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Abstract. This paper introduces a new model, based on so-called object-composition 
filters, that uniformly integrates database-like features into an object-oriented 
language. The focus is on providing persistent dynamic data structures, data sharing, 
transactions, multiple views and associative access, integrated with the 

object-oriented paradigm. The main contribution is that the database-like features are 

part of this new object-oriented model, and therefore, are uniformly integrated with 

object-oriented features such as data abstraction, encapsulation, message passing and 
inheritance. This approach eliminates the problems associated with existing systems 

such as lack of reusability and extensibility for database operations, the violation of 

encapsulation, the need to define specific types such as sets, and the incapability to 

support multiple views. The model is illustrated through the object-oriented language 

Sina. 

1. Introduction 

Traditionally, data-intensive applications have been developed as application programs 

executing on top of a database management system, and using database services through 

embedded data manipulation statements. This approach suffers from the need to manage 

two different languages, and to interface them with extra programming effort. There have 

been numerous attempts at integrating these two systems within the framework of the 

object-oriented paradigm [Kim 90]. It is claimed that the object-oriented model provides 

a more suitable basis both for application programming and data management operations, 

when it is selected as a common computation model. In addition, since objects can 

represent complex data structures, object-oriented databases are presumably more capable 

in dealing with emerging applications such as computer-aided engineering. 

A considerable number of object-oriented database management systems have been 

developed or are currently under development (e.g. [Maier 86], [Kim 89] and [Ontologic 

91]). These systems support the basic elements of the object-oriented model, and provide 

efficient data management, transaction support, and querying facilities. The full integration 

of language and database systems, however, cannot be considered to be solved completely. 

The problem is three-fold. 
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Firstly, since these systems extend an object-oriented computation model with conventional 

database mechanisms like (non-object-oriented) query languages, the advantages of the 

object-oriented model do not fully extend to database features. For example, encapsulation 

and inheritance cannot be used together conveniently with the database-like features in 

uniform way. Consequently, it is more difficult to obtain modular, reusable and extensible 

software for the data management part of applications. In addition, the programmer still 

has to deal with two different systems. 

Secondly, introducing database-like features into the object-oriented language model 

generally introduces weakened encapsulation, and these features are generally provided 

only for a restricted number of language structures such as sets or classes. 

Thirdly, neither languages nor object-oriented database systems address the problem of 

providing different interfaces on the same object in a general way [Hailpern 90]. This is 

the so called multiple views problem and manifests itself in many software designs. Views 

have traditionally been supported in database systems, and it should be possible to define 

them for all language objects within the system. 

The model presented in this paper extends the conventional object-oriented model through 

object composition filters which are an integral part of our object model. The database-like 

features are defined in terms of these filters. As a result, data abstraction, polymorphic 

message passing and inheritance are fully integrated with them. On the other hand, no 

compromises are made for object-oriented principles such as encapsulation, and all 

language objects potentially support database-like behavior. Transactions and multiple 

views are supported as well. 

This paper is organized as follows: The next section gives an overview of the state-of-the 

art systems. Section 3 summarizes the major problems, which will be taken into account 

explicitly throughout the paper. The proposed language model is introduced in section 4. 

Section 4.1 explains the basic object model. Section 4.2 describes how multiple views can 

be constructed in this model. Section 4.3 extends the model to incorporate inheritance, 

delegation and associative-access mechanisms. Object management features are explained 

in section 4.4. Section 4.5 introduces transaction mechanisms and persistency. Finally, 

section 5 evaluates the computation model and gives conclusions. 

2. Background and Related Work 

In this section we describe several systems that attempt to integrate database features with 

an object-oriented language. 
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2.1 Smalltaik & Smalltalk-based Systems 

The Smalltalk system [Goldberg 83] offers a limited set of database-like features within 

its programming environment. Smalltalk provides persistence for all objects, using the save 

image facility which saves a snapshot of the Smalltalk environment as a whole. The 

Orwell system [Thomas 88], which is based on Smalltalk, introduces individual storage for 

objects, but is mainly intended for version and configuration management. 

In Smalltalk, associative access is provided through the method select: defined on 

collections, such as Set, Dictionary and Bag: 
aCollection select: [:element [ ... ] 

Here, aCollection is an instance of a collection class, select: is the name of a method 

defined for collection objects, and the brackets "[...]" indicate a constant argument object 

of the class Block. The class Block represents Smalltalk programs. Within this block object, 

element is called the block argument. A block serving as an argument to a select: message 

must have a single block argument and a body returning a boolean value. The block body 

is evaluated for each element of aCollection. The result of the method execution is another 

instance of the collection class, containing elements from aCollection for which the 

argument block has evaluated to true. 

GemStone ([Maier 86], [Bretl 89]) is an object-oriented database system based on 

Smalltalk. Its language OPAL extends Smalltalk in a number of ways. The "{...}" 

constructor is introduced as a substitute for "[...]" in order to signal the use of indices for 

selections on nonsequencable collections. A second extension is the usage of path 

expressions to represent joins in the relational sense. The path expressions are also used 

to define indexes. A path expression is a sequence of instance variable names separated 

by periods, e.g. student.dept.location. Sequences of messages, e.g. student dept location, 

could be used for the same purpose as well, but path expressions bypass the execution 

layer, and allow query optimizations at the database level. User sessions are considered to 

be transactions. A shadow paging mechanism is employed to ensure database consistency. 

2.2 ORION 

ORION ([Kim 88], [Kim 89]) is an object-oriented database system based on an 

object-oriented version of Common Lisp. Persistent storage is provided for all objects, and 

a transaction subsystem is in charge of database consistency. ORION's Common Lisp 

defines a method select on classes, instead of on collections: 

(select aelass QueryExpression) 

Here, aClass denotes the class which is the receiver of the message, and QueryExpression 

is a boolean expression expressed in Lisp which is the argument of the message select. The 

result is returned as a set object containing the qualified instances of the class. Paths of 

instance variables (called complex attributes) may be used in query expressions, e.g. Dept 

Location. Transaction control is supported by functions commit and abort. 
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2.30ntos 

Ontos ([Ontologic 90], [Ontologic 91]) extends C++ with a class library that includes a 

persistent root class Object. Objects of a class are persistent if the class is a direct or 

indirect subclass of Object. Objects must be saved by explicit put messages even though 

they are persistent through their class. There are several additional requirements for a 

persistent object, which force the programmer to write a considerable amount of code only 

to make a C++ object persistent. 

