
An Object-Oriented Software Architecture for 3D Mixed Reality Applications

Wayne Piekarski and Bruce H. Thomas
Wearable Computer Laboratory

School of Computer and Information Science
University of South Australia

Mawson Lakes, SA, 5095, Australia
{wayne, thomas}@cs.unisa.edu.au

Abstract
This paper presents a new software architecture for 3D

mixed reality applications, named Tinmith-evo5. Currently there
are a limited number of existing toolkits for the development of
3D mixed reality applications, each optimised for a particular
feature but at the detriment of others. Complex interactive user
interfaces and applications require extensive supporting infra-
structure, and can be hampered by inadequate support. The
Tinmith-evo5 architecture is optimised to develop mobile aug-
mented reality and other interactive 3D applications on port-
able platforms with limited resources. This architecture is im-
plemented in C++ with an object-oriented data flow design, an
object store based on the Unix file system model, and uses other
ideas from existing previous work.

1 Introduction
Three dimensional environments are a challenging area to

develop applications for since the software development tools
are quite primitive when compared to current 2D tools. 3D envi-
ronments involve the use of non-standardised and changing
hardware, varying user interface methodologies, and a number
of different application requirements. 2D desktop environments
have converged toward an agreed best practice that allows de-
velopers to focus on the application rather than the implementa-
tion, but this has not yet occurred in 3D environments.

Shaw et al [31] explain how the development of high level
software is not possible until there is a stable base of low level
toolkits to support them, and this same development process
occurred in the 2D desktop area as well. There have been a
number of systems that provide low level hardware abstractions
and distribution of values over a network, implemented using
approximately similar ideas. For higher level abstractions, there
are only a few software systems that address this and each is
focused on a particular problem domain.

The Tinmith-evo5 architecture described in this paper con-
tains a novel combination of a variety of techniques to provide a
software architecture that can be used for developing mobile AR
applications and complex user interfaces. No one particular sys-
tem was used as a base, but rather a number of systems were
reviewed and the best ideas combined. New ideas are also de-
scribed that when combined together produce a software archi-
tecture which is designed for wearable hardware, high perform-
ance, mobile 3D graphics, and high level user interfaces. The
software architecture is demonstrated using the Tinmith-Metro
system [22] [24] in Figure 2, performing the 3D modelling of
objects in real time using hand gestures.

MR systems are usually sensor driven and so the software
architecture is based on data flow. Figure 1 shows this data flow
from an overall perspective with sensor data arriving into the
MR system, being processed by specific application code and
configurations, and then rendering the final output to the HMD
of the user. The data flow model is supported by the use of ob-
jects to perform specific actions such as processing tracker data,
combining results, and rendering 3D graphics. Objects allow
problems to be broken down into small separate tasks to sim-
plify software development. Objects are then connected together
into a directed graph, and as new values enter the system, the
values are processed through the graph as a flow of data, adjust-
ing the current state and eventually rendering to the HMD.
These objects can be distributed across multiple processes or
computers in units named execution containers, with the data
flow occurring over a network when required.

Research toolkits are designed using many different method-
ologies and are difficult to use together because of conflicting
requirements that may be difficult to address. In the future these
may become standardised but for now we avoid trying to make
immature and opposing toolkits work directly together so that
research can be performed into new ways of developing soft-
ware. All the components of the architecture are developed from

HMD

Runtime
Config

Application
Code

Tinmith-evo5Sensors

Figure 1 - Overall architecture - sensors are processed using libraries

and application components, then rendered to the HMD

Figure 2 - User outdoors manipulating a virtual table using AR

Tinmith
In ISMAR2003, International Symposium on Mixed and Augmented RealityOct 7 - 10, 2003 - Tokyo, Japan - Copyright (C) 2003 IEEEPlease visit http://www.tinmith.net for more information

the ground up using a common methodology, with abstractions
to hide away any differences from external libraries that are
required. The goal is to not to treat the application as a combina-
tion of scene graph, tracking library, and shared memory, but
instead as a single entity with blurred boundaries.

As part of the integrated component design methodology, the
entire system has been structured around the model of a memory
based file system. Instead of using global variables to reference
the many objects available in the system, an object storage sys-
tem based on Unix file system semantics provides a logical in-
terface that is easy to understand. All objects that process data in
the system are stored in this object repository, making them
accessible to other objects in the system through discovery at
run time. The ability to perform distribution across multiple
computers is added as an extra component using object data
flow, and is not an internal part of the architecture that imposes
a constant performance penalty whether in use or not.

The most important goal with the design of this software ar-
chitecture is performance. Due to limitations in wearable com-
puter hardware, it is important that as much work as possible be
extracted out of the resources available. The C++ language and
optimising compilers are used for all development, supporting
both low level code and high level features such as object-
oriented programming. The renderer that forms a core compo-
nent of most applications is implemented using OpenGL and
provides high performance graphics support when 3D accelera-
tion hardware is present in the system. The software has been
used on a number of small and relatively slow computers and is
capable of running adequately in most cases, the exception be-
ing the rendering of large 3D scenes.

This software architecture addresses a number of problems
currently affecting mobile AR and similar environments:
• Hardware changes rapidly over time, and so should be ab-

stracted to allow portability across different environments.
• Mobile AR is limited by portability constraints and choices

must be made between large and powerful or small and less
capable equipment. Software for outdoor use must be effi-
ciently designed and be able to run on mobile hardware that
may be a number of generations behind current state of the
art indoor computers.

• 3D graphics systems traditionally operate using a flat Earth
model and do not readily deal with large areas of the planet
that can be roamed with a mobile AR system. Being able to
handle coordinates that span a wide range of scales, from
millimetre level tracking of the hands to moving over hun-
dreds of kilometres of land is required.

• User interfaces for mobile AR are quite primitive and there
is limited toolkit support for developing applications. This
problem is difficult to solve and current development in this
area is quite immature.
This paper contains a summary of previous work, describing

existing systems and their features. The design of the architec-
ture is then described, including concepts such as data flow and
object distribution. The object storage system forms a core part
of the architecture and is described in the following section. The
next section describes the more interesting aspects of the im-
plementation of the software. Since processing input is a major
part of the architecture, a section describes the model used to

abstract input events. The next section describes various exam-
ples demonstrating the usefulness of the software architecture,
followed by a conclusion.

