
An Object Oriented Methodology Integrating Design, Analysis,
Modelling, & Simulation of Systems of Systems

Judith D. Richardson and Thomas J. Wheeler

US Army CECOM, Space and Terrestrial Communications, Ft. Monmouth, NI

Abstract

Development of "systems of systems" outstrips the cur-
rent sofmare systems development strategy, This paper
reports on a development strategy which integrates de-
sign, analysis, modelling & simulation using a methodol-
ogy which integrates aspects of modular decomposition,
object-oriented design, and distributed system design. It
illustrates the methodology on the design of a high band-
width communications infrastructure for tactical armed
forces.

1: Introduction

The recent trend of developing computer systems which
are part of a larger system or network is changing develop-
ment strategy by merging disciplines. integrating develop-
ment paradigms, and using a collaboration of perspectives
and expertise. Integrating the disciplines of design, analy-
sis, modelling, and simulation provides coupling of the in-
sights developed by each discipline and feedback when the
scope of design exceeds the designer's intuition. Conceptu-
al integrity of the system and the rational organization of
its development fostered by topdown development para-
digms along with the evolvability of systems and the flexi-
bility of its development process fostered by bottom-up de-
velopment paradigms are essential in this class of systems.
Effectiveness in the intemperation of the component sys-
tems in "systems of systems" is a more important criterion
than the functioning of the individual system, thus effective
collaboration in their design is essential.

Systems of system are complex enough that their de-
sign outstrips the intuiticm of their designers; but design is
driven by intuition and intuition comes from understand-
ing. We are fmding that integration of design, analysis,
modelling, and simulation provides a solution to this di-
lemma. Tighter integration of design and analysis makes
the design process iterative, validating design concepts and
developing insight while malcing progress on the design.
Integrating modelling facilitates design by synthesis from
components; modelling is compositional and allows sys-

tems to be envisioned in terms of their subsystems. Inte-
grating simulation, both of performance and of behavior,
allows designers and users to develop a feel for aspects of
these systems which could not be envisioned intuitively be-
cause of the system's structural complexity. Integration of
these disciplines enables envisioning of large scale behav-
iors needed for conceptual integrity, while fostering system
and process flexibility needed for system evolution.

Conceptual integrity [7] and evolution of these systems
must both be addressed. Conceptual integrity is required to
accommodate a large and diverse user community and be-
cause the largness of these systems requires a common, un-
derstandable conceptual image of the system. The evolu-
tion requirement comes from the long lifetimes of these
systems and the need to grow from and work with existing
systems in organization infrastructures. We address these
seemingly opposing requirements by integration of devel-
opment paradigms, providing the design unity of the top-
down style along with the design flexibility of the bottom-
up style.

In system of systems development, assessment of a
component system's design concepts must be done in terms
of the next larger system; likewise, the design of the system
of systems must be done by integration. This "one level of
i n k t i o n " in the thought pattern strains the design cycle,
leading to design issues at the level of the system of systems
b e i i missed or their impact underestimated. Collabora-
tion of the designers of the individual component systems
along with designers of the system of systems is essential,
with the integration of design, modelling, simulation and
analysis, providing the team with the insight needed to
jointly assess design decisions and ,the organized composi-
tional nature of the methodology structuring this collabora-
tion.
The work reported here describes a methodology, which

resulted from experience with each of these issues in ongo-
ing development efforts of two DoD systems of systems.
We will first give some background providing a cmtext for
the work. We will then outline a rational object-oriented
software strategy which addresses the issues by synthesiz-
ing the disciplines and paradigms mentioned above. That
will be followed by a description of a methodology which
implements this strategy. An ongoing system of systems

238
US. Government Work Not Protected by U.S. Copyright

development will be used as an example of its use. Finally.
some conclusions are drawn a b u t the methodology and its
Use .

2: Background

The Department of Defense is currently enmeshed in the
initial stages of the development of integrated "systems of
systems". with the aim of providing "seamless" automation
support for the operation of the armed forces worldwide.
Currently, individual systems are developed independent-
ly. with "interoperation" requirements on their develop-
ment providing the first step in meeting the integration
needs of the larger system composed from these systems.
This state of affairs is evolving into joint technical efforts
to develop the architectural basis for integrating the sys-
tems into a seamless infrastructure. This paper results from
work on two of these architectural integration efforts. the
Army Tactical Command and Control System (ATCCS)
software architecture effort and the DoD seamless commu-
nications architecture effort called ''Global Grid".

