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Abstract 

This paper describes a simulator for the proposed Apiary, an 
object-oriented, message passing parallel machine for artificial 
intelligence applications, using the QCKV model of computation. 
The simulator implements an interpreter for the lowest level 
“virtual machine language” of the Apiary, specifying 
computations in terms of creating objects and sending messages 
rather than loading and storing registers. The simulator is itself 
programmed in the object-oriented style advocated by the actor 
philosophy, allowing experimentation with alternative 
implementation mechanisms without disturbing the behavior of 
the simulation. Technical details in the paper assume some 
familiarity with object-oriented programming and the actor 
formalism. 

Paper category: Support Software and Hardware 

1. Should a parallel machine for AI be like a parallel 
machine for nhvsics? 

What does it mean to build a machine optimized for artificial 
intelligence? Let’s look at the process of building specialized 
machines in other domains. Mathematics and physics, like AI, 
are areas which have important problems where solutions are 
limited by constraints on computing power. In these areas, an 
accepted methodoiogy for optimizing machines involves 
identifying the inner loop of some intcrcsting problem, a small 
piece of code that takes a large percentage of computing 
resources. Then. this inner loop is impleln~nted at as low a level 
as is feasible. preferably in microcode or directly in hardware. If 
what’s t&ins the time in your problem is doing FFT’s, build an 
F‘F7‘ machine. Can Al use this approach? 

Probably not. We conjcc,ture that AI doesn’t have a simple 
“inner loop”, that an Al machine will have to be a f%t “general 
purpose” problem solver. just ::s p:of.lc :~i’c. ‘I lrc tlil‘fcrcnce is 
that in physics problems the pa~~crns 01‘ LoIllpul:llion tend to be 
st,ltic and yredrcrtrhie. where:i< in Al the patterns of computation 
arc likely to be dynamic and thcrcfbre un~~l-t~~rlicl~zDI. An AI 
program attempting to solve a problem may have no idea which 
one of a number of heuristics will be useful before it starts to 
work on the problem. It may even have to learn or invent new 
solution methods as it goes along. Some specialized algorithms 

will undoubtedly be useful. such as pattern matching, set 
intersection and searching, but probably no one algorithm will be 
so dominant as to warrant tuning an Ai machine to just that 
algorithm. 

So what can you do to optimize a machine for unpredictable 
computations? First, you optimize the machine to take 
advantage of large amounts of parallelism. It will soon be more 
important to take advantage of the potential parallelism in a 
computation than to minimize the number of machine cycles 
used by a computation. 

It is important to optimize for flexibility, avoiding any sort of 
centralized control which might become a bottleneck. A 
consequence is that all resources in the machine should be 
allocated dynamically, including both memory and processor 
resources. Work should be distributed among parts of the 
machine as evenly as possible, to take maximum advantage of 
parallelism. Rather than dedicating special purpose hardware to 
particular algorithms, it is preferable to have many general 
purpose processors able to run parts of algorithms as the need 
arises. Computations should be able to move from processor to 
processor, even while they are running. Stored objects should be 
able to move from the memory of one processor to the memory 
of another processor without affecting programs that use the 
objects. 

The programmer should be able to program the machine 
pretending that an “infinite” number of processors are available, 
just as garbage collection and virtual memory let the programmer 
pretend an “infinite” number of memory cells arc available. The 
system should time-share available physical processors, just as 
virtual memory systems time-share the use of physical memory. 
Simple allocation strategies with good average behavior [like the 
least-rcccntly-used paging algorithm] should bc used to manage 
resource allocation. 

These are the design principles that serve as our criteria for a 
parallel machine for Al. The actor InCJdd of compu&tion, 
dc::cr-ibcd in [I]. 1.11. [,lJ. 151 1 7rovrdcs ;I 17~~s for dtGgning a 
machine which will meet thcsc criteria. 
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2. A simulator hcli)s us gain c\pcricnce nith uncon\cntional 
m!linc architectures 

The basic von Neumann machine architecture has been around 
for over thirty years. A tremendous amount of experience in 
hardware design, systems programming. debugging, and 
programming style has been built up over the years. Some of 
this experience will carry over to the new generation of parallel 
machines. but some of it will not. The construction of a 
simulator has gained us considerable experience in discovering 
how a parallel object-oriented machine will differ from the 
machines of today. 

