

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Aug 24, 2022

An object-oriented scripting interface to a legacy electronic structure code

Bahn, Sune Rastad; Jacobsen, Karsten Wedel

Published in:
Computing in Science & Engineering

Link to article, DOI:
10.1109/5992.998641

Publication date:
2002

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Bahn, S. R., & Jacobsen, K. W. (2002). An object-oriented scripting interface to a legacy electronic structure
code. Computing in Science & Engineering, 4(3), 56-66. https://doi.org/10.1109/5992.998641

https://doi.org/10.1109/5992.998641
https://orbit.dtu.dk/en/publications/3795118e-5488-411e-9c3f-1ce0241d574e
https://doi.org/10.1109/5992.998641

Object-oriented programming is wide-
spread in almost all computing fields,
but in computational physics and
chemistry its use has been quite

modest until recently. One reason for this lag is
the dominant focus on speed and a common dis-
regard for the user interface. Another reason is
that many of the production codes in computa-
tional physics and chemistry trace their histories
back to when OOP was immature. This situa-
tion is gradually changing as schemes for sepa-
rating the code into low-level, numerically de-
manding parts and high-level steering become
available.1

This article describes how we created an OO
interface to a mature density functional theory
(DFT) code. Other researchers have done this
in a similar context for a molecular dynamics
code in the SPaSM project,2 but our approach
differs because we don’t change the underlying
code. Instead, we create a Python framework
around the already implemented file-based in-
terface. A similar approach that shows how to

use encapsulation of legacy code in connection
with OO databases appears elsewhere.3 Both our
interface and its underlying code are available
free under the GPL license.

The Dacapo code

The Dacapo DFT code was developed at the
Center for Atomic-scale Materials Physics
(CAMP) to describe atomic system structure and
dynamics. On the basis of a quantum mechanical
description of the electronic motion, we can cal-
culate the energy and forces acting on a collection
of atoms and then use this information to deter-
mine equilibrium structures or rates of atom-
istic–molecular processes. The quantum mechan-
ical laws of nature that govern electronic behavior
are the same for all atomic systems. So, the code’s
applications cover a broad spectrum ranging from
calculation of reactivity and diffusion on metal sur-
faces to biomolecular chemical activity.4–6

Quantum mechanical calculations performed
in the DFT framework involve determining a set
of wave functions that describe the electronic
motion.7 These wave functions are solutions to
an eigenvalue equation that turns into a matrix
form by expanding the wave functions on plane
waves. Two factors make the problem compu-
tationally demanding: the matrices are usually

56 COMPUTING IN SCIENCE & ENGINEERING

AN OBJECT-ORIENTED SCRIPTING
INTERFACE TO A LEGACY
ELECTRONIC STRUCTURE CODE

The authors have created an object-oriented scripting interface to a mature density
functional theory code. The interface gives users a high-level, flexible handle on the code
without rewriting the underlying number-crunching code. The authors also discuss design
issues and the advantages of homogeneous interfaces.

SUNE R. BAHN AND KARSTEN W. JACOBSEN

Technical University of Denmark

1521-9615/02/$17.00 © 2002 IEEE

FEATUREP R O G R A M M I N G
L A N G U A G E S

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 17,2010 at 06:30:34 EDT from IEEE Xplore. Restrictions apply.

MAY/JUNE 2002 57

quite big (say, 10,000 × 10,000), and self-consis-
tency is involved. The matrix that appears in the
eigenvalue equation depends on the equation’s
solutions, but we need only the few solutions
with the lowest eigenvalues. An iterative algo-
rithm can help us obtain them.8

The Dacapo code originated in the 1980s and
was written in Fortran 77. Recent moderniza-
tion brings in Fortran 90 elements. CAMP re-
searchers have implemented several iteration
schemes along the way, and the code is still un-
der development with an emphasis on imple-
menting the most up-to-date algorithms.

Given the code’s complexity, it should come
as no surprise that the number of input parame-
ters describing a calculation is quite large. In ad-
dition to structural information (the unit cell’s
shape and size, the atoms’ positions and species),
all sorts of more technical parameters arise:
plane-wave cutoff, number of electronic bands,
exchange-correlation functional, k-point sam-
pling, minimization schemes, charge mixing, and
so on. Dacapo’s current version uses the
NetCDF file format for both input and output.
This means that to set up a new calculation, the
user must create a file with suitable parameters.
After the code is fed with this file, it will produce
another file containing the output data.

From input file to OO interface

The traditional input to a simulation code is a
file of parameters that control the simulation. In
the case of a text file format, this could resemble

340.000000 Cutoff energy (eV)

9 Number of Electronic bands

1 Number of atoms

...

In our case, we use the slightly more advanced
NetCDF format because it gives us random ac-
cess combined with a compact and machine-in-
dependent binary format.

Supplying a file interface with some sort of
graphical interface to create those files has become
customary. This interface helps users by present-
ing only the allowed choices of input and respond-
ing to user input to avoid input inconsistencies.

