
An Object-Oriented Language-Database
Integration Model:

The Composition-Filters Approach

Mehmet Akw Lodewijk Bergmans & Sinan Vural

University of Twente, Dept. of Computer Science

Enschede, The Netherlands

Abstract. This paper introduces a new model, based on so-called object-composition
filters, that uniformly integrates database-like features into an object-oriented
language. The focus is on providing persistent dynamic data structures, data sharing,
transactions, multiple views and associative access, integrated with the

object-oriented paradigm. The main contribution is that the database-like features are

part of this new object-oriented model, and therefore, are uniformly integrated with

object-oriented features such as data abstraction, encapsulation, message passing and
inheritance. This approach eliminates the problems associated with existing systems

such as lack of reusability and extensibility for database operations, the violation of

encapsulation, the need to define specific types such as sets, and the incapability to

support multiple views. The model is illustrated through the object-oriented language

Sina.

1. Introduction

Traditionally, data-intensive applications have been developed as application programs

executing on top of a database management system, and using database services through

embedded data manipulation statements. This approach suffers from the need to manage

two different languages, and to interface them with extra programming effort. There have

been numerous attempts at integrating these two systems within the framework of the

object-oriented paradigm [Kim 90]. It is claimed that the object-oriented model provides

a more suitable basis both for application programming and data management operations,

when it is selected as a common computation model. In addition, since objects can

represent complex data structures, object-oriented databases are presumably more capable

in dealing with emerging applications such as computer-aided engineering.

A considerable number of object-oriented database management systems have been

developed or are currently under development (e.g. [Maier 86], [Kim 89] and [Ontologic

91]). These systems support the basic elements of the object-oriented model, and provide

efficient data management, transaction support, and querying facilities. The full integration

of language and database systems, however, cannot be considered to be solved completely.

The problem is three-fold.

373

Firstly, since these systems extend an object-oriented computation model with conventional

database mechanisms like (non-object-oriented) query languages, the advantages of the

object-oriented model do not fully extend to database features. For example, encapsulation

and inheritance cannot be used together conveniently with the database-like features in

uniform way. Consequently, it is more difficult to obtain modular, reusable and extensible

software for the data management part of applications. In addition, the programmer still

has to deal with two different systems.

Secondly, introducing database-like features into the object-oriented language model

generally introduces weakened encapsulation, and these features are generally provided

only for a restricted number of language structures such as sets or classes.

Thirdly, neither languages nor object-oriented database systems address the problem of

providing different interfaces on the same object in a general way [Hailpern 90]. This is

the so called multiple views problem and manifests itself in many software designs. Views

have traditionally been supported in database systems, and it should be possible to define

them for all language objects within the system.

The model presented in this paper extends the conventional object-oriented model through

object composition filters which are an integral part of our object model. The database-like

features are defined in terms of these filters. As a result, data abstraction, polymorphic

message passing and inheritance are fully integrated with them. On the other hand, no

compromises are made for object-oriented principles such as encapsulation, and all

language objects potentially support database-like behavior. Transactions and multiple

views are supported as well.

This paper is organized as follows: The next section gives an overview of the state-of-the

art systems. Section 3 summarizes the major problems, which will be taken into account

explicitly throughout the paper. The proposed language model is introduced in section 4.

Section 4.1 explains the basic object model. Section 4.2 describes how multiple views can

be constructed in this model. Section 4.3 extends the model to incorporate inheritance,

delegation and associative-access mechanisms. Object management features are explained

in section 4.4. Section 4.5 introduces transaction mechanisms and persistency. Finally,

section 5 evaluates the computation model and gives conclusions.

2. Background and Related Work

In this section we describe several systems that attempt to integrate database features with

an object-oriented language.

374

2.1 Smalltaik & Smalltalk-based Systems

The Smalltalk system [Goldberg 83] offers a limited set of database-like features within

its programming environment. Smalltalk provides persistence for all objects, using the save

image facility which saves a snapshot of the Smalltalk environment as a whole. The

Orwell system [Thomas 88], which is based on Smalltalk, introduces individual storage for

objects, but is mainly intended for version and configuration management.

In Smalltalk, associative access is provided through the method select: defined on

collections, such as Set, Dictionary and Bag:
aCollection select: [:element [...]

Here, aCollection is an instance of a collection class, select: is the name of a method

defined for collection objects, and the brackets "[...]" indicate a constant argument object

of the class Block. The class Block represents Smalltalk programs. Within this block object,

element is called the block argument. A block serving as an argument to a select: message

must have a single block argument and a body returning a boolean value. The block body

is evaluated for each element of aCollection. The result of the method execution is another

instance of the collection class, containing elements from aCollection for which the

argument block has evaluated to true.

GemStone ([Maier 86], [Bretl 89]) is an object-oriented database system based on

Smalltalk. Its language OPAL extends Smalltalk in a number of ways. The "{...}"

constructor is introduced as a substitute for "[...]" in order to signal the use of indices for

selections on nonsequencable collections. A second extension is the usage of path

expressions to represent joins in the relational sense. The path expressions are also used

to define indexes. A path expression is a sequence of instance variable names separated

by periods, e.g. student.dept.location. Sequences of messages, e.g. student dept location,

could be used for the same purpose as well, but path expressions bypass the execution

layer, and allow query optimizations at the database level. User sessions are considered to

be transactions. A shadow paging mechanism is employed to ensure database consistency.

2.2 ORION

ORION ([Kim 88], [Kim 89]) is an object-oriented database system based on an

object-oriented version of Common Lisp. Persistent storage is provided for all objects, and

a transaction subsystem is in charge of database consistency. ORION's Common Lisp

defines a method select on classes, instead of on collections:

(select aelass QueryExpression)

Here, aClass denotes the class which is the receiver of the message, and QueryExpression

is a boolean expression expressed in Lisp which is the argument of the message select. The

result is returned as a set object containing the qualified instances of the class. Paths of

instance variables (called complex attributes) may be used in query expressions, e.g. Dept

Location. Transaction control is supported by functions commit and abort.