The fundamental components of a von Neumann machine are 
registers, the basic data structures bit strings, and the basic 
actions load and store of registers. An Apiary will be built of 
actors as the fundamental units, with message passing as the sole 
action and means of communication between actors. 
Accordingly, we have outfitted the simulator with an object- 
oriented instruction set, where instructions specify the creation of 
actors and sending of messages. We have arranged that even 
primitive operations like addition of numbers will obey the 
message passing protocol, so that new implementations of system 
data types can always be added to an existing system. 

The introduction of parallelism requires conceptual changes and 
provides challenges to our implementation. We have 
implemented mechanisms for migration of actors and load 
balancing. We have begun to explore the special problems of 
debugging programs in a parallel environment, an area long 
neglected. Details on these issues will follow later in the paper. 

3. The simulator itself is an exneriment in object-oriented 
programming 

If we believe that object oriented programming is a good 
general-purpose programming methodology, then it should be 
good for putting together a simulator for an object-oriented 
machine! WC arc fortunate, indeed, that the Lisp Machine, on 
which the simulator is implemented. has many features which 
support a kind of object-oricntcd programming style; it extends 
conventional Lisp by adding a new Juror data type. Regrettably, 
WC cannot use the flavor SEND operation to model mt\~age 
passing between actors. Primitive Lisp functions like t do not 
operate on flavors. and the flavor implementation relies on Lisp 
stacks, making it unusable in the presence of parallelism. 

There is, of course. a performance penalty in using objects down 
to a very low level in our machine, but the advantages are 
numerous, Foremost among them is the ability to experiment 
with implementation alternatives. As an example, transmission 
of actors across physical machines is done by sending messages to 
objects representing the connections between the machines to 
TRANSMIT and RECEIVE actors. We have two completely 
different implementations of this: one uses the Chaosnet, a 
packet-switched local network, the other a dedicated hardware 
bus coupler. Switching between alternatives does not affect any 
other code in the simulator. 

The object-oriented philosophy also facilitates instrumentation 
of the simulator. Any object can be replaced by a new version 
with the same message passing behavior, but which also records 
activities for later display or analysis. without affecting the 
simulator’s operation. The simulator can record the number of 
events. number of actors created, average size of actors, and 
other information for metering performance. 

4. Parallel processing is simulated on a serial machine 

The Apiary simulator runs on one or more Lisp Machines. An 
simulated Apiary with any number of processors can be run on a 
single Lisp Machines. or several machines, each physical 
machine simulating a subset of the Apiary processors. 

Since a single Lisp Machine is a sequential computer. we must 
simulate the effect of running several processors concurrently in 
software. We have opted not to use the Lisp Machine’s PROCESS 
objects to implement parallelism among Apiary processors, 
primarily because Lisp Machine process switching is inefficient 
and because of the lack of debugging tools for parallel programs. 
Instead, parallelism is simulated by a TICK mechanism. 

A TICK is the smallest quantum of time in the Apiary, the “cycle 
time” of a processor. When the object representing a physical 
processor receives a TICK message, it performs one primitive 
event, causing an actor to receive a message. The Apiary 
distributes tick messages among simulated processors. We do 
not rely on the presence of a global clock, or synchronization 
between ticks on different processors. 

5. The architecture of an .4piarv worker 

Each individual processor in the Apiary is called a WORKER, and 
the simulator contains a worker object to represent each 
processor. Each worker is connected to a list of NEIGHBORS, a 
small number of other workers in the Apiary. The internal 
structure of each worker involves several subprocessors; a 
COMMUNICATIONS PROCESSOR, which sends and receives 
messages between workers, and one or more WORK PROCESSORS 
which run programs. GARBAGE COLLECTION processors may 
perform steps of an incremental, real-time garbage collection in 
parallel with the work processors [6]. 

Instead of having registers as in a conventional machine, the 
“machine state“ of a worker is represented by an object called a 
TASK. A task is the most fundamental unit of “work to be done” 
in the Apiary, representing the reception of a single message by a 
target actor. It is veiy important for a parallel machine that the 
machine state be encoded in objects of small size. Process 
switching time can be slowed if the machine must switch 
between states comprising large numbers of registers. 

Each worker has a WORK-QUEUE, a list of tasks representing all 
the computations that the worker may perform concurrently at a 
given moment. Work processors may take tasks from the queue 
for execution. The work queue must be synchronized to allow 
access from more than one work processor. 