This setup lacks flexibility. Although perform-
ing a single calculation is easy, a longer chain of
interdependent simulations quickly becomes
time-consuming. Because the latter is what we
usually need in a research project, we need to con-
trol the code in a more advanced way. A typical

situation encountered when using the code is the
need to test its convergence by performing many
series of calculations with varying energy cutoffs,
unit cell sizes, and numbers of k-points. Another
scenario could be to find the bulk modulus of a
material by varying the unit cell’s volume.

One of the present work’s goals was to provide
a high-level interface for running simulation se-
ries. By high level, we mean that the interface
should offer simple constructs for common tasks.
The interface should also be flexible enough to
make uncommon tasks only slightly more de-
manding. Furthermore, we want an easily ex-
tendable structure so that new tasks can become
an integrated part of the interface.

Command shell scripts facilitate more ad-
vanced control. By automating the creation of
the parameter files, these scripts can carry out a
series of simulations with no human interven-
tion. This process involves four steps:

1. Create an input file
2. Run a simulation
3. Analyze the output
4. Choose whether to repeat from Step 1

Although an ordinary command shell is suit-
able for creating files and analyzing simple text,
it is inconvenient for analyzing more advanced
data. To address this problem, some simulation
codes provide their own custom command line
interpreter, which allows for the most common
type of analysis and plotting.

Useful URLs
Center for Atomic-Scale Materials Physics
Gnuplot for Python

http://gnuplot-py.sourceforge.net
www.fysik.dtu.dk

NetCDF file format
www.unidata.ucar.edu/packages/netcdf

Numerical extensions to Python
Python graphical widget sets

http://wxpython.org
www.python.org/topics/tkinter
www.thekompany.com/projects/pykde
www.pfdubois.com/numpy

Python programming language
www.python.org

Simplified Wrapper and Interface Generator
www.swig.org

Visualization Toolkit
http://public.kitware.com/VTK

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 17,2010 at 06:30:34 EDT from IEEE Xplore. Restrictions apply.

58 COMPUTING IN SCIENCE & ENGINEERING

We want the functionality of such an interface
without writing yet another command line inter-
face. Fortunately, general-purpose scripting lan-
guages are available that can provide us with a
CLI and let us write extensions to meet our
needs, such as advanced on-the-fly analysis. By
choosing Python, we can further profit from the
language’s heavy object orientation to easily cre-
ate an OO interface. In addition to flexibility, the
language’s object orientation lets us access all the
advantages of encapsulation, code reuse, and so
other elements found in traditional OOP. This
makes extensions easy to write and integrate.

For the interface to be flexible and easy to use
and extend, we therefore need only to create a
set of modules that make doing the most com-
mon tasks easier. We obtain a smooth transition
by writing Python modules, gradually building
up an interface between the original code and
the user to the point where essentially all func-
tionality is accessible through the interface. In
addition to providing a simple interface for do-
ing common tasks, this encapsulation of the
original code also gives us freedom to later move
from an input-file-based scheme to a more
seamless integration. One example of such a
tight integration is the SPaSM code at Los
Alamos,2 where researchers have used SWIG to
wrap C-code so that it’s directly callable from
Python.

The modules

Figure 1 shows the classes used in a typical sim-
ulation. As we mentioned earlier, using Dacapo
means setting up a sometimes very large set of
calculational parameters. The interface takes care
of this by providing a Simulation class, which
acts as a container for any set of parameters. The
parameters are added as simple Python attributes
and are totally independent of each other in that
they have no direct knowledge of the existence
or value of the simulation object’s other attrib-
utes. When the simulation class is asked to per-
form a calculation, it creates a NetCDF file and
asks each of its attributes to write its parameters
to the file. This file is unique to the calculation,
so several simulations can execute simultaneously
on the same computer. The NetCDF format al-
lows independent writing of entries, so it fits well
with our approach. This distributed way of cre-
ating the input file is an example of weak cou-
pling between objects. The advantage is that we
can add any kind of new object as long as it has
proper methods for writing itself. Problems oc-

cur if two objects must write the same parame-
ter. In this case, it is not clear what the user in-
tends, so the policy is to inform the user of the
conflict and abort the calculation.

The most important example of an object
that goes into the Simulation container is
ListOfAtoms. The ListOfAtoms class contains
the calculation’s structural information and is
hence the class that is most directly manipulated
by the user. Most other classes in the interface
are associated with this class, so proper design is
important.

