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Abstract 
This paper presents a new software architecture for 3D 

mixed reality applications, named Tinmith-evo5. Currently there 
are a limited number of existing toolkits for the development of 
3D mixed reality applications, each optimised for a particular 
feature but at the detriment of others. Complex interactive user 
interfaces and applications require extensive supporting infra-
structure, and can be hampered by inadequate support. The 
Tinmith-evo5 architecture is optimised to develop mobile aug-
mented reality and other interactive 3D applications on port-
able platforms with limited resources. This architecture is im-
plemented in C++ with an object-oriented data flow design, an 
object store based on the Unix file system model, and uses other 
ideas from existing previous work. 

1 Introduction 
Three dimensional environments are a challenging area to 

develop applications for since the software development tools 
are quite primitive when compared to current 2D tools. 3D envi-
ronments involve the use of non-standardised and changing 
hardware, varying user interface methodologies, and a number 
of different application requirements. 2D desktop environments 
have converged toward an agreed best practice that allows de-
velopers to focus on the application rather than the implementa-
tion, but this has not yet occurred in 3D environments. 

Shaw et al [31] explain how the development of high level 
software is not possible until there is a stable base of low level 
toolkits to support them, and this same development process 
occurred in the 2D desktop area as well. There have been a 
number of systems that provide low level hardware abstractions 
and distribution of values over a network, implemented using 
approximately similar ideas. For higher level abstractions, there 
are only a few software systems that address this and each is 
focused on a particular problem domain. 

The Tinmith-evo5 architecture described in this paper con-
tains a novel combination of a variety of techniques to provide a 
software architecture that can be used for developing mobile AR 
applications and complex user interfaces. No one particular sys-
tem was used as a base, but rather a number of systems were 
reviewed and the best ideas combined. New ideas are also de-
scribed that when combined together produce a software archi-
tecture which is designed for wearable hardware, high perform-
ance, mobile 3D graphics, and high level user interfaces. The 
software architecture is demonstrated using the Tinmith-Metro 
system [22] [24] in Figure 2, performing the 3D modelling of 
objects in real time using hand gestures. 

MR systems are usually sensor driven and so the software 
architecture is based on data flow. Figure 1 shows this data flow 
from an overall perspective with sensor data arriving into the 
MR system, being processed by specific application code and 
configurations, and then rendering the final output to the HMD 
of the user. The data flow model is supported by the use of ob-
jects to perform specific actions such as processing tracker data, 
combining results, and rendering 3D graphics. Objects allow 
problems to be broken down into small separate tasks to sim-
plify software development. Objects are then connected together 
into a directed graph, and as new values enter the system, the 
values are processed through the graph as a flow of data, adjust-
ing the current state and eventually rendering to the HMD. 
These objects can be distributed across multiple processes or 
computers in units named execution containers, with the data 
flow occurring over a network when required. 

Research toolkits are designed using many different method-
ologies and are difficult to use together because of conflicting 
requirements that may be difficult to address. In the future these 
may become standardised but for now we avoid trying to make 
immature and opposing toolkits work directly together so that 
research can be performed into new ways of developing soft-
ware. All the components of the architecture are developed from 
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Figure 1 - Overall architecture - sensors are processed using libraries 

and application components, then rendered to the HMD 

  
Figure 2 - User outdoors manipulating a virtual table using AR 

Tinmith 
In ISMAR2003, International Symposium on Mixed and Augmented RealityOct 7 - 10, 2003 - Tokyo, Japan - Copyright (C) 2003 IEEEPlease visit http://www.tinmith.net for more information



the ground up using a common methodology, with abstractions 
to hide away any differences from external libraries that are 
required. The goal is to not to treat the application as a combina-
tion of scene graph, tracking library, and shared memory, but 
instead as a single entity with blurred boundaries. 

As part of the integrated component design methodology, the 
entire system has been structured around the model of a memory 
based file system. Instead of using global variables to reference 
the many objects available in the system, an object storage sys-
tem based on Unix file system semantics provides a logical in-
terface that is easy to understand. All objects that process data in 
the system are stored in this object repository, making them 
accessible to other objects in the system through discovery at 
run time. The ability to perform distribution across multiple 
computers is added as an extra component using object data 
flow, and is not an internal part of the architecture that imposes 
a constant performance penalty whether in use or not. 

