
An Object-Oriented
Real-Time Programming
Language

Yutaka Ishikawa, MIT1 Electrotechnical Laboratory

Hideyuki Tokuda and Clifford W. Mercer, Carnegie Mellon University

The real-time object

model is a methodology

for describing real-time

systems. RTC++ is a

programming language

that extends C++ based

on this model.

66

he demand for real-time systems increases with the demand for time-

critical applications such as multimedia, robotics, factory automation,

telecommunication, and air traffic control. Traditional programming
languages do not support real-time systems development. They have neither the

analytical techniques for modeling systems accurately nor the explicit specifica-

tions for timing constraints.

By providing high-level abstractions of program modules, the object-oriented

paradigm makes it easier to design and develop applications. However, the object-

oriented model and its implementing languages typically offer no more support for

real-time programming than traditional languages do.

We have developed an extended object-oriented model -the real-time object
model. It encapsulates rigid timing constraints in an object. We have also designed

and implemented RTC++, a programming language that extends C++ on the basis
of the real-time object model.

Basic issues

Schedulability analysis. A system is said to be schedulahle if it meets all deadlines

of a task set. One major difficulty in building a real-time system is the lack of good

techniques for analyzing schedulability.

Schedulability analysis lets a program designer predict (under certain condi-

tions) whether given real-time tasks can meet their timing constraints. It requires

a bound on the execution time of each task. To meet this requirement, the system

must avoid priority inversion problems that occur when a higher priority task must

wait while a lower priority task executes.’ For example. under priority-based

scheduling. a low-priority task that holds a computational resource, such as a

shared lock, blocks a higher priority task from this resource until the low-priority

task completes. If several tasks of intermediate priority lie between the lower and

higher priority tasks. the blocked high-priority task must wait for a period bounded

only by the number of medium-priority tasks. This problem makes it very difficult

to put an accurate bound on task execution times.

Specifying rigid timing constraints. Conventional real-time programs do not
explicitly describe timing constraints in the program text. Instead, they describe

them in a separate timing chart or doc-

ument. This makes it difficult to enforce

timing constraints or detect timing er-

rors during compile time or runtime.

Moreover. current systems pose diffi-

culties in specifying the timing charac-

teristics of a periodic task. Languages

or operating systems often use the dura-

tion of a delay statement to implement
a periodic task. However. this can lead

to an inaccurate value for the waiting

time. For example. consider the follow-

jng program written in Ada:

1 loop

2 -.. body of cyclic activity .

3 dtime := nexttime - currenttime:

4 delay dtime:

5 end loop

The execution of the statement at
line 3 is not an atomic action. so the

dtime variable may have a wrong val-

ue. For example, if the program’s ex-

ecution is suspended after currenttime

is evaluated and resumed later. dtime

is calculated with the incorrect value

of currenttime. So the program might

be delayed too long in the delay state-

ment.

This delay problem and other issues

related toreal-time programming in Ada

are addressed in a proposal for the com-

ing Ada standard. Ada 9X.’

Scheduling approach

Many developers use the cyclic exec-

utive to predict timing correctness for

real-time systems with periodic tasks’
(see the sidebar on scheduling). This

approach offers a framework for sched-

uling periodic tasks, but it has some

problems. First, a programmer must use

toolsfordeterministicscheduling. These

tools require much insight into timing

requirements and program structure.

Sometimes, a task’s structure must be

changed to satisfy the timing constraints:

for example, a single logical task might

be split into two parts that fit better into

the timing structure.

Second, programs built with the cy-

clic executive are very difficult to ex-

tend or modify. Changes tend to violate

timing structure and constraints that
were tuned to specific characteristics of

the original problem.

Instead of the cyclic executive, our

approach employs the rate monotonic

scheduling analysis.” Rate monotonic

Scheduling

Two major approaches to developing schedulable real-time systems domi-

nate the current state of the art.