2 Previous work
This section discusses a number of both low and high level

toolkits that have been developed to help implement VE appli-
cations efficiently. We are interested in software architectures to
support 3D mobile AR and not in areas such as wearable con-
text awareness or other high level information sharing. There are
a number of areas that need to be addressed, such as data distri-
bution, rendering, user interaction, tracker abstractions, and
rapid prototyping.
2.1 Hardware abstraction libraries

Abstracting hardware presents a common programming
model so applications only need to be written once to work with
many devices. Most operating systems provide these abstrac-
tions for keyboards and mice and other researchers identified the
need to have similar abstractions in 3D environments, and so
implemented software such as the MR Toolkit [31] and VRPN
[35]. Both of these systems are capable of processing trackers,
distributing them over a network, and support many types of
devices. Similar toolkits have been developed recently such as
MAVERICK [12], VrJuggler [3], DIVERSE [16], and Open-
Tracker [25]. Each of these systems provides an inner kernel
that connects together various components such as input ab-
stractions for trackers, support code for processing data, and
abstractions to rendering systems.
2.2 Distributed entity systems

One area of investigation is the implementation of distributed
virtual environments. This involves simulating entities on ma-
chines and then viewing them on remote clients over a network.
The main focus of this research is on the protocols rather than
the toolkits, such as SIMNET [6] and NPSNET [41] which use
protocols similar to DIS [13]. These protocols usually only send
6DOF and entity information and the application is responsible
for the models and rendering. These restrictions allow efficient
scaling to large sizes. The Bamboo system [39] uses network
loadable modules to support extensible protocols. BARS [5]
uses an event based distribution mechanism to support mobile
collaboration.
2.3 Software systems

A number of software systems have been implemented to
provide abstractions for other requirements apart from just
trackers. Two early commercial toolkits were dVS [10] and
World Toolkit [30]. These both provide tracking abstractions
along with scene graphs, event triggering, and task distribution
across machines. SGI has developed two powerful scene graph
libraries based on OpenGL, IRIS Performer [26] and Open
Inventor [33]. Similar scene graphs such as Java3D [34] and
Repo-3D [18] are available for Java and Modula-3.

Languages such as VRML 2.0 [38] have been develop to
store scene graph definitions, and also include features such as
fields and routes for developing interactive applications. Objects
in VRML contain fields with values such as centre point, radius,
and other geometry values. These fields can be controlled by

output fields from other objects, or used to control other objects.
Using a route command, inputs and outputs can be connected
and used to build complex flows of data in 3D models. Light-
ning [4] performs similar flow of data between objects, VB2 [9]
use a constraint engine to implement relationships between ob-
jects in virtual environments, and DWARF [1] uses a services
based framework to connect components over a network.

High level authoring tools such as ALICE [20] allow novice
users to implement simple VE applications using a scripting
language, but is limited to the existing interactions supplied with
the system.
2.4 Fully distributed systems

While the previous systems only distribute small parts of the
internal state, these systems perform more complete distribution
of applications and scene graphs. The aim of the Tinmith-evo5
architecture is to provide a high level architecture similar to
those discussed here.

Coterie [17] was developed as a high level 3D toolkit and a
more complete solution than just tracking abstraction. The main
contribution is the modification of language level primitives to
support the implementation of a distributed shared memory.
This is integrated with packages that support an in-built inter-
preted language, threaded processing, tracker abstractions, ani-
mation, and a scene graph Repo-3D [18]. Multiple threads in the
system execute code within objects and communicate via dis-
tributed shared memory.

The Studierstube system [28] is a framework for distributed
3D applications. It is based on a tracker abstraction [25], and a
distributed version of Open Inventor [11]. The distributed scene
graph allows various applications to transparently share the
same 3D environment with real time updates. Studierstube takes
the opposite approach to Coterie and embeds the entire applica-
tion into a distributed scene graph, and this has been used to
demonstrate application migration between separate machines
[29]. Studierstube applications must be implemented using In-
ventor objects to be supported in this way however.

Systems such as DIVE [7] and Avocado [37] also support
distributed scene graphs. DIVE uses multicast to improve scal-
ability and reduce bandwidth usage. Avocado provides similar
features as VRML fields and routes, with objects attached to
each other and processed using a scripting language.

3 Object design
This section describes the overall design of the classes in the

software architecture. Class definitions used in the software
architecture can be divided into four categories - those for repre-
senting data values (data), those for processing input values and
then producing some kind of output values (processing), those
for implementing core features that other classes can inherit or
use (core), and helper code that implements interfaces to stream-
line development (helper). Each class can also be classified into
one of the categories depicted in Figure 3. Applications require
classes from both high and low levels to be instantiated as ob-
jects and connected together. Each class can contain nested sub-
objects of other class types or primitive C++ values such as
pointers, floats, integers, and strings.
3.1 Data flow

Data objects in the system are used to supply input for proc-
essing objects. Processing objects then produce another data
object that can then be propagated onwards for further opera-
tions. These connections form a flow of data through the sys-
tem. Figure 4 depicts how data values initially arrive as tracker
inputs, and are then processed in various stages of a virtual pipe-
line before reaching the user in the form of rendered output.
This figure depicts categories for the objects used in various
stages of the pipeline, but is only an approximate model.

The data flow model is implemented by having processing
objects listen to events that are generated by data objects. When
the data object changes to a new value, interested listening ob-
jects are notified of this change via callbacks. This is similar to
the observer/observable pattern described by Gamma et al [8].
Any number of processing objects can listen in on a data value,
and processing objects can have any number of output values.
The use of data flow is common in many of the previous sys-
tems described.
3.2 Serialisation and distribution

Objects in the system are represented using the C++ com-
piler’s native internal format. It is not possible to simply take the
binary data for the object and directly save it to disk or transport
it across a network since it is specific to the running process
only. The ability to save the state of a running system and then
restart it at a later time or transfer it to another machine is desir-
able, and so a generic format that can represent application state
is required. Serialisation is not available in C++ by default and
so extra logic is provided to handle this requirement (the imple-
mentation details are discussed later). A structured XML format
is used by default, with a binary format used to reduce the size
of the data when required. Nested objects are processed by re-
cursively calling the serialisation code and the results are as-
sembled together for the top level object.

The first use for a serialisation capability is to store persistent
configurations on disk. The XML header is parsed to determine
the object type, matching C++ objects are instantiated, and are
configured to contain the values in the XML data. When the
application is shut down these objects may be serialised back to
disk so that it can resume its previous state at a later time. The
serialised XML files may be used as a configuration system, and
can be edited with a text editor or stored in a database. These

Application Support
Menu driver, Event handler, Dialogs, Selections

3D / 2D Render
Scene graph, CSG ops, Manipulation

Interface / Transform
Coordinate systems, Trackers, Transformations

Low Level & I/O
Support code, Callbacks, Serialisation, I/O libs

Application Implementation
Tinmith-Metro, Custom models and menus

Figure 3 – Layers of libraries with
objects available to process data

Hardware abstraction
Convert data into object

Process object data flow
Conversions, state machines

Scene graph
Modify objects, CSG interactions

Render
3D objects plus 2D overlay

Tracker devices
USB, Serial, PS/2

Figure 4 - Expanded view
showing stages of processing

objects can also be modified and reparsed at run time to adjust
the application while in operation. This allows changing aspects
of the application without having to resort to slower interpreted
language support. While internal components such as network
and disk interfaces cannot be serialised in this fashion, the parts
of the application that a user would like to change are supported.
Similarly, OpenTracker uses XML based configurations for
filter graphs [25], VR Juggler uses text files for tracker
reconfiguration [15], and Diverse uses compiled C++ modules
switchable at run time [16].