The most important goal with the design of this software ar-
chitecture is performance. Due to limitations in wearable com-
puter hardware, it is important that as much work as possible be 
extracted out of the resources available. The C++ language and 
optimising compilers are used for all development, supporting 
both low level code and high level features such as object-
oriented programming. The renderer that forms a core compo-
nent of most applications is implemented using OpenGL and 
provides high performance graphics support when 3D accelera-
tion hardware is present in the system. The software has been 
used on a number of small and relatively slow computers and is 
capable of running adequately in most cases, the exception be-
ing the rendering of large 3D scenes. 

This software architecture addresses a number of problems 
currently affecting mobile AR and similar environments: 
• Hardware changes rapidly over time, and so should be ab-

stracted to allow portability across different environments. 
• Mobile AR is limited by portability constraints and choices 

must be made between large and powerful or small and less 
capable equipment. Software for outdoor use must be effi-
ciently designed and be able to run on mobile hardware that 
may be a number of generations behind current state of the 
art indoor computers. 

• 3D graphics systems traditionally operate using a flat Earth 
model and do not readily deal with large areas of the planet 
that can be roamed with a mobile AR system. Being able to 
handle coordinates that span a wide range of scales, from 
millimetre level tracking of the hands to moving over hun-
dreds of kilometres of land is required. 

• User interfaces for mobile AR are quite primitive and there 
is limited toolkit support for developing applications. This 
problem is difficult to solve and current development in this 
area is quite immature. 
This paper contains a summary of previous work, describing 

existing systems and their features. The design of the architec-
ture is then described, including concepts such as data flow and 
object distribution. The object storage system forms a core part 
of the architecture and is described in the following section. The 
next section describes the more interesting aspects of the im-
plementation of the software. Since processing input is a major 
part of the architecture, a section describes the model used to 

abstract input events. The next section describes various exam-
ples demonstrating the usefulness of the software architecture, 
followed by a conclusion. 

2 Previous work 
This section discusses a number of both low and high level 

toolkits that have been developed to help implement VE appli-
cations efficiently. We are interested in software architectures to 
support 3D mobile AR and not in areas such as wearable con-
text awareness or other high level information sharing. There are 
a number of areas that need to be addressed, such as data distri-
bution, rendering, user interaction, tracker abstractions, and 
rapid prototyping. 
2.1 Hardware abstraction libraries 

Abstracting hardware presents a common programming 
model so applications only need to be written once to work with 
many devices. Most operating systems provide these abstrac-
tions for keyboards and mice and other researchers identified the 
need to have similar abstractions in 3D environments, and so 
implemented software such as the MR Toolkit [31] and VRPN 
[35]. Both of these systems are capable of processing trackers, 
distributing them over a network, and support many types of 
devices. Similar toolkits have been developed recently such as 
MAVERICK [12], VrJuggler [3], DIVERSE [16], and Open-
Tracker [25]. Each of these systems provides an inner kernel 
that connects together various components such as input ab-
stractions for trackers, support code for processing data, and 
abstractions to rendering systems. 
2.2 Distributed entity systems 

One area of investigation is the implementation of distributed 
virtual environments. This involves simulating entities on ma-
chines and then viewing them on remote clients over a network. 
The main focus of this research is on the protocols rather than 
the toolkits, such as SIMNET [6] and NPSNET [41] which use 
protocols similar to DIS [13]. These protocols usually only send 
6DOF and entity information and the application is responsible 
for the models and rendering. These restrictions allow efficient 
scaling to large sizes. The Bamboo system [39] uses network 
loadable modules to support extensible protocols. BARS [5] 
uses an event based distribution mechanism to support mobile 
collaboration. 
2.3 Software systems 

A number of software systems have been implemented to 
provide abstractions for other requirements apart from just 
trackers. Two early commercial toolkits were dVS [10] and 
World Toolkit [30]. These both provide tracking abstractions 
along with scene graphs, event triggering, and task distribution 
across machines. SGI has developed two powerful scene graph 
libraries based on OpenGL, IRIS Performer [26] and Open 
Inventor [33]. Similar scene graphs such as Java3D [34] and 
Repo-3D [18] are available for Java and Modula-3. 