To give an impression of the scripting involved
in setting up a simulation, let’s look at a script
that sets up a simple total energy calculation for
bulk magnesium using the Dacapo code:

from Simulations.Dacapo import *

mysim=Simulation()

mysim.bands=ElectronicBands(9)

mysim.config=ListOfAtoms(

atoms=[Atom(Mg_GGA,Vector

([0,0,0]))],

unitcell=BravaisLattice

([[-1.425, 1.425, 1.425],

[1.425,-1.425, 1.425],

[1.425, 1.425,-1.425]]))

mysim.plancut=PlaneWaveCutoff(340)

mysim.Execute()

The script resembles a regular input file, but a
special program does not parse it—rather, it is
fed into the Python interpreter. The first line
tells the interpreter to load the custom-built
modules we created. The next step is to create a
Simulation container for the parameters we
want to set (parameters are added in the form of
ordinary Python attributes). The following lines
illustrate this, where we set the number of elec-
tronic bands, define the structure we want to
calculate, and set the cutoff to be used. The
attribute names (config, bands, plancut) are ar-
bitrary—only the object they refer to (such as
ListOfAtoms) is important. We start the calcu-
lation by calling the simulation class’s Execute
method. Although it looks like a simple input file
and certainly is not much harder to create, it’s
actually a small Python program that gives the
user Python’s full power. For instance, to test
convergence with respect to plane-wave cutoff,
we just change the last two lines to

for cutoff in [250,300,350,400]:

mysim.plancut=PlaneWaveCutoff

(cutoff)

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 17,2010 at 06:30:34 EDT from IEEE Xplore. Restrictions apply.

MAY/JUNE 2002 59

mysim.Execute()

print mysim.config.GetTotalEnergy()

The script now calculates and prints the total en-
ergy using four different values of the cutoff:
250, 300, 350, and 400. Extensions to this exam-
ple are obvious and show how flexible a script-
ing interface is. There are, of course, drawbacks:
Some new users might feel intimidated by hav-
ing to write scripts instead of using a GUI. We
can remedy this by providing a graphical inter-
face for scripting. Python has an excellent track
record when it comes to creating GUIs. Its OO
nature and the many available widget sets make
GUI creation a rather pleasant experience. We
can create graphical representations of the ob-
jects in our interface and make the user interact
with the objects through graphical widgets. In
this way, the user sees the GUI not as a separate
layer but as an integrated part of the interface.

Choosing objects and interfaces

An important part of the interface development
was to identify which parts of the problem con-
stitute objects and where to put interfaces be-
tween them. Our line of thinking was not to build
a complex algorithm from atomic logical state-

ments, but rather to break down the problem into
smaller parts that we could solve independently.

Our guiding light in this segmentation was not
computational details (the problem’s syntax) but
the structure of the physical theory (the problem’s
semantics). Our starting point was therefore to
identify the physical entities that constitute the
problem. For a density functional calculation, the
problem’s natural constituents are the atoms, wave
functions, k-points, and so forth.

Having decided which objects constituted the
problem’s main constituents, the next step was
to decide which interfaces these objects should
have. For instance, we had to decide what makes
an object worthy of the label atom object. Natural
requirements could include methods for access-
ing the atom’s position, momentum, and so on.
Deciding which methods to require eventually
set our idea of what an atom is. This process was
a cardinal point in the project, and the decisions
made influenced the further development sub-
stantially. We were aware that a too-narrow
specification would make the framework less
adaptable to other problems; a too-broad speci-
fication would give too much freedom to the im-
plementations, eventually leading to inconsis-
tencies. Unfortunately, any misjudgments made
in this process will only reveal themselves as the

GetExecutable

JobType

Atom

ReadFromNetCDFFile
WriteToNetCDFFile
Get/SetCartesianPosition

PlaneWaveCutoff

ReadFromNetCDFFile
WriteToNetCDFFile

ElectronicBands

ReadFromNetCDFFile
WriteToNetCDFFile

Dacapo

ListOfAtoms(UserList)

ReadFromNetCDFFile
WriteToNetCDFFile

Get/SetTotalPotentialEnergy
Get/SetUnitCell
Get/SetCoordinateBasis
GetRepeatedListOfAtoms
GetPlot
GetVTKAvatar

Get/SetTypes
Get/SetCartesianPositions
Get/SetScaledPositions
Get/SetCartesianMomenta
Get/SetCartesianVelocities
Get/SetCartesianForces

...

Get/SetSpace
Get/SetCoordinates
Get/SetCartesianCoordinates

Vector

Get/SetBasis

BravaisLattice(VectorSpaceWithBasis)

AtomType

Get/SetProperty
HasProperty
GetProperties

Geometry
SetMagneticMoments

Get/SetForces
Get/SetVelocity
Get/SetMomenta
Get/SetPositions

UpdateFromNetCDFFile
WriteAsNetCDFFile
Execute
Get/SetJobType

Simulation

ReadFromNetCDFFile
WriteToNetCDFFile

Figure 1. A class diagram. Arrows indicate that a certain class has pointers to instances of the class it points to. A circle at
the end of an arrow indicates that a class can have references to more than one instance.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 17,2010 at 06:30:34 EDT from IEEE Xplore. Restrictions apply.

60 COMPUTING IN SCIENCE & ENGINEERING

code matures, but we can take some steps to
avoid the most obvious pitfalls.