For associative access, an SQL-like query facility is introduced. Queries may be directed 

both to classes (indicating a table of all the instance of the class) and to aggregates like 

sets, lists, dictionaries and arrays (the from clause). As with GemStone and ORION, 

instance variables may be cascaded to form path expressions that simulate relational joins. 

In order to execute a query, an instance of the Querylterator class has to be created, 

supplying the text for the query as an argument. The rows that qualify according to the 

select clause may be returned by successive yieldRow messages to the Querylterator 
instance. Transactions are supported by global functions to start, commit and abort a 

transaction. 

3. O u r  View of  the Problem 

We may sub-divide the language-database integration problem into duality in conception, 
restriction in associativity, violation of encapsulation, fixed views, and lack of 
object-oriented support in database features. These problems will be explained in turn 

below: 

3.1 Duality in Conception 

There is a clear difference between "integrating" and "interfacing" programming languages 

and database systems. From the above accounts of object-oriented language-database 

systems, it is evident that language and database models are still kept separate, but the 

programmer is offered possibilities within the language to access database facilities that 

are in fact not part of the language model. This results in a set of constructs separated 

from the language, rather than embedded within it. Moreover, the programmer is frequently 

confronted with the fact that he/she is actually dealing with two systems instead of one. 

For instance, the usage of a separate block constructor in GemStone's OPAL for queries 

to be optimized by database indexes conflicts even with the essential data independence 

claim of database systems. Similarly, the necessity of explicit object lookups and puts, 
object-type links, and the SQL interface in Ontos, force the programmer to deal with two 

distinct systems. 

3.2 Restriction in Associativity 

For almost all systems, associative access is restricted to a fixed number of classes, and 

thus objects to be accessed associatively have to be inserted into one of such structures 

explicitly. For example, the selection capability in Smalltalk and Gemstone is restricted to 

instances of collection classes. The problems with Orion's approach are that associative 

access is defined on classes and produces sets, and the resulting sets cannot be further 
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restricted. In Ontos, queries can only be directed to classes and aggregates. Similar to 

Orion, return values are restricted to a few types. A query may return rows that are not 

objects. 

3.3 Violation of Encapsulation 

In Gemstone, Orion and Ontos, attempts to formulate object queries have resulted in path 

expressions which make object structures visible and thus are against the encapsulation 

principle of the object-oriented model: encapsulated data should be accessed via message 

sends only. Since Smalltalk does not introduce path expressions and is a pure 

object-oriented language, its query mechanism using the select: method does not violate 

encapsulation. 

3.4 Fixed Views 

Relational databases invariably support views on base tables, which allow users to work 

only on the parts of the database that are relevant to them. It is also possible to create 

virtual tables through the view mechanism by joining several tables under a view. The 

multiple views problem in object-oriented designs has been addressed by several authors 

(e.g. [Pemici 90], [Hailpern 90]). Not all methods of an object are of interest to (all) other 

objects that use its services. Therefore, it is desirable to define views on an object, 

differentiating between clients, for better information hiding and improved structuring of 

object relationships. 

In languages such as C++ [Ellis 90], Trellis/Owl [Schaffert 86] and PAL [Bj6rnerstedt 88], 

multiple views can be defined by the programmer with respect to the different clients of 

an object. These mechanisms in general only distinguish between the following categories 

of clients; the object itself, the descendants of an object, and other client objects. However, 

they do not allow any distinction between different kinds of external client objects. In the 

Smalltalk programming environment, the concept of private methods is introduced, but it 

is not enforced by the language. Gemstone and ORION do not provide multiple views at 

all. Multiple views in Ontos are based only on C++, thus its view mechanism is very 

limited. 

3.5 Lack of Support of Object-Oriented Features 

Since data management features of most systems can be considered as add-on extras, 

object-oriented properties can not be used optimally for all system components. For 

instance, all discussed systems except for Smalltalk support transactions. However, they 

introduce transactions separately from object-oriented features like data abstraction, 

message passing and inheritance. Therefore it is in general not possible to construct 

extensible software with transaction characteristics. Moreover, this applies for all 

database-like features. For example, it should be possible to combine associative access 

with any object-oriented feature such as inheritance. This would result in associative 

inheritance, which is useful in case of complex inheritance hierarchies. Associative 

inheritance will be discussed in more detail in section 4.3. 
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4. The Language Model 

We believe that an object model that provides abstract operations for its users and 

encapsulates its implementation details is a good starting point for building complex 

systems. It is commonly accepted that polymorphic message passing between objects, and 

sharing mechanisms such as inheritance or delegation are important techniques in building 

reusable and extensible systems [Wegner 90]. However we feel that committing to a single 

abstract class inheritance model is far too restricted. In particular, this object model is 

found to be too simple to deal with the problems related to language-database integration. 

We are strongly convinced that the starting point for language-database integration lies in 

casting database principles onto the data abstraction model of the language, and making 

them inherent throughout. Otherwise, we end up with language counterparts of database 

structures and facilities, i.e. dedicated classes and methods, requiring extra overhead for 

the programmer, and not mingling properly with other elements of the model, such as 

inheritance. This was identified in Section 3. If database-like features are to be integrated 

into an object-oriented programming language, then they should be available for all objects 

without any restrictions or implications. Therefore, we have enfianced the basic object 

model to incorporate associativity and multiple views. The vehicle for providing these 

mechanisms is provided by the so-called composition filters, which are explained in this 

section. 