The cyclic executive. This approach performs a sequence of actions dur-
ing fixed periods of time. The execution is divided into two parts. The major

cycle schedules computations to be repeated indefinitely. The major cycle is

composed of minor cycles. A programmer divides each task into subcompo-

nents so that the execution of each subcomponent fits into the minor cycles

in a way that satisfies the timing constraints. In other words, this program-

ming style forces a programmer to schedule programs using static analysis

tools with some manual scheduling or reprogramming to ensure predictable

execution timing.

Rate monotonic scheduling. This approach uses a preemptive fixed-pri-

ority scheduling algorithm that assigns higher priority to tasks with shorter

periods. The CPU utilization of a task i, U(i), is calculated by U(i) = C(i) I

T(i), where C(i) and T(i) are the execution time and period of task i, re-

spectively.

Assume a tasks deadline is the same as its period. Its CPU utilization is

schedulable up to 100 percent in the case of a harmonic task set where all

periodic tasks start at the same time and all periods are harmonic. In the

general case, n independent periodic processes can meet their deadlines if

the following formula holds:

g&(2”” -1)

This formula is very simple but pessimistic: A task set that does not satisfy

this condition may or may not be schedulable. There is a more precise

schedulability analysis of the rate monotonic algorithm (see references 1

and 5 in the main article). However, in this article, we use this pessimistic

formula for simplicity.

scheduling uses a preemptive fixed-pri-

ority scheduling algorithm that assigns

higher priority to the tasks with shorter

periods. With this algorithm. the sched-

ulability of a given task set is analyzed

by applying a closed formula (see the

sidebar on scheduling).

Rate monotonic scheduling does not

require programmers to split tasks by

hand as the cyclic executive does, but

the tasks must be preemptive and there

is some penalty for context-switch over-

head. Critical regions that require mu-

tual exclusion interfere with the pre-

emptability constraint of rate monotonic

analysis. and the resulting potential for

priority inversion must be accounted

for.

Therefore, our approach employs the
priority inheritance protocol’ to bound

the duration ofpriority inversion. In the

priority inheritance protocol. if a task

has to wait for the completion of a lower

priority task’s execution. the low-prior-

ity task’s priority is temporarily changed

to the priority of the higher task. Thus,

tasks of intermediate priority cannot

disturb the execution of the lower pri-
ority task. This lets us bound a task’s

blocking time (that is, the time a task

spends waiting for a resource, such as a

mutual exclusion lock, to become avail-
able). Note that the term inheritance as

used in priority inheritance protocol has

no relation to the inheritance of objects

in the object-oriented methodology.
Using the priority inheritance proto-

col under rate monotonic scheduling,

all periodic tasks meet their deadline if

the following formula holds’?

C(l) C(n)
i
B(1) -++..+-+max -,...,

T(1) T(n) T(l)

where C(i), T(i). and B(i) are the execu-

October 1992 67

tion time, period, and blocking time,

respectively, of the task i and n is the

number of tasks. In this formula, a task

whose subscript is smaller has a shorter

period and a higher priority. To use

these methods effectively for schedul-

ing analysis, we need a good methodol-

ogy to specify the execution and block-

ing times (due to both synchronization

and communication) in the program text.

Real-time object model

Timing encapsulation. The real-time

object model extends the object-orient-

ed model to describe real-time proper-

ties in programs. In the real-time object

model, active objects with timing con-

straints describe a system, together with

their interaction through message pass-

ing. Such an active object is called a

real-time object.

An active object, as described here,
has one or more threads that can be

executing when a message arrives. Var-

ious message-passing schemes have been

introduced to describe concurrency

among objects in object-oriented con-

current programming.(’ Figure 1 illus-

trates the typical execution flow be-

tween active objects. The sender object

Sender object

Figure 1. Execution flow between active objects.

Figure 2. An example of real-time objects.

68

at (1) sends a message to the receiver at

(2) and waits for the reply message.

After the execution of (3) in the receiv-

er, the receiver sends a reply message at

(4). Then both the sender and receiver

objects execute concurrently at (5) and

(6).

Nonpreemptive object. A nonpre-

emptive real-time object consists of in-

ternal data, operations called methods

with timing properties, and a thread.

We call the object nonpreemptive be-

cause the object performs the senders’

requests sequentially and cannot inter-

leave the execution of various requests.