What’s in a name?

The discussion of naming schemes might
seem trivial, but we found the choice of naming
to be the most important step in the design
phase. This is particularly true in an interpreted
language such as Python. In compiled languages,
naming is used only to ensure convenience for
the programmer, whereas in the present case, the
user directly refers to the names. Naming is
therefore not easily changed, because this would
break backward compatibility.

It seems obvious that an atom object should
have a GetPosition method to provide infor-
mation on the atom’s placement. However, an
atom can have its position specified in different
ways: Cartesian coordinates, polar coordinates,
scaled coordinates, or even more exotic specifi-
cation, such as the distance from a central mole-
cule. How do we make sure that the interface we
provide does not hinder important future im-
provements, yet is concrete enough for imme-
diate implementation?

Specifying the interface using abstractly de-
fined objects to avoid specifying a too-restricted
structure is tempting. A problem with this ap-
proach is that often we need a simple set of num-
bers to specify the position rather than some ab-
stractly defined position object. If every data
structure passed around is an object, we never
get concrete, simple, data type handles on the
objects and end up in a vicious “everything is an
object” circle.

The solution we propose is to provide several
interfaces, reserving the general names for the
general interface and creating descriptive names
for the more specific interfaces. Instead of just
having one interface, we construct several:

• GetPosition should return a position object
with suitable interfaces.

• GetCartesianPosition should return the
position in the Cartesian frame of reference.

• GetScaledPosition and GetCoordinate-
Basis should return a set of coordinates and a
basis in which these are given (relative to the
Cartesian basis).

We give the methods descriptive names that
uniquely specify what the interface provides.
Hence, specific methods tend to have long
names, describing in detail what to expect from

the method, and more general methods tend to
have shorter names that vaguely indicate their
use. In this way, we avoid giving a specific inter-
face a name that ought to be reserved for a more
general one.

At first, this naming scheme might seem a bit
clumsy, involving the typing of long method
names for basic instructions, but the payoff is
multifaceted. We have already seen how this
scheme makes it possible to both have our cake
(the possibility of future extensions) and eat it
(concrete, ready-to-implement interfaces). An-
other nice feature is that using long names cre-
ates more or less self-documented code. More-
over, consistency in naming makes it easier for
users to guess method names, and the descrip-
tive character hinders them from making incor-
rect assumptions about the methods.

Developing in Python

For Python, with its dynamic type checking of
objects, there really is no difference between
class inheritance and interface inheritance. Con-
sequently, we can claim that the only real class
hierarchy is the one a consistent naming scheme
provides.

The two forms of inheritance, direct class in-
heritance and inheritance by name, are indistin-
guishable from a user’s viewpoint, but they are
used somewhat differently in the code. General
types tend to be inherited from abstract classes
through simple class inheritance, whereas more
specific types are realized directly by imple-
menting the class’s proper methods. This differ-
ence between general and specific types is also
reflected in the order in which we implement the
interfaces. Specific interfaces are really not
meaningful without a concrete implementation,
but a general type need not have a concrete im-
plementation and can remain abstract until it is
actually used in a concrete setting. This lets us
postpone implementing large parts of the inter-
face until we actually need that functionality.

Another aspect of Python’s dynamic type
checking is that it invites prototyping and top-
down design. Although the strict class hierarchy
of C++ is useful in enforcing a certain design, the
Python approach is outstanding when it comes
to writing working code right away, avoiding the
danger of spending too much time in building a
complete foundation. Once we pass the design
phase, we can start writing code that uses the de-
fined interfaces even though they might be only
partially implemented. One typical situation in

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 17,2010 at 06:30:34 EDT from IEEE Xplore. Restrictions apply.

MAY/JUNE 2002 61

which this is an advantage is when we not only
know what would in theory be a good solution
to a given problem but also realize that fully im-
plementing this solution would be time-con-
suming. Instead of settling for a less satisfactory
but more readily implemented solution, we can
choose the ambitious solution and implement
only the specific part we need. We can even de-
fine new interfaces as the need arises, which fits
into the rest of the framework, provided we fol-
low the naming scheme. This is important in an
environment as dynamic as scientific research.
Any research project needs its own features, and
foreseeing all future needs and implementing
them from the beginning would be impossible. It
is therefore convenient to be able to postpone
implementing and defining the interface until
we actually use it.

An important part of our interface develop-
ment is the emphasis on creating modules that
different people can develop independently of
each other. To ensure this modularity, we keep
each class as weakly coupled to the rest of the
structure as possible. This means that all as-
sumptions in the code about objects should be
explicit by referring to a suitable specific
method. Imagine, for instance, a visualization
tool such as a 3D atom plotter. To make sure that
it will work with any kind of collection of atoms
(for example, ListOfAtoms), we must avoid
making implicit assumptions about the object,
such as in which coordinate system the positions
are given. We can avoid this by referring only to
well-specified interfaces such as GetCarte-
sianPositions, so that any object with the re-
quired methods will work equally well. This
means that taking full advantage of polymor-
phism is easier and making extension by adding
new classes and features is less painful.