375

2.30ntos

Ontos ([Ontologic 90], [Ontologic 91]) extends C++ with a class library that includes a

persistent root class Object. Objects of a class are persistent if the class is a direct or

indirect subclass of Object. Objects must be saved by explicit put messages even though

they are persistent through their class. There are several additional requirements for a

persistent object, which force the programmer to write a considerable amount of code only

to make a C++ object persistent.

For associative access, an SQL-like query facility is introduced. Queries may be directed

both to classes (indicating a table of all the instance of the class) and to aggregates like

sets, lists, dictionaries and arrays (the from clause). As with GemStone and ORION,

instance variables may be cascaded to form path expressions that simulate relational joins.

In order to execute a query, an instance of the Querylterator class has to be created,

supplying the text for the query as an argument. The rows that qualify according to the

select clause may be returned by successive yieldRow messages to the Querylterator
instance. Transactions are supported by global functions to start, commit and abort a

transaction.

3. O u r View of the Problem

We may sub-divide the language-database integration problem into duality in conception,
restriction in associativity, violation of encapsulation, fixed views, and lack of
object-oriented support in database features. These problems will be explained in turn

below:

3.1 Duality in Conception

There is a clear difference between "integrating" and "interfacing" programming languages

and database systems. From the above accounts of object-oriented language-database

systems, it is evident that language and database models are still kept separate, but the

programmer is offered possibilities within the language to access database facilities that

are in fact not part of the language model. This results in a set of constructs separated

from the language, rather than embedded within it. Moreover, the programmer is frequently

confronted with the fact that he/she is actually dealing with two systems instead of one.

For instance, the usage of a separate block constructor in GemStone's OPAL for queries

to be optimized by database indexes conflicts even with the essential data independence

claim of database systems. Similarly, the necessity of explicit object lookups and puts,
object-type links, and the SQL interface in Ontos, force the programmer to deal with two

distinct systems.

3.2 Restriction in Associativity

For almost all systems, associative access is restricted to a fixed number of classes, and

thus objects to be accessed associatively have to be inserted into one of such structures

explicitly. For example, the selection capability in Smalltalk and Gemstone is restricted to

instances of collection classes. The problems with Orion's approach are that associative

access is defined on classes and produces sets, and the resulting sets cannot be further

376

restricted. In Ontos, queries can only be directed to classes and aggregates. Similar to

Orion, return values are restricted to a few types. A query may return rows that are not

objects.

3.3 Violation of Encapsulation

In Gemstone, Orion and Ontos, attempts to formulate object queries have resulted in path

expressions which make object structures visible and thus are against the encapsulation

principle of the object-oriented model: encapsulated data should be accessed via message

sends only. Since Smalltalk does not introduce path expressions and is a pure

object-oriented language, its query mechanism using the select: method does not violate

encapsulation.

3.4 Fixed Views

Relational databases invariably support views on base tables, which allow users to work

only on the parts of the database that are relevant to them. It is also possible to create

virtual tables through the view mechanism by joining several tables under a view. The

multiple views problem in object-oriented designs has been addressed by several authors

(e.g. [Pemici 90], [Hailpern 90]). Not all methods of an object are of interest to (all) other

objects that use its services. Therefore, it is desirable to define views on an object,

differentiating between clients, for better information hiding and improved structuring of

object relationships.

In languages such as C++ [Ellis 90], Trellis/Owl [Schaffert 86] and PAL [Bj6rnerstedt 88],

multiple views can be defined by the programmer with respect to the different clients of

an object. These mechanisms in general only distinguish between the following categories

of clients; the object itself, the descendants of an object, and other client objects. However,

they do not allow any distinction between different kinds of external client objects. In the

Smalltalk programming environment, the concept of private methods is introduced, but it

is not enforced by the language. Gemstone and ORION do not provide multiple views at

all. Multiple views in Ontos are based only on C++, thus its view mechanism is very

limited.

3.5 Lack of Support of Object-Oriented Features

Since data management features of most systems can be considered as add-on extras,

object-oriented properties can not be used optimally for all system components. For

instance, all discussed systems except for Smalltalk support transactions. However, they

introduce transactions separately from object-oriented features like data abstraction,

message passing and inheritance. Therefore it is in general not possible to construct

extensible software with transaction characteristics. Moreover, this applies for all

database-like features. For example, it should be possible to combine associative access

with any object-oriented feature such as inheritance. This would result in associative

inheritance, which is useful in case of complex inheritance hierarchies. Associative

inheritance will be discussed in more detail in section 4.3.

377

4. The Language Model

We believe that an object model that provides abstract operations for its users and

encapsulates its implementation details is a good starting point for building complex

systems. It is commonly accepted that polymorphic message passing between objects, and

sharing mechanisms such as inheritance or delegation are important techniques in building

reusable and extensible systems [Wegner 90]. However we feel that committing to a single

abstract class inheritance model is far too restricted. In particular, this object model is

found to be too simple to deal with the problems related to language-database integration.

We are strongly convinced that the starting point for language-database integration lies in

casting database principles onto the data abstraction model of the language, and making

them inherent throughout. Otherwise, we end up with language counterparts of database

structures and facilities, i.e. dedicated classes and methods, requiring extra overhead for

the programmer, and not mingling properly with other elements of the model, such as

inheritance. This was identified in Section 3. If database-like features are to be integrated

into an object-oriented programming language, then they should be available for all objects

without any restrictions or implications. Therefore, we have enfianced the basic object

model to incorporate associativity and multiple views. The vehicle for providing these

mechanisms is provided by the so-called composition filters, which are explained in this

section.

Fig. 1. Extension of the object-model with composition-filters.

378

As shown in Figure 1, in its input part, object O defines its set of own methods, interface

objects, and states 1. Interface objects are sub-divided as internal and external objects. In

addition to that, a set of composition filters are defined and organized in a certain way.

Message invocations for this object are first evaluated by these filters and then dispatched

to an appropriate method. States are used to control filters. The selected method can be

one of the elements of the method set, or a method of one of the internal or external

objects.

This mechanism provides a higher degree of flexibility than the conventional fixed set of

methods at the interface of an object. The crucial property of .this model is that it can

support basic object-oriented constructs such as inheritance and delegation, as well as

database-like features such as dynamic data structures, transactions, multiple views and

associative access exclusively via filters. The only additional operations needed are some

basic object methods, for instance copy, inherited from the root class in the hierarchy,

named Object. In the following sections, we will describe this new model adopted by the

Sina language starting from simple objects to more sophisticated structures 2.