The following notation describes the

timing properties of objects in the real-

time object model:

=&z(o) is the set of methods in an

object o.
l C(m, o) is the worst case execution

time (not including blocking time) of

method m of object o.

l Ms(m, o) is the multiset of other

objects’ methods called by method m of

object o.

Figure 2 shows an example of real-
time objects. Object 0, has method M,,

whose worst-case execution time is 55

milliseconds. Object 0, has method M,,

whose worst-case execution time is 30

milliseconds. Object 0, has three meth-

ods, M,,, M,,, M,,, whose worst-case

execution times are 30,20, and 30 milli-

seconds, respectively. An arrow indi-

cates an object’s invocation sequence.

Method M, in object 0, invokes meth-

ods M,, and Mjz in object O,, while

method M, in object 0, invokes method

M,, in object 0,.
By using the information about tim-

ing and execution dependency, we can

analyze the timing constraints of the

program as follows: Because M, of 0,

calls two methods (Mi, and M,,) in O,,

the worst case execution time of M,
must be greater than the summation of

the worst-case execution times of M,,

and M,,. Moreover, the worst-case exe-

cution of M, must be greater than the

worst case execution of M,,. That is,

C(M,, 0,) ’ C(M,,, 0,)
+ C(M,,, 0,) -3 55 > 30 + 20

C(M,, 02) > C(M,,, 0,) + 30 > 20

One advantage of this model is that

the schedulability of a task set is easily

analyzed under the rate monotonic

scheduling as described in the sidebar

COMPUTER

on scheduling. Another advantage is

that a reusable object is easily built for

real-time applications. For example, we
can provide a real-time object library

such that several objects have the same
functionality with the same interface

but with different timing constraints,

arising from their internal algorithms.

Programmers can choose an object from
the real-time library that fits their tim-

ing constraints.

Preemptive object. Nonpreemptive

real-time objects can suffer from prior-

ity inversion due to blocking at an ob-

ject invocation (see the sidebar on pri-

ority inversion in an active object). TWO

ways to reduce the blocking time are
concurrent execution in the object or

the abort-and-restart methodology.’
An object can execute requests con-

currently if it has multiple threads, each
of which is responsible for some meth-

ods. However, this doesn’t eliminate

blocking time due to the synchroniza-

tion of internal data in an object. In the

abort-and-restart methodology, if a pro-

cess is going to be blocked at the request

of an object, the current execution of

the object is aborted. When the execu-

tion is aborted, the object is responsible

for maintaining the consistency of the

data. This methodology should be ap-

plied if the abort, recovery, andrequeue-

ing cost is less than the blocking cost.

For simplicity, we do not consider the

abort-and-restart methodology here.

The real-time object model can de-

scribe objects with multiple threads.”

Each thread is responsible for perform-

ing one or more methods. A collection

of threads may be responsible for the

same set of methods, in which case the

threadsconstitute a thread group.‘Real-

time objects with multiple threads are

called preemptive objects. A preemp-

tive object is described using the follow-

ing notation in addition to the notation

of the nonpreemptive object:

l G(i) is thread group i (that is, the set

of thread numbers), where Vi,j,i#j,G(i)

n GO’) = 4.

l Gm(m, o) is a thread group that

executes the method.
l Mr(m. o) is the multiset of pairs of

critical region and its worst-case execu-

tion time in the method.

Let us say 0, is a preemptive object

instead of a nonpreemptive object. As

shown in Figure 3, threads Th, and Th2

are responsible for executing methods

Priority inversion in an active object

Figure A shows an example of priority inversion in an active object. Sup-

pose we have a server object S and client objects L and H where L’s priority

is lower than H ‘s. If the sewer is executing for L as a result of a request re-

ceived from client L and client H sends a message to S, client t-f ‘s request

is postponed until the server’s execution for client L finishes. Because H ‘s

priority is higher than L’s but processing for L precedes processing for H, we

have a case of priority inversion in the server.

Moreover, if we assume that another object A4 is running independently

with a medium priority, effectively bounding the execution time of H requires

S to run with no interference from M whenever H is waiting for S ‘s reply.

