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he demand for real-time systems increases with the demand for time- 

critical applications such as multimedia, robotics, factory automation, 

telecommunication, and air traffic control. Traditional programming 
languages do not support real-time systems development. They have neither the 

analytical techniques for modeling systems accurately nor the explicit specifica- 

tions for timing constraints. 

By providing high-level abstractions of program modules, the object-oriented 

paradigm makes it easier to design and develop applications. However, the object- 

oriented model and its implementing languages typically offer no more support for 

real-time programming than traditional languages do. 

We have developed an extended object-oriented model -the real-time object 
model. It encapsulates rigid timing constraints in an object. We have also designed 

and implemented RTC++, a programming language that extends C++ on the basis 
of the real-time object model. 

Basic issues 

Schedulability analysis. A system is said to be schedulahle if it meets all deadlines 

of a task set. One major difficulty in building a real-time system is the lack of good 

techniques for analyzing schedulability. 

Schedulability analysis lets a program designer predict (under certain condi- 

tions) whether given real-time tasks can meet their timing constraints. It requires 

a bound on the execution time of each task. To meet this requirement, the system 

must avoid priority inversion problems that occur when a higher priority task must 

wait while a lower priority task executes.’ For example. under priority-based 

scheduling. a low-priority task that holds a computational resource, such as a 

shared lock, blocks a higher priority task from this resource until the low-priority 

task completes. If several tasks of intermediate priority lie between the lower and 

higher priority tasks. the blocked high-priority task must wait for a period bounded 

only by the number of medium-priority tasks. This problem makes it very difficult 

to put an accurate bound on task execution times. 

Specifying rigid timing constraints. Conventional real-time programs do not 
explicitly describe timing constraints in the program text. Instead, they describe 



them in a separate timing chart or doc- 

ument. This makes it difficult to enforce 

timing constraints or detect timing er- 

rors during compile time or runtime. 

Moreover. current systems pose diffi- 

culties in specifying the timing charac- 

teristics of a periodic task. Languages 

or operating systems often use the dura- 

tion of a delay statement to implement 
a periodic task. However. this can lead 

to an inaccurate value for the waiting 

time. For example. consider the follow- 

jng program written in Ada: 

1 loop 

2 -.. body of cyclic activity . 

3 dtime := nexttime - currenttime: 

4 delay dtime: 

5 end loop 

The execution of the statement at 
line 3 is not an atomic action. so the 

dtime variable may have a wrong val- 

ue. For example, if the program’s ex- 

ecution is suspended after currenttime 

is evaluated and resumed later. dtime 

is calculated with the incorrect value 

of currenttime. So the program might 

be delayed too long in the delay state- 

ment. 

This delay problem and other issues 

related toreal-time programming in Ada 

are addressed in a proposal for the com- 

ing Ada standard. Ada 9X.’ 

Scheduling approach 

Many developers use the cyclic exec- 

utive to predict timing correctness for 

real-time systems with periodic tasks’ 
(see the sidebar on scheduling). This 

approach offers a framework for sched- 

uling periodic tasks, but it has some 

problems. First, a programmer must use 

toolsfordeterministicscheduling. These 

tools require much insight into timing 

requirements and program structure. 

Sometimes, a task’s structure must be 

changed to satisfy the timing constraints: 

for example, a single logical task might 

be split into two parts that fit better into 

the timing structure. 

Second, programs built with the cy- 

clic executive are very difficult to ex- 

tend or modify. Changes tend to violate 

timing structure and constraints that 
were tuned to specific characteristics of 

the original problem. 

Instead of the cyclic executive, our 

approach employs the rate monotonic 

scheduling analysis.” Rate monotonic 

Scheduling 

Two major approaches to developing schedulable real-time systems domi- 

nate the current state of the art. 

The cyclic executive. This approach performs a sequence of actions dur- 
ing fixed periods of time. The execution is divided into two parts. The major 

cycle schedules computations to be repeated indefinitely. The major cycle is 

composed of minor cycles. A programmer divides each task into subcompo- 

nents so that the execution of each subcomponent fits into the minor cycles 

in a way that satisfies the timing constraints. In other words, this program- 

ming style forces a programmer to schedule programs using static analysis 

tools with some manual scheduling or reprogramming to ensure predictable 

execution timing. 

