theimplements  the interface, provides  default
fact that an EngElement is to be distributable to other
machines. The complex and intensive computationa

T

nature of jet engine simulations require that the << Connector >> << Port >>
framework be capable of distributing computations on a gg{g:gggg getDataSet()
network of computers. This permits access to high- setbataset(
performance mainframe or workstation clusters for B

. . . . |
computatlonally intensive tasks and, at the same tlme transform [ BerauiConmecio POt
permits user control from the local computer. Also, this port2

. . . getDataSet() << RemotePort >»
feature allows on-line monitoring of computations and setDataSet()
dynamic allocation of computational resources for isRemote() D
optimum performance while a simulation is in progress. i
. AIthom_Jgh the distribution of objects.across a network TocaiCorresior T proxy
is a relatively complex task, our goal is to design Onyx | M ciiconector) )
to perform this distribution in a manner totally
consistent with non-distributed simulations.
Consequently, the distribution of components across th F————
P << Transform >>

network should be as transparent as possible to the use : e ———

No actions, other than selecting a remote machine ol transform() ‘ —

which to run a component, should be required to A |

distribute the component at run-time. To illustrate the fToT o ’ Z}

process, we return to our Inlet-Fan example. T -
In this scenario, the user would like to run the Fan Fluid1Dto2D Fluid2Dto3D 1DThermaltoStruct

component on a remote machine. In the Visual transform() transform() transform()

Assembly Framework, the user creates an Inlet and Far
Accessing the Fan’s customizer (see Figure 8), the use Figure 12: Structure of Connector Framework



implementation of each method, and defines theConnector directly. Also, connection implementation

variables portl , port2 , and isRemote . details are fully encapsulated by the Connector,

LocalConnector inherits all of its functionality and allowing EngElement and Port to remain unaffected by
variables from its superclass. It represents a normain changes to the distribution mechanism.

(non-remote) Connector. References to ploetl and

port2  objects are passed into the constructor.5.3 Example

RemoteConnector’s constructor takes an additional

argument to identify the remote machine. For test purposes we have established a simple peer-
RemoteConnector definepeoxy variable to hold the to-peer distribution mechanism for the EngElement

reference to the proxy object. The constructor alsgPPi€cts in our example model. EngElement objects are
initializes Onyx's interconnection service to bind instantiated on the remote machine and export their

proxy to the remote object. interface so that theimit() , run() and stop()

Onyx’s distribution mechanism is currently based onMethods may be called by Onyx from a local machine.
the Java Remote Method Invocation (RMI), a core!n addition, a RemotePort interface was defined and is
component of the Java platform. RMI uses client stubsEXPorted to allow connections from local (non-remote)
and server skeletons to interface with the local and”Ort objects. This interface allows the connectors and
remote objects. The stub represents the remote prox§orts to invoke the getDataSet() methods to return a
object which is referenced by the RemoteConnectoferializéd —object —containing necessary — engine
proxy variable component operating states.

Because RMI is designed to operate fully within the ~ Future efforts in this area will investigate the use of
Java environment, it is limited to connections betweenmobile object technology, such as ObjectSpace’s
machines which are running the Java Virtual Machine Voyager [21], to allow the user to dynamically relocate
By assuming the homogeneous environment of théENgElement objects to other platforms on the network.
JVM, Onyx can take advantage of the Java object model
whenever possible. This provides a simple and6 Concluding Remarks
consistent programming model. Given that most
computing platforms now provide a JVM, this should  Designing and developing new aerospace propulsion
not limit the use of the framework. However, we are alsotechnologies is a time-consuming and expensive
in the progress of integrating CORBA for providing process. Computational simulation is a promising means
non-Java distributed object support. This is especiallyfor alleviating this cost, due to the flexibility it provides
important for incorporation of the multitude of legacy for rapid and relatively inexpensive evaluation of
applications not written in Java which currently exist in alternative designs, and because it can be used to
the aerospace industry. integrate multidisciplinary analysis earlier in the design

Our Connector now provide two sets of process [22]. However, integrating advanced
functionality: 1) it can transform data sets between twocomputational simulation analysis methods such as
components of different fidelity, and 2) it establishes CFD and FEA into a computational simulation software
and maintains communications between distributedsystem is a challenge. A prerequisite for the successful
components. Although both functions are based orimplementation of such a program is the development of
decoupling the connected components, we would prefean effective simulation framework for the representation
that Connector has a more singular functionality. Thisof ~ engine  components,  subcomponents  and
would make it more reusable in the future. To achievesubassemblies. To promote concurrent engineering, the
this, we delegate the transformation responsibility to aframework must be capable of housing multiple views
separate Transform object. Connector selects amfeach component, including those views which may be
appropriate Transform object usings#éatepattern [16],  of different fidelity or discipline [23]. In addition, the
based on the fidelity-discipline combination of the framework must address the challenges of managing
connection. The Transform object utilizes tBe&rategy  this complex, computationally intensive simulation in a
pattern [16], to allow different transformation distributed, heterogeneous computing environment.
algorithms, such as Fluid1Dto2D, to be interchangeable. Object-oriented application frameworks and design

The Connector makes connections betweerpatterns help to enable the design and development of
EngElements transparent. Both distributed andaerospace simulation systems by leveraging proven
multifidelity connections can be made without regard tosoftware design to produce a reusable component-based
location of the component, or its fidelity. Modifying the architecture which can be extended and customized to
distribution mechanism can be performed either bymeet future application requirements. The Onyx
subclassing  DefaultConnector, or implementingapplication framework described in this paper provides
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Figure 13: Onyx Aerospace Propulsion System Simulation Framework

an ensemble of framework components which, togethedn addition, Java’s byte code and widely available Java
form an integrated framework for propulsion system Virtual Machine allows Onyx to be highly portable.

simulation. Figure 13 shows how the individual  The use of object-oriented application framework
framework component structures combine to form theand design pattern methods in Onyx help to decouple
Onyx framework. domain-specific simulation strategies from their

Onyx promotes the construction of aerospaceMPlementations. This decoupling enables new
propulsion systems, such as jet gas turbine engines, ipimulation  strategies (e.g., components, analysis
the following ways. First, it provides a common engine MOdels, solvers, etc.) to be integrated easily into Onyx.
component object model which: encapsulates the3Y @PPlying these design strategies, Onyx allows users
hierarchal nature of the physical engine model, is!® dynamically alter simulation models during any
capable of housing multimodel and multifidelity Phase of the simulation. The example presented in the
analysis models, and enforces componenf@Per serves to illustrate the flexibility, extensibility, and

interoperability through a consistent interface betweerfaS€ Of using Onyx to develop aerospace propulsion

components. Second, it enables the construction and §¥/Stem simulations.

engine models and customization of the simulation at a

high level of abstraction through the use of visual Acknowledgments

representation in the visual assembly framework. Third,
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