This serialisation capability may also be used to implement
distributed applications. An important feature is that the system
does not force the user to use this capability. In most cases, ap-
plications are implemented as single processes and interactions
between objects occur using simple function call based call-
backs. The overhead of supporting the callback updates is very
minimal when only local data is used. In contrast, many other
systems require the application to use IPC interfaces even when
operations are being performed locally, taking its toll as a large
penalty on performance.

Figure 5 part (1) depicts two objects that are connected via
callbacks and so the listener is notified when the source signals a
change has been made. Figure 5 part (2) depicts how objects can
be inserted to implement distribution. When the source gener-
ates a new value, the Tx object serialises the new value and then
transmits it over a network or other IPC mechanism. The Rx
object at the destination receives the incoming data, deserialises
it in place using the same class and then signals to the listeners
of the object that new data is available. The listener object then
receives a callback in the same way as in Figure 5 part (1). This
distribution mechanism is transparent to the listening objects
since it is implemented using the same interfaces as any other
processing object. The object store described later automatically
provides network distribution when required so that the pro-
grammer does not need to implement this functionality.

The mechanism used for distribution (via callbacks and a
possible network interface) is efficient because updates are only
sent to those processing objects that are interested. Each object
is stored on a particular server and other clients can make re-
quests to receive updates when changes are made. For small
systems, this is more efficient than broadcast protocols, although
for large systems with thousands of processes each requiring a
value this may not be appropriate. By using proxy processes,
cached copies of values may be further distributed to others,
which can assist with scaling. If a client needs to change the
master value, the server must be configured to circularly listen
for events from the client, or allow updates to be forced in via

the network command interface (described later in this chapter).
Any changes forced in by the client will be lost by the server
when the next incoming value arrives from the source, so this
method is only practical when the value is no longer updating.

4 Object storage
Systems containing many interoperating objects require tech-

niques to organise this complexity. This section introduces the
storing of objects based on the familiar Unix file system.
4.1 Unix file system design

The Unix operating system (and clones) implements a hier-
archical file system to organise and store data [19]. File systems
provide an abstraction to simplify the storage of data on a disk
that is otherwise just a raw linear collection of fixed size blocks
(typically 512 bytes). Files can easily exceed the block size and
so higher level abstractions are required for storage. An inode
contains information about a file on a disk as well as a list of
ordered pointers to blocks containing data. Each inode contains
a unique identifier and is stored in a list at a fixed location on the
disk.

Directory structures were developed to store mappings be-
tween human readable text names and numeric inode values.
Directories are also stored using inodes and have an associated
unique identifier. Since both directories and files are represented
using inodes, directories can provide text names for other direc-
tory inodes and so form a hierarchical tree structure. A top level
root inode (with identifier 0) is used to represent the root direc-
tory (/) of the structure. Nodes in the tree can be accessed by
specifying the name of each directory joined together using for-
ward slash (/) characters. Path names that begin with a / charac-
ter are referred to as absolute paths and are relative to the top
level root node. Other path names starting with a name are re-
ferred to as relative paths and are accessed from the current
working directory. Paths may contain aliases that have special
meaning – the name . (single dot) is a relative reference to the
current directory, while .. (two dots) is a relative reference to the
parent of the current directory. Each file and directory is named
relative to its parent and the full absolute path name is not stored
anywhere. This allows changes at the top level to be instantly
inherited by all children.

Unix file systems implement hard links, multiple directory
entries referencing a single inode value. This allows the same
file to appear to exist in multiple locations but in fact is using a
single set of blocks on disk. Modifications to one file will im-
mediately affect others. Inodes store reference counts so that the
disk blocks are not removed until there are no more references.
A second link type named a symbolic link is used to provide a
path name based link to another file. Directory entries can store
mappings between names and inodes, and also names and other
path names. When the kernel encounters a symbolic link it per-
forms a lookup of the link name to find the appropriate inode
and then resumes the previous lookup in progress. Since sym-
bolic links point to paths and not inodes, a destination file can be
replaced and all links to it will update automatically. Hard links
require each link to be changed since the inode number of the
new file is different.

Listener Source

Listener Source

Callback Function Call

Rx Tx Net

(1) Single Process / Single CPU (Default)

(2) Multiple Processes / Distributed On Network

Figure 5 - Network distribution is implemented transparently

using automatically generated serialisation callbacks

4.2 Object file systems
One problem with systems that store large collections of ob-

jects is accessing and updating them; the traditional approach
being the use of global variables. Each module that needs to
reference other objects must include definitions for the global
variables, and suitable names must be used to avoid namespace
collisions. Having global objects requires the compiler to stati-
cally declare these in advance, and hence cannot be changed at
run time to suit conditions. To overcome this problem, systems
such as dVS [10] and COTERIE [17] implement the concept of
a repository where objects can be stored for later retrieval based
on a key. The Windows operating system also implements a
registry, which is a hierarchical database of values stored on
disk and used to configure the operation of the system from a
central location. These runtime style storage systems can be
modified without recompilation to store a variety of values, and
do not require statically declared objects. Programmers may
independently write modules and are only required to agree on
the naming convention to reference the shared objects. Refer-
encing items stored within object-oriented databases has also
been implemented previously using query languages such as
XML’s XPath. XPath allows for the searching of objects meet-
ing some kind of criteria (similar to SQL and relational data-
bases), but was not intended to be for exact references like the
Unix file system model.

Tinmith-evo5 integrates a number of concepts to develop a
hierarchical object store. Instantiated objects in the system are
created in memory (statically by the compiler, or dynamically at
run time) and then a pointer reference is placed into the object
store. Rather than just implementing a hash of names to retrieve
object pointers, the object store is based around the Unix file
system model described earlier. Path names are used to traverse
a tree of directories and files, and the inode values no longer
point to lists of blocks but are instead pointers to memory ad-
dresses. These memory addresses are the locations of objects
and method calls can then be made just like with any C++ ob-
ject. Figure 6 depicts code fragments that demonstrate the stor-
age of objects, retrieval and modification, and debugging.

On the surface, this file system approach appears to give
similar results to those achieved with other systems using names
to lookup objects. The real advantages are gained when the Unix
file system model is taken to its full extent to provide a number
of interesting features. Hard links may be implemented by hav-
ing multiple locations in the hierarchy point to the same object
address. This allows code to use new naming conventions while
still supporting older names for legacy source code. Symbolic
links can be implemented by storing a path name redirection, so
when the object store is traversing the internal structures it will
recursively lookup the linked path names. Symbolic links im-
plement much of the same functionality of hard links, but may
also be used to provide dynamic switching of objects. For ex-
ample, if a system contains both GPS (at /human/body/gps) and
vision tracking (at /human/body/camera), then a symbolic link
can be created at /human/body/tracking that points to the cur-
rently active tracker. The true source of input devices may be
concealed from the developer using symbolic links as an ab-
straction layer.