Rate monotonic scheduling. This approach uses a preemptive fixed-pri- 

ority scheduling algorithm that assigns higher priority to tasks with shorter 

periods. The CPU utilization of a task i, U(i), is calculated by U(i) = C(i) I 

T(i), where C(i) and T(i) are the execution time and period of task i, re- 

spectively. 

Assume a tasks deadline is the same as its period. Its CPU utilization is 

schedulable up to 100 percent in the case of a harmonic task set where all 

periodic tasks start at the same time and all periods are harmonic. In the 

general case, n independent periodic processes can meet their deadlines if 

the following formula holds: 

g&(2”” -1) 

This formula is very simple but pessimistic: A task set that does not satisfy 

this condition may or may not be schedulable. There is a more precise 

schedulability analysis of the rate monotonic algorithm (see references 1 

and 5 in the main article). However, in this article, we use this pessimistic 

formula for simplicity. 

scheduling uses a preemptive fixed-pri- 

ority scheduling algorithm that assigns 

higher priority to the tasks with shorter 

periods. With this algorithm. the sched- 

ulability of a given task set is analyzed 

by applying a closed formula (see the 

sidebar on scheduling). 

Rate monotonic scheduling does not 

require programmers to split tasks by 

hand as the cyclic executive does, but 

the tasks must be preemptive and there 

is some penalty for context-switch over- 

head. Critical regions that require mu- 

tual exclusion interfere with the pre- 

emptability constraint of rate monotonic 

analysis. and the resulting potential for 

priority inversion must be accounted 

for. 

Therefore, our approach employs the 
priority inheritance protocol’ to bound 

the duration ofpriority inversion. In the 

priority inheritance protocol. if a task 

has to wait for the completion of a lower 

priority task’s execution. the low-prior- 

ity task’s priority is temporarily changed 

to the priority of the higher task. Thus, 

tasks of intermediate priority cannot 

disturb the execution of the lower pri- 
ority task. This lets us bound a task’s 

blocking time (that is, the time a task 

spends waiting for a resource, such as a 

mutual exclusion lock, to become avail- 
able). Note that the term inheritance as 

used in priority inheritance protocol has 

no relation to the inheritance of objects 

in the object-oriented methodology. 
Using the priority inheritance proto- 

col under rate monotonic scheduling, 

all periodic tasks meet their deadline if 

the following formula holds’? 

C(l) C(n) 
i 
B(1) -++..+-+max -,..., 

T(1) T(n) T(l) 

where C(i), T(i). and B(i) are the execu- 
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tion time, period, and blocking time, 

respectively, of the task i and n is the 

number of tasks. In this formula, a task 

whose subscript is smaller has a shorter 

period and a higher priority. To use 

these methods effectively for schedul- 

ing analysis, we need a good methodol- 

ogy to specify the execution and block- 

ing times (due to both synchronization 

and communication) in the program text. 

Real-time object model 

Timing encapsulation. The real-time 

object model extends the object-orient- 

ed model to describe real-time proper- 

ties in programs. In the real-time object 

model, active objects with timing con- 

straints describe a system, together with 

their interaction through message pass- 

ing. Such an active object is called a 

real-time object. 

An active object, as described here, 
has one or more threads that can be 

executing when a message arrives. Var- 

ious message-passing schemes have been 

introduced to describe concurrency 

among objects in object-oriented con- 

current programming.(’ Figure 1 illus- 

trates the typical execution flow be- 

tween active objects. The sender object 

Sender object 

Figure 1. Execution flow between active objects. 

Figure 2. An example of real-time objects. 
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at (1) sends a message to the receiver at 

(2) and waits for the reply message. 

After the execution of (3) in the receiv- 

er, the receiver sends a reply message at 

(4). Then both the sender and receiver 

objects execute concurrently at (5) and 

(6). 

Nonpreemptive object. A nonpre- 

emptive real-time object consists of in- 

ternal data, operations called methods 

with timing properties, and a thread. 

We call the object nonpreemptive be- 

cause the object performs the senders’ 

requests sequentially and cannot inter- 

leave the execution of various requests. 

The following notation describes the 

timing properties of objects in the real- 

time object model: 

=&z(o) is the set of methods in an 

object o. 
l C(m, o) is the worst case execution 

time (not including blocking time) of 

method m of object o. 

l Ms(m, o) is the multiset of other 

objects’ methods called by method m of 

object o. 