Another advantage is the low barrier of entry
for new developers. The step from using the in-
terface to extending it should not be demanding.
One step toward achieving this is the modularity
discussed earlier, which ensures that new devel-
opers have to understand only the part of the in-
terface they want to extend. But even this task
can be demanding if the interface is somewhat
complex. A complex framework’s advantage is
that it makes getting a lot of functionality from
only writing a few lines of code possible. This
leaves us with a dilemma: on one hand, we would
like a simple interface that lets new developers
get a quick start, but on the other, we would like
developers with a more complete understanding
of the interface to get the full benefit of a com-

plex framework. Once again, using multiple in-
terfaces can solve our troubles. An inexperienced
developer can start by providing simple inter-
faces to the object. As his or her level of under-
standing increases, the developer can start work-
ing with the more general interfaces and use the
framework to its full advantage. In this connec-
tion, we can use the suggested naming scheme
as a pedagogical tool. The long names for the
specific interfaces remind the new developer of
the existence of the more general interface with
shorter names. So, the developer doesn’t stay too
long with the simple part of the interface when
the complex part would be a greater help.

Many of the problems and guidelines dis-
cussed so far are known from other areas of
OOP. During our development of the interface,
we found it useful to identify which design pat-
terns covered the various objects we needed to
implement.9 A design pattern is the part of a prob-
lem solution that is reusable across different
problems with common features. For instance,
we can describe the object adapter pattern (see
Figure 2) as a way to make objects with a foreign
interface—such as a third-party object—coop-
erate with the code by wrapping it with a new
interface. Later we use this to combine two sim-
ulation techniques. Usually one or more patterns
fit quite well to a given class, and acknowledg-
ing this can ease the discussion and communica-
tion of that class’s properties.

Multiple codes

When dealing with interface design, it helps
to have other back-end codes for comparison.
Ensuring that the classes and hierarchy make
sense as an interface for another slightly different
code assures a useful level of abstraction.

Two of our colleagues at CAMP built another
code that deals with the same area of physics, us-
ing the effective medium theory (EMT) instead
of the DFT to calculate energies.10 They con-
structed a Python interface for this code at the
same time as the present work; reconciling dif-
ferences between the two approaches was a great
source of inspiration.

The EMT code can handle millions of atoms
but with no electronic degrees of freedom; the
DFT code applies only to small systems but with
high precision and detail in the description.
Nevertheless, some systems overlap the two ap-
proaches and benefit from both.

Consider an EMT simulation that has found
the optimal structure for some collection of

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 17,2010 at 06:30:34 EDT from IEEE Xplore. Restrictions apply.

62 COMPUTING IN SCIENCE & ENGINEERING

atoms. To further improve the precision, we
would like to continue the calculation by using a
DFT energy calculator. In the ideal case, we can
simply extend the script needed for running the
EMT calculation with a few lines to complete it.
To achieve this goal, we need a convenient way
of using the configuration from the EMT calcu-
lation in the DFT code. If we carefully chose the
interfaces, this should be straightforward. After
all, both codes should agree on the meaning of
such methods as GetCartesianPosition and
GetChemicalElement. Because Python does no
type checking, we can use the class of a configu-
ration from one interface code in another set-
ting as long as the method names are the same.
So, if we assume that emtconfig is a list of atom
instances created by the EMT interface with the
methods needed to qualify as a ListOfAtoms,
we can simply use something such as this:
...

from Simulations.Dacapo import *

mysim=Simulation()

mysim.dftconfig=ListOfAtoms

(emtconfig)

mysim.bands=ElectronicBands(9)

mysim.plancut=PlaneWaveCutoff(340)

mysim.Execute()

...

These statements are similar to what we use
for setting up a regular DFT calculation, except
that the structure is derived from the foreign
emtconfig object. This direct use of one object
in another setting is a good example of polymor-
phism and is a most desired way of bridging be-
tween codes with otherwise different internal
data structures. This example also illustrates the
technique of recasting; we can view emtconfig as

the EMT version of a ListOfAtoms, and using
emtconfig as an argument to the class construc-
tor, we can create a DFT ListOfAtoms with the
extra methods needed for the Simulation ob-
ject to use it. Recasting is required if an object
does not have all the methods needed in a partic-
ular setting. A convenient way of recasting is, as
in the previous case, to have the class construc-
tor take a similar object as an argument and work
along the lines of the object adapter pattern (see
Figure 2).9

The interface right now: An example

Recent simulations11,12 and experiments13,14

show that in the process of breaking a piece of
gold, we can create wires consisting of a single row
of gold atoms (see Figure 3). These nanowires
possess interesting electrical and mechanical
properties. The conductance is, for example,
“quantized” and close to the value 2e2/h, where e
is the electron charge and h denotes Planck’s
constant.13

To study the breaking of such an atomically
thin wire, we can perform a series of calculations
in which we stretch a nanowire in small steps un-
til it eventually breaks. Figure 4 is a script for
performing such a calculation with a small unit
cell containing two gold atoms. The unit cell is
periodically repeated, so the calculation is really
for an infinite string of atoms.