Structure of an Apiary worker 

6. The Aniarv instruction interpxAer is based on obiects 
rather than bit striws 

Consider a conventional von Neumann machine. The behavior 
of the machine is usually defined in terms of an instruction 
interpreter, or virtual machine. This is an algorithm that takes a 
machine state, defined in terms of the contents of the relevant 
machine registers, and an instruction in the binary machine 
language, and ,,ieids a new st:tte of the machine, perhaps by 
changing registers, the program counter, etc. The state of the 
machine is represented by an array of indexed memory locations, 
CXCII one cotitaining a fixed-lcnl;th bit string. The inslruutions 
are represented by fixed- or \,ari:lble-length bit strings. and cause 
the contcnls of various memory locations to be altered to obtain 
the next machine state. 

The heart of the Apiary consists of an instruction interpreter or 
“virtual machine” for each work processor. In contrast to von 
Neumann machines, the memory of Apiary workers is 
considered to consist, at the virtual machine level, of objects 
rather than bit strings. Although at the lowest level, objects must 
be encoded as bit strings. Apiary instructions do not treat them 
as such. For example, there are no instructions which load and 
store registers. The instructions themselves are also represented 
as objects, and the components of instruction objects replace 
“addressing modes” in conventional instructions. 

The execution of each instruction object is expected to produce 
zero or more new instruction objects. An instruction producing 
only one new instruction corresponds to the case of a traditional 
machine sequentially executing instructions. More than one new 
instruction indicates concurrency or “forking”. Finally, an 
instruction generating no new instructions indicates the 
termination of a process. This method of implementing the 

instruction interpreter eliminates the troublesome program 
counters and side effects to internal registers of conventional 
machines. 

FAch instruction object specifies a state transition function, from 
the task which represents the “old state” to a task representing 
the “new state” of the work processor. The instruction may also 
result in creating new actors for components of the new task. 
The new tasks produced by an instruction may either be placed 
back on the work queue of the worker from which they came, or 
sent to the work queues of neighboring workers for load 
balancing. 

The lowest-level programs which control what happens when 
actors receive messages, are called scripts, written in terms of 
these instruction objects. Scripts are the Apiary’s “microcode”, 
and are used as the target language for compiling very low level 
software. Given the “current stare” of the work processor, as 
embodied in a task object, the script produces a list of one or 
more instructions. which then produce new tasks, and so on. 

The instructmn cnterpreterof the Apiary 

7. ‘I’he data architcctiire of the Apiklu 

In some sense. there is only one kind of data object in the Apiary, 
an actor. The impletncntation, however, distinguishes between 
rock-bottom actors and scripred actors. A scripted actor is made 
up a two parts: a procedural part and a data part. The 
procedural part is a program, the SC r i p t, that tells the actor how 
to behave when it receives a message. Scripted actors have their 
scripts stored explicitly as the first component of the actor data 
structure. 
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What language are scripts written in? In the simulator, primitive 
scripts are written in the implementation language, Lisp. In a 
hardware Apiary, the most primitive scripts are written in the 
machine’s “microcode”, directly accessing hardware primitives. 
The user may create new objects to serve as scripts, executed by 
an interpreter written in the implementation language. 

The acquaintances are the “data part” of an actor. These are a 
list of actors which are remembered as the actor’s local state. The 
script may access these actors in forming new tasks. 

Actors also can migrate from worker to worker. To accomplish 
this, each actor has a FORWARD-TO component. If non-NIL, all 
messages intended for that actor are passed along instead to the 
actor named in the FORWARD-TO part. This may result in sending 
the message across workers. 

But not all actors can be represented as a structure containing 
script and acquaintances. At some point, we must have 
rock-bottom objects like numbers that can be operated on 
directly by the hardware without going through the message 
passing protocol. If a rock-bottom actor appears in the target 
component of a task, the script for that kind of primitive object is 
retrieved from a table of such scripts, indexed by type. The 
“acquaintances” in this case are simply the underlying machine 
representation of the object. In the simulator, Lisp objects such 
as numbers, symbols, and lists are rock-bottom actors. In a 
hardware Apiary, these would be a set of data types 
distinguished by type codes. 