Figure 2 shows an example of real- 
time objects. Object 0, has method M,, 

whose worst-case execution time is 55 

milliseconds. Object 0, has method M,, 

whose worst-case execution time is 30 

milliseconds. Object 0, has three meth- 

ods, M,,, M,,, M,,, whose worst-case 

execution times are 30,20, and 30 milli- 

seconds, respectively. An arrow indi- 

cates an object’s invocation sequence. 

Method M, in object 0, invokes meth- 

ods M,, and Mjz in object O,, while 

method M, in object 0, invokes method 

M,, in object 0,. 
By using the information about tim- 

ing and execution dependency, we can 

analyze the timing constraints of the 

program as follows: Because M, of 0, 

calls two methods (Mi, and M,,) in O,, 

the worst case execution time of M, 
must be greater than the summation of 

the worst-case execution times of M,, 

and M,,. Moreover, the worst-case exe- 

cution of M, must be greater than the 

worst case execution of M,,. That is, 

C(M,, 0,) ’ C(M,,, 0,) 
+ C(M,,, 0,) -3 55 > 30 + 20 

C(M,, 02) > C(M,,, 0,) + 30 > 20 

One advantage of this model is that 

the schedulability of a task set is easily 

analyzed under the rate monotonic 

scheduling as described in the sidebar 
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on scheduling. Another advantage is 

that a reusable object is easily built for 

real-time applications. For example, we 
can provide a real-time object library 

such that several objects have the same 
functionality with the same interface 

but with different timing constraints, 

arising from their internal algorithms. 

Programmers can choose an object from 
the real-time library that fits their tim- 

ing constraints. 

Preemptive object. Nonpreemptive 

real-time objects can suffer from prior- 

ity inversion due to blocking at an ob- 

ject invocation (see the sidebar on pri- 

ority inversion in an active object). TWO 

ways to reduce the blocking time are 
concurrent execution in the object or 

the abort-and-restart methodology.’ 
An object can execute requests con- 

currently if it has multiple threads, each 
of which is responsible for some meth- 

ods. However, this doesn’t eliminate 

blocking time due to the synchroniza- 

tion of internal data in an object. In the 

abort-and-restart methodology, if a pro- 

cess is going to be blocked at the request 

of an object, the current execution of 

the object is aborted. When the execu- 

tion is aborted, the object is responsible 

for maintaining the consistency of the 

data. This methodology should be ap- 

plied if the abort, recovery, andrequeue- 

ing cost is less than the blocking cost. 

For simplicity, we do not consider the 

abort-and-restart methodology here. 

The real-time object model can de- 

scribe objects with multiple threads.” 

Each thread is responsible for perform- 

ing one or more methods. A collection 

of threads may be responsible for the 

same set of methods, in which case the 

threadsconstitute a thread group.‘Real- 

time objects with multiple threads are 

called preemptive objects. A preemp- 

tive object is described using the follow- 

ing notation in addition to the notation 

of the nonpreemptive object: 

l G(i) is thread group i (that is, the set 

of thread numbers), where Vi,j,i#j,G(i) 

n GO’) = 4. 

l Gm(m, o) is a thread group that 

executes the method. 
l Mr(m. o) is the multiset of pairs of 

critical region and its worst-case execu- 

tion time in the method. 

Let us say 0, is a preemptive object 

instead of a nonpreemptive object. As 

shown in Figure 3, threads Th, and Th2 

are responsible for executing methods 

Priority inversion in an active object 

Figure A shows an example of priority inversion in an active object. Sup- 

pose we have a server object S and client objects L and H where L’s priority 

is lower than H ‘s. If the sewer is executing for L as a result of a request re- 

ceived from client L and client H sends a message to S, client t-f ‘s request 

is postponed until the server’s execution for client L finishes. Because H ‘s 

priority is higher than L’s but processing for L precedes processing for H, we 

have a case of priority inversion in the server. 

Moreover, if we assume that another object A4 is running independently 

with a medium priority, effectively bounding the execution time of H requires 

S to run with no interference from M whenever H is waiting for S ‘s reply. 