The architectm ef€orts are focusing on the evolution of
the existing collection of individual networks of canmu-
nications and processing systems, moving towards the cre-
ation an integrated system of systems providing a seamless
communications and processing infrastructure. As a sys-
tem of systems is an interacting set of systems in which the
behavior is ascribed to the interacting set rather than the
component systems, the development strategy must start
with a defining description of the behavior ofthat set of sys-
tems. This architecture must then be implemented, and
evolved. by composition of the component systems, allow-
ing iterative replacement of component systems and inter-
operation with existing systems. New component systems
be cooperatively designed as open systems, with well de-
signed standards based interfaces C71 to cooperating sys-
tems. fitting within this architecture framework.

Computer and software systems are currently developed
via a functional, top-down strategy 121. When applied to
the development of systems of systems a number of funda-
mental problems, relating to evolution of systems, have
surfaced. Object-orientation has been proposed as a reme-
dy for this situation [31, but it has little support for architec-
ture. Modelling and simulation are used as an auxiliary dis-
cipline, justifying decisions after they are made. Four main
aspects of this development (and modelling) strategy make
it inappropriate for the development of systems of systems:

(1) The strategy is accomplished top-down, making de-
sign decisions starting from the user visible decisions and
ending with the implementation decisions, with each de-
cision only being constrained by higher level decisions,
thus (explicitly) ignoring lower level commonalities,
only allowing reuse in an ad-hoc manner and impeding
performance engineering via high level structuring.

(2) The strategy focuses on describing the requirements
and structure of the units of development, which in a sys-
tem of systems are the component (sub)systems, with the
result that higher level nquirements must be met by in-
teroprations requirements on the units of development.

(3) The descriptions in this strategy are functional, defin-
ing the behaviors explicitly, leaving the objects implicit,
leading to a complicated mapping from those functions
to the system's (and its model's) structure, resulting in
difficult and expensive system maintenance and model
validation.

(4) The models and simulations used in the process are
developed and used by a separate, independent process,
with different structures than the system, resulting in sep-
arate validation of models and systems, limited impact of
the information and insight extracted from models and
modelling, and the inability of models and components
interoperating thereby making it difficult to construct hy-
brid system-simulation experiments.
We have found that integration of modelling, simula-

tion, and analysis with design, along with synthesis of con-
cept from modular decomposition, which works within the
top-down strategy and has strong support for structuring,
concepts from object-oriented development, which works
bottom up and has strong support for evolution, along with
concepts from distributed systems, provides a development
strategy which solves all of these problems.

3:Rational Object-oriented Software Strategy

The Rational Object-oriented Software Strategy
(ROSS) addresses all four of these deficiencies. It is an ob-
ject-oriented strategy which combines a rational develop-
ment process [SI (which is top-down in its documentation
of the system, but more flexible in its ordering of work)
with bottom-up organization of the commonalities in-
herent in a system domain and reuse of common concepts.
The strategy has a strong influence from distributed sys-
tems design Cl31 and integrates modelling 1141, simulation,
and analysis into the design process so that insights derived
through modelling drive Cl01 the design. There are five as-
pects inherent in this strategy:

(1) A system and its operating environment are envi-
sioned and abstractly described using a hierarchical
model of cooperative distributed objects, based on the
perceived physical structure of the envisioned system in
its environment. The model has a one to one structural
correspondence with the system and its operating envi-
ronment and models the system of systems along with the
(sub)systems in a unified way.

(2) Commonalities in the system's domain are captured
by the model being structured in accordance with a ge-
neric architecture [lll, which is appropriate for systems

239

in that system’s domain. and being constructed from
model components arranged in a classification hierarchy
[I] for systems of that domain.

(3) The model provides the framework for both the de-
sign of the software objects which interact to produce the
system and the simulations which provide insight into the
effectiveness of the system’s functions and the perfor-
mance of the system.