Thus, the priority of S has to change based on the highest priority of the re-

quests waiting for service. This scheme for dynamically adjusting the priori-

ties is called the priority inheritance protocol.

Lower priority

Higher priority

(1) L sends a message to S.
(2) S begins processing L’s request.
(3) H sends a message to S. Figure A. Prior-

ity inversion in
an object.

Figure 3. Preemptive object 0,.

Th - - - - - - + M : Thread Th is responsible for executing method M
M VYVVVVY Cr : Method M accessing critical region Cr

WO,) = I&,, Mm MA
C(M,,, 0,) = 30
G(1) = (W, Tf%)
Gm(Mp,, 0,) = G(1)
MW,,, OJ = {(Cr,, WI

C(M,,, 0,) = 20
G(2) = (T&l
Gm(M,,, 0,) = G(1)
MrW,,, 0,) = ((Cr,, lo)1

C(M,,, 0,) = 30

GmP,,, 0,) = G(2)
MrW,, 04 = KCr,, 911

October 1992 69

Active object scheduling analysis

Suppose we have a real-time system composed of peri-

odic tasks, active objects called by those tasks, and other

independent active objects - all executing on a single

CPU machine. We also assume that all method-calling se-

quences to other objects can be detemined statically and

that there are no recursive calls or unbounded iterations.

A periodic task has its period and deadline specified as

timing properties. The task set is described by several ob-

jects and the interaction among those objects. Thus, a pe-

riodic task is defined as follows:

l T(n) is the period of task n.

l D(n) is the deadline of task n.

l MS(n) is the multiset of other objects’ methods called

by periodic task n.

Nonpreemptive object. Figure B shows an example where

periodic tasks send messages to the objects defined in Figure

2 of the main text. The system task Timer is defined to handle

task scheduling. The context-switch overhead is accumulated

in the execution of the Timer. To analyze the schedulability of

this example under rate monotonic scheduling, we prioritize

the tasks Timer, f,, f2, and P3 as highest, high, middle, and
low, respectively. This priority corresponds to the shortest to

longest task periods.

We analyze the worst-case execution time of each task first.

This is easy to do because each of an object’s methods has
timing constraints. The worst-case execution of P, is 85 milli-

seconds because it calls two methods, M, of 0, and r\A, of 4,

whose worst-case execution times are 55 and 30 milliseconds,

respectively. In the same way, we determine that the worst-

case execution times for P2 and P3 are 30 milliseconds each.

Deadline = 250 ms

Period = 300 ms
Deadline = 300 ms

Period = 400 ms
Deadline = 400 ms

Timer

0
Period =lOms
Deadline = 10 ms
Exection time = 1 ms

T(P,) = 250 D(P,) = 250 Ms(P,) = ((43 O,L (kO*)l
T(P,) = 300 D(P,) = 300 Ms(P2) = (W,! 411
T(P,) = 400 D(P,) = 400 Ms(P3) = ((4 4)l

Figure B. A task set.

70 COMPUTER

Second, we analyze the blocking time of all tasks ex-

cept for the lowest priority task. In other words, we deter-

mine the tima each task must wait for synchronization or

communication with other activities. There are two cases

where the execution of P, is blocked due to f2. One case

is when P2 has called method M2 of OZ and then P, tries to

call the same method. In this case, the worst-case block-

ing time of P, is 30 milliseconds because the request can

be postponed until the execution of M2 is finished.

The second case, is when Mm of 0, has been called by

M2 under P;s request and later 0, calls M,, or & under

f,‘s request. The execution of MS,, and MS cannot both be

blocked by P2 during one period of P,. However, under the

priority inheritance protocol, one of them can be blocked

because the execution of P2 is temporarily given the high-

est priority until the completion of 4’s M,. After P2 exe-

cutes, it cannot disturb P,. Thus, the blocking time at OS is

20 milliseconds.