4.1. The Basic Object'Model

In Sina, every object o is an instance of a class c~C. An object o~O is modeled as a

quadruple, (/, M, S, F), where

C is the set of all Sina classes.

O is the set of all Sina objects.

I is the set of interface objects of o; these are objects that are within the scope of the

object, although not necessarily encapsulated by the object.

M is the set of methods defined within class c.

S is the set of states defined within class c.

F is the (ordered) set of filters defined within class c. (1)

As shown in Figure 2, a class definition is divided into separate parts: the input part and

the implementation part. The input part contains the declaration of the interface objects I,

divided into two components. The first component consists of encapsulated interface

objects called internals. The second component consists of interface objects that are

outside, but within the scope, of the object. These are called externals. The input part also

declares the class-specific methods M, states S, and the filters F. Method declarations in

1)

2)

The term input part implies the existence of both input and output parts. Indeed, an output part can be

defined to control the messages that are sent outside of the object. However, in this paper, we are only

concerned with the input part of an object. Therefore, for simplicity, instead of using the term input methods

and input interface objects, we will refer to them as methods and interface objects. The output part is

concerned with implementing the so-called abstract communication types (ACTs). ACTs can abstract

patterns of communication and large scale synchronization among objects [Aksit 89]. We are currently

experimenting with these mechanisms.

The early version of the Sina language was published in [Aksit 88] and [Aksit 91]. These publications only

illustrated the basic data abstraction model, and did not cover the database-like features that are presented

here.

379

the input part only give names, argument types and return types of methods that are

available to users of the object.

The implementation part contains the declarations of the implementation objects, or

instance variables, and the implementation of the class's methods and states. It also

includes an initialization method which is executed immediately after the creation of an

instance of a class. If we do not consider filters and object states, this model is somewhat

similar to the C++ object model with public and private methods and objects [Ellis 90].

class c input

externals

// external objects that are referred to are declared

here.

internals

// the internal, encapsulated, objects are declared here

methods

// locally defined methods are declared here

states

// local states are declared here

filters

// filters are declared here

end;

class c implementation

insvars

// declaration of instance variables

states

// states are implemented here

initial

// initialization method is defined here

m e t h o d s
// implementation of methods is defined here

end;

Fig. 2. Class template in Sina.

The interface objects are declared as follows:

doe: Document;

Here doc is an interface object, which is declared as an instance of class Document.

A state s is a certain condition that describes the object at a given time.

(s ~ S) = <proposition, id> (2)

A state may be viewed as a side-effect free boolean function, proposition, which can be

referred to in filters via an identifier id, and which maps the state of the object at a certain

moment to true or false. For example, in the following state implementation, the state

user view becomes true if the sender of the current message to this object is a subtype of

class User3:

user view return sender.subtypeOf(User);

This condition is expressed as < sender.subtypeOf(User), user._view >.

3) In Sina, subtype relations are deduced based on the signatures of objects.

380

State implementations can be specified in two ways. If the implementation is fixed, it can

be defined in the states clause of the implementation part. In this case, the state description

cannot be changed. If the state function may vary during the lifetime of the object, another

instance of class State can be assigned to it. This can be done during object initialization,

or within a method.

States are declared in the input part since we intend to make them available to users of the

object, but their implementation is encapsulated in the object's implementation part. An

important property of the state implementation is that it is side effect-free. The utilization

of states will be illustrated in connection with filters.

The set of methods Mo of object o contains all the methods that are defined for the object.

But an object may provide other methods on its interface, through the filter mechanism.

The largest possible set Uo of methods that are available, is the union of all the methods

provided by the interface objects. This rule applies recursively for the interface objects,

resulting in the following rule:

Uo = Mo U (Ui~ a Ui)

H

Which methods eventually become available for the clients of the object is determined by

the filters, as will be explained later.

A filter ~ defines the compositional object behavior and may be defined as a pair:

A = { <s,m> [sE(S U (U/~ sL)) ^ mEU) }

A(f) = [<s,m> I <s,m> E A]

f = <handler(f), A(f)> (3)

So a filter f consists of two components: the first, handler09 is a so-called filter-handler,

which is an instance of a filter-handler class. A filter handler determines what is to be

done with messages after they have passed the a filter (respectively failed to do so). The

second component, A(]), is defined as an ordered subset of A, which is denoted by the

brackets "[" and "]", and is called an accept set function. An accept set function defines

the conditions (expressed by states) which determine the acceptance of messages. A is the

set of all possible state-method combinations <s,m> within the object. The ordering of the

state-method pairs in A(f) corresponds with the definition-order. S i denotes the states that

are defined by interface object i.

Filters define the guidelines for the object's behavior in terms of methods and states

defined by the object and/or those available through its interface objects. A sample filter

f / is shown below:
fl : Error = { self.user_view=>self.attach, ... }

This filter has a filter handler which is an instance of class Error. The dot notation is used

to bind the state and method names to objects, s=>m is the syntactic counterpart of

<s,m>. It indicates that method m is accepted only when state s is true. In the above filter

description, the state user_view and the method attach that are bound to the object owning

this filter (self) are used. The pseudovariable self might have been omitted here because

381

whenever a qualifying object name is absent, self is substituted a. Examples where states

and methods of objects other than self are be combined in filters will be given in section

4.3.

A filter controls the interface of an object, by filtering incoming messages. The character

"," that is used above is called a selector and is one of the filter operators. Elements of the

filter that are separated by selectors, are processed in left-to-right order.

The class Error defines handlers that reject a message whenever it fails to pass through

the filter. Similarly, a handler class Buffer blocks the message until the object's state

allows it to proceed 5. New handler classes may be defined for any general-purpose

handling procedure. The admittance of an incoming message is determined according to

the state-message pairs. In the above example, an attach message is admitted by the filter

only if the user_view state evaluates to true.