(4a) The system is constructed from objects which are de-
veloped or reused from the system component library
and composed into the system, which only has to have in-
tegration testing before being fielded.

(4b) The model components are developed or reused
from a model library and composed into models which
are validated compositionally, analogous to integration

(5) The documentation of the products of each phase of
this methodology is organized in a top-down dependen-
cy structure, reflecting the rational structure of the pro-
cess, but the methodology does not force a top-down pro-
cess structuring, as the standard process model does.
Each of the deficiencies in the standard development

process are remedied by the rational object-oriented soft-
ware strategy:

(1) While the system’s development is presented top-
down in the documentation, it is not constrained to be
top-down in its work flow [51. The work is only
constrained in that documents produced by tasks (accom-
plished in a mixed top-down, bottom-up manner) be
properly placed in the documentation structure and that
each task (and its document’s contents) be dependent on
the results of tasks which they are presented to be depen-
dent on. This way of concentrating on a rational docu-
mentation structure naturally accommodates reuse of
preexisting concepts and components and is a natural
way to develop members of system, and component,
families 161.

(2) Systems of systems are ~ t u r a l l y described as ser-
vices provided by distributed systems. Distributed ser-
vices provides a framework for describing the higher lev-
el system functions 141, while hiding the distributed
nature of their implementation. Distributed functions
provides a basis for describing the cooperation and coor-
dination of the component (sub)systems’ functions in
achieving these services.

(3) The descriptions in this strategy are consistently ob-
ject-oriented; firstly, in that they naturally follow the
physical object s t~~c tu re in the external world and in the
(desired) system; and secondly, in that the methodology
uses object-oriented concepts in the development of its
modelling, design, and implementation products. Be-
cause of the consistency of the development style

testing, before being used.

through each of the phases. the mappings from model to
design and thence to implementation are simple (close to
one to one) thus enhancing the maintenance process and
simplifying model validation.
(4) The models and simulations used in this methodology
are developed using a process which is d i e d with the
design process, thus have the same structures as the sys-
tem and have compatible interfaces with the system’s
components, resulting in a d i e d validation of the mod-
els and the system’s design. This fosters the impact of the
information and insights extracted from the models on
the design process, eases the transition of design ideas
into the models, and also provides the ability of
constructing hybrid system-simulation experhents.

4: Methodology

We implement this strategy by a methodology which is
model centend, using models to capture the system’s spec-
ification, as well as for analysis and simulation. The meth-
odology defines a design process operating within a des-
criptional framework and supported by an environment 191.
This section first describes the framework, then describes
the design process, and finally outlines the environment
needed to support the methodology.

4.1: The Framework

The model and system development are described with
respect to a framework that encompasses four domains: the
external world (where things exist and interactions hap-
pen), the individual mental world of each development par-
ticipant (where the perception of the real world takes
place), the joint modelling and documentation world
(where the understanding of the real world is analyzed, de-
veloped, and validated), and the implementation world
(where the systems and simulations are constructed). With-
in each domain there is a set of parallel concept l. which de-
scribe different aspects of how we understand a domain
(viz. the existence & interaction aspects of things, the oc-
currence of events. the temporal aspects of the events, the
locational aspects of the things and events, and other char-
acteristics of things and their interactions).
The mental model developed by the modeller (in the se-

cond domain) from observations of the real world (the first
domain) is documented (in the third domain) using an ob-
ject model in which individual things are represented as ob-
jects, which are abstract representations portraying behav-
iors in abstract interfaces, defining each of the activities
which the object participates in. The objects are classified

We have found it neoessary to have different terminology forthe same

aspect in different domains since the objea-oriented paradigm, as rep-
resented by the phrase ”everything is an object”, leads to confusion, for
instance, whether one is talking about the real world object or its com-

puter representation.

240

into types and/or classes2, factoring the similarities among
objects and providing high level, protected abstractions
which ease valid modelling. The types are organized into
hierarchies by means of generalization, capturing similari-
ties in the semantics of types, simplifying the understand-
ing of the objects and fostering reuse. Each object has a
number of aspects. important from Werent points of view,
which are provided as different interfaces to that object,
and each exists at a number of resolution levels.