P2 can block the execution of P, at OZ for 30 millisec-

onds and at OS for 20 milliseconds. However, if P2 blocks

P,‘s execution at Mzr then P2 also blocks the execution of

M2 for P, during one period of P,. Thus, we estimate that

30 milliseconds is the worst-case blocking time of P, due

to P2.

Let us consider the relation between P, and P3 in terms

of blocking time. P, can be blocked by P3 when P, calls

M,, or Mm of Oa during the execution of MS under P3(s re-

quest. Here, the worst-case blocking time of P, is 30 milli-

seconds because the execution time of 4’s MS is 30 mil-

liseconds.

To summarize this analysis of P,, the blocking time of

P, is 60 milliseconds - 30 milliseconds due to P2 and 30

milliseconds due to Pa. In this way, we can estimate other

blocking times. The execution of P2 can be disturbed by

P3 at iU= of 4. The worst-case blocking time of f2 is 30

milliseconds.

Table A summarizes the timing analysis. Using the table

we can analyze the schedulability of the task set under

rate monotonic scheduling by applying formula (1) from

the main text:

C(Timef) C(l) C(2) C(3)
-+-+-+-+max
T(7her) T(l) T(2) T(3)

= 0.1 + 0.34 + 0.1 + 0.075 + max(0.24, 0.1)

= 0.655 > 3(2’” - 1) = 0.760

Thus, using this simple (pessimistic) test, we cannot

guarantee the schedulability of this task set under rate

monotonic scheduling.

Preemptive object. Suppose we replace object 0, de-

scribed above with another implementation that is pre-

emptive (as defined in Figure 3 of the main text). To ana-

fable A. Timing information for Figure B (in millieeco~de)

Execution C/T Blocking BIT

(Cl (4

10 1 0.100 0 0

250 85 0.340 60 0.24

300 30 0.100 30 0.10

400 30 0.075 0 0

Table B. Timing information for Figure B with preem&e

object (in miilisecqtde)

Process Period Deadline Execution C/T Blocking B/T

(T) (0) (6)

Timer 10 10 1 0.100 0 0

1 250 250 85 0.340 39 0.156

2 300 300 30 0.100 9 0.030

3 400 400 30 0.075 0 0

lyze the schedulability of a task set with this object, we mod-

ify the implementation of object OS without changing the ei-

ecution time. The execution times of all tasks are the same

as in the previous example.

Now we estimate the blocking time of P, and P> P,‘s

blocking time due to P2 does not change, because P, calls

M2 of 4, which calls 0,. So the blocking time of P, by P2 is

still 30 milliseconds. The blocking time of P, due to P3, how-

ever, changes to 9 millis.econds because the method MS

blocks only for the duration of the critical region shared in

0,. Thus, the blocking time of P, is39 milliseconds - 30

milliseconds for f2 and 9 milliseconds for Pp f2’s blocking

time is also reestimated as 9 milliseconds.,

Table 6 shows the results of this analysis. Using the table

we can analyze the schedulability of the task set under rate

monotonic scheduling as follows:

C(Tkrter) C(l) C(2) C(3)
-+-+-+-+max
T(Timer) T(1) T(2) T(3)

= 0.1 + 0.34 + 0.1 + 0.075 + max(0.156, 0.03)

= 0.771 < 3(21R - 1) = 0.780

The result shdws that the task set is guaranteed schedu-

labie.

October 1992 71

1 active class 03 {
2 mivate:
3 - /I private data definition

7 int m33(flbat r) b4xmd(Ot3Om);
8 activity:
9 slave[2] m3l(char*, int), m32(char*, int);
10 slave mS(fl0at f);

11 I;

Figure 4. A real-time object in RTC++.

1 When a new message for those methods
arrives and the sender’s priority is high-

er than the current thread’s priority, the

thread’s priority is changed to the high-

er priority, and the message is enqueued

at the head of the priority queue.