Fig. 1. Extension of the object-model with composition-filters. 
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As shown in Figure 1, in its input part, object O defines its set of own methods, interface 

objects, and states 1. Interface objects are sub-divided as internal and external objects. In 

addition to that, a set of composition filters are defined and organized in a certain way. 

Message invocations for this object are first evaluated by these filters and then dispatched 

to an appropriate method. States are used to control filters. The selected method can be 

one of the elements of the method set, or a method of one of the internal or external 

objects. 

This mechanism provides a higher degree of flexibility than the conventional fixed set of 

methods at the interface of an object. The crucial property of .this model is that it can 

support basic object-oriented constructs such as inheritance and delegation, as well as 

database-like features such as dynamic data structures, transactions, multiple views and 

associative access exclusively via filters. The only additional operations needed are some 

basic object methods, for instance copy, inherited from the root class in the hierarchy, 

named Object. In the following sections, we will describe this new model adopted by the 

Sina language starting from simple objects to more sophisticated structures 2. 

4.1. The Basic Object'Model 

In Sina, every object o is an instance of a class c~C. An object o~O is modeled as a 

quadruple, (/, M, S, F), where 

C is the set of all Sina classes. 

O is the set of all Sina objects. 

I is the set of interface objects of o; these are objects that are within the scope of the 

object, although not necessarily encapsulated by the object. 

M is the set of methods defined within class c. 

S is the set of states defined within class c. 

F is the (ordered) set of filters defined within class c. (1) 

As shown in Figure 2, a class definition is divided into separate parts: the input part and 

the implementation part. The input part contains the declaration of the interface objects I, 

divided into two components. The first component consists of encapsulated interface 

objects called internals. The second component consists of interface objects that are 

outside, but within the scope, of the object. These are called externals. The input part also 

declares the class-specific methods M, states S, and the filters F. Method declarations in 

1) 

2) 

The term input part implies the existence of both input and output parts. Indeed, an output part can be 

defined to control the messages that are sent outside of the object. However, in this paper, we are only 

concerned with the input part of an object. Therefore, for simplicity, instead of using the term input methods 

and input interface objects, we will refer to them as methods and interface objects. The output part is 

concerned with implementing the so-called abstract communication types (ACTs). ACTs can abstract 

patterns of communication and large scale synchronization among objects [Aksit 89]. We are currently 

experimenting with these mechanisms. 

The early version of the Sina language was published in [Aksit 88] and [Aksit 91]. These publications only 

illustrated the basic data abstraction model, and did not cover the database-like features that are presented 

here. 
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the input part only give names, argument types and return types of  methods that are 

available to users of  the object. 

The implementation part contains the declarations of  the implementation objects, or 

instance variables, and the implementation of  the class's methods and states. It also 

includes an initialization method which is executed immediately after the creation of an 

instance of  a class. If  we do not consider filters and object states, this model is somewhat 

similar to the C++ object model with public and private methods and objects [Ellis 90]. 

class c input 

externals 

// external objects that are referred to are declared 

here. 

internals 

// the internal, encapsulated, objects are declared here 

methods 

// locally defined methods are declared here 

states 

// local states are declared here 

filters 

// filters are declared here 

end; 

class c implementation 

insvars 

// declaration of instance variables 

states 

// states are implemented here 

initial 

// initialization method is defined here 

m e t h o d s  
// implementation of methods is defined here 

end; 

Fig. 2. Class template in Sina. 

The interface objects are declared as follows: 

doe: Document; 

Here doc is an interface object, which is declared as an instance of  class Document. 

A state s is a certain condition that describes the object at a given time. 

(s ~ S) = <proposition, id> (2) 

A state may be viewed as a side-effect free boolean function, proposition, which can be 

referred to in filters via an identifier id, and which maps the state of  the object at a certain 

moment to true or false. For example, in the following state implementation, the state 

user view becomes true if the sender of  the current message to this object is a subtype of  

class User3: 

user view return sender.subtypeOf(User); 

This condition is expressed as < sender.subtypeOf(User), user._view >. 

3) In Sina, subtype relations are deduced based on the signatures of objects. 
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State implementations can be specified in two ways. If the implementation is fixed, it can 

be defined in the states clause of the implementation part. In this case, the state description 

cannot be changed. If the state function may vary during the lifetime of the object, another 

instance of class State can be assigned to it. This can be done during object initialization, 

or within a method. 

States are declared in the input part since we intend to make them available to users of the 

object, but their implementation is encapsulated in the object's implementation part. An 

important property of the state implementation is that it is side effect-free. The utilization 

of states will be illustrated in connection with filters. 

The set of methods Mo of object o contains all the methods that are defined for the object. 

But an object may provide other methods on its interface, through the filter mechanism. 

The largest possible set Uo of methods that are available, is the union of all the methods 

provided by the interface objects. This rule applies recursively for the interface objects, 

resulting in the following rule: 

Uo = Mo U (Ui~ a Ui) 

H 

Which methods eventually become available for the clients of the object is determined by 

the filters, as will be explained later. 

A filter ~ defines the compositional object behavior and may be defined as a pair: 

A = { <s,m> [ sE(S U (U/~ sL) ) ^ mEU) } 

A(f) = [ <s,m> I <s,m> E A ] 

f = <handler(f), A(f)> (3) 

So a filter f consists of two components: the first, handler09 is a so-called filter-handler, 

which is an instance of a filter-handler class. A filter handler determines what is to be 

done with messages after they have passed the a filter (respectively failed to do so). The 

second component, A(]), is defined as an ordered subset of A, which is denoted by the 

brackets "[" and "]", and is called an accept set function. An accept set function defines 

the conditions (expressed by states) which determine the acceptance of messages. A is the 

set of all possible state-method combinations <s,m> within the object. The ordering of the 

state-method pairs in A(f) corresponds with the definition-order. S i denotes the states that 

are defined by interface object i. 