Without explaining the script in detail, we see a
few interesting features. The script is made flexi-
ble by introducing the variable numberofatoms,
which we can change to perform calculations
with a different number of atoms in the unit
cell. We use the NetCDF.Entry class to control
simple parameters in the simulation. This class

Request

InterfaceSpecification

Request

AdapterObject

foreign_request

ForeignObject

Client

Figure 2. The object adapter pattern. The diagram shows how a ForeignObject can adapt to a new environment by letting
clients access it through an AdapterObject with an interface inherited from an abstract InterfaceSpecification. The
triangle indicates that the adapter inherits the interface from the class it points to. The arrows indicate that the
AdapterObject keeps a reference to the ForeignObject and is itself referred to by the client.9

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 17,2010 at 06:30:34 EDT from IEEE Xplore. Restrictions apply.

MAY/JUNE 2002 63

is a generic class for entries in a NetCDF file
and is the base class for the PlaneWaveCutoff
and the ElectronicBands classes. Introduc-
ing classes for such simple control parameters
by inheritance from the NetCDF.Entry class is
easy.

The Python interface includes many more
classes than Figure 1 shows. Many of them are
targeted toward visualizing the huge amount of
data that results from a simulation. We can easily
perform simple curve plotting by using a Python
interface to Gnuplot, and we can obtain more ad-
vanced data visualization through the Visualiza-
tion Toolkit’s (VTK) Python bindings. To illus-
trate these possibilities, let’s look at a script that
analyzes the previous simulation’s result (see Fig-
ure 5).

Figure 3. The
formation of a
chain of gold
atoms. The
structure is a
snapshot from
a molecular
dynamics
simulation
using the
EMT code.

Figure 4. A
script for
performing
a series of
calculations
in which a
gold
nanowire is
stretched in
small steps.

from Simulations.Dacapo import *

from RandomArray import random

numberofatoms=2

sim=Simulation()

setting up the entry describing how to generate k-points

sim.kpoints=NetCDF.Entry(“KpointSetup,”[1,1,16/numberofatoms])

sim.kpoints.gridtype=“MonkhorstPack”

setting up electronic bands

sim.bands = ElectronicBands(11*numberofatoms/2+10)

setting up the atomic configuration

ucell=BravaisLattice([[11,4,0],[4,11,0],[0,0,2.5*numberofatoms]])

basis=ucell.GetBasis()

sim.atoms=ListOfAtoms(unitcell=ucell)

for nr in range(numberofatoms):

sim.atoms.append(Atom(Au,Vector([0,0,nr*2.5])))

various other setup

sim.cutoffenergy=PlaneWaveCutoff(340.145000) # unit is eV

sim.dyn=NetCDF.Entry(“Dynamics”)

loop over unitcell size and shake atoms to break symmetry

for i in range(12):

ucell.SetBasis(basis+

[[0,0,0],[0,0,0],[0,0,i*.0625*numberofatoms]])

sim.atoms.SetCartesianPositions(

random((len(sim.atoms),3))*.1+

sim.atoms.GetCartesianPositions())

sim.Execute(“out%i.nc”% i)

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 17,2010 at 06:30:34 EDT from IEEE Xplore. Restrictions apply.

64 COMPUTING IN SCIENCE & ENGINEERING

The script illustrates how we use the interface
in connection with other modules to read the
data files (using the UpdateFromNetCDFFile
method) and plot the result. We monitor the
energy using Gnuplot and see one of the wave
functions close to the Fermi energy. The few
lines of code that generate the wave function vi-
sualization “hide” a rather elaborate setup of the
complex scalar field’s VTK plot. Both VTK and
Gnuplot are examples of the many useful third-
party tools with Python interfaces (see Figure
6).

From the plots, we get an idea of what hap-
pens electronically as the wire stretches and
breaks. For a small stretch, the atoms form a
zigzag structure, and the wave function close to
the Fermi level follows it. Further stretching
makes the wire straighter, and the energy in-

creases. At some point, the chain breaks owing
to a Peierls instability. We can see this in the en-
ergy curve as an inflexion point and in the wave
function as a dimerization. If we had plotted the
band structure, we would have seen a band gap
appear exactly at this point. This shows how the
visualization modules can help us analyze and
understand a system’s properties. We can use
these modules both in scripts as described ear-
lier and in interactive sessions where we can ro-
tate structures and zoom in on interesting parts.