The models are conceived and analyzed (in the third do-
main) as inherently distributable objects providing loca-
tion transparent services to using objects, and are imple-
mented by distributed objects (in the fourth domain) in a
network of systems cooperating to provide the ”system of
systems” level functions. The distributed interactions take
place through abstract interfaces designed to hide the as-
pects of distribution fram the using objects [41; thus design-
ing (the interfaces of) distributable objects is not different
from designins (the interfaces of) local objects. The imple-
mentation of.distributable objects, on the other hand, re-
quires the knowledge of the distribution of the implement-
ing objects in order to provide the characteristics expected
of distributed services. like fault tolerance. Thus there are
two complementary aspects of making use of distributed
services, the abstraction from distribution provided by the
definition of distributed services and the usage of distribu-
tion provides by distributed implementation of those ser-
vices.

Systems of systems are implemented as a collection of
cooperating systems developed by a collection of cooperat-
ing development projects, each developing and evolving a
system which has both a directly usable system interface
and an application programming interface (API). The
cooperation APIs are specified jointly in a cooperative de-
signbodelling ef€ort which both de f i i s the system of sys-
tem’s behavior which is synthesized form each component
system’s cooperation interfaces and defines the coopera-
tion interfaces for each of those systems which specifies
that part of each system’s design.

4.2: The Design Process

The methodology for developing models and systems
has activities which take place in the domains described by
the framework. A modeller, or designer. observes the real
world in which the system exists, or will exist after devel-
opment, focuses of a part of the real world that is of interest
through the perspective of the developing system and de-
velops a mental perception of that part of the real world.
The designer interprets various things in the real world by
means of two wmplementary paths. The designer may

Type in an intensional concept, providing defdtions for objects of
that type.; class is an extensional concept grouping together objects
which a similar in some essential way into sets.

form analogies of them and relationships among them in
terms of familiar concepts which the modeller has a valid
intuition for, and develops a mental image of the (interest-
ing part of) real world. The designer may also develop these
images by abstracting categories of things and relation-
ships, rather than analogies, but the result is similar. The
mental image will have some structure, properties, and be-
haviors which can be informally compared to the real world
and iterating the understandmg of the real world embodied
in the mental model so that over time the mental model be-
comes a satisfactory starting point for the more formal, ex-
ternal modelhug process. Distribution over time and space
is implicit in the mental model. The modeller may make a
formal (mathematical) model of the perceived part of the
real world to supplement to this process .

Once the modeller has a satisfactory mental model, the
next part of the methodology consists of capturing the men-
tal model in an external abstract representation so that that
model may be discussed, criticized, analyzed , and orga-
nized as suitable to serve as a valid model of the system.
The capture and presentation process makes use of object-
oriented modelhug techniques, representing and classify-
ing aspects of objects in a one-to-one correspondence with
the real world objects. The modeller develops a model
structure which corresponds to the real world structure by
integrating the views of thase aspects of the objects and de-
velops model concepts at a number of resolution levels cor-
responding to the levels of observations which should be
made on the models ami the system. The modeller does a
number of analyses of the system and its environment mak-
ing use of the concepts at many of the resolution levels,
approximately following a coarsest through finest grain
resolution level strategy, incrementally increasing her un-
derstanding of the system while increasing the resolution
of the model.

The modeller makes use of techniques and thought pat-
terns from the modular decomposition strategy and the ob-
ject-oriented design strategy, and the object-oriented data-
base design strategy. The modular decomposition
methodology develops an architecture for the system by in-
tercoMecting modules by their interfaces. Within that ar-
chitecture a model is composed from a set of objects inter-
c o ~ ~ t e d by their interfaces, as components to make up
structures and as related objects to model interacting
things. All interactions take place via actions or activities
defined on or among object’s abstract interfaces. Individu-
al objects and structured models have attributes, actions,
and participate in behaviors; each has a number of views (of
the properties and actions) through which they participate
in these behaviors, with certain views allowing participa-
tion in certain behaviors, e.g. an event view allowing par-
ticipation in performance behaviors while a functional
view provides participation in functional behaviors. Each
object and model also has a number of resolution levels for
each view which allows interactions, and observations of