Thus, the priority of S has to change based on the highest priority of the re- 

quests waiting for service. This scheme for dynamically adjusting the priori- 

ties is called the priority inheritance protocol. 

Lower priority 

Higher priority 

(1) L sends a message to S. 
(2) S begins processing L’s request. 
(3) H sends a message to S. Figure A. Prior- 

ity inversion in 
an object. 

Figure 3. Preemptive object 0,. 

Th - - - - - - + M : Thread Th is responsible for executing method M 
M VYVVVVY Cr : Method M accessing critical region Cr 

WO,) = I&,, Mm MA 
C(M,,, 0,) = 30 
G(1) = (W, Tf%) 
Gm(Mp,, 0,) = G(1) 
MW,,, OJ = {(Cr,, WI 

C(M,,, 0,) = 20 
G(2) = (T&l 
Gm(M,,, 0,) = G(1) 
MrW,,, 0,) = ((Cr,, lo)1 

C(M,,, 0,) = 30 

GmP,,, 0,) = G(2) 
MrW,, 04 = KCr,, 911 
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Active object scheduling analysis 

Suppose we have a real-time system composed of peri- 

odic tasks, active objects called by those tasks, and other 

independent active objects - all executing on a single 

CPU machine. We also assume that all method-calling se- 

quences to other objects can be detemined statically and 

that there are no recursive calls or unbounded iterations. 

A periodic task has its period and deadline specified as 

timing properties. The task set is described by several ob- 

jects and the interaction among those objects. Thus, a pe- 

riodic task is defined as follows: 

l T(n) is the period of task n. 

l D(n) is the deadline of task n. 

l MS(n) is the multiset of other objects’ methods called 

by periodic task n. 

Nonpreemptive object. Figure B shows an example where 

periodic tasks send messages to the objects defined in Figure 

2 of the main text. The system task Timer is defined to handle 

task scheduling. The context-switch overhead is accumulated 

in the execution of the Timer. To analyze the schedulability of 

this example under rate monotonic scheduling, we prioritize 

the tasks Timer, f,, f2, and P3 as highest, high, middle, and 
low, respectively. This priority corresponds to the shortest to 

longest task periods. 

We analyze the worst-case execution time of each task first. 

This is easy to do because each of an object’s methods has 
timing constraints. The worst-case execution of P, is 85 milli- 

seconds because it calls two methods, M, of 0, and r\A, of 4, 

whose worst-case execution times are 55 and 30 milliseconds, 

respectively. In the same way, we determine that the worst- 

case execution times for P2 and P3 are 30 milliseconds each. 

Deadline = 250 ms 

Period = 300 ms 
Deadline = 300 ms 

Period = 400 ms 
Deadline = 400 ms 

Timer 

0 
Period =lOms 
Deadline = 10 ms 
Exection time = 1 ms 

T(P,) = 250 D(P,) = 250 Ms(P,) = ((43 O,L (kO*)l 
T(P,) = 300 D(P,) = 300 Ms(P2) = (W,! 411 
T(P,) = 400 D(P,) = 400 Ms(P3) = ((4 4)l 

Figure B. A task set. 
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Second, we analyze the blocking time of all tasks ex- 

cept for the lowest priority task. In other words, we deter- 

mine the tima each task must wait for synchronization or 

communication with other activities. There are two cases 

where the execution of P, is blocked due to f2. One case 

is when P2 has called method M2 of OZ and then P, tries to 

call the same method. In this case, the worst-case block- 

ing time of P, is 30 milliseconds because the request can 

be postponed until the execution of M2 is finished. 

The second case, is when Mm of 0, has been called by 

M2 under P;s request and later 0, calls M,, or & under 

f,‘s request. The execution of MS,, and MS cannot both be 

blocked by P2 during one period of P,. However, under the 

priority inheritance protocol, one of them can be blocked 

because the execution of P2 is temporarily given the high- 

est priority until the completion of 4’s M,. After P2 exe- 

cutes, it cannot disturb P,. Thus, the blocking time at OS is 

20 milliseconds. 

P2 can block the execution of P, at OZ for 30 millisec- 

onds and at OS for 20 milliseconds. However, if P2 blocks 

P,‘s execution at Mzr then P2 also blocks the execution of 

M2 for P, during one period of P,. Thus, we estimate that 

30 milliseconds is the worst-case blocking time of P, due 

to P2. 