Languages such as VRML 2.0 [38] have been develop to 
store scene graph definitions, and also include features such as 
fields and routes for developing interactive applications. Objects 
in VRML contain fields with values such as centre point, radius, 
and other geometry values. These fields can be controlled by 



output fields from other objects, or used to control other objects. 
Using a route command, inputs and outputs can be connected 
and used to build complex flows of data in 3D models. Light-
ning [4] performs similar flow of data between objects, VB2 [9] 
use a constraint engine to implement relationships between ob-
jects in virtual environments, and DWARF [1] uses a services 
based framework to connect components over a network. 

High level authoring tools such as ALICE [20] allow novice 
users to implement simple VE applications using a scripting 
language, but is limited to the existing interactions supplied with 
the system. 
2.4 Fully distributed systems 

While the previous systems only distribute small parts of the 
internal state, these systems perform more complete distribution 
of applications and scene graphs. The aim of the Tinmith-evo5 
architecture is to provide a high level architecture similar to 
those discussed here. 

Coterie [17] was developed as a high level 3D toolkit and a 
more complete solution than just tracking abstraction. The main 
contribution is the modification of language level primitives to 
support the implementation of a distributed shared memory. 
This is integrated with packages that support an in-built inter-
preted language, threaded processing, tracker abstractions, ani-
mation, and a scene graph Repo-3D [18]. Multiple threads in the 
system execute code within objects and communicate via dis-
tributed shared memory. 

The Studierstube system [28] is a framework for distributed 
3D applications. It is based on a tracker abstraction [25], and a 
distributed version of Open Inventor [11]. The distributed scene 
graph allows various applications to transparently share the 
same 3D environment with real time updates. Studierstube takes 
the opposite approach to Coterie and embeds the entire applica-
tion into a distributed scene graph, and this has been used to 
demonstrate application migration between separate machines 
[29]. Studierstube applications must be implemented using In-
ventor objects to be supported in this way however. 

Systems such as DIVE [7] and Avocado [37] also support 
distributed scene graphs. DIVE uses multicast to improve scal-
ability and reduce bandwidth usage. Avocado provides similar 
features as VRML fields and routes, with objects attached to 
each other and processed using a scripting language. 

3 Object design 
This section describes the overall design of the classes in the 

software architecture. Class definitions used in the software 
architecture can be divided into four categories - those for repre-
senting data values (data), those for processing input values and 
then producing some kind of output values (processing), those 
for implementing core features that other classes can inherit or 
use (core), and helper code that implements interfaces to stream-
line development (helper). Each class can also be classified into 
one of the categories depicted in Figure 3. Applications require 
classes from both high and low levels to be instantiated as ob-
jects and connected together. Each class can contain nested sub-
objects of other class types or primitive C++ values such as 
pointers, floats, integers, and strings. 
3.1 Data flow 

Data objects in the system are used to supply input for proc-
essing objects. Processing objects then produce another data 
object that can then be propagated onwards for further opera-
tions. These connections form a flow of data through the sys-
tem. Figure 4 depicts how data values initially arrive as tracker 
inputs, and are then processed in various stages of a virtual pipe-
line before reaching the user in the form of rendered output. 
This figure depicts categories for the objects used in various 
stages of the pipeline, but is only an approximate model. 

The data flow model is implemented by having processing 
objects listen to events that are generated by data objects. When 
the data object changes to a new value, interested listening ob-
jects are notified of this change via callbacks. This is similar to 
the observer/observable pattern described by Gamma et al [8]. 
Any number of processing objects can listen in on a data value, 
and processing objects can have any number of output values. 
The use of data flow is common in many of the previous sys-
tems described. 
3.2 Serialisation and distribution 

Objects in the system are represented using the C++ com-
piler’s native internal format. It is not possible to simply take the 
binary data for the object and directly save it to disk or transport 
it across a network since it is specific to the running process 
only. The ability to save the state of a running system and then 
restart it at a later time or transfer it to another machine is desir-
able, and so a generic format that can represent application state 
is required. Serialisation is not available in C++ by default and 
so extra logic is provided to handle this requirement (the imple-
mentation details are discussed later). A structured XML format 
is used by default, with a binary format used to reduce the size 
of the data when required. Nested objects are processed by re-
cursively calling the serialisation code and the results are as-
sembled together for the top level object. 