241

those interactions, to take place at varying temporal, spa-
tial, and functional resolution levels to fit the varying pur-
poses of the model and the varying level of resources ap-
propriate to those purposes. The modeller creates a system
structure by decomposition of the system according to a ge-
neric architecture, followed by composition of the system
by populating that architecture with components from a li-
brary of components common to the domain. Using object-
oriented techniques, the modeller defines object types
which are appropriate to the type of system being mod-
elled, classifies them into categories based on similarities,
organizes hierarchies of types both more general than those
types and more specialized, thereby introducing new types.
which are also generalized and specialized, sketches im-
plementations of all of the types, discovering more new
types, and repeats this process until closure is reached and
no new types are introduced. In this process, the thinking
about the system is implicit. being based on much experi-
ence with the development of this type of system, and so,
the thinking is mostly confined to understanding what
classes of objects exist in this type of system and what kinds
interactions these types of object participate in. We de-
scribe this kind of thinking as "taking place in the type
world" while the kind of thhking that takes place in the
module oriented approach is described as "taking place in
the component and system world". Object orientation is
enhanced here by developing, in parallel with the library
development, an mhitecture framework for system, orga-
nizing the structure of systems while guiding the structure
of the class hierarchies.

The system description in our methodology is a model
based, rather than functional specification of the system,
with the model being described in terms of distributed ser-
vices and objects. It structues systems and models in a con-
ceptual architecture structured into layers providing loca-
tion transparency of the system's objects and services on
top of distributed functions which are needed to realize
those services.

Validation is based on three complimentary techniques.
The first is classical validation in which models are imple-
mented and used in experiments in parallel with (the ap-
propriate parts of) the real system, with parallel observa-

that the tions being made and compared, as"q
system and the model (were observed to) behave the same
under the same circumstances. The second technique is
knowledge based, wherein the modeller develops valid
knowledge of the system via scientific understanding of the
system's subject matter. implementation technology, struc-
ture, and usage, along with a series of varying resolution
analyses, which produce consistent results, followed by ap-
plying that knowledge in producing the model. The third
technique is structural, with the modeller composing the
system out of components. using the validity preserving
composition technique of composing via the connection of
components' i n t e r f m and defining the interface(s) of the

. .

system by an abstraction function, in terms of the compo-
nents' interfaces. Note that only the second and third tech-
niques are possible on systems of systems, as they are too
large and expensive to validate classically and their com-
ponent systems usually exist, and are the units of develop-
ment, and that the third technique is dependent upon classi-
cal or knowledge based validation of (only) the lowest level
components.

The valid model is used to design the system or any sim-
ulations needed during the development process, with each
b e i i structure in a one-to-one correspondence with the
model structure, and thus with each other. Simulations, in
this methodology are merely implementations of some res-
olution level of the model, viewed from one of the perspec-
tives. The simulations are placed in a experimentation en-
vironment to run the experiments necessary. The structural.
performance, and functional insights from the simulation
and system developments guide the other development,
forming a synergy in the development process. This syner-
gy, along with the synergy of the modelling process with
both of these design processes and with the analysis process
is the main source of increased effectiveness in the system
development process of this methodology.

4.3: The Environment

The environment which supports and makes use of this
framework and methodology consists of three parts; the de-
velopment environment, for developing systems and their
components, models and their components, and simula-
tions and their components; the run time environment (ker-
nel) for simulations or systems, and the experimentation
environment, for simulations. The requirements for each of
these environments have been developed and the architec-
ture of each bas been designed; the requirements and archi-
t e c t ~ ~ are described in a separate report [121. The devel-
opment environment architecture has a standard user
interface component with a standard programming inter-
face (MI), an abstract interface to a structured documenta-
tion database which resides in an object database, a stan-
dard multi-language Cammunications interface
implementing distributed module's interfaces using re-
mote procedure calls (RPCs) using a transport independent
messaging protocol. Various commercial and academic
components are being investigates. with the aim of imple-
menting this architecture using available parts. Synchro-
nization and consistency of the services is maintained by a
rua time system which provides language independent and
distributed interaction by providing resources to the inter-
faces which transparently handle interrupts, atomic ac-
tions, transactions as well as language interfacing using the
same RF'C mechanism as used in the development environ-
ment. The distributed discrete event kemel provides like
facilities to simulation systems and components and is inte-
grated with the run time system when combined real com-

242

ponent - simulation component systems are run 181. The
experimentation environment interfaces simulations to
driving models, described in terms of operational scenar-
ios, and to observation software, which allows queries on
the event database generated by the simulation.