Filters define the guidelines for the object's behavior in terms of methods and states 

defined by the object and/or those available through its interface objects. A sample filter 

f /  is shown below: 
fl : Error = { self.user_view=>self.attach, ... } 

This filter has a filter handler which is an instance of class Error. The dot notation is used 

to bind the state and method names to objects, s=>m is the syntactic counterpart of 

<s,m>. It indicates that method m is accepted only when state s is true. In the above filter 

description, the state user_view and the method attach that are bound to the object owning 

this filter (self) are used. The pseudovariable self might have been omitted here because 
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whenever a qualifying object name is absent, self is substituted a. Examples where states 

and methods of objects other than self are be combined in filters will be given in section 

4.3. 

A filter controls the interface of an object, by filtering incoming messages. The character 

"," that is used above is called a selector and is one of the filter operators. Elements of the 

filter that are separated by selectors, are processed in left-to-right order. 

The class Error defines handlers that reject a message whenever it fails to pass through 

the filter. Similarly, a handler class Buffer blocks the message until the object's state 

allows it to proceed 5. New handler classes may be defined for any general-purpose 

handling procedure. The admittance of an incoming message is determined according to 

the state-message pairs. In the above example, an attach message is admitted by the filter 

only if the user_view state evaluates to true. 

Message invocation is a triple (o, m, P(m)), where o is the object to which the message 

is sent, m is the name of the method that is invoked and P(m) is a possibly empty set of 

arguments (parameters) required by m. Invoking the interface methods of an object is the 

only means by which another object can communicate with, and change/access the internal 

state of that object. Invocations are based on messages using the request-reply model of 

communication. An invoked method can return the result (any object) to the sender using 

the return statement. The nil object is returned when a method does not explicitly return 

an object. 

An object can communicate with another object by using that object's name which is 

subject to scope rules. An object can access itself by using the pseudo-variable self. An 

example for a message invocation is the expression 

mailer, attach ( aLetter ) ; 

This results in sending a request message to the object mailer, which is the receiver object, 

attach is the method to be invoked, and aLetter is the message argument. 

The Sina compiler incorporates a preprocessor to allow programmers to use a more 

familiar short-hand notation such as the assignment, arithmetic and logical operations. For 

example, assigning object a to b may be denoted by b.assign(a), but also by b:=a. In the 

latter case, the preprocessor converts the expression to the standard form b.assign(a). 

4) 

5) 

Other pseudo variables are inner, sender and server, inner is used to designate the locally defined part of 

an object, which only supports the methods that are implemented by the object itself, whereas self refers 

to the entire object, thereby also supporting the inherited and delegated methods, sender is defined in the 

next section under the topic multiple views, server is defined in section 4.3 for constructing 

delegation-based hierarchies. 

We use the handier class Buffer to implement (extensible) concurrent structures; this topic is presented in 

another paper [Bergmans 92]. 
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The algorithm in figure 3 shows that each received message must be checked by all filters 

in filter set F (line 2), and for every filter again by all filter elements. A filter element is 

shown as the pair <sj,mj> in line 4. A filter fon ly  accepts a message m, when the message 

selector matches, i.e. m=mj, and the corresponding state sj evaluates to true (line 5). When 

this is the case, no further filter elements of the current filter need to be checked, which 

is realized by the break in line 9. The destination, or target of the message is deduced in 

line 8 from the filter element. In line 12-14, the filter-handler determines what to do with 

an accepted or rejected message. After the last filter has been passed, the message is 

dispatched to the desired method, matching the message m and destination dest (note that 

self or inner are also possible destination objects). When a message is rejected, the filter 

handler may terminate the algorithm, in which case the message is not dispatched (for 

instance filter handlers which are instances of class Error). 

Notice that the message is accepted by a filter when it matches any filter element. Thus 

the selector operator "," can be seen as a logical OR between different filter elements. Only 

when a message is accepted by all filters it will be dispatched. Hence the subsequent 

passing through the filters is similar to a logical AND. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

algorithm pass_filters(m, F) 

forall f in F = [fl, ..., f.] do 

accept := false; 

forall <sj,mj> in A(f) = [<sl,m1> , 

if (m = mj) ^ sj then 

begin 

accept := true; 

dest := target(mj); 
break; 

end; 

endfor; 

if accept 

then handler(f).acceptMessage(m) 

else handler(f).rejectMessage(m); 

endfor; 

dispatch(m, dest); 

end pass_filters; 

�9 .., <sk,mk>] d o  

Fig. 3. The algorithm that evaluates received messages with respect to filters. 

Because instance variables are not allowed to be targets in the filters, their methods never 

become available on the interface of the object. In fact, this could also be realized by 

programmer's discipline only, without the need to declare implementation objects and 

methods separately. The rationale for this is improved readability of class definitions and 

separation of the input and the implementation parts of an object. 

An important property of the model is that the states and the filters can be treated as first- 

class objects and are within the set of interface objects I. For clarity, we have distinguished 

them from other interface objects. The basic set operations are defined on the set of 

interface objects for all objects. The first-class properties are useful for defining object 

management operations as is shown in section 4.4. 
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In the sections that follow, a number of applications of the data abstraction model are 

shown. 

4.2. Multiple Views 

In this section, we will illustrate how filters can be used to implement multiple views upon 

objects. 

A view is a triple xoc, os, V), where oc is a client object that invokes a message mEV on 

a server object o s. V is the set of messages that provided by os for o~. Having a multiple 

view mechanism means that the server object supports multiple views depending on its 

state or on characteristics of its client such as class or identity. For example, it may make 

some methods visible to instances of one class, and others to instances of another class, 

or it may define methods that may be executed only by clients that are instances of 

subclasses of its class. The following filter f implements the view \oc, os, V) where V is 

a subset of all available methods on os. As in (3), U denotes all the methods defined for 

the current object as well as all the methods available from all interface objects: 

os = ~I, M, S, Fi 

V C U  

(f ~ F) = <handler(f), A(f)> 

A(f) = [ <s,m>l m ~ V  ^ s=<view._prop, view_id> ] (4) 

As before, handler(]) denotes the filter handler object. Now suppose that the proposition 

view_prop is defined as "sender=oc". Then A(]) is the set of state-method pairs that allow 

only sender oc to execute methods in V on o s. The pseudo variable sender indicates the 

object that sent the current message. Apart from the identity of the sender object, the 

implementation of a view may use any general proposition related to the sender object, or 

the state of the receiver object. In the latter case, an object may provide changing views 

to its clients. 