The first use for a serialisation capability is to store persistent 
configurations on disk. The XML header is parsed to determine 
the object type, matching C++ objects are instantiated, and are 
configured to contain the values in the XML data. When the 
application is shut down these objects may be serialised back to 
disk so that it can resume its previous state at a later time. The 
serialised XML files may be used as a configuration system, and 
can be edited with a text editor or stored in a database. These 
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objects can also be modified and reparsed at run time to adjust 
the application while in operation. This allows changing aspects 
of the application without having to resort to slower interpreted 
language support. While internal components such as network 
and disk interfaces cannot be serialised in this fashion, the parts 
of the application that a user would like to change are supported. 
Similarly, OpenTracker uses XML based configurations for 
filter graphs [25], VR Juggler uses text files for tracker 
reconfiguration [15], and Diverse uses compiled C++ modules 
switchable at run time [16]. 

This serialisation capability may also be used to implement 
distributed applications. An important feature is that the system 
does not force the user to use this capability. In most cases, ap-
plications are implemented as single processes and interactions 
between objects occur using simple function call based call-
backs. The overhead of supporting the callback updates is very 
minimal when only local data is used. In contrast, many other 
systems require the application to use IPC interfaces even when 
operations are being performed locally, taking its toll as a large 
penalty on performance. 

Figure 5 part (1) depicts two objects that are connected via 
callbacks and so the listener is notified when the source signals a 
change has been made. Figure 5 part (2) depicts how objects can 
be inserted to implement distribution. When the source gener-
ates a new value, the Tx object serialises the new value and then 
transmits it over a network or other IPC mechanism. The Rx 
object at the destination receives the incoming data, deserialises 
it in place using the same class and then signals to the listeners 
of the object that new data is available. The listener object then 
receives a callback in the same way as in Figure 5 part (1). This 
distribution mechanism is transparent to the listening objects 
since it is implemented using the same interfaces as any other 
processing object. The object store described later automatically 
provides network distribution when required so that the pro-
grammer does not need to implement this functionality. 

The mechanism used for distribution (via callbacks and a 
possible network interface) is efficient because updates are only 
sent to those processing objects that are interested. Each object 
is stored on a particular server and other clients can make re-
quests to receive updates when changes are made. For small 
systems, this is more efficient than broadcast protocols, although 
for large systems with thousands of processes each requiring a 
value this may not be appropriate. By using proxy processes, 
cached copies of values may be further distributed to others, 
which can assist with scaling. If a client needs to change the 
master value, the server must be configured to circularly listen 
for events from the client, or allow updates to be forced in via 

the network command interface (described later in this chapter). 
Any changes forced in by the client will be lost by the server 
when the next incoming value arrives from the source, so this 
method is only practical when the value is no longer updating. 

4 Object storage 
Systems containing many interoperating objects require tech-

niques to organise this complexity. This section introduces the 
storing of objects based on the familiar Unix file system. 
4.1 Unix file system design 

The Unix operating system (and clones) implements a hier-
archical file system to organise and store data [19]. File systems 
provide an abstraction to simplify the storage of data on a disk 
that is otherwise just a raw linear collection of fixed size blocks 
(typically 512 bytes). Files can easily exceed the block size and 
so higher level abstractions are required for storage. An inode 
contains information about a file on a disk as well as a list of 
ordered pointers to blocks containing data. Each inode contains 
a unique identifier and is stored in a list at a fixed location on the 
disk. 

Directory structures were developed to store mappings be-
tween human readable text names and numeric inode values. 
Directories are also stored using inodes and have an associated 
unique identifier. Since both directories and files are represented 
using inodes, directories can provide text names for other direc-
tory inodes and so form a hierarchical tree structure. A top level 
root inode (with identifier 0) is used to represent the root direc-
tory (/) of the structure. Nodes in the tree can be accessed by 
specifying the name of each directory joined together using for-
ward slash (/) characters. Path names that begin with a / charac-
ter are referred to as absolute paths and are relative to the top 
level root node. Other path names starting with a name are re-
ferred to as relative paths and are accessed from the current 
working directory. Paths may contain aliases that have special 
meaning – the name . (single dot) is a relative reference to the 
current directory, while .. (two dots) is a relative reference to the 
parent of the current directory. Each file and directory is named 
relative to its parent and the full absolute path name is not stored 
anywhere. This allows changes at the top level to be instantly 
inherited by all children. 