5: An Example

To make the structure and process described above more
concrete, we will outline development of a system of sys-
tems. An example of the use of the methodology is a system
of systems that we are currently working on, the military
B-ISDN system. We are currently in a multi-organization
development of a prototype of the system, using a combina-
tion of technical and operational testbeds, along with mod-
elling, simulation and analysis, to develop the system's ar-
chitecture, functionality, and capabilities, for the purpose
of guiding the military communications system's evolu-
tion. In this example, we will focus on the broadband sys-
tem of system's infrast~~cture spanning the area from the
commercial network and the upper tactical echelons, in
which the trunks will be optical fiber. down through the
lower echelons, where the trunks will be radio based.

Systems of systems development is done by integration,
at one or more levels above the level at which systems are
procured or developed. For this example, the Military
B-ISDN system of systems will be described as consisting
of one level above the systems out of which it will be
constructed: computer workstations, user-network inter-
faces, strategic ATM switches, optical fiber based trunks.
tactical ATM switches, network management systems, and
radio based trunks. The fmt phase takes a low resolution
perspective on the system of systems as a whole. The ob-
jects and services visible to the users of the system of sys-
tems are defined, modeled and analyzed. This results in the
high level architecture which provides information trans-
port services, capable communication of video and multi-
media information, between users using fixed rate and vari-
able rate virtual channels; the architecture also provides
system management services, but these will not be covered
in the example. These services are defined in accordance
with the AIM UNI specification.
The second phase takes these services and objects and

"zooms in" one level to make visible to the design the ob-
jects and services at the system level. The user visible ser-
vices and objects must be realized in terms of the services
and objects provided by the component systems. As these
systems are separately developed, this levies a requirement
on the design of the system of systems that it be realized by
standards and protocols required to be implemented by the
systems. At the level of systems, the system of system's
communications services are required to be provided by
UNlS at each end of the virtual circuit, a sequence of strate-
gic and tactical Piru switches, and both optical fiber and
radio based trunks.

The methodology builds upon the standard communica-
tions system design paradigm. The upper level (system of
systems) functions and objects a~ allocated to the systems
at the next level by a three step strategy: the functions and
objects are first allocated to layers in a layered architecture,
then the layers are allocated to system components in a ge-
neric system architecture, and finally the system compo-
nents are designed to provide the functions and objects
which implement the services allocated to each compo-
nent. The services of the upper echelon military B-ISDN
system of systems to the User Network Interface 0 and
the strategic Piru switch are mapped onto the ISO-OS1
seven layer architecture with, for instance, routing, switch-
ing, and end to end delivery allocated to layer three in the
strategic UNI.

Finally, the services of the lower echelon military
B-ISDN system of systems to the tactical User Network In-
terface 0 and the tactical ATM switch are mapped onto
the ISO-OS1 seven layer architecture and t h a e layers then
mapped onto the generic architecture. It is these mappings
where the design of the tactical trunks and the tactical
switch differs significantly from their strategic counter-
parts, with for instance, routing, switching, retransmis-
sions, and end to end delivery allocated to layer three in the
tactical switch since error correction and dynamic rerout-
ing protocols are necessary due to noise. distortion, and
fading on wide band digital radio based trunks. Thus the
tactical switch, tactical trunks, tactical architecture. and
some of the network management are "ATM compatible"
rather than ATM based, in this design.

6: Conclusions
The framework, methodology and environment pres-

ented here facilitate and integrate the design, analysis,
modelling and simulation aspects of large communications
systems of systems. They integrate all of these disciplines
provide high productivity, foster haemental develop-
ment, and facilitate development and validation of systems
from components. The design process synthesizes con-
cepts from the functional modular development methodol-
ogy, object-uriented development, database development,
and model development, enhancing each with concepts
from the others, thus utilizing the strengths of each to make
up for the weaknesses of others. The analysis process pro-
vides an incremental set of analyses, organized by the mod-
el structure, building understanding of the system, its char-
acteristics, and its usage while answering questions
inherent in the design process. The modelling process de-
velops an understanding of the system and its development
issues, structured in synergy with the design process. orga-
nizing the functionality and performance issues of the sys-
tem earlier than is currently possible. The simulation pro-
cess grows from the modelling and design process, using
the same structures that they use. and providing compo-
nents which can be used to compose the simulations, be re-

243

used in other needed simulations, and used with red cam-
ponents in combined simulations, to achieve virtual
systems for experimentation and training.