Message invocation is a triple (o, m, P(m)), where o is the object to which the message

is sent, m is the name of the method that is invoked and P(m) is a possibly empty set of

arguments (parameters) required by m. Invoking the interface methods of an object is the

only means by which another object can communicate with, and change/access the internal

state of that object. Invocations are based on messages using the request-reply model of

communication. An invoked method can return the result (any object) to the sender using

the return statement. The nil object is returned when a method does not explicitly return

an object.

An object can communicate with another object by using that object's name which is

subject to scope rules. An object can access itself by using the pseudo-variable self. An

example for a message invocation is the expression

mailer, attach (aLetter) ;

This results in sending a request message to the object mailer, which is the receiver object,

attach is the method to be invoked, and aLetter is the message argument.

The Sina compiler incorporates a preprocessor to allow programmers to use a more

familiar short-hand notation such as the assignment, arithmetic and logical operations. For

example, assigning object a to b may be denoted by b.assign(a), but also by b:=a. In the

latter case, the preprocessor converts the expression to the standard form b.assign(a).

4)

5)

Other pseudo variables are inner, sender and server, inner is used to designate the locally defined part of

an object, which only supports the methods that are implemented by the object itself, whereas self refers

to the entire object, thereby also supporting the inherited and delegated methods, sender is defined in the

next section under the topic multiple views, server is defined in section 4.3 for constructing

delegation-based hierarchies.

We use the handier class Buffer to implement (extensible) concurrent structures; this topic is presented in

another paper [Bergmans 92].

382

The algorithm in figure 3 shows that each received message must be checked by all filters

in filter set F (line 2), and for every filter again by all filter elements. A filter element is

shown as the pair <sj,mj> in line 4. A filter fon ly accepts a message m, when the message

selector matches, i.e. m=mj, and the corresponding state sj evaluates to true (line 5). When

this is the case, no further filter elements of the current filter need to be checked, which

is realized by the break in line 9. The destination, or target of the message is deduced in

line 8 from the filter element. In line 12-14, the filter-handler determines what to do with

an accepted or rejected message. After the last filter has been passed, the message is

dispatched to the desired method, matching the message m and destination dest (note that

self or inner are also possible destination objects). When a message is rejected, the filter

handler may terminate the algorithm, in which case the message is not dispatched (for

instance filter handlers which are instances of class Error).

Notice that the message is accepted by a filter when it matches any filter element. Thus

the selector operator "," can be seen as a logical OR between different filter elements. Only

when a message is accepted by all filters it will be dispatched. Hence the subsequent

passing through the filters is similar to a logical AND.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

algorithm pass_filters(m, F)

forall f in F = [fl, ..., f.] do

accept := false;

forall <sj,mj> in A(f) = [<sl,m1> ,

if (m = mj) ^ sj then

begin

accept := true;

dest := target(mj);
break;

end;

endfor;

if accept

then handler(f).acceptMessage(m)

else handler(f).rejectMessage(m);

endfor;

dispatch(m, dest);

end pass_filters;

�9 .., <sk,mk>] d o

Fig. 3. The algorithm that evaluates received messages with respect to filters.

Because instance variables are not allowed to be targets in the filters, their methods never

become available on the interface of the object. In fact, this could also be realized by

programmer's discipline only, without the need to declare implementation objects and

methods separately. The rationale for this is improved readability of class definitions and

separation of the input and the implementation parts of an object.

An important property of the model is that the states and the filters can be treated as first-

class objects and are within the set of interface objects I. For clarity, we have distinguished

them from other interface objects. The basic set operations are defined on the set of

interface objects for all objects. The first-class properties are useful for defining object

management operations as is shown in section 4.4.

383

In the sections that follow, a number of applications of the data abstraction model are

shown.

4.2. Multiple Views

In this section, we will illustrate how filters can be used to implement multiple views upon

objects.

A view is a triple xoc, os, V), where oc is a client object that invokes a message mEV on

a server object o s. V is the set of messages that provided by os for o~. Having a multiple

view mechanism means that the server object supports multiple views depending on its

state or on characteristics of its client such as class or identity. For example, it may make

some methods visible to instances of one class, and others to instances of another class,

or it may define methods that may be executed only by clients that are instances of

subclasses of its class. The following filter f implements the view \oc, os, V) where V is

a subset of all available methods on os. As in (3), U denotes all the methods defined for

the current object as well as all the methods available from all interface objects:

os = ~I, M, S, Fi

V C U

(f ~ F) = <handler(f), A(f)>

A(f) = [<s,m>l m ~ V ^ s=<view._prop, view_id>] (4)

As before, handler(]) denotes the filter handler object. Now suppose that the proposition

view_prop is defined as "sender=oc". Then A(]) is the set of state-method pairs that allow

only sender oc to execute methods in V on o s. The pseudo variable sender indicates the

object that sent the current message. Apart from the identity of the sender object, the

implementation of a view may use any general proposition related to the sender object, or

the state of the receiver object. In the latter case, an object may provide changing views

to its clients.

A sample class definition implementing multiple views is provided in Figure 4.

The class Text_mail defines four methods; attach, send, deliver and route. The method

attach takes one parameter of class Letter which includes the contents of the mail. The

method send requires the address of the receiver object as a parameter, and transfers the

text to the mail system for delivery. The method deliver is used by the mail system to

physically deliver the mail. It returns a boolean indicating whether the mail was delivered

successfully. The method route is used by the mail system to transfer the mail to another

mail system, when the destination is not directly accessible to it.

The filter handler class is Error. In the filter definition, the curly brackets indicate a

shorthand notation for expressing "s=>ml, s=>m 2 , s=>mn" as "s=>{ml, m2, ..., mn}".

The wildcard character "*" can be used in filters to indicate any matching method. Note

that the name self might have been omitted from the filter definition since it is the default,

or inner might have been used instead

384

In this example, two views on the class Text_mail are defined. Objects of class User are

only allowed to invoke messages attach and send while objects of class Mail_system or

its subclasses are only allowed to send messages deliver and route. The pseudo variable

sender is used to check the class of the client object in the implementation of the states

user_view and system_view. Note that only an object that is a subtype of class User or

class Mail_system is allowed to invoke a message!

class Text mail input
methods-

attach(Letter) returns Nil;
send(Address) returns Nil;
deliver(NodeId) returns Boolean;
route(NodeId) returns Nil;

states
user_view;
system_view;

filters
fl : Error

end;

= { user_view=>{self.attaeh, self.send},
system view=>{self.deliver, self.route} };

class Text_mail implementation

s t a t e s
u s e r view

return sender.subtypeOf(User);
system_view

return sender.subtypeOf(Mail_system);
. , .

end;

Fig. 4. Interface and part of implementation of class Textmail.