During the implementation, we added several optimisations
to reduce memory consumption and unnecessary lookups, and
this resulted in the final version diverging slightly from the Unix
file system model. Copy links are similar to hard links but do
not actually share the same object pointer. Instead, a copy of the
object is made for the link destination, and whenever the source
is changed the object store copies the new updates into the des-
tination object using data flow. The reverse is not true however,
and if the destination is modified it is not copied back. These
links were implemented using a copy since the object itself ac-
tually contains its own name and parent pointer. This prevents
multiple names sharing the same object pointer but makes it
possible for an object to quickly find its parent without having to
traverse from the root node. Pointer links are the same as Unix
based symbolic links in that they store a path name redirection
in the object store.
4.3 Object hierarchies

In object-oriented languages like C++, objects may be con-
tained inside other objects, and this is referred to as composition.
Figure 7 depicts the design of an object for storing position on
the Earth. The example contains both grid (UTM) and spherical
(LLH) coordinates and keeps the values synchronised using
internal data flow processing. To gain access to the internal
LLH and UTM values, external code may reference these di-
rectly if declared public or using access methods if declared
private.

Using the object store described previously and the example
in Figure 6, the Position object could be stored at the path
/human/body/position. To retrieve a pointer to this object the
call Position::getStorage(“/human/body/position”) is used. Us-
ing standard C++, pointer->getLLH() or pointer->llh can be
used to access the spherical LLH values. When using a file sys-
tem based object store, it is also logical to store references to the
child objects at sub paths to the parent. The spherical LLH child
object can therefore be accessed directly using the call Co-
ordLLH::getStorage(“/human/body/position/llh”). Both the par-
ent and child objects are referenced in separate parts of the file
system tree, but still remain joined together as a single object
and so are still accessible to traditionally written code. The other

/* Create object and store at an absolute path */
Position *pos = new Position ();
pos->setStorage (“/human/body/position”);

/* Code that changes the position value with a new LLH position update */
CoordLLH newllh;
Position *update = Position::getStorage (“/human/body/position”);
update->set (&newllh);

Figure 6 - Examples showing the hierarchical object store in use

/* Simple angle values */
class Angle {
 double degrees;
};

/* Simple distance values */
class Distance {
 double metres;
};

/* For spherical Earth coords */
class CoordLLH {
 Angle latitude;
 Angle longitude;
 Distance altitude;
};

/* For grid based Earth coords */
class CoordUTM {
 Distance eastings;
 Distance northings;
 Distance altitude;
 int zone;
 char letter;
};

/* Container for LLH and UTM values */
class Position
{
 CoordLLH llh;
 CoordUTM utm;

 CoordUTM &getLLH() { return (llh); };
 CoordLLH &getUTM() { return (utm); };
};

Figure 7 - Simplified composite Position class with nested objects

advantage to this scheme is that since the file system is dynamic
and can be traversed, child objects may be added or removed at
run time (not just at compilation), and accessed without stati-
cally compiled names. Code can discover and access the con-
tents of objects easily, allowing the writing of very generic code.
Given a Position object, the call pointer->getNode(“llh”) can be
used to dynamically retrieve the LLH child object from the par-
ent. While objects added at run time are not visible to standard
C++ code, dynamic access, serialisation, and callbacks are fully
supported.

Many OO based languages implement containers to store ob-
jects based on a key: C++ implements STL hashmap, Java im-
plements HashMap, and SmallTalk implements Dictionaries.
Some systems have been implemented that use containers to
implement hierarchical structures of stored objects. An alternate
implementation is to use the entire path as a single key, but this
is not hierarchical storage. All of these implementation are dif-
ferent from our object store because they only store pointers to
an object but do not handle the child objects contained within.
Languages such as Java and SmallTalk support the run time
discovery of child objects but the use of a consistent file system
approach for all levels of the hierarchy is not performed. The file
system approach is even more useful in languages such as C++,
where run time discovery is not normally available.

5 Implementation internals
The Tinmith-evo5 architecture is implemented in C++ to al-

low for an efficient implementation of the software. There is
very limited run time support (avoiding features such as garbage
collection) to hinder performance and compilers can generate
optimised code, making it ideal for machines with limited re-
sources. The C++ language does not provide some of the fea-
tures needed for the implementation of the desired software
architecture, so extra code is supplied to provide these. This
section describes some internal implementation details.
5.1 Class definition and code generation

C++ is a statically compiled language that provides object-
oriented programming with inheritance, support for templates,
and a macro pre-processor. Each object that is a part of the soft-
ware architecture is required to inherit the abstract class Storable
to provide interfaces that the object store and serialisation com-
ponents require. A custom developed code generator TCC is
used to generate internal information for each object. The Stor-
able class uses this generated information to provide the discov-
ery of internal objects, with the standard C++ RTTI functional-
ity being too limited to use. A sample C++ object for an In-
terSense IS-300 tracker is demonstrated in Figure 8, with object
and method declarations depicted. Special wrapper macros are
used to indicate callback functions and internal variables that
should be processed. These macros pass through during C++
compilation but are used by TCC to easily find the desired val-
ues without having to write a full C++ parser (although this
could be avoided with more effort). The code generation is per-
formed automatically because it is tedious and error prone for
humans to do this by hand. When internal changes are made,
TCC is used to regenerate the derived code in a separate file
which is hidden from the programmer. Separate definition files

(such as used by CORBA and SUN RPC) are not transparent
and require the programmer to keep the definitions synchronised
with the implemented source code.

Figure 8 depicts statically compiled methods such as getOri-
entation() and getMatrix() that are used to access internal values
in the object. Inheriting the Orientationable and Matrixable in-
terfaces in the class implements polymorphism and the use of
the class as a generic tracker. The internal Storable methods
getVarList(), getVarType(), and getVarPointer() are used for the
run time discovery of object contents, providing similar func-
tionality to SmallTalk and Java. The getNode(“name”) method
is implemented by Storable and can be used to traverse to chil-
dren objects, and is also used by the object store. The use of
these method calls does add small overheads for lookup against
internal object tables, but only has to be used when static refer-
ences are not possible.