Let us consider the relation between P, and P3 in terms 

of blocking time. P, can be blocked by P3 when P, calls 

M,, or Mm of Oa during the execution of MS under P3(s re- 

quest. Here, the worst-case blocking time of P, is 30 milli- 

seconds because the execution time of 4’s MS is 30 mil- 

liseconds. 

To summarize this analysis of P,, the blocking time of 

P, is 60 milliseconds - 30 milliseconds due to P2 and 30 

milliseconds due to Pa. In this way, we can estimate other 

blocking times. The execution of P2 can be disturbed by 

P3 at iU= of 4. The worst-case blocking time of f2 is 30 

milliseconds. 

Table A summarizes the timing analysis. Using the table 

we can analyze the schedulability of the task set under 

rate monotonic scheduling by applying formula (1) from 

the main text: 

C(Timef) C(l) C(2) C(3) 
-+-+-+-+max 
T(7her) T(l) T(2) T(3) 

= 0.1 + 0.34 + 0.1 + 0.075 + max(0.24, 0.1) 

= 0.655 > 3(2’” - 1) = 0.760 

Thus, using this simple (pessimistic) test, we cannot 

guarantee the schedulability of this task set under rate 

monotonic scheduling. 

Preemptive object. Suppose we replace object 0, de- 

scribed above with another implementation that is pre- 

emptive (as defined in Figure 3 of the main text). To ana- 

fable A. Timing information for Figure B (in millieeco~de) 

Execution C/T Blocking BIT 

(Cl (4 

10 1 0.100 0 0 

250 85 0.340 60 0.24 

300 30 0.100 30 0.10 

400 30 0.075 0 0 

Table B. Timing information for Figure B with preem&e 

object (in miilisecqtde) 

Process Period Deadline Execution C/T Blocking B/T 

(T) (0) (6) 

Timer 10 10 1 0.100 0 0 

1 250 250 85 0.340 39 0.156 

2 300 300 30 0.100 9 0.030 

3 400 400 30 0.075 0 0 

lyze the schedulability of a task set with this object, we mod- 

ify the implementation of object OS without changing the ei- 

ecution time. The execution times of all tasks are the same 

as in the previous example. 

Now we estimate the blocking time of P, and P> P,‘s 

blocking time due to P2 does not change, because P, calls 

M2 of 4, which calls 0,. So the blocking time of P, by P2 is 

still 30 milliseconds. The blocking time of P, due to P3, how- 

ever, changes to 9 millis.econds because the method MS 

blocks only for the duration of the critical region shared in 

0,. Thus, the blocking time of P, is39 milliseconds - 30 

milliseconds for f2 and 9 milliseconds for Pp f2’s blocking 

time is also reestimated as 9 milliseconds., 

Table 6 shows the results of this analysis. Using the table 

we can analyze the schedulability of the task set under rate 

monotonic scheduling as follows: 

C(Tkrter) C(l) C(2) C(3) 
-+-+-+-+max 
T(Timer) T(1) T(2) T(3) 

= 0.1 + 0.34 + 0.1 + 0.075 + max(0.156, 0.03) 

= 0.771 < 3(21R - 1) = 0.780 

The result shdws that the task set is guaranteed schedu- 

labie. 
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1 active class 03 { 
2 mivate: 
3 - /I private data definition 

7 int m33(flbat r) b4xmd(Ot3Om); 
8 activity: 
9 slave[2] m3l(char*, int), m32(char*, int); 
10 slave mS(fl0at f); 

11 I; 

Figure 4. A real-time object in RTC++. 

1 When a new message for those methods 
arrives and the sender’s priority is high- 

er than the current thread’s priority, the 

thread’s priority is changed to the high- 

er priority, and the message is enqueued 

at the head of the priority queue. 

Figure 5 shows an example of a peri- 

odic task in RTC++. The master thread 

in line 6 is declared to specify the peri- 

odic task within an active object. The 

syntax of the cycle clause is as follows: 

cycle(<start-time>; <end-time>; 

<period>; <deadline>); 

In Figure 5, <start-time> and <end- 

time> are unspecified, so those con- 

I ! straints are free, and Ot200 indicates a 

I 
r:-,. A .._^ *:,... -F?rm 

1 ar -:lliseconds. There- 

c) milliseconds and 
;tive class Pl ( 

L private: 
3 I! private date definition 
4 void main( ); 
5 activity: 
6 master main0 cycle{@ 0; Ot200; Ot2QO); 
7 1. 