4.3. Inheritance, Delegation and Associativity

As already identified in the problem statement, we find it too restrictive to adopt a single

class inheritance mechanism; rather we want to provide mechanisms like multiple

inheritance and delegation as well. In addition, we want associativity to be orthogonal to

object-oriented features such as inheritance, so that they can be combined. We will first

describe how filters can be used to implement different forms of code sharing mechanisms

such as inheritance and delegation. Then we will introduce associative behavior, and

explain how it can be defined.

The computation model as introduced by formulas (1-3) and algorithm pass_filters of

Figure 3 allows interface objects to be made available to the users of the encapsulating

object by naming them in filters. We will now show how the methods of an encapsulated

object can be made available on the interface of the object:

385

class 0 input
internal

q : ClassQ;

filters

fl : Error =

end;
{ True=>q.* };

The definition according to the formal object model is as follows. Object o is defined,

which has a single interface object q:

o = <I, M, S, F

I = { q }

F = {fl}

V = M U V q => V = ~ J U V q => V = V q

Interface object q provides the methods m r to m,, and is defined as:

q = <Iq, Mq, S v Fq>

Mq = {m 1, m 2, ..., m~}

V q = M q

The filterset F of o contains only filter/7, with accept set function A(fl):

f l = (handler(fl), A(fl))

A(fl) = [<s,m> I (s,True) ^ (m ~ Vq)] (5)

Here True is a state that is always valid; this is provided as the default when no state is

indicated. Now, suppose some client sends the message "o.mi" where mi~M q. This

message will be accepted according to the accept set function A(/7), since the message is

in the set Vq=Mq and the corresponding state is also valid. Then the message will be

delegated to, and executed by the interface object q. Note that the client object is not

aware of the fact that it is actually executing the method of an interface object. Also note

that when m i is dispatched to q, it has to pass through the filters defined by q before it can

be executed.

This mechanism is actually a simulation of inheritance, since the object o now provides

all messages of ClassQ on its interface, using the implementation of q, which is an

instance of ClassQ. This mechanism is also called delegation-based inheritance. If we

replace the interface object q with an external object g then the filters implement a form

of -pure- delegation. In this example, object o includes only one interface object and does

not introduce its own methods, thus providing methods of q only. If o had defined its own

methods or other interface objects, then the first state-method pair matching the incoming

message would have been dispatched. Multiple inheritance can be implemented by using

several interface objects. The left-to-right evaluation order of filter elements together with

the values of states would resolve name conflicts, if any.

In order to access their own methods or methods of their interface objects, within an object

messages can be sent to pseudo variables inner, self and server. The pseudo variables inner

and self in a message expression always refer to the implementation respectively interface

of the instance of the class where they are used. Because this is defined statically, the

semantics of a method implementation can be guaranteed not to be changed due to

Overriding. Performing an invocation on server, however, causes the search for the invoked

method to start with the original recipient of the message. Since the objects in Sina can

386

be nested or the messages can be delegated to the external objects, the recipient of the

message and the object in which the invocation appears can be different. We call the

receiver of the message server, because this object can be thought of as performing a

service for the object that originally sent the message (the sender), server is similar to

Smalltalk self, in the sense that it supports dynamic binding. But server in Sina can handle

delegated messages, whereas Smalltalk self cannot do this [Lieberman 86].

Typically in most object-oriented languages every class inherits -either directly or

indirectly- some default behavior from a root class called Object 6. Sina does not introduce

inheritance as a language feature, but using a filter construct, inheritance can be

implemented. The Sina system contains a primitive class called Object which abstracts the

default operations of all the classes. Typical example operations used in this paper are

assign, equal, and copy. The Sina compiler provides an option to insert an instance of class

Object called default automatically as the first filter element of every filter in a class. This

option makes it unnecessary for programmers to define the default operations explicitly for

every new class. Since default is the first element of a filter, it prevales over other

interface objects. Of course, programmers can explicitly turn off this option and create an

instance of class Object at the interface of a new class. Then, for example, they can

eliminate the assign operation of Object so that a constant behavior of the class can be

assured.

In Figure 5, we give a sample class definition which uses filters to implement inheritance:

class Text mail input
internals

doc : Document;
methods

'attach(Letter) returns Nil;
send(Address) returns Nil;
deliver(NodeId) returns Boolean;
route(NodeId) returns Nil;

states

user_view;
system_view;

filters

fl : Error = { user_view=>{attach, send, doc.*},
system_view=>{deliver, route}

end;

};

Fig. 5. Interface definition of Text_mail, which inherits from Document.

Class Text_mail in Figure 5 is similar to class Text_mail in Figure 4. An interface object

named doc of class Document is now introduced. The class Document includes methods

such as update andprint, and by including "doc.*" in the filter, instances of the Text_mail
class in Figure 5 will also support these methods. The rationale for this is that the class

Text_mail can now be used to edit the mail text directly, instead of using a separate copy

of the mail text.

6) Some languages such as C++ do not enforce programmers to inherit from a single class. However, even for

C++ programmers it is common practice to introduce a base class such as Object.

387

The filter associates all methods of class Document with the state user view defined in

class Text_mail, which means that only objects that are subtypes of class User may send

these message to objects of class Text_mail. Note that the pseudo-variable self is here

eliminated from the filter specification, since it is provided as the default.

Having introduced inheritance and delegation through composition filters, we now proceed

to define the associative access mechanism and its relation with inheritance.

We have seen that in most systems, a collection of objects is accessed by a condition that

applies to all contained objects through a predefined selection operation. Since we do not

want this mechanism to be available only to a restricted set of objects, it naturally follows

that associativity is attributed to every single object. For our model, it means that the

collection to be accessed is the set of interface objects. Since the object can use or inherit

the methods of its interface objects as shown in (5), the ability to restrict the set interface

object set leads to the notion of associative inheritance or associative delegation. The
client may affect the inheritance (or delegation) web to some extent, and specify

associatively the objects from which it would like the server object to inherit. In short, a

dedicated container class which supports associative access through a special method is

replaced by the set of interface objects which every object may possess.