Figure 5 shows an example of a peri-

odic task in RTC++. The master thread

in line 6 is declared to specify the peri-

odic task within an active object. The

syntax of the cycle clause is as follows:

cycle(<start-time>; <end-time>;

<period>; <deadline>);

In Figure 5, <start-time> and <end-

time> are unspecified, so those con-

I ! straints are free, and Ot200 indicates a

I
r:-,. A .._^ *:,... -F?rm

1 ar -:lliseconds. There-

c) milliseconds and
;tive class Pl (

L private:
3 I! private date definition
4 void main();
5 activity:
6 master main0 cycle{@ 0; Ot200; Ot2QO);
7 1.

Lllllt; UUI au”,, “I L”” 1111
fore, the period is 200

the deadline coincides with the period.

Timing specification. Two types of
timing information must be specified in

RTC+t: execution time and deadline

time. RTC+t allows us to specify this
I

Figure 5. A periodic task in RTC++.
’ timing information by using the Bound

and Within constructs. The Bound con-

struct asserts the worst-case execution

time, while the Within construct asserts

the deadline time.

M,, and M,,, while thread Th, is in charge

of performing the method M,,. Suppose

there is one critical region inside the

object. During the execution of method

M,,, it accesses the critical region for 10

milliseconds. The time of the critical

region accessed by M,z is 10 millisec-
onds while the time of the region ac-

cessed by M,, is 9 milliseconds. All exe-
cution times of methods in 0, are the

same as they were in the nonpreemp-
tive case.

The sidebar on the previous two-page

spread analyzes the schedulability of a

nonpreemptive active object and com-

pares it to a preemptive active object.

The results show that a system built

using preemptive active objects provides

better schedulability.

RTC++

A slave thread is an execution unit

related to a method or a group of meth-

ods. Line 10 of Figure 4 declares that

one slave thread is dedicated to han-

dling the M ,? requests. Line 9 specifies

that two threads are responsible for
executing methods M,, and M,?. That is,

at most two requests of either M,, or Mj2

can be interleaved. These threads are

called a slube thread group.

RTC++” is an extension to C++. Its We employ the priority inheritance

design is based on the real-time object protocol in object invocation. That is, a

model. In addition to C++ objects, slave thread inherits the priority from

RTC++ provides active objects. If an the sender. If there is a queue of waiting
active object is defined with timing con- messages, the messages are ordered ac-
straints, it is called a real-time object. cording to priority, and the priority of

Figure 4 shows the declaration of the the slave thread is set to the highest

active object 0,. An active object decla- priority of the invocations in the queue.

ration is almost the same as the original

C++ object declaration, except for the

addition of the keyword Active before

the keyword Class and the addition of a

part for Activity.

Activity part. An active object has a

single thread by default. A user can

specify multiple threads, which we call

member threads in the active object.

Member threads are declared in the

activity pan. of the class declaration.

There are two types: slave and master.

As shown in Figure 4, all methods are

declared with the worst-case execution

time constraint. For example, the CPU

usage in the execution of method M,,

must be completed within 30 millisec-

onds. Line 6 shows that method M,, has

a worst-case execution time of 20 milli-

seconds and that if this constraint is

violated at runtime, the exception han-

dler, m32_abort, is called.

Communication. RTC++ supports

synchronous communication. The syn-

tax of communication among active

objects is the same as C++ syntax. For

example:

3 n = v->m31 (buf, size);

4 Il..

RTC++ provides two means of send-

ing a reply message: return and reply

statements. In a return statement, a re-

ply message is sent to the sender and the

execution of the method is finished. In a

reply statement, a reply message is sent

and the subsequent statements are exe-

cuted instead of finishing the execution

of a method.

72 COMPUTER

I
n addition to the features de-

scribed in this article, RTC++ pro-

vides sophisticated facilities for

programming applications: statement-

level timing constraints, guard expres-

sions, critical regions with timing con-

straints, and exception handling.

Moreover, RTC+tprovides facilities for

programming distributed applications.

We think the constructs we proposed

can be adapted to many other object-

oriented languages besides C++. We

have compared RTC++ with other real-
time programming languages in a previ-

ous paper,9 and the Ada 9X proposal2

describes the impact of these issues on

Ada.