This object discovery mechanism is used to automatically
implement serialisation functions. Storable implements toXml()
and fromXml() methods that can write out objects in an XML
format that is human and machine readable. An alternate format
is with the toBinary() and fromBinary() methods that use a
compact binary representation in an endian neutral format. An
important limitation of serialisation is that it cannot handle proc-
ess specific values such as file descriptors or graphical handles,
and so these must be implemented using manually written code.
5.2 Callback propagation

The data flow model described previously is implemented
using pointer based method callbacks. Instead of statically defin-
ing specific methods to be called when an event occurs, a
pointer to any method defined with GEN_CALLBACK_H may
be used. A single callback may listen to a number of event
sources and a pointer to the modified object is passed as an ar-
gument to delimit between many objects. These callbacks are
simple and efficient to perform since they involve a pointer
dereference and then a function call, which is only slightly more
overhead than using static function calls.

When a callback is attached to an object, it will be notified
whenever the object or any of its children are changed. When an
object is modified it will execute the handlers attached at that
level of the object store, and then work up the hierarchy of the
object store executing handlers until it finds an object that is not
contained within a parent object. The execution of callbacks is
automatically implemented for copy and set operations using
C++ operator overloading, so the programmer does not need to
be aware of this mechanism. For objects containing internal
class IS300 : public Storable, public Orientationable, public Matrixable
{
#define STORABLE_CLASS IS300 // Declare class name
#include “interface/storable-generic.h” // Include customised template code

public: // Declare callback using macro wrapper
 GEN_CALLBACK_H (IS300, process_device, IOdevice, _dev);

 Orientation *getOrientation (void); // Implement orientationable interface
 IS300tracker *getIS300tracker (void); // Access custom IS300 values
 Matrix *getMatrix (void); // Implement matrixable interface
 RateTimer *getRateTimer (void); // Implement statistics interface

 IS300 (IOdevice *in_dev = NULL); // Constructor with input I/O source

private: // Process dependent variables
 IOdevice *device; // Device pointer, not serialised by TCC

 TCC_OBJ (Orientation, ori); // Serialised orientation object
 TCC_OBJ (IS300tracker, is300); // Serialise IS300 values
 TCC_OBJ (RateTimer, rt); // Serialise statistics information
 TCC_VAR (double, value); // Serialise C double value
};

Figure 8 - Edited extract from the is-300.h tracker definition file

C++ values, these must be stored privately and wrapper meth-
ods written that generate callbacks. Figure 9 is a code fragment
depicting how callbacks can be configured and then executed.
The first set of code retrieves an object pointer from the object
store and then uses the setHandler method to specify the call-
back method. The second set of code uses access methods to
modify the internal values individually. The disadvantage to
updating in this way is that callbacks are propagated for each
modification and there is no way to indicate to the system that
changes may be performed as a single unit (the programmer
never calls an update method). The faster and preferred method
depicted in the third set of code is to declare a new temporary
object and initialise the values to those desired. The temporary
object does not generate callbacks during initialisation, the data
is copied using an overloaded equals (=) operator, and only a
single callback is executed for the entire copy. Temporary ob-
jects are used in tracker abstractions to read incoming data, with
only the latest version being copied over. This reduces the
amount of callback traffic in the system and helps to improve
performance.

The callback system and the object store are tightly inte-
grated, with callbacks being propagated up the tree until a top
level container object such as /devices/trackers/gps is discov-
ered. The path /devices/trackers is simply a set of empty paths
used to contain objects and does not implement any object inter-
faces as such. This propagation of callbacks to parent objects is
useful for when objects need to listen on areas of the object store
but do not want to attach to individual objects since they may be
transient. An example is an object listening on the entire scene
graph for changes to distribute to other machines.
5.3 Distributed processing

In most applications, a single non-threaded process is used as
an execution container for objects to be connected together via
data flow and callbacks. It may however be desired in some
cases to distribute the application across separate processes run-
ning on a number of computers. Objects are placed into execu-
tion containers (Unix processes, not threads) and connected
together using the network distribution technique described pre-
viously. Each execution container has its own memory and
code, and may contain internal threads although these are dis-
couraged. The communication within an execution container is
performed using local callbacks, but these do not work across
containers in different address spaces. The network distribution
mechanism described previously is used to connect together
execution containers so that they can communicate with each
other.

Each execution container implements a NetServer object that
listens for incoming connections. Clients connect to the server
and make requests to listen to particular object paths. The Net-
Server object attaches itself to these objects in the object store,
and when they change the NetServer will be notified. When the
notify callback is executed, the NetServer object takes the up-
dated object pointer and serialises it into XML or binary format
depending on the client’s request. The client receives this stream
of data and then deserialises it into an equivalent matching ob-
ject created previously and stored locally. When the value is
copied into the local object, other processing objects that are

listening to this local object will receive a newly generated call-
back and the data flow process continues. With this mechanism
objects can be easily separated into arbitrary execution contain-
ers.

When updates are made in large trees such as the scene
graph, the amount of data generated can be quite large although
there are only a small number of changes. The XML format
allows differences to be sent that only contain the changed data.
Each object records an incrementing serial number to keep track
of the last object version sent so the server can send correct
differences to the interested clients. Since the binary protocol is
a fixed format it does not support varying differences. The type
of protocol used also affects the choice of network transport.
UDP is high speed, connectionless, has a 64kb packet length,
possible loss of packets, and may arrive out of order. TCP is
slower, maintains a connection, has virtually unlimited
transmission sizes, and guaranteed transmission of data. UDP
with binary mode may be used for absolute updates where lost
packets do not need to be recovered, such as head trackers. TCP
with XML is used for communicating with the server and
testing for connectivity, and for data that cannot be lost, such as
object differences of scene graph updates. The requesting client
can specify the format to use during the connection setup, and
can switch protocols if needed.

An object inside a server execution container is owned and
updated by that container exclusively. The execution container
makes this object available for other objects (both local and re-
mote) to receive updates for further processing. The data flow
approach can support circular flows of data, but is generally
avoided unless one of the objects contains a mechanism to end
processing and not continually propagate in an infinite loop.
Alternatively a client can connect in and upload a new value for
the server to store, and it will remain until replaced by whatever
source originally generated it in the server. Uploading values is
not generally used but can be used to control internal values of
an application such as user interface controls that are only peri-
odically changed.
5.4 Threads

In most cases, execution containers do not require the use of
threads to perform their processing of data flows. Data flow
calculations tend to be very sequential and most libraries im-
plement thread safety using a single lock, forcing most opera-
tions to run exclusively. Since the display depends on all calcu-
lations being completed it must be performed last and so cannot
be run in parallel. While some calculations may be parallelised,
the benefit is small considering the added costs of context
switching and the complexity of implementing multi threaded
libraries using locking. The programming model is therefore
designed around the use of a single thread of control within an
/* Find source object and attach destination callback to listen for changes */
Position *source_position = Position::getStorage (“/devices/trackers/gps/pos”);
source_position->setHandler (dest_position->process_position);

/* Make changes to source value – 3 separate callbacks generated */
source_position->setLatitude (138.00);
source_position->setLongitude (34.00);
source_position->setAltitude (0.0);

/* Make changes to source value – efficient single callback */
Position temp (138.00, 34.00, 0.0);
*source_position = temp;