Associativity for interface objects is realized as follows: a received message will be

dispatched only to interface objects i for which the associated state evaluates to true. This

state is defined by < p(i), /dp >, where the proposition is expressed by a message

expression in which i is a receiver (since p(i) tests the properties of i). p(i) is evaluated

only for proper interface objects i that support all the messages that are required for

evaluating p(i). These messages are defined by Mp:

Mp = {m I p(a) involves 'a.m' } (6)

Only those interface objects i are selected for which the proposition applies (i.e. which

implement Mp), for which p(i) evaluates to true, and which implement the received

message m. This is defined in the accept set function A(]) as follows:

A(f) = I" <s, i.m> I iEI A s=(p(i), id) A m~U i A Mp~U i]] (7)

The filter f will then include all interface objects which implement the methods that are

required by the proposition p, and which satisfy p. Since availability of interface objects

is determined by their responses to certain conditions but not by their names, such a filter

implements associative inheritance. The syntactic equivalent of filter f of (7) in Sina is as

follows, where p is the state which implements the proposition, and which is parameterized

subsequently by all suitable interface objects. When p evaluates to true for object i and i

supports the received message m, the message will be accepted, and eventually dispatched

to i. Proposition p can be defined by the object itself, but the object may also allow the

client to provide this proposition.
{ p(#)=>{#.*} }

We illustrate this in figure 6. with an example class, Multimedia_mail, which provides a

different behavior, depending on the type of media that is desired. The latter can be

determined by the client by sending the message select_mail, providing the proposition

388

(query condition) as a 'block' argument. Note that in class Text_mail in figure 5, the

criterion for associative inheritance is solely determined by the server object.

class Multimedia_mail input
internals

text: Text mail;
binary: Binary_mail;
voice: Voice mail;

methods
select_mail(Block) returns Nil;

states
mail state;

filters--
fl : Error = { inner.*, mail state(#)=>#.* };

end;

class Multimedia_mail implementation
methods

select_mail(new_prop:Block)
beg in

mail_state.proposition(new_prop);
end;

end;

Fig. 6. Definition of class Multimedia_mail which associativety inherits from various types of mail

objects.

The input filter of class Multimediamail specifies associative inheritance controlled by

state mail_state. Since this state can be redefined using the method select_mail, the class

Multimedia_mail can associatively inherit from various mail types as required by the user.

The class Multimedia_mail declares three interface objects; text, binary and voice of

classes Text_mail, Binary_mail, and Voice_mail, respectively. The definition of class

Textmail was given in figures 4 and 5. All these classes implement a specific electronic

mail object for the type of mail-data they contain. They also provide dedicated methods

for their respective data types.

The method select_mail is defined on class Multimedia_mail to let the user specify the

required mail type. A client of the object may provide a new proposition for the state

mail_state, as the argument of the select_mail method. The method proposition takes the

argument, which must be of class Block, and stores it as the (new) proposition of

mail_state. An example of invoking select_mail, using an instance of Multimedia_mail
called aMultimediamail, is:

aMultimedia_mail, select_mail([#. subtypeOf (voice_mail)]) ;

The proposition is specified as a constant object of class Block, which is denoted with the

brackets "[...]". The number symbol "#" stands for the argument of the proposition

(interface objects will be substituted here). This proposition will evaluate to true only when

the argument is a subtype of class Voice_Mail.

389

4.4. Associative Object Management
Associative inheritance provides flexibility in configuring the behavior of an object in a

well-defined way. However, if client objects need to define and preserve their own views,

but still share data, the associative inheritance mechanism will not be adequate since all

client objects observe the same server, with the same view. We therefore need to give

different object identities to different views of the same object. Besides, in addition to

selection, the object model should also support data management operations such as union,

intersection and exclusion. In this section we will show how this can be realized within

the object model.

Our aim is to provide a different view of an object o, and retain this view over a number

of method invocations. This cannot be realized by a filter construct only, since filters

dynamically reconfigure for every received message. So some changes to the interface of

an object need to be preserved over a number of message invocations. Since such changes

may not be relevant to all client objects, a copy of o must be made, say o ' , of which the

interface will be changed to reflect a different view of o.

Since the state of the object o must be shared between all clients, o ' must share its state

with o. This is realized by making a shallow-copy instead of a complete copy. Shallow-

copy means that a new object o ' is created, with a different object identity, but which

shares all objects nested within o ' with the corresponding nested objects in o.

We first show the result, o ' , of a selection of object o with condition p. This creates a

view of the object with only those interface objects available that are selected according

to condition p (making use of (6)) :

o = ~I, M, S, F

o '= ~I', M, S, F')

I ' = {i~I I p(i) ^ MpCU~} (8)

Because now only a subset I ' of the interface objects is available, the filters must be

adapted to take only the accessible interface objects into account, which can be expressed

as follows:

(f ' ,~F') = < handler(f '), A ' (f ') >

A (f) = [(s,m) E A(f ') I s~(S U so) ^ m E (M U (UiE I, Ui))] (9)

These lines state that the filters of the new filter set F ' are reduced so they only contain

filter elements that refer to the states and methods of the selected interface objects.

Since the set operations intersection and exclusion are a specific kind of selection, they can

be expressed in the same way. In that case only an appropriate selection proposition p is

to be provided. To define intersection between the interface objects of o and the interface

objects o":

o"= iI", M, S, F")

p(x) = (x~I")

Excluding all interface objects I" of o" from o requires the following proposition:

p(x) = (x~I")

390

In order to define a union of the interface objects from o with those from o", we use the

same approach (resulting in a new object o'):

o = (I , M , S , F)

o ' = (I', M, S, F)

o" = (I", M", S", F"~

I' = I U I" (10)

Notice that o ' offers an alternative view of object o, and therefore only the methods and

states that are defined for o are available for o ' , but not those the states and methods from

o". This is also the case for the filters: the constraints that are imposed by the filter of o,

must still be valid for o' . To enforce this, object o ' has the same filter set that o has.