The interface continues to grow because some
of the Dacapo DFT code’s functionality is mi-
grating to the Python interface. The Dacapo
code contains several different possibilities for
moving atoms around with the purpose of locat-
ing equilibrium structures, finding reaction
pathways, or studying time evolution. We found

from Simulations.Dacapo import *

from Simulations.Dacapo.ListOfEigenStates import ListOfEigenStates

from Visualization.Avatars.vtkListOfAtoms import vtkAtoms

import Gnuplot

sim=Simulation()

sim.atoms=ListOfAtoms()

energy=[]

for i in range(12):

sim.loe=ListOfEigenStates()

sim.UpdateFromNetCDFFile(“out%i.nc”% i)

monitor energy

energy.append([sim.atoms.GetUnitCell().GetBasis()[2,2],

sim.atoms.GetTotalPotentialEnergy()])

if i==0:

waveplot=sim.loe.GetEigenStates(bands=[11],

kpointnumbers=[0])[0].GetVTKAvatar(

contourvalues=[2.5])

waveplot.SetTranslation([-36,-36,0])

waveplot.SetPeriods([1,1,3])

atomplot=vtkAtoms(sim.atoms,parent=waveplot)

atomplot.SetPeriods([1,1,3])

else:

waveplot.Update(sim.loe.GetEigenStates(bands=[11],

kpointnumbers=[0])[0])

waveplot.Render()

waveplot.SaveAsBMP(“wave%i.bmp” % i)

p=Gnuplot.Gnuplot()

p.plot(Gnuplot.Data(energy,with="linesp"))

p.hardcopy("energy.eps")

Figure 5. A
script to
plot wave
functions and
energies from
the simulation
scripted in
Figure 4.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 17,2010 at 06:30:34 EDT from IEEE Xplore. Restrictions apply.

MAY/JUNE 2002 65

it easier to develop new atom movers in Python
and to control atomic motion in the Dacapo
code externally. This helped us avoid tedious re-
compilation of the Dacapo code and let us use
Python’s flexibility to do rapid prototyping of
new experimental algorithms. If we use the
Numeric package with its Python bindings for
numerically efficient array operations, we can
make the Python atom movers so efficient that
they become attractive even when handling
millions of atoms. This is not important for the
Dacapo interface, but it gives us the possibility
to use the same atom movers to control our clas-
sical molecular dynamics code based on the
EMT potentials. The Numeric package is also
crucial for handling the large amounts of data

necessary to describe electronic wave functions
or densities.

Hopefully, some of the general con-
siderations we’ve presented will
help others constructing similar
interfaces for their codes. In sev-

eral fields, integrating different methods and
codes is becoming a key issue. In materials sci-
ence, many important problems naturally in-
volve phenomena ranging from the nanometer
scale to micrometers or longer. Several re-
search groups are working on the integration
of electronic, atomistic, and finite-element de-
scriptions aimed at solving such multiscale ma-

Figure 6.
Wave function
and energy
plot when
stretching a
chain of
atoms. The
plot was
generated by
the script by
using VTK
and Gnuplot
modules. We
created the
wave-function
plot by taking
a suitable
isosurface of
the absolute
square of the
wave function
and coloring it
using the
complex
phase.

–2781.0

–2780.8

–2780.6

–2780.4

–2780.2

–2780.0

–2779.8

4.8 5 5.2 5.4 5.6 5.8 6.0 6.2 6.4

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 17,2010 at 06:30:34 EDT from IEEE Xplore. Restrictions apply.

66 COMPUTING IN SCIENCE & ENGINEERING

terials problems.15–17 In molecular biochem-
istry, this integration of different methods and
codes is also an important topic. For example,
quantum mechanical approaches combined
with more approximate force-field-based mol-
ecular modeling techniques can help explain
the function of enzymes.18,19

The development of multiscale–multimethod
approaches should benefit as much as possible from
already existing mature codes. The Python script-
ing interface to our DFT code has certainly made
the code more accessible to integration with other
codes, especially if they carry similar interfaces.
The interface between two codes is easiest if the
separate Python interfaces agree on common
method names, as is the case with our DFT and
EMT codes. However, even without a complete
match, it is our experience that communicating in-
formation between codes using Python is rather
straightforward. OO seems to us a passable way of
constructing larger complexes of interacting codes.

Our interface is still under development, and
we aim to keep it that way as long as there are
users for it. Anyone who is interested in using or
even contributing to the interface can download
the software from the CAMPOS Web page,
www.fysik.dtu.dk/CAMPOS, which also has fur-
ther information and help.

Acknowledgments
Many thanks to Asbjørn Christensen, Bjørk Hammer, Lars
B. Hansen, Jens Jorgen Mortensen, Chris Myers, Ole H.
Nielsen, Jakob Schiøtz, and James P. Sethna for their
invaluable guidance and helpful discussions. The Danish
National Research Foundation sponsors CAMP.

References
1. P. Dubois, “Making Applications Programmable,” Computers in

Physics, vol. 8, no. 1, 1994, pp. 70–73.