A sample class definition implementing multiple views is provided in Figure 4. 

The class Text_mail defines four methods; attach, send, deliver and route. The method 

attach takes one parameter of class Letter which includes the contents of the mail. The 

method send requires the address of the receiver object as a parameter, and transfers the 

text to the mail system for delivery. The method deliver is used by the mail system to 

physically deliver the mail. It returns a boolean indicating whether the mail was delivered 

successfully. The method route is used by the mail system to transfer the mail to another 

mail system, when the destination is not directly accessible to it. 

The filter handler class is Error. In the filter definition, the curly brackets indicate a 

shorthand notation for expressing "s=>ml, s=>m 2 . . . .  , s=>mn" as "s=>{ml, m2, ..., mn}". 

The wildcard character "*" can be used in filters to indicate any matching method. Note 

that the name self might have been omitted from the filter definition since it is the default, 

or inner might have been used instead 



384 

In this example, two views on the class Text_mail are defined. Objects of class User are 

only allowed to invoke messages attach and send while objects of class Mail_system or 

its subclasses are only allowed to send messages deliver and route. The pseudo variable 

sender is used to check the class of the client object in the implementation of the states 

user_view and system_view. Note that only an object that is a subtype of class User or 

class Mail_system is allowed to invoke a message! 

class Text mail input 
methods- 

attach(Letter) returns Nil; 
send(Address) returns Nil; 
deliver(NodeId) returns Boolean; 
route(NodeId) returns Nil; 

states 
user_view; 
system_view; 

filters 
fl : Error 

end; 

= { user_view=>{self.attaeh, self.send}, 
system view=>{self.deliver, self.route} }; 

class Text_mail implementation 

s t a t e s  
u s e r  view 

return sender.subtypeOf(User); 
system_view 

return sender.subtypeOf(Mail_system); 
. , .  

end; 

Fig. 4. Interface and part of implementation of class Textmail. 

4.3. Inheritance, Delegation and Associativity 

As already identified in the problem statement, we find it too restrictive to adopt a single 

class inheritance mechanism; rather we want to provide mechanisms like multiple 

inheritance and delegation as well. In addition, we want associativity to be orthogonal to 

object-oriented features such as inheritance, so that they can be combined. We will first 

describe how filters can be used to implement different forms of code sharing mechanisms 

such as inheritance and delegation. Then we will introduce associative behavior, and 

explain how it can be defined. 

The computation model as introduced by formulas (1-3) and algorithm pass_filters of 

Figure 3 allows interface objects to be made available to the users of the encapsulating 

object by naming them in filters. We will now show how the methods of an encapsulated 

object can be made available on the interface of the object: 
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class 0 input 
internal 

q : ClassQ; 

filters 

fl : Error = 

end; 
{ True=>q.* }; 

The definition according to the formal object model is as follows. Object o is defined, 

which has a single interface object q: 

o = <I, M, S, F 

I = { q }  

F = {fl} 

V = M U V q  => V = ~ J U V q  => V = V q  

Interface object q provides the methods m r to m,, and is defined as: 

q = <Iq, Mq, S v Fq> 

Mq = {m 1, m 2, ..., m~} 

V q = M q  

The filterset F of o contains only filter/7, with accept set function A(fl): 

f l  = (handler(fl), A(fl)) 

A(fl)  = [ <s,m> I (s,True) ^ (m ~ Vq) ] (5) 

Here True is a state that is always valid; this is provided as the default when no state is 

indicated. Now, suppose some client sends the message "o.mi" where mi~M q. This 

message will be accepted according to the accept set function A(/7), since the message is 

in the set Vq=Mq and the corresponding state is also valid. Then the message will be 

delegated to, and executed by the interface object q. Note that the client object is not 

aware of the fact that it is actually executing the method of an interface object. Also note 

that when m i is dispatched to q, it has to pass through the filters defined by q before it can 

be executed. 

This mechanism is actually a simulation of inheritance, since the object o now provides 

all messages of ClassQ on its interface, using the implementation of q, which is an 

instance of ClassQ. This mechanism is also called delegation-based inheritance. If we 

replace the interface object q with an external object g then the filters implement a form 

of -pure- delegation. In this example, object o includes only one interface object and does 

not introduce its own methods, thus providing methods of q only. If o had defined its own 

methods or other interface objects, then the first state-method pair matching the incoming 

message would have been dispatched. Multiple inheritance can be implemented by using 

several interface objects. The left-to-right evaluation order of filter elements together with 

the values of states would resolve name conflicts, if any. 

In order to access their own methods or methods of their interface objects, within an object 

messages can be sent to pseudo variables inner, self and server. The pseudo variables inner 

and self in a message expression always refer to the implementation respectively interface 

of the instance of the class where they are used. Because this is defined statically, the 

semantics of a method implementation can be guaranteed not to be changed due to 

Overriding. Performing an invocation on server, however, causes the search for the invoked 

method to start with the original recipient of the message. Since the objects in Sina can 
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be nested or the messages can be delegated to the external objects, the recipient of the 

message and the object in which the invocation appears can be different. We call the 

receiver of  the message server, because this object can be thought of  as performing a 

service for the object that originally sent the message (the sender), server is similar to 

Smalltalk self, in the sense that it supports dynamic binding. But server in Sina can handle 

delegated messages, whereas Smalltalk self cannot do this [Lieberman 86]. 