For example, the script for a rock-bottom number can receive a 
message asking it to add itself to another number. It checks its 
operand to see if it, too, is a rock-bottom number. If so, the 
machine operation for adding two numbers can be safely used. 
If the other number is a scripted actor, then it is given the 
responsibility of figuring out how to perform the add operation 
by sending the add mess:igc to it, p:Gng in the original tai.get 
number as an operand. 

8. Scriptcr is a high-level “microcode compiler” for writing 
scrints of actors 

What corresponds to the “microcode” on an Apiary machine are 
programs for a set of scripts for primitive actors. These perform 
the lowest level operations of the machine, like adding two 
numbers, constructing lists, extracting elements from lists, or 
changing the bits of the display screen. 

Programming directly in the language which drives the virtual 
machine of the simulator is, unfortunately, not very convenient. 
Because the object-oriented philosophy is pressed to such a low 
level of the machine, even small programs require code for 
creating large numbers of objects. A simple FACTORIAL takes 
about three pages, which is probably the world’s record for the 
longest FACTORIAL program! 

A higher level “microcode compiler” called Scripter uses Lisp 
macros to compile more concise programs to code which drives 
the simulator [or eventually, hardware] directly. Unlike most 
current microcode compilers, the code looks more like an object- 
oriented variant of Lisp than an assembly language. Most 
function calls are replaced by the message sending primitive ASK. 
Here is the Scripter code for FACTORIAL, in its entirety: 

(DEFSCRIPT FACT (N) 
(IF (ASK N (A ZERO!')) 

1 
(ASK (ASK FACT 

(ASK N (A 1-))) 
(A + 

(WITH MULTIPLIER 
W))) 

Scripter still isn’t a “user-level” language, however, since it 
doesn’t have an interpreter, and is allowed to “cheat” and call 
Lisp [eventually, hardware] primitives directly without going 
through message passing protocol. However. it is the 
responsibility of any Scriptcr-written scripts to make any 
“cheating” completely transparent to user-written code. Scripter 
scripts must always check before performing any primitive 
operations on objects, and revert to message sending if they 
encounter user-defined objects. This check will be performed by 
macros supplied by Scripter. 

9. Scriptcr r)ro\ irk.3 werat ser~iccs i\hidl ;ticl the script 
writer 

One of the services performed by Scripter is to convert code 
written in the usual functional style of Lisp to continuation style, 
automatically creating continuation actors as necessary. 

Ordinaly function call/return control structure is hidirectional. 
Whenever a function is called, a return address is pushed on a 
stack, and popped upon return from the function. Message 
passing, by contrast. is unidirectional, and there arc no stacks in a 
message passing machine. The functional style is achieved by 
continuation passing, where a request event, which corresponds to 
a function call, contains a customer. The customer is an actor 
which will receive the returned value of the function as a 
message in a rep/y event and will “continue” the computation. 
Scripter automatically figures out which actors need to be saved 
as acquaintances of customers. and provides syntax for accessing 
acquaintances of actors using simple variable references. 

An expression 
(ASK (ASK TARGET-l MESSAGE-l) 

(ASK TARGET-Z MESSAGE-Z)) 

would be translated as 
Create a REQUEST-INSTRUCTION object, 

Sending MESSAGE-l to TARGET-l 
with a new customer CUSTOMER-l. 

CUSTOMER-l receives a message ANSWER-l, 
[ANSWER-l is the result of 
(ASK TARGET-l MESSAGE-l)] 



And sends MESSAGE-2 to TARGET-Z, 
With a new customer CUSTOMER-2, 

which has an acquaintance ANSWER-l. 

CUSTOMER-Z receives the result of 
(ASK TARGET-2 MESSAGE-L), 
And sends it to ANSWER-l. 

Scripter provides macros which abstract out common patterns of 
message passing. For example, to stick to our uniform actor 
protocol, conditionals must be done by message passing. 
Scripter provides an IF macro which replaces the traditional 
T-or-NIL test with sending an IF message containing the two 
altemativcs to the result of the predicate part of the conditional. 

Scripter tries to make the translation between source code and 
simulator code reversible, to aid debugging. Each piece of 
tr;lnslatcd code has a component which stores the source code 
which produced that target code. Customers created by Scripter 
rcmembcr the source code which produced the value which they 
rccci ve. The correspondence between source and target code is 
not one-to-one, since some Scripter constructs may produce 
more than one instruction for the simulator. The ability to even 
partially reverse the transformation performed by Scripter has 
proven valuable in debugging Scripter’s output. 