Figure 9 - Code demonstrating setup and execution of callbacks

execution container to simplify the design of the system. While
many calculations complete quickly, others such as video cap-
ture and vision tracking (as used in Tinmith-Metro) require
longer periods of time. Separate execution containers are prefer-
able, but in Tinmith-Metro the video frames must be available to
the renderer and IPC is too resource intensive so a thread is
used. Since the object store is not thread safe, a special commu-
nications mechanism using simple locking primitives is imple-
mented to pass the video frame to the main thread.
5.5 Operating system interface

The data flow model used by the software architecture is not
supported directly by any operating system and so a suitable
abstraction layer is required. POSIX compliant operating sys-
tems generally provide a file based interface to all devices in the
system, with open(), read(), write(), ioctl(), and close() system
calls. A generic set of classes are provided to interface to these
calls for devices such as serial ports, disk files, TCP sockets,
UDP sockets, and generic file descriptors. The global I/O man-
ager object keeps track of all file descriptors in use and gener-
ates data flow events when they become ready for reading or
writing. Non-blocking I/O is used with a select() processing
loop to allow a single thread to process many I/O sources and
time outs simultaneously. This is in contrast to languages such
as Java where programmers are encouraged to use a thread for
each blocking I/O device, increasing overheads and requiring
thread synchronisation. The I/O manager developed for this
software architecture is similar to the concept of a kernel used in
DIVERSE [16] and VR Juggler [3].

The software is portable across platforms and currently runs
on Linux and FreeBSD systems, as well as Windows using the
Cygwin libraries. Rendering to the display is performed using
OpenGL graphics under X Windows. When running on a local
server, the OpenGL graphics rendering is performed directly to
the hardware using Direct Rendering Extensions (DRI). The X
Windows server is used to provide window handling and the
management of events from the keyboard and mouse.

6 Sensors and events
Tinmith-evo5 processes incoming sensors and events using a

set of abstraction models and representation formats appropriate
for the type of input data. It has been designed mainly for input
devices used in typical mobile AR applications.
6.1 Tracking devices

Tracking devices return a number of degrees of freedom,
with either position or orientation or both depending on the
technology being used. Some of these results may be absolute in
that the values may be relative to the Earth’s coordinate system,
while others return their results relative to the coordinate system
of another device. These distinctions are used to categorise
trackers into four separate classes: Position, Orientation, Posi-
tionOffset, and OrientationOffset. Each of these classes repre-
sents 3DOF information, and for devices that produce less
DOFs some of the values will be set to a constant value. For
6DOF trackers the result will be split across both an orientation
and a position class. Each class contains a number of different
formats internally, and by adjusting one the data flow model is
used to recalculate the other values automatically.

The Position class is used to represent objects stored relative
to the Earth [14]. This class implements storage of values in
polar coordinates (LLH - latitude, longitude, height), Earth cen-
tred (ECEF - metres from the centre), and grid coordinates
(UTM - metres relative to flat zones on the Earth). The GPS
inputs are normally mapped to LLH inputs, while the OpenGL
rendering is performed using the grid based UTM system. UTM
coordinates are expressed relative to a local origin although in
most cases will be millions of metres away. If OpenGL is pre-
sented with these values directly, it will exceed the internal
range of the transformation matrices and fine objects near the
user will jitter and deform. The Position class implements a
fourth coordinate system based on UTM, but with all coordi-
nates relative to a movable local anchor point. The local anchor
reduces the range of floating point values and performs render-
ing of millimetre accurate objects (such as the hand tracker)
correctly. The PositionOffset class represents relative position
change from an absolute position in UTM surface XYZ coordi-
nates as well as a matrix format. Indoor trackers as well as 2D
desktop mice use PositionOffset.

Orientation values are specified relative to the local UTM
surface. While Euler angles can be used to specify orientation
they suffer from known Gimbal lock problems and so 4x4 ma-
trices can also be used. A third method named Aerospace angles
are used based on heading, pitch, and roll values that mimic
those used to express aircraft orientation. The use of three angles
is used by many common tracking devices that generate abso-
lute orientation. Similar to previously, an OrientationOffset class
represents relative orientation change from an absolute orienta-
tion. These values are stored using 4x4 Matrix values only since
Euler and Aerospace angles are difficult to correctly combine.
6.2 Filters

Incoming tracker data usually requires some processing be-
fore it can be presented to the scene graph or other data flow
objects for operations. Using the data flow model operations
such as filtering, combining degrees of freedom from multiple
trackers, conversions between coordinate systems, and perform-
ing mathematical operations can be performed. This is similar to
that performed by OpenTracker [25]. The various 3DOF classes
can be combined using matrix multiplication to form complex
articulated calculations if desired. While this combination can be
performed using processing objects it is difficult to visualise and
so the next section discusses the use of the scene graph to per-
form calculations instead.
6.3 Input devices

Discrete events are handled differently in the data flow
model due to their non-continuous nature. There are a number of
types of button presses to handle, some examples being mouse
buttons, keyboard buttons, and glove pinches. All inputs are
described using a keyboard model, where the object stores an
identifier for the last button activated with a press or release
action. The identifier may be either an ASCII character code or
an extended enumerated value for mouse buttons or glove fin-
gers. Processing objects may listen for input device events and
receive notification when they occur. Callbacks must process
each event as they arrive and multiple events are executed as
individual callbacks. Devices such as keyboards map directly to

this model, while others such as mice are represented using a
supplementary PositionOffset for motion.

Since software development is performed on a desktop vari-
ous tracking devices may not be available. Simulator objects are
available that can generate artificial events for many stages of
the data flow. For example, IOdevice simulators provide raw
data to test parsers and Position simulators are used to test the
user moving through the scene graph.

7 Demonstrations
The software architecture has been used to implement a

number of powerful applications such as the Tinmith-Metro
modelling application [22] [24], simplifying development.
7.1 Scene graph

A component of many applications based on the software ar-
chitecture is a hierarchical scene graph system with a structure
similar to that of Open Inventor [32] or SGI’s Performer [26],
with 3D geometry controlled by transformation nodes. Primitive
objects such as spheres, cones, cylinders, polygons, and triangle
meshes are supported and are contained within grouping objects.
Each object can contain transformations and levels in the scene
graph map directly to path names in the object store. XML files
with syntax similar to the X3D standard [40] are used to repre-
sent the scene graph during serialisation, and VRML and Inven-
tor formats are also supported.

An integrated part of the scene graph is a real time construc-
tive solid geometry (CSG) object based on data flow. The CSG
object is attached to two input nodes (which can be either single
objects or entire hierarchies) and listens for changes when they
occur. When an input object changes, the node performs the
CSG operation on the two inputs and generates an output mesh
that can then be rendered in the scene graph. The CSG engine is
capable of operating in real time so that the user can manipulate
the input objects and see the final output immediately.