Typically in most object-oriented languages every class inherits -either directly or 

indirectly- some default behavior from a root class called Object 6. Sina does not introduce 

inheritance as a language feature, but using a filter construct, inheritance can be 

implemented. The Sina system contains a primitive class called Object which abstracts the 

default operations of  all the classes. Typical example operations used in this paper are 

assign, equal, and copy. The Sina compiler provides an option to insert an instance of class 

Object called default automatically as the first filter element of  every filter in a class. This 

option makes it unnecessary for programmers to define the default operations explicitly for 

every new class. Since default is the first element of a filter, it prevales over other 

interface objects. Of course, programmers can explicitly turn off this option and create an 

instance of  class Object at the interface of  a new class. Then, for example, they can 

eliminate the assign operation of  Object so that a constant behavior of  the class can be 

assured. 

In Figure 5, we give a sample class definition which uses filters to implement inheritance: 

class Text mail input 
internals 

doc : Document; 
methods 

'attach(Letter) returns Nil; 
send(Address) returns Nil; 
deliver(NodeId) returns Boolean; 
route(NodeId) returns Nil; 

states 

user_view; 
system_view; 

filters 

fl : Error = { user_view=>{attach, send, doc.*}, 
system_view=>{deliver, route} 

end; 

}; 

Fig. 5. Interface definition of Text_mail, which inherits from Document. 

Class Text_mail in Figure 5 is similar to class Text_mail in Figure 4. An interface object 

named doc of class Document is now introduced. The class Document includes methods 

such as update andprint, and by including "doc.*" in the filter, instances of  the Text_mail 
class in Figure 5 will also support these methods. The rationale for this is that the class 

Text_mail can now be used to edit the mail text directly, instead of  using a separate copy 

of  the mail text. 

6) Some languages such as C++ do not enforce programmers to inherit from a single class. However, even for 

C++ programmers it is common practice to introduce a base class such as Object. 
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The filter associates all methods of class Document with the state user view defined in 

class Text_mail, which means that only objects that are subtypes of class User may send 

these message to objects of class Text_mail. Note that the pseudo-variable self is here 

eliminated from the filter specification, since it is provided as the default. 

Having introduced inheritance and delegation through composition filters, we now proceed 

to define the associative access mechanism and its relation with inheritance. 

We have seen that in most systems, a collection of objects is accessed by a condition that 

applies to all contained objects through a predefined selection operation. Since we do not 

want this mechanism to be available only to a restricted set of objects, it naturally follows 

that associativity is attributed to every single object. For our model, it means that the 

collection to be accessed is the set of interface objects. Since the object can use or inherit 

the methods of its interface objects as shown in (5), the ability to restrict the set interface 

object set leads to the notion of associative inheritance or associative delegation. The 
client may affect the inheritance (or delegation) web to some extent, and specify 

associatively the objects from which it would like the server object to inherit. In short, a 

dedicated container class which supports associative access through a special method is 

replaced by the set of interface objects which every object may possess. 

Associativity for interface objects is realized as follows: a received message will be 

dispatched only to interface objects i for which the associated state evaluates to true. This 

state is defined by < p(i), /dp >, where the proposition is expressed by a message 

expression in which i is a receiver (since p(i) tests the properties of i). p(i) is evaluated 

only for proper interface objects i that support all the messages that are required for 

evaluating p(i). These messages are defined by Mp: 

Mp = {m I p(a) involves 'a.m' } (6) 

Only those interface objects i are selected for which the proposition applies (i.e. which 

implement Mp), for which p(i) evaluates to true, and which implement the received 

message m. This is defined in the accept set function A(]) as follows: 

A(f) = I" <s, i.m> I iEI A s=(p(i), id ) A m~U i A Mp~U i ]] (7) 

The filter f will then include all interface objects which implement the methods that are 

required by the proposition p, and which satisfy p. Since availability of interface objects 

is determined by their responses to certain conditions but not by their names, such a filter 

implements associative inheritance. The syntactic equivalent of filter f of (7) in Sina is as 

follows, where p is the state which implements the proposition, and which is parameterized 

subsequently by all suitable interface objects. When p evaluates to true for object i and i 

supports the received message m, the message will be accepted, and eventually dispatched 

to i. Proposition p can be defined by the object itself, but the object may also allow the 

client to provide this proposition. 
{ p(#)=>{#.*} } 

We illustrate this in figure 6. with an example class, Multimedia_mail, which provides a 

different behavior, depending on the type of media that is desired. The latter can be 

determined by the client by sending the message select_mail, providing the proposition 
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(query condition) as a 'block' argument. Note that in class Text_mail in figure 5, the 

criterion for associative inheritance is solely determined by the server object. 

class Multimedia_mail input 
internals 

text: Text mail; 
binary: Binary_mail; 
voice: Voice mail; 

methods 
select_mail(Block) returns Nil; 

states 
mail state; 

filters-- 
fl : Error = { inner.*, mail state(#)=>#.* }; 

end; 

class Multimedia_mail implementation 
methods 

select_mail(new_prop:Block) 
beg in  

mail_state.proposition(new_prop); 
end; 

end; 

Fig. 6. Definition of class Multimedia_mail which associativety inherits from various types of mail 

objects. 

The input filter of class Multimediamail specifies associative inheritance controlled by 

state mail_state. Since this state can be redefined using the method select_mail, the class 

Multimedia_mail can associatively inherit from various mail types as required by the user. 

The class Multimedia_mail declares three interface objects; text, binary and voice of 

classes Text_mail, Binary_mail, and Voice_mail, respectively. The definition of class 

Textmail was given in figures 4 and 5. All these classes implement a specific electronic 

mail object for the type of mail-data they contain. They also provide dedicated methods 

for their respective data types. 