As we mentioned before, the set of interface objects I is a first-class set object. Basic set

operations like union, intersect, exclude and select are provided by set objects. By

manipulating the set of interface objects using these operations, views that are

combinations or restrictions of interface objects can be programmed. We show this in the

following example:

In the example class Multimedia_mail of Figure 6 a method select_mail is provided that

changes the type of mail-data handled by the mail system. One invocation of this method

will cause the change to affect all client objects of the mail system. In order to provide a

different view of the mail system, which does not affect all the clients, the method

select mail can be defined as follows:

select mail(new_prop:Block)
begin

return (self.get_input_objects).select(new_prop);
// get & select the set of (input-) interface objects

end;
Fig. 7. Implementation of me~odselec~mailwhichreturnsa new view ofthereceivero~ect.

For the implementation of method select_mail the method get inputobjects is used, which

returns the set of interface objects. The method get_input_objects is inherited from class

Object. Then a select is performed upon this set. The method select returns a shallow-copy

which contains references to a selection of interface objects. This selection includes only

those interface objects that satisfy the condition new__prop, which is provided by the client

object as an argument of the method select_mail.

A possible effect of the method select is depicted by Figure 8. Here, the method select is

invoked with the condition subtypeOf(Voice_mail) which results in a shallow-copy of the

multi-media mail object o. The view object has a different object identity and shares the

contents of the voice mail, possibly with other views. Note that this sharing mechanism

is encapsulated and thus not visible to the users of view objects.

Apart from the method select, also the methods union, intersect and exclude can be

invoked on the set of interface objects, as returned by get_inputobjects. In formulas 9-10

it was shown how set operations on interface objects affect the behavior of objects. Thus

391

the programmer has the possibility to implement data management operations upon

interface objects.

Fig. 8. A possible result of the method select.

4.5. Atomic Transactions & Persistence

Most databases support transactions. According to [Haerder 83], a transaction mechanism

must provide these four properties: atomicity, consistency, isolation and durability. These

properties ensure that a transaction always yields a consistent and stable state, even in the

presence of system and program failure and concurrent access to shared data. Atomicity,

consistency and isolation are provided by the mechanism of atomic delegation [Akw 91].

Durability is separated from transactions, and provided as object persistence.

Transactions provided by databases are typically defined in some query language, for a

sequence of database operations. Only a few languages, such as Argus [Liskov 87] and

Avance [Bj6rnerstedt 88] support transactions, which are called atomic actions, as a general

mechanism in the language for preserving consistency of concurrently accessed resources.

Most object-oriented systems provide transactions for a program block by delimiting it

with 'begin-transaction' and 'end-transaction' like constructs, or by making the complete

method body atomic. This mechanism does not provide integration with object-oriented

constructs such as inheritance. This is because combining inherited methods within an

atomic construct requires -in the extreme case- the separate declaration of all atomic

method combinations, which is not feasible.

392

Atomic delegation combines the concepts of delegation and atomic action in a uniform

model which supports open-endedness of atomic actions. Atomic delegation allows an

object to delegate a sequence of messages to one or more designated objects as a single

atomic action; such atomic actions are indivisible and recoverable. This mechanism allows

the programmer to define classes of atomic actions rather than defining each atomic action

separately. Construction of open-ended systems is supported because new atomic actions

may be added or existing ones may be modified by changing the delegation relationships

between objects without requiring any redefinition of atomic actions, or recompilation of

the objects performing the atomic actions.

We will now show an example of atomic delegation. In this example we add accounting

facilities to the execution of every method of our Multimediamail class. Since, for

instance, we do not want to charge when a call fails, and a caller with an exceeded budget

limit is not allowed to use the mail facilities; we want to make this an atomic transaction.

class Multimedia_mail input

externals

acc : Accounting

o . J

filters

transact : Error = { True =>

o . ,

<acc.*, inner.*> }

The filter transact defines an atomic action "<acc.*, inner. *>", which is indivisible and

recoverable; either both messages are executed successfully and commit, or an abort and

subsequent roll-back take place. The brackets "<" and ">" enclose a sequence of messages

that form one transaction. The asterisk indicates that all methods that are provided by the

target are supported. Note that extensions to object acc will automatically be available for

clients of the Multimedia_mail objects, due to the use of the asterisk. The state True

indicates that no additional constraints are imposed by this filter in order to" execute the

atomic action. It may be clear that the number of possible method combinations can be

quite large, and it would be infeasible to declare all possible transactions separately, as

conventional mechanisms would require.

Persistence of an object is the responsibility of the object itself, and must be transparent

to its clients. We feel that conceptually, persistence is simply a property of an object,

which has the effect that the object will survive user sessions. We consider the efficient

implementation of a large amount of persistent objects as a complex, but separate research

topic. For our object model, we are not concerned with these implementation issues 7.

The property of persistence of an object can be easily modeled with an attribute

'persistent', which can be affected by message invocations. However, a declarative way

of stating the persistence property of an object is preferable, since it is more explicit, and

allows for compile-time optimizations. This is realized in Sina by declaring an object as

7) In our current prototype, we use the object-oriented database system Ontos [Ontologic 91] for implementing
persistent objects.

393

an instance of class Persistent, parameterized with the desired class of the object, as

follows:

objects doe : Persistent(Document);

Here doc is an interface object and is declared as an instance of class Persistent,

parameterized with class Document. This declaration results in doc being an object with

an interface just like all other instances of the Document class 8, but the object will also

be saved on stable storage. The class Temporary is defined analogously, and keeps the

internal state only during execution time; Temporary is the default for plainly declared

objects. Note that this can only be done for internal objects, since these are defined locally,

but external objects are defined elsewhere, and are only referred to by this object.

5. Evaluation and Conclusions

Our starting point is an object model that provides abstract operations for its users and

encapsulates its implementation details. This model is extended with the composition

filters. This paper illustrates the following useful features of this model:

�9 Multiple views on objects, in section 4.2.

�9 Basic object-oriented mechanisms such as single and multiple inheritance/delegation,

in section 4.3.

B Associative inheritance/delegation, in section 4.3.

�9 Database features such as sharing, and selection, union, intersection and exclusion, in

section 4.4.