References:

[11 Habermann. A. Nico; L. Flon, & L. Cooprider; Modula-
rizaion and Hierarchy in a Family od Operating Systems;
Communications of the ACM; Vol. 19, No. 5; May
1976.

[2] Lamb, Alex; Software Engineering, Planning for
Change; Prentice Hall; 1988.

[3] Meyer. Bertrank Object Oriented System Construc-
tion; Prentice Hall Intemational; 1988.

[4] Morris, Derek and Thomas Wheeler; Distributed Pro-
gram Design in Ada; Proceedings Ada Applications and
Environments Conference; IEEE, 1986.

[5] Parnas, David and Paul Clements; A Rational Design
Process: How and Why to Fake It; IEEE Transactions on
Software Engineering. v.2 (Feb.1986).

[6] Parnas, David; On the Design and Development of Pro-
gram Families; IEEE Transactions on Software Engi-
neering; Vol. SE-2, No. 1; March 1976.

[7] Richardson, Judith and Thomas Wheeler; A Two Lay-
ered Interfacing Architecture; Journal of Standards &
Interfaces; v. 13 (199 1) North-Holland.

[8] Richardson, Judith, An Architecture for Interfacing
Systems and Simulations; CECOM Report; 1993.

[9] Richardson, Judith and Thomas Wheeler; The Rational
Object-Oriented Software Strath; A Methodology
for Integrating Design, Analysis, Modelling, and Sm-
ulation for Systems of Systems; CECOM Report; 1993.

[lo] Ross. Robert G.; private conversations 1991-1993.

[Il l Wheeler, Thomas J.; Software System Development
Through the Use of Formal Documentation, (PhD Dis-
sertation); Stevens Institute of Technology; 1988.

[121 Wheeler, Thomas and Judith Richardson; The Archi-
tecture for the Rational Object-Oriented Software
Stratigy (ROSS); CECOM Report; 1993.

[131 Army Tactical Command and Control System
(ATCCS), Common ATCCS Support Software (CASS)
Software Architecture Specification; CECOM, 1990.

[14] Zeigler, Bernard; Theory of Modeling and Simula-
tion; Krueger; 1986.

Acknowledgements

The authors are deeply indebted to our mentor, Robert
G. Ross. for the many hours of brain-stem storming and ba-
gel munching that resulted in much of this work.

Biographies

Judith D. Richardson is a Computer Scientist with the Re-
search Team of the Modelling and Simulation Branch,
c0"Unications Enpineering Division, Space and Terres-
trial Communications Directorate, CECOM, Ft. Mon-
mouth NJ. She received her B.S. in Computer Science for
University of Maryland, 1980 and her M.S. in Software En-
gineering from Monmouth College, 1991. She is currently
working on her PhD. at Stevens Institute of Technology in
Electrical Engineer@ and Computer Science. She also
holds a degree in Geology. Her current areas of research are
Interface Technology, Software Architecture, Software
Design, Modelling and Simulation. Formal Methods, and
Software Engineering Environments.

Dr. Thomas J. Wheeler is an Electronics Engineer with
the Research Team of the Modellq and Simulation
Branch, Communications Fnglneering Division, Space
and Terrestrial Communications Directorate, CECOM. Ft.
Monmauth NJ. He is also a faculty member at Stevens
Institute of Technology and Monmouth College. He re-
ceived the PhD. degree in Electrical Engheahg and
Computer Science from Stevens Institute of Technology in
1988 and has degrees in Physics, Electronic Engineering
and Computer Science. His current research interests are
Software Engineerins Methodologies, Software Design,
Formal Techniques, Modelling and Simulation, Program-
ming Languages and Principles, Databases, Distributed
Systems, and EnvironmentdOperathg Systems

244