The method select_mail is defined on class Multimedia_mail to let the user specify the 

required mail type. A client of the object may provide a new proposition for the state 

mail_state, as the argument of the select_mail method. The method proposition takes the 

argument, which must be of class Block, and stores it as the (new) proposition of 

mail_state. An example of invoking select_mail, using an instance of Multimedia_mail 
called aMultimediamail, is: 

aMultimedia_mail, select_mail( [#. subtypeOf (voice_mail) ] ) ; 

The proposition is specified as a constant object of class Block, which is denoted with the 

brackets "[...]". The number symbol "#" stands for the argument of the proposition 

(interface objects will be substituted here). This proposition will evaluate to true only when 

the argument is a subtype of class Voice_Mail. 
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4.4. Associative Object Management 
Associative inheritance provides flexibility in configuring the behavior of  an object in a 

well-defined way. However,  if client objects need to define and preserve their own views, 

but still share data, the associative inheritance mechanism will not be adequate since all 

client objects observe the same server, with the same view. We therefore need to give 

different object identities to different views of the same object. Besides, in addition to 

selection, the object model should also support data management  operations such as union, 

intersection and exclusion. In this section we will show how this can be realized within 

the object model. 

Our aim is to provide a different view of an object o, and retain this view over a number 

of  method invocations. This cannot be realized by a filter construct only, since filters 

dynamically reconfigure for every received message. So some changes to the interface of  

an object need to be preserved over a number of message invocations. Since such changes 

may not be relevant to all client objects, a copy of o must be made, say o ' ,  of  which the 

interface will be changed to reflect a different view of o. 

Since the state of  the object o must be shared between all clients, o '  must share its state 

with o. This is realized by making a shallow-copy instead of a complete copy. Shallow- 

copy means that a new object o '  is created, with a different object identity, but which 

shares all objects nested within o '  with the corresponding nested objects in o. 

We first show the result, o ' ,  of  a selection of object o with condition p. This creates a 

view of the object with only those interface objects available that are selected according 

to condition p (making use of (6)) :  

o = ~I, M, S, F 

o '=  ~I', M, S, F') 

I '  = {i~I  I p(i) ^ MpCU~} (8) 

Because now only a subset I '  of  the interface objects is available, the filters must be 

adapted to take only the accessible interface objects into account, which can be expressed 

as follows: 

(f ' ,~F')  = < handler(f '),  A ' ( f ' )  > 

A ( f )  = [ (s,m) E A(f ' )  I s~(S U so  ) ^ m E ( M  U (UiE I, Ui) ) ] (9) 

These lines state that the filters of  the new filter set F '  are reduced so they only contain 

filter elements that refer to the states and methods of the selected interface objects. 

Since the set operations intersection and exclusion are a specific kind of selection, they can 

be expressed in the same way. In that case only an appropriate selection proposition p is 

to be provided. To define intersection between the interface objects of o and the interface 

objects o": 

o"= iI", M, S, F") 

p(x) = ( x~I"  ) 

Excluding all interface objects I" of o"  from o requires the following proposition: 

p(x) = ( x~I"  ) 
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In order to define a union of the interface objects from o with those from o", we use the 

same approach (resulting in a new object o'): 

o = ( I , M , S , F )  

o '  = (I', M, S, F) 

o" = (I", M", S", F"~ 

I' = I U I" (10) 

Notice that o '  offers an alternative view of object o, and therefore only the methods and 

states that are defined for o are available for o ' ,  but not those the states and methods from 

o". This is also the case for the filters: the constraints that are imposed by the filter of o, 

must still be valid for o' .  To enforce this, object o '  has the same filter set that o has. 

As we mentioned before, the set of interface objects I is a first-class set object. Basic set 

operations like union, intersect, exclude and select are provided by set objects. By 

manipulating the set of interface objects using these operations, views that are 

combinations or restrictions of interface objects can be programmed. We show this in the 

following example: 

In the example class Multimedia_mail of Figure 6 a method select_mail is provided that 

changes the type of mail-data handled by the mail system. One invocation of this method 

will cause the change to affect all client objects of the mail system. In order to provide a 

different view of the mail system, which does not affect all the clients, the method 

select mail can be defined as follows: 

select mail(new_prop:Block) 
begin 

return (self.get_input_objects).select(new_prop); 
// get & select the set of (input-) interface objects 

end; 
Fig. 7. Implementation of me~odselec~mailwhichreturnsa new view ofthereceivero~ect. 

For the implementation of method select_mail the method get inputobjects is used, which 

returns the set of interface objects. The method get_input_objects is inherited from class 

Object. Then a select is performed upon this set. The method select returns a shallow-copy 

which contains references to a selection of interface objects. This selection includes only 

those interface objects that satisfy the condition new__prop, which is provided by the client 

object as an argument of the method select_mail. 

A possible effect of the method select is depicted by Figure 8. Here, the method select is 

invoked with the condition subtypeOf(Voice_mail) which results in a shallow-copy of the 

multi-media mail object o. The view object has a different object identity and shares the 

contents of the voice mail, possibly with other views. Note that this sharing mechanism 

is encapsulated and thus not visible to the users of view objects. 

Apart from the method select, also the methods union, intersect and exclude can be 

invoked on the set of interface objects, as returned by get_inputobjects. In formulas 9-10 

it was shown how set operations on interface objects affect the behavior of objects. Thus 
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the programmer has the possibility to implement data management operations upon 

interface objects. 

Fig. 8. A possible result of the method select. 

4.5. Atomic Transactions & Persistence 

Most databases support transactions. According to [Haerder 83], a transaction mechanism 

must provide these four properties: atomicity, consistency, isolation and durability. These 

properties ensure that a transaction always yields a consistent and stable state, even in the 

presence of system and program failure and concurrent access to shared data. Atomicity, 

consistency and isolation are provided by the mechanism of atomic delegation [Akw 91]. 

Durability is separated from transactions, and provided as object persistence. 

Transactions provided by databases are typically defined in some query language, for a 

sequence of database operations. Only a few languages, such as Argus [Liskov 87] and 

Avance [Bj6rnerstedt 88] support transactions, which are called atomic actions, as a general 

mechanism in the language for preserving consistency of concurrently accessed resources. 