�9 Persistent objects and transactions, in section 4.5.

We will now evaluate our object-oriented model with respect to the problems that were

identified in section 3:

�9 Duality in conception: In our model, all the database-like features are provided

exclusively via composition filters and no separate query language is introduced. The

basic object-oriented mechanisms such as inheritance and delegation are also provided

via filters. As a consequence, there is no conceptual difference between the language

and database-like features.

�9 Restriction in associativity: In our approach, associative access is available for all

objects. Filters can be configured using an expression of the form { s(#)= >{#.*} }. In

addition, interface objects are stored in a first-class set object, supporting basic set

operations like union, intersect, exclude, and select. By manipulating the interface

objects with these operations, views that are combinations or restrictions of interface

objects can be programmed. Thus our data management functionality is not restricted

to dedicated types. However, this does not imply that there should never be dedicated

container classes in a system. When an application explicitly deals with objects

containing collections of objects, a container class may be created. Such a container

8) Class Persistent is implemented as a class that inherits from the class that is supplied as an argument to

class Persistent; it is possible to express this with the Sina data abstraction model.

394

class may be similar to container classes in other systems. Our point is that we do not

restrict data management operations to this kind of dedicated classes.

�9 Violation of encapsulation: The database-like features as presented in this paper do not

violate encapsulation. Nested objects cannot be directly addressed from outside the

object. They can solely be accessed by message invocation, but only when this is

explicitly allowed by the filters.

�9 Views: Views are provided by the filters, and the view conditions are not restricted.

�9 Support of object-oriented features: We have integrated the database-like properties

within our object-oriented model, but they are orthogonal, and can be freely mixed

with the data abstraction features, resulting in, for example, associative inheritance or

associative atomic delegations.

Various versions of the Sina language have been implemented. The early version of the

Sina language was implemented using the Smalltalk language [Goldberg 83] on a Sun

workstation. This implementation included only single filters without states. We are

currently implementing the new version of the language, translating to C++ [Ellis 90].

References

[Ak~it 88]

[Akhit 89]

[Akhit 91]

[Bergmans 92]

[Bj6merstedt 88]

[Bretl 89]

[Ellis 90]

[Goldberg 83]

[Haerder 83]

M. Akw & A. Tripathi, Data Abstraction Mechanisms in Sina/ST, OOPSLA

'88, pp. 265-275

M. Akw Abstract Communication Types, On the Design of the

Object-Oriented Language Sina, Ph.D. Dissertation, Chapter 4, Department of

Computer Science, University of Twente, The Netherlands, 1989

M. Akw J.W. Dijkstra & A. Tripathi, Atomic delegation: Object-Oriented

Transactions, IEEE Software, Vol. 8, No. 2, March 1991

L. Bergmans & M. Akw An Object-Oriented Model for Extensible

Concurrency, Working paper.

A. Bj6rnerstedt & S. Britts, AVANCE: An Object Management System,

OOPSLA '88, pp. 206-221

R. Bretl, D. Maier, A. Otis, J. Penney, B. Schuchardt, J. Stein, E.H. Williams

& M. Williams, The GemStone Data Management System, Object-Oriented

Concepts, Databases, and Applications, Ch. 11, eds. W. Kim and F. H.

Lochovsky, pp. 283-309, Addison-Wesley, 1989

M.A. Ellis & B. Stroustrup, The Annotated C+ + Reference Manual, Addison-

Wesley, 1990

A. Goldberg & D. Robson, Smalltalk-80: The Language and its

lmplemenation, Addison-Wesley, 1983

T. Haerder & A. Reuter, Principles of Transaction-Oriented Database

Recovery, ACM Computing Surveys, Vol. 15, No. 4, December 1983, pp.

287-317

395

[Hailpern 90]

[Kim 88]

[Kim 89]

[Kim 90]

[Lieberman 86]

[Liskov 87]

[Maier 86]

[Ontologic 90]

[Ontologic 91]

[Pernici 90]

[Schaffert 86]

[Thomas 88]

[Wegner 90]

B. Hailpern & H. Ossher, Extending Objects to Support Multiple Interfaces

andAccess Control, IEEE Transactions on Software Engineering, Vol. 16, No.

11, pp. 1247-1257, November 1990.

W. Kim, N. Ballou, H.T. Chou, J.F. Garza, D. Woelk & J.Banerjee,

Integrating an Object-Oriented Programming System with a Database System,

OOPSLA '88, pp. 142-152

W. Kim, N. Ballou, H.T. Chou, J.F. Garza & D. Woelk, Features of the

ORLON Object-Oriented Database System, Object-Oriented Concepts,

Databases, and Applications, Ch. 11, eds. W. Kim and F. H. Lochovsky, pp.

251-282, Addison-Wesley, 1989

W. Kim, Object-Oriented Databases: Definition and Research Directions,

IEEE Transactions on Knowledge and Data Engineering, Vol. 2, No. 3, pp.

327-341, September 1990

H. Lieberman, Using Prototypical Objects to Implement Shared Behavior,

OOPSLA '86, pp. 214-223

13. Liskov et. al., Argus Reference Manual, MIT Lab. for Computer Science,

No. MIT-TR-400, November 1987

D. Maier, J. Stein, A. Otis & A. Purdy, Development of an Object-Oriented

DBMS, OOPSLA '86, pp. 472-482.

Ontos Object Database version 2.0 SQL User's Guide, Ontologic Inc.,

Burlington (Mass.), December 1990.

Ontos Object Database version 2.0 Developer's Guide, Ontologic Inc.,

Burlington (Mass.), February 1991.

B. Pernici, Objects with Roles, Proc. of the Conference on Office Information

Systems, pp. 205-215, Cambridge (Mass.), April 1990.

C. Schaffert, T. Cooper, B. Bullis, M. Kilian & C. Wilpolt, An Introduction

to Trellis~Owl, OOPSLA '86, pp, 9-16

D. Thomas & K. Johnson, Orwell-A Configuration Management System for

Team Programming, OOPSLA '88, pp. 135-141

P. Wegner, Concepts and Paradigms of Object-Oriented Programming, OOPS

Messenger, No, 1, Vol. 1, August 1990, pp. 7-87