Performing transformations on tracker values directly can be
time consuming and tedious and so scene graphs were devel-
oped to abstract away many of these tasks. By attaching tracking
devices to transformation nodes, complex articulated models
can be rendered with ease. Instead of using the scene graph just
for rendering, we propose to use the scene graph as a calculation
engine and extract values out of it after computations are per-
formed (sometimes without rendering anything). The use of the
scene graph means the results can be verified graphically by the
programmer instead of dealing with equations directly. An ex-
ample of these calculations in use is the processing of hand
tracking in Tinmith-Metro [22] [24], and the implementation of
an indoor ARToolKit based roof tracking system [23].
7.2 NFS server

To demonstrate that the software architecture implements file
system semantics, a Network File System (NFS) server object
was written and integrated into our applications. NFS [27] was
first introduced to provide remote file system capability over a
network. Files on a server appear to be mounted directly on a
client machine. NFS operates using Remote Procedure Calls
(RPC) over UDP packets and defines procedures to support
primitive file system operations lookup, create, remove, getattr,
setattr, read, write, rename, link, symlink, readlink, mkdir,

rmdir, readdir, and statfs. As a user browses the file system the
operating system’s virtual file system layer (VFS) generates
RPC requests to the NFS server. The NFS server processes each
request and generates a result with the required data.

Our NFS server implements the same RPC requests but
maps these to the object storage system. When the client re-
quests information about a file the server traverses the object
store and generates artificial information such as permissions,
inode values, and sizes based on the contents of the object found
and its type. Read requests on a virtual file will receive an XML
or text representation of the object that is generated on the fly,
and write operations can be used to modify the internals of an
object in the server. This NFS server implementation allows
interfacing to other legacy software using only simple file based
I/O.
7.3 DIS protocol support

Our original DIS protocol based collaboration work per-
formed previously [21] has been rewritten for this software ar-
chitecture except it is even more highly integrated and transpar-
ent. Entity state updates arriving from the network contain a
unique set of identifier values to separate it from other entities
such as site, host, and entity id values. Instead of having a sepa-
rate internal list of objects, the scene graph is used to represent
each entity at a path location such as /models/world/dis-
/siteid/hostid/entityid. As the position and orientation values are
extracted from the DIS entity state PDU packet [13], they are
converted into a 6DOF matrix and then pushed directly into the
scene graph. This method treats the DIS update the same as a
tracking device, with the numeric id values used to directly iden-
tify the correct place in the scene graph. Each entity can be rep-
resented using a 3D model for realistic rendering and updated in
real time as packets arrive.
7.4 Low end hardware

One of the goals of the software architecture was to be able
to develop applications for a wide range of computers. Our high
end platform is a Pentium-III laptop with a GeForce2 OpenGL
accelerator, but low end hardware is much slower and less capa-
ble. We performed tests using an old Pentium-I embedded com-
puter with no 3D acceleration to test the performance of the
architecture. The ARQuake game [36] uses a driver program
based on Tinmith-evo5 to generate UDP packets that control the
6DOF internal values in the game. The software architecture
processes the sensors with minimal overheads, the Quake ren-
derer using most of the processor.

The full Tinmith-Metro application was also tested on this
computer, but some changes were required in order to make the
software run. The lack of 3D acceleration requires software
emulation which is very slow and inefficient. Generating a sin-
gle frame takes many seconds and so this is not useful as a real
time AR system. We use a small open source emulation library
called TinyGL [2] which provides basic OpenGL functionality
but leaves out more complex features. This library is capable of
providing 3D rendering with textures on very old computers and
can generate a number of frames per second. The optical overlay
mode was used to avoid processing the video streams since the
hardware is not powerful enough.

8 Conclusion
This paper has described the Tinmith-evo5 software architec-

ture, explaining our integrated and uniform approach to building
applications for mixed reality environments. The architecture
uses a data flow methodology with an object-oriented design
and using an object store based on Unix file system semantics to
provide a simple model for programmers to use to write applica-
tions. Using these concepts, a number of powerful features such
as distributed programming, persistent storage, and run time
configuration are possible. The design is based on the C++ lan-
guage and although the language has a number of limitations,
these are overcome using a variety of techniques to develop
efficient applications that operate on a wide range of mobile
computers. The capabilities of this software architecture are
demonstrated by the Tinmith-Metro mobile outdoor modelling
application, as well as other examples presented in this paper.

9 References
[1] Bauer, M., Bruegge, B., Klinker, G., MacWilliams, A., Reicher, T., Ris, S.,

Sandor, C., and Wagner, M. Design of a Component-Based Augmented
Reality Framework. In 2nd Int'l Symposium on Augmented Reality, pp 45-
54, New York, NY, Oct 2001.

[2] Bellard, F. TinyGL version 0.4. http://fabrice.bellard.free.fr/TinyGL
[3] Bierbaum, A., Just, C., Hartling, P., Meinert, K., Baker, A., and Cruz-Neira,

C. VR Juggler: A Virtual Platform for Virtual Reality Application Devel-
opment. In IEEE Virtual Reality 2001, pp 89-96, Yokohama, Japan, Mar
2001.

[4] Blach, R., Landauer, J., Rosch, A., and Simon, A. A Highly Flexible Virtual
Reality System. Future Generation Computer Systems, 1998.

[5] Brown, D., Julier, S., Baillot, Y., and Livingston, M. A. An Event-Based
Data Distribution Mechanism for Collaborative Mobile Augmented Reality
and Virtual Environments. In IEEE Virtual Reality 2003, Los Angeles, Ca,
Mar 2003.

[6] Calvin, J., Dickens, A., Gaines, B., Metzger, P., Miller, D., and Owen, D.
The SIMNET virtual world architecture. In IEEE VRAIS '93, pp 450-455,
Sep 1993.

[7] Frecon, E. and Stenius, M. DIVE: A Scaleable Network Architecture For
Distributed Virtual Environments. Distributed Systems Engineering Jour-
nal, Vol. 5, No. 3, pp 91-100, 1998.

[8] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design Patterns:
Elements of Reusable Object-Oriented Software. Reading, Ma, Addison
Wesley Publishing Company, 1995.

[9] Gobbetti, E. and Balaguer, J.-F. VB2: An Architecture For Interaction In
Synthetic Worlds. In 6th Int'l ACM Symposium on User Interface Software
and Technology, pp 167-178, Atlanta, Ga, Nov 1993.

[10] Grimsdale, G. dVS - distributed virtual environment system. In Proc.
Computer Graphics 1991 Conference, London, UK, 1991.

[11] Hesina, G., Schmalstieg, D., Fuhrmann, A., and Purgathofer, W. Distrib-
uted Open Inventor: A Practical Approach to Distributed 3D Graphics. In
ACM Virtual Reality Software Technology, pp 74-81, London, UK, Dec
20-22, 1999.