RTC++ is currently running under

the ARTS KernellO on Motorola

MC68030-based machines such as Sun3,

Force Board, and Sony News. The

RTC++ compiler generates C++ source

programs and uses additional runtime

support routines. w

References

1. L. Sha, R. Rajkumar, and J.P. Lehoczky,
“Priority Inheritance Protocols: An Ap-
proach to Real-Time Synchronization,”
IEEE Trans. Computers, Vol. 39, No. 9,
Sept. 1990, pp. 1,1751,185.

2. T. Baker and 0. Pazy, “Real-Time Fea-
tures for Ada 9X,” P&c. 12th IEEE Real-
Time Svstems Svmn.. IEEE CS Press.
Los Alamitos, Calif.; Order No. 2450,
1991, pp. 172-180.

3. T.P. Baker and A. Shaw, “The Cyclic
Executive Model and Ada,” Proc. Ninth
IEEE Real-Time Systems Symp., IEEE
CS Press, Los Alamitos, Calif., Order
No. 894 (microfiche only), 1988, pp. 120-
129.

4. C.L. Liu and J.W. Layland, “Scheduling
Algorithms for Multiprogramming in a
Hard Real Time Environment,“J. ACM.
Vol. 20, No. 1, 1973. pp. 46-61.

5. L. Shaand J.B. Goodenough, “Real-Time
Scheduling Theory and Ada,” Compur-
er, Vol. 23, No. 4, Apr. 1990. pp. 53-62.

6. Object-Oriented Concurrent Program-
ming, A. Yonezawa and M. Tokoro, eds..
MIT Press, Cambridge. Mass.. 1987.

7. H. Tokuda and T. Nakajima, “Evalua-
tion of Real-Time Synchronization in
Real-Time Mach,” Proc. Second Mach
Symp.. Usenix. Berkeley, Calif.. 1991.
pp. 213-221.

C.W.MercerandH.Tokuda,“TheARTS
Real-Time Object Model,” Proc. Zlth
IEEE Real-Time Systems Symp., IEEE
CS Press, Los Alamitos, Calif., Order
No. 2112, 1990, pp. 2-10.

Y. Ishikawa, H. Tokuda, and C.W. Mer-
cer, “Object-Oriented Real-Time Lan-
guage Design: Constructs for Timing
Constraints,” Proc. Object-Oriented Pro-
gramming Systems, Languages, and Ap-
plications, ACM Press, New York, 1990,
pp. 289-298.

H. Tokuda and C.W. Mercer, “ARTS: A
Distributed Real-Time Kernel,” Operat-
ing Systems Rev.. Vol. 23. No. 3, July
1989, pp. 29-53.

Yutaka Ishikawa is a senior researcher at
Electrotechnical Laboratory, MITI. Japan.
His research interests include real-time sys-
tems, distributed/parallel systems, and ob-
ject-oriented programming languages.

Ishikawa received the BS, MS, and PhD
degrees in electrical engineering from Keio
Universitv. He is a member of the IEEE
Computer Society, ACM, and Japan Society
for Software Science and Technology.

Hideyuki Tokuda is a senior research com-
puter scientist in the School of Computer
Science at Carnegie Mellon University and
an associate professor of environmental in-
formation at Keio University. His research
interests include distributed real-time sys-
tems, multimedia systems, communciation
protocols, and massively parallel distributed
systems.

Tokuda received BS and MS degrees in
engineering from Keio University and a PhD
degree in computer science from the Univer-
sity of Waterloo. He is a member of the
IEEE, ACM. Information Processing Soci-
cty of Japan. and Japan Society for Software
Science and Technology.

Clifford W. Mercer is a PhD candidate in the
School of Computer Science at Carnegie Mel-
lon University. His research interests are in
operating systems support for audio and vid-
eo applications and distributed real-time sys-

tems.
Mercer graduated with university honors

from Carnegie Mellon University with a BS
in applied mathematics and computer
science in 1988. He is a member of Sigma Xi
and a student member of IEEE and ACM.

Readers can contact Hideyuki Tokuda at
Carnegie Mellow University, School of Com-
puter Science, 5000 Forbes Avenue, Pitts-
burgh, PA 15213; e-mail hxt@cs.cmu.edu.

October 19’32