Unix file systems implement hard links, multiple directory 
entries referencing a single inode value. This allows the same 
file to appear to exist in multiple locations but in fact is using a 
single set of blocks on disk. Modifications to one file will im-
mediately affect others. Inodes store reference counts so that the 
disk blocks are not removed until there are no more references. 
A second link type named a symbolic link is used to provide a 
path name based link to another file. Directory entries can store 
mappings between names and inodes, and also names and other 
path names. When the kernel encounters a symbolic link it per-
forms a lookup of the link name to find the appropriate inode 
and then resumes the previous lookup in progress. Since sym-
bolic links point to paths and not inodes, a destination file can be 
replaced and all links to it will update automatically. Hard links 
require each link to be changed since the inode number of the 
new file is different. 

Listener Source 
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Figure 5 - Network distribution is implemented transparently 

using automatically generated serialisation callbacks 



4.2 Object file systems 
One problem with systems that store large collections of ob-

jects is accessing and updating them; the traditional approach 
being the use of global variables. Each module that needs to 
reference other objects must include definitions for the global 
variables, and suitable names must be used to avoid namespace 
collisions. Having global objects requires the compiler to stati-
cally declare these in advance, and hence cannot be changed at 
run time to suit conditions. To overcome this problem, systems 
such as dVS [10] and COTERIE [17] implement the concept of 
a repository where objects can be stored for later retrieval based 
on a key. The Windows operating system also implements a 
registry, which is a hierarchical database of values stored on 
disk and used to configure the operation of the system from a 
central location. These runtime style storage systems can be 
modified without recompilation to store a variety of values, and 
do not require statically declared objects. Programmers may 
independently write modules and are only required to agree on 
the naming convention to reference the shared objects. Refer-
encing items stored within object-oriented databases has also 
been implemented previously using query languages such as 
XML’s XPath. XPath allows for the searching of objects meet-
ing some kind of criteria (similar to SQL and relational data-
bases), but was not intended to be for exact references like the 
Unix file system model. 

Tinmith-evo5 integrates a number of concepts to develop a 
hierarchical object store. Instantiated objects in the system are 
created in memory (statically by the compiler, or dynamically at 
run time) and then a pointer reference is placed into the object 
store. Rather than just implementing a hash of names to retrieve 
object pointers, the object store is based around the Unix file 
system model described earlier. Path names are used to traverse 
a tree of directories and files, and the inode values no longer 
point to lists of blocks but are instead pointers to memory ad-
dresses. These memory addresses are the locations of objects 
and method calls can then be made just like with any C++ ob-
ject. Figure 6 depicts code fragments that demonstrate the stor-
age of objects, retrieval and modification, and debugging. 

On the surface, this file system approach appears to give 
similar results to those achieved with other systems using names 
to lookup objects. The real advantages are gained when the Unix 
file system model is taken to its full extent to provide a number 
of interesting features. Hard links may be implemented by hav-
ing multiple locations in the hierarchy point to the same object 
address. This allows code to use new naming conventions while 
still supporting older names for legacy source code. Symbolic 
links can be implemented by storing a path name redirection, so 
when the object store is traversing the internal structures it will 
recursively lookup the linked path names. Symbolic links im-
plement much of the same functionality of hard links, but may 
also be used to provide dynamic switching of objects. For ex-
ample, if a system contains both GPS (at /human/body/gps) and 
vision tracking (at /human/body/camera), then a symbolic link 
can be created at /human/body/tracking that points to the cur-
rently active tracker. The true source of input devices may be 
concealed from the developer using symbolic links as an ab-
straction layer. 

During the implementation, we added several optimisations 
to reduce memory consumption and unnecessary lookups, and 
this resulted in the final version diverging slightly from the Unix 
file system model. Copy links are similar to hard links but do 
not actually share the same object pointer. Instead, a copy of the 
object is made for the link destination, and whenever the source 
is changed the object store copies the new updates into the des-
tination object using data flow. The reverse is not true however, 
and if the destination is modified it is not copied back. These 
links were implemented using a copy since the object itself ac-
tually contains its own name and parent pointer. This prevents 
multiple names sharing the same object pointer but makes it 
possible for an object to quickly find its parent without having to 
traverse from the root node. Pointer links are the same as Unix 
based symbolic links in that they store a path name redirection 
in the object store. 
4.3 Object hierarchies 

In object-oriented languages like C++, objects may be con-
tained inside other objects, and this is referred to as composition. 
Figure 7 depicts the design of an object for storing position on 
the Earth. The example contains both grid (UTM) and spherical 
(LLH) coordinates and keeps the values synchronised using 
internal data flow processing. To gain access to the internal 
LLH and UTM values, external code may reference these di-
rectly if declared public or using access methods if declared 
private. 