Most object-oriented systems provide transactions for a program block by delimiting it 

with 'begin-transaction' and 'end-transaction' like constructs, or by making the complete 

method body atomic. This mechanism does not provide integration with object-oriented 

constructs such as inheritance. This is because combining inherited methods within an 

atomic construct requires -in the extreme case- the separate declaration of all atomic 

method combinations, which is not feasible. 
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Atomic delegation combines the concepts of delegation and atomic action in a uniform 

model which supports open-endedness of atomic actions. Atomic delegation allows an 

object to delegate a sequence of messages to one or more designated objects as a single 

atomic action; such atomic actions are indivisible and recoverable. This mechanism allows 

the programmer to define classes of atomic actions rather than defining each atomic action 

separately. Construction of open-ended systems is supported because new atomic actions 

may be added or existing ones may be modified by changing the delegation relationships 

between objects without requiring any redefinition of atomic actions, or recompilation of 

the objects performing the atomic actions. 

We will now show an example of atomic delegation. In this example we add accounting 

facilities to the execution of every method of our Multimediamail  class. Since, for 

instance, we do not want to charge when a call fails, and a caller with an exceeded budget 

limit is not allowed to use the mail facilities; we want to make this an atomic transaction. 

class Multimedia_mail input 

externals 

acc : Accounting 

o . J  

filters 

transact : Error = { True => 

o . ,  

<acc.*, inner.*> } 

The filter transact defines an atomic action "<acc.*, inner. *>", which is indivisible and 

recoverable; either both messages are executed successfully and commit, or an abort and 

subsequent roll-back take place. The brackets "<" and ">" enclose a sequence of messages 

that form one transaction. The asterisk indicates that all methods that are provided by the 

target are supported. Note that extensions to object acc will automatically be available for 

clients of the Multimedia_mail objects, due to the use of the asterisk. The state True 

indicates that no additional constraints are imposed by this filter in order to" execute the 

atomic action. It may be clear that the number of possible method combinations can be 

quite large, and it would be infeasible to declare all possible transactions separately, as 

conventional mechanisms would require. 

Persistence of an object is the responsibility of the object itself, and must be transparent 

to its clients. We feel that conceptually, persistence is simply a property of an object, 

which has the effect that the object will survive user sessions. We consider the efficient 

implementation of a large amount of persistent objects as a complex, but separate research 

topic. For our object model, we are not concerned with these implementation issues 7. 

The property of persistence of an object can be easily modeled with an attribute 

'persistent', which can be affected by message invocations. However, a declarative way 

of stating the persistence property of an object is preferable, since it is more explicit, and 

allows for compile-time optimizations. This is realized in Sina by declaring an object as 

7) In our current prototype, we use the object-oriented database system Ontos [Ontologic 91] for implementing 
persistent objects. 
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an instance of class Persistent, parameterized with the desired class of the object, as 

follows: 

objects doe : Persistent(Document); 

Here doc is an interface object and is declared as an instance of class Persistent, 

parameterized with class Document. This declaration results in doc being an object with 

an interface just like all other instances of the Document class 8, but the object will also 

be saved on stable storage. The class Temporary is defined analogously, and keeps the 

internal state only during execution time; Temporary is the default for plainly declared 

objects. Note that this can only be done for internal objects, since these are defined locally, 

but external objects are defined elsewhere, and are only referred to by this object. 

5. Evaluation and Conclusions 

Our starting point is an object model that provides abstract operations for its users and 

encapsulates its implementation details. This model is extended with the composition 

filters. This paper illustrates the following useful features of this model: 

�9 Multiple views on objects, in section 4.2. 

�9 Basic object-oriented mechanisms such as single and multiple inheritance/delegation, 

in section 4.3. 

B Associative inheritance/delegation, in section 4.3. 

�9 Database features such as sharing, and selection, union, intersection and exclusion, in 

section 4.4. 

�9 Persistent objects and transactions, in section 4.5. 

We will now evaluate our object-oriented model with respect to the problems that were 

identified in section 3: 

�9 Duality in conception: In our model, all the database-like features are provided 

exclusively via composition filters and no separate query language is introduced. The 

basic object-oriented mechanisms such as inheritance and delegation are also provided 

via filters. As a consequence, there is no conceptual difference between the language 

and database-like features. 

�9 Restriction in associativity: In our approach, associative access is available for all 

objects. Filters can be configured using an expression of the form { s(#)= >{#.*} }. In 

addition, interface objects are stored in a first-class set object, supporting basic set 

operations like union, intersect, exclude, and select. By manipulating the interface 

objects with these operations, views that are combinations or restrictions of interface 

objects can be programmed. Thus our data management functionality is not restricted 

to dedicated types. However, this does not imply that there should never be dedicated 

container classes in a system. When an application explicitly deals with objects 

containing collections of objects, a container class may be created. Such a container 

8) Class Persistent is implemented as a class that inherits from the class that is supplied as an argument to 

class Persistent; it is possible to express this with the Sina data abstraction model. 
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class may be similar to container classes in other systems. Our point is that we do not 

restrict data management operations to this kind of dedicated classes. 

�9 Violation of  encapsulation: The database-like features as presented in this paper do not 

violate encapsulation. Nested objects cannot be directly addressed from outside the 

object. They can solely be accessed by message invocation, but only when this is 

explicitly allowed by the filters. 

�9 Views: Views are provided by the filters, and the view conditions are not restricted. 

�9 Support of  object-oriented features: We have integrated the database-like properties 

within our object-oriented model, but they are orthogonal, and can be freely mixed 

with the data abstraction features, resulting in, for example, associative inheritance or 

associative atomic delegations. 

Various versions of the Sina language have been implemented. The early version of the 

Sina language was implemented using the Smalltalk language [Goldberg 83] on a Sun 

workstation. This implementation included only single filters without states. We are 

currently implementing the new version of the language, translating to C++ [Ellis 90]. 
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