Lllllt; UUI au”,, “I L”” 1111 
fore, the period is 200 

the deadline coincides with the period. 

Timing specification. Two types of 
timing information must be specified in 

RTC+t: execution time and deadline 

time. RTC+t allows us to specify this 
I 

Figure 5. A periodic task in RTC++. 
’ timing information by using the Bound 

and Within constructs. The Bound con- 

struct asserts the worst-case execution 

time, while the Within construct asserts 

the deadline time. 

M,, and M,,, while thread Th, is in charge 

of performing the method M,,. Suppose 

there is one critical region inside the 

object. During the execution of method 

M,,, it accesses the critical region for 10 

milliseconds. The time of the critical 

region accessed by M,z is 10 millisec- 
onds while the time of the region ac- 

cessed by M,, is 9 milliseconds. All exe- 
cution times of methods in 0, are the 

same as they were in the nonpreemp- 
tive case. 

The sidebar on the previous two-page 

spread analyzes the schedulability of a 

nonpreemptive active object and com- 

pares it to a preemptive active object. 

The results show that a system built 

using preemptive active objects provides 

better schedulability. 

RTC++ 

A slave thread is an execution unit 

related to a method or a group of meth- 

ods. Line 10 of Figure 4 declares that 

one slave thread is dedicated to han- 

dling the M ,? requests. Line 9 specifies 

that two threads are responsible for 
executing methods M,, and M,?. That is, 

at most two requests of either M,, or Mj2 

can be interleaved. These threads are 

called a slube thread group. 

RTC++” is an extension to C++. Its We employ the priority inheritance 

design is based on the real-time object protocol in object invocation. That is, a 

model. In addition to C++ objects, slave thread inherits the priority from 

RTC++ provides active objects. If an the sender. If there is a queue of waiting 
active object is defined with timing con- messages, the messages are ordered ac- 
straints, it is called a real-time object. cording to priority, and the priority of 

Figure 4 shows the declaration of the the slave thread is set to the highest 

active object 0,. An active object decla- priority of the invocations in the queue. 

ration is almost the same as the original 

C++ object declaration, except for the 

addition of the keyword Active before 

the keyword Class and the addition of a 

part for Activity. 

Activity part. An active object has a 

single thread by default. A user can 

specify multiple threads, which we call 

member threads in the active object. 

Member threads are declared in the 

activity pan. of the class declaration. 

There are two types: slave and master. 

As shown in Figure 4, all methods are 

declared with the worst-case execution 

time constraint. For example, the CPU 

usage in the execution of method M,, 

must be completed within 30 millisec- 

onds. Line 6 shows that method M,, has 

a worst-case execution time of 20 milli- 

seconds and that if this constraint is 

violated at runtime, the exception han- 

dler, m32_abort, is called. 

Communication. RTC++ supports 

synchronous communication. The syn- 

tax of communication among active 

objects is the same as C++ syntax. For 

example: 

3 n = v->m31 (buf, size); 

4 Il.. 

RTC++ provides two means of send- 

ing a reply message: return and reply 

statements. In a return statement, a re- 

ply message is sent to the sender and the 

execution of the method is finished. In a 

reply statement, a reply message is sent 

and the subsequent statements are exe- 

cuted instead of finishing the execution 

of a method. 
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I 
n addition to the features de- 

scribed in this article, RTC++ pro- 

vides sophisticated facilities for 

programming applications: statement- 

level timing constraints, guard expres- 

sions, critical regions with timing con- 

straints, and exception handling. 

Moreover, RTC+tprovides facilities for 

programming distributed applications. 

We think the constructs we proposed 

can be adapted to many other object- 

oriented languages besides C++. We 

have compared RTC++ with other real- 
time programming languages in a previ- 

ous paper,9 and the Ada 9X proposal2 

describes the impact of these issues on 

Ada. 

RTC++ is currently running under 

the ARTS KernellO on Motorola 

MC68030-based machines such as Sun3, 

Force Board, and Sony News. The 

RTC++ compiler generates C++ source 

programs and uses additional runtime 

support routines. w 
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