IO. The simulator incornorates a window-oriented “machine 

How do we tell if the simulator is performing correctly? One tool 
is a “machine language” stepper for the Apiary virtual machine, 
a parallel generalization of traditional machine language steppers 
such as the classic DDT for the PDP-10/20 machines. It is no2 
intended to replace tools for debugging user programs, but 
rather to test whether the simulator works, test the output of 
higher level language compilers, and act as a debugger of last 
resort for particularly hard-to-find bugs. It gives a “worker’s-eye 
view” of the Apiary, using a separate Lisp Machine window to 
display the state of each worker. For tasks created by Scripter 
code, the stepper may also display the source code which 
corresponds to that event. 

The next illustration shows a simulated Apiary with two workers 
about to work on (PARALLEL-FACTORIAL 5). Only one worker 
is actually busy at the moment. 

\n ACTOR with . PARALLEL-FACTORIAL script and 0 acqualntsnccs 
being sent the nre-s 

xl the result will be sent to t5e customer 
Ln ACTOR with a CEFAULT-PRINT-XRIPT script and 0 acqualntanca, 
he Lpo- bass ,-eBWmE6 for 1000 J3 more erenta 
here are 1 to&n cm thla worker’s nucua 

,I-ker I 
Strp forward Step back 

5tart/stop running Run quiet1 /Stop 
Inspact * ou d 

caimulata) Worker-rep lor worker 2: 
rslmulatlng with ((PARALLEL-FACTORIAL 6)) I e* .smdlng 

A tr:nrmttrble obJcct for 
An tVENT 

t 

to my nelgbbw numbered 1 

The first line in each worker window indicates the kind of event 
taking place -- usually a REQUEST, REPLY or COMPLAINT event. 
The next few lines contain descriptions of the event. A window 
at the bottom right displays the communications traffic between 
workers. Each object in the Apiary simulator accepts messages to 
produce an English-like description of itself for display in the 
window. 

The following illustration shows the FACTORIAL computation at 
a later stage. The program has broken up the task of computing 
factorial of 5 into the tasks of computing the product of numbers 
from 1 to 3 and the product of numbers fioln 4 to 5, in parallel. 
Next. we will decompose the product from 1 to 3 into 
multiplying 3 by the product of 1 to 2. The load balancing 
algorithms have spread work from one worker to another, so now 
both workers arc busy. 

We can step the whole Apiary or individual workers. one event at 
a time. Each worker keeps a history of its states, so that workers 
can be stepped backward as well ‘as forward. The Apiary can be 
run continuously, either with or without displaying events after 
each step. It is also useful to be able to specify a description of a 
certain event, and tell the stepper to run until an event satisfying 
the condition is encountered. 
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The target eotor 
An ACTOR with a RANGEPRODUCT script and 0 acqunlntrnso 

Is behg bent the mas8age 
(A DOIT (WITH LOW 1) (WITH H!GH 2)) 

and the result will be rsnt to the customer 
An ACTOR with a ,-ORWARIIINQ-SCE.PT script and 2 acqualntancer 

The sponrar has resources for 1005SO mars events 
Thla la e REPLY e”ent 
The value 
T 

Is be Irag retr:med to the ~“btomer 
An ACTOR with a FORWARO!‘:G-SCRIPT scrllt and 2 acquaintances 

The sponmr hee rehouroea fcr SSSSS more eventa 
There are 2 tada on thla vorhetis quwa 
I 
‘lorkel- 2 
This8 is e REPLY emmt 
The value 
An ACTOR ivlth . FUTURE serlqt and 1 acqualntancss 

Is being returned to the customer 
A CUSTOMER actor whose script Is RANGEPRODUCT-SCRIPT-154 

The ~ponscw has resources for 98958 more events 
Thle Is a REQUEST event 
The target eator 
An ACTOR with a RANGEPRODUCT-SCRIPT-TBZ script and 2 acqualntsnces 

Is bolng sent the maesage 
T 

and the result will be cant to t/m oustomer 
A CUSTOMER actor whose script Ir RANGEPRODUCT-SCRIPT-167 

The eponew hes reawrces for EB8dS more events 
There we 2 taska M this wwher’e pueus 
1 
“orkcr I 

@xp forward x Gtep back 
Start/Stop running Run quietly/Stop 
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