2. D.M. Beazley and P.S. Lomdahl, “Controlling the Data Glut in
Large-Scale Molecular Dynamics Simulations,” Computers in
Physics, vol. 11, no. 3, 1997, pp. 230–238.

3. D. Maier and J.B. Cushing, “Treating Programs as Object: The
Computational Proxy Experience,” Deductive and Object-Oriented
Databases, Springer-Verlag, Berlin, 1993, pp. 1–12.

4. B. Hammer and J.K. Nørskov, “Why Gold Is the Noblest of all the
Metals,” Nature, vol. 376, no. 6537, 1995, pp. 238–240.

5. S. Horch et al., “Enhancement of Surface Self-Diffusion of Plat-
inum Atoms by Adsorbed Hydrogen,” Nature, vol. 398, no.
6723, 1999, pp. 134–136.

6. T.H. Rod and J.K. Nørskov, “Modeling the Nitrogenase FeMo
Cofactor,” J. Am. Chemical Soc., vol. 122, no. 51, 2000, pp.
12751–12763.

7. P. Hohenberg and W. Kohn, “Inhomogeneous Electron Gas,”
Physical Rev., vol. 136, no. 38, Nov. 1964, pp. B864–B871.

8. C. Bendtsen, O.H. Nielsen, and L.B. Hansen, “Solving Large Non-
linear Generalized Eigenvalue Problems from Density Functional

Theory Calculations in Parallel,” Applied Numerical Mathematics,
vol. 37, nos. 1–2, 2001, p. 189.

9. R. Johnson et al., Design Patterns: Elements of Reusable Object-Ori-
ented Software, Addison Wesley Longman, Reading, Mass., 1995.

10. K.W. Jacobsen, J.K. Nørskov, and M.J. Puska, “Interatomic Inter-
actions in the Effective-Medium Theory,” Physical Rev. B, vol. 35,
no. 14, May 1987, pp. 7423–7442.

11. M.R. Sørensen, M. Brandbyge, and K.W. Jacobsen, “Mechanical De-
formation of Atomic-Scale Metallic Contacts: Structure and Mecha-
nisms,” Physical Rev. B, vol. 57, no. 6, Feb. 1998, pp. 3283–3294.

12. G. Rubio-Bollinger et al., “Mechanical Properties and Formation
Mechanisms of a Wire of Single Gold Atoms,” Physical Rev. Let-
ters, vol. 87, no. 2, July 2001, pp. 26101–26104.

13. A.I. Yanson et al., “Formation and Manipulation of a Metallic Wire
of Single Gold Atoms,” Nature, vol. 395, no. 6704, 1998, p. 783.

14. H. Ohnishi, Y. Kondo, and K. Takayanagi, “Quantized Conduc-
tance through Individual Rows of Suspended Gold Atoms,” Na-
ture, vol. 395, no. 6704, 1998, pp. 780–783.

15. A. Nakano et al., “Multiscale Simulation of Nanosystems,” Com-
puting in Science & Eng., vol. 3, no. 4, July/Aug. 2001, pp. 56–66.

16. G.S. Smith, E.B. Tadmor, and E. Kaxiras, “Multiscale Simulation
of Loading and Electrical Resistance in Silicon Nanoindentation,”
Physical Rev. Letters, vol. 84, no. 6, Feb. 2000, pp. 1260–1263.

17. C.R. Myers et al., “Digital Material: A Framework for Multiscale
Modeling of Defects in Solids,” Material Research Soc. Symp. Proc.,
Materials Research Soc., Boston, 1999, pp. 509–538.

18. P. Amara and M.J. Field, “Hybrid Methods for Large Molecular
Systems,” Computational Molecular Biology, Elsevier Science,
Netherlands, 1999.

19. K. Hinsen, “The Molecular Modeling Toolkit: A New Approach
to Molecular Simulations,” J. Computational Chemistry, vol. 21,
no. 2, 2000, pp. 79–85.

Sune R. Bahn received a PhD in physics from the Tech-
nical University of Denmark in Copenhagen, Denmark.
His research interests include the properties of metallic
nanowires using quantum mechanical methods and
electronic structure codes. Contact him at CAMP, Dept.
of Physics, DTU, Bldg. 307, DK-2800 Kongens Lyngby,
Denmark; bahn@fysik.dtu.dk.

Karsten W. Jacobsen is a professor of condensed matter
physics in the Center for Atomic-Scale Materials Physics at
the Technical University of Denmark in Copenhagen. His
research interests include the theoretical description of
mechanical, electrical, and chemical properties of nanos-
tructures and nanostructured materials. He received a
PhD in physics from the University of Copenhagen. Con-
tact him at CAMP, Dept. of Physics, DTU, Bldg. 307, DK-
2800 Kongens Lyngby, Denmark; kwj@fysik.dtu.dk.

For more information on this or any other computing
topic, please visit our Digital Library at http://computer.
org/publications/dlib.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 17,2010 at 06:30:34 EDT from IEEE Xplore. Restrictions apply.