[12] Hubbold, R., Cook, J., Keates, M., Gibson, S., Howard, T., Murta, A.,
West, A., and Pettifer, S. GNU/MAVERICK - A micro-kernel for large-
scale virtual environments. In ACM Virtual Reality Software Technology,
pp 66-73, London, UK, Dec 1999.

[13] Institute of Electrical and Electronics Engineers. Protocols for Distributed
Interactive Simulation. In ANSI/IEEE Standard 1278-1993, 1993.

[14] Intergovernmental Committee On Surveying and Mapping. Geocentric
Datum of Australia - Technical Manual.
http://www.anzlic.org.au/icsm/gdatm/index.html

[15] Just, C., Bierbaum, A., Hartling, P., Meinert, K., Cruz-Neira, C., and Baker,
A. VjControl: An Advanced Configuration Management Tool for VR Jug-
gler Applications. In IEEE Virtual Reality 2001, pp 97-104, Yokohama,
Japan, Mar 2001.

[16] Kelso, J., Arsenault, L. E., Satterfield, S. G., and Kriz, R. D. DIVERSE: A
Framework for Building Extensible and Reconfigurable Device Independ-
ent Virtual Environments. In IEEE Virtual Reality 2002, Orlando, Fl, Mar
2002.

[17] MacIntyre, B. and Feiner, S. Language-Level Support for Exploratory
Programming of Distributed Virtual Environments. In 9th Int'l Symposium
on User Interface Software and Technology, pp 83-94, Seattle, WA, Nov
1996.

[18] MacIntyre, B. and Feiner, S. A Distributed 3D Graphics Library. In ACM
SIGGRAPH 1998, pp 361-370, Orlando, Fl, Jul 1998.

[19] McKusick, M. K., Bostic, K., Karels, M. J., and Quarterman, J. S. The
Design and Implementation of the 4.4 BSD Operating System. 2nd ed, Ad-
dison-Wesley, 1996.

[20] Pausch, R., et al. Alice: A rapid prototyping system for 3D graphics. IEEE
Computer Graphics and Applications, Vol. 15, No. 3, pp 8-11, 1995.

[21] Piekarski, W., Gunther, B., and Thomas, B. Integrating Virtual and Aug-
mented Realities in an Outdoor Application. In 2nd Int'l Workshop on
Augmented Reality, pp 45-54, San Francisco, Ca, Oct 1999.

[22] Piekarski, W. and Thomas, B. H. Tinmith-Metro: New Outdoor Tech-
niques for Creating City Models with an Augmented Reality Wearable
Computer. In 5th Int'l Symposium on Wearable Computers, pp 31-38, Zu-
rich, Switzerland, Oct 2001.

[23] Piekarski, W., Avery, B., Thomas, B. H., and Malbezin, P. Hybrid Indoor
and Outdoor Tracking for Mobile 3D Mixed Reality. In 2nd Int'l Sympo-
sium on Mixed and Augmented Reality, Tokyo, Japan, Oct 2003.

[24] Piekarski, W. and Thomas, B. H. Interactive Augmented Reality Tech-
niques for Construction at a Distance of 3D Geometry. In Immersive Pro-
jection Technology / Eurographics Virtual Environments, Zurich, Switzer-
land, May 2003.

[25] Reitmayr, G. and Schmalstieg, D. An Open Software Architecture for
Virtual Reality Interaction. In Virtual Reality Software Technology, Banff,
Canada, Nov 2001.

[26] Rohlf, J. and Helman, J. IRIS Performer: A High Performance Multiproc-
essing Toolkit for Real-Time 3D Graphics. In ACM SIGGRAPH 1994, Jul
1994.

[27] Sandberg, R., Goldberg, D., Kleiman, S., Walsh, D., and Lyon, B. Design
and Implementation of the Sun Network Filesystem. In Summer 1985
Usenix Conference, pp 119-130, Portland, Or, Jun 1985.

[28] Schmalstieg, D., Fuhrmann, A., and Hesina, G. Bridging Multiple User
Interface Dimensions with Augmented Reality. In 3rd Int'l Symposium on
Augmented Reality, pp 20-29, Munich, Germany, Oct 2000.

[29] Schmalstieg, D. and Hesina, G. Distributed applications for collaborative
augmented reality. In IEEE Virtual Reality, pp 59-66, Orlando, Fl, Mar
2002.

[30] Sense8 Incorporated. World Toolkit. http://www.sense8.com
[31] Shaw, C., Green, M., Liang, J., and Sun, Y. Decoupled Simulation in Vir-

tual Reality with The MR Toolkit. ACM Transactions on Information Sys-
tems, Vol. 11, No. 3, pp 287-317, 1993.

[32] Strauss, P. R. IRIS Inventor, A 3D Graphics Toolkit. In 8th Annual Con-
ference on Object-oriented Programming Systems, pp 192-200, Washing-
ton, DC, Oct 1993.

[33] Strauss, P. S. and Carey, R. An Object-Oriented 3D Graphics Toolkit. In
ACM SIGGRAPH 1992, pp 341-349, Chicago, Illinois, Jul 1992.

[34] Sun Microsystems. The Java3D API - Technical White Paper. Technical
Report, Sun Microsystems, Jul 1997.

[35] Taylor, R. M., Hudson, T. C., Seeger, A., Weber, H., Juliano, J., and Hel-
ser, A. T. VRPN: A Device-Independent, Network-Transparent VR Pe-
ripheral System. In ACM Virtual Reality Software Technology, pp 55-61,
Banff, Canada, Nov 15-17, 2001.

[36] Thomas, B., Close, B., Donoghue, J., Squires, J., De Bondi, P., Morris, M.,
and Piekarski, W. ARQuake: An Outdoor/Indoor Augmented Reality First
Person Application. In 4th Int'l Symposium on Wearable Computers, pp
139-146, Atlanta, Ga, Oct 2000.

[37] Tramberend, H. Avocado: A Distributed Virtual Reality Framework. In
IEEE Virtual Reality 1999, pp 14-21, Houston, Tx, Mar 1999.

[38] VRML Consortium Incorporated. The Virtual Reality Modeling Language.
In ISO/IEC 14772-1:1997, 1997.

[39] Watsen, K. and Zyda, M. Bamboo - A Portable System for Dynamically
Extensible, Real-time, Networked, Virtual Environments. In IEEE Virtual
Reality Annual International Symposium, Atlanta, Ga, Mar 1998.

[40] Web3D Consortium. Extensible 3D (X3D) Draft Specification. In ISO/IEC
FCD 19776-1:200x, 2002.

[41] Zyda, M. J., Pratt, D. R., Monahan, J. G., and Wilson, K. P. NPSNET:
Constructing a 3D virtual world. In 1992 ACM Symposium on Interactive
3D Graphics, pp 147-156, Cambridge, Ma, Mar 1992.