Using the object store described previously and the example 
in Figure 6, the Position object could be stored at the path 
/human/body/position. To retrieve a pointer to this object the 
call Position::getStorage(“/human/body/position”) is used. Us-
ing standard C++, pointer->getLLH() or pointer->llh can be 
used to access the spherical LLH values. When using a file sys-
tem based object store, it is also logical to store references to the 
child objects at sub paths to the parent. The spherical LLH child 
object can therefore be accessed directly using the call Co-
ordLLH::getStorage(“/human/body/position/llh”). Both the par-
ent and child objects are referenced in separate parts of the file 
system tree, but still remain joined together as a single object 
and so are still accessible to traditionally written code. The other 

/* Create object and store at an absolute path */ 
Position *pos = new Position (); 
pos->setStorage (“/human/body/position”); 
 
/* Code that changes the position value with a new LLH position update */ 
CoordLLH newllh; 
Position *update = Position::getStorage (“/human/body/position”); 
update->set (&newllh); 

Figure 6 - Examples showing the hierarchical object store in use 

/* Simple angle values */ 
class Angle { 
  double degrees; 
}; 
 
 
/* Simple distance values */ 
class Distance { 
  double metres; 
}; 
 
 
/* For spherical Earth coords */ 
class CoordLLH { 
  Angle latitude; 
  Angle longitude; 
  Distance altitude; 
}; 

/* For grid based Earth coords */ 
class CoordUTM { 
  Distance eastings; 
  Distance northings; 
  Distance altitude; 
  int zone; 
  char letter; 
}; 
 
 
/* Container for LLH and UTM values */ 
class Position 
{ 
  CoordLLH llh; 
  CoordUTM utm; 
 
  CoordUTM &getLLH() { return (llh); };
  CoordLLH &getUTM() { return (utm); };
}; 

Figure 7 - Simplified composite Position class with nested objects 



advantage to this scheme is that since the file system is dynamic 
and can be traversed, child objects may be added or removed at 
run time (not just at compilation), and accessed without stati-
cally compiled names. Code can discover and access the con-
tents of objects easily, allowing the writing of very generic code. 
Given a Position object, the call pointer->getNode(“llh”) can be 
used to dynamically retrieve the LLH child object from the par-
ent. While objects added at run time are not visible to standard 
C++ code, dynamic access, serialisation, and callbacks are fully 
supported. 

Many OO based languages implement containers to store ob-
jects based on a key: C++ implements STL hashmap, Java im-
plements HashMap, and SmallTalk implements Dictionaries. 
Some systems have been implemented that use containers to 
implement hierarchical structures of stored objects. An alternate 
implementation is to use the entire path as a single key, but this 
is not hierarchical storage. All of these implementation are dif-
ferent from our object store because they only store pointers to 
an object but do not handle the child objects contained within. 
Languages such as Java and SmallTalk support the run time 
discovery of child objects but the use of a consistent file system 
approach for all levels of the hierarchy is not performed. The file 
system approach is even more useful in languages such as C++, 
where run time discovery is not normally available. 

5 Implementation internals 
The Tinmith-evo5 architecture is implemented in C++ to al-

low for an efficient implementation of the software. There is 
very limited run time support (avoiding features such as garbage 
collection) to hinder performance and compilers can generate 
optimised code, making it ideal for machines with limited re-
sources. The C++ language does not provide some of the fea-
tures needed for the implementation of the desired software 
architecture, so extra code is supplied to provide these. This 
section describes some internal implementation details. 
5.1 Class definition and code generation 

C++ is a statically compiled language that provides object-
oriented programming with inheritance, support for templates, 
and a macro pre-processor. Each object that is a part of the soft-
ware architecture is required to inherit the abstract class Storable 
to provide interfaces that the object store and serialisation com-
ponents require. A custom developed code generator TCC is 
used to generate internal information for each object. The Stor-
able class uses this generated information to provide the discov-
ery of internal objects, with the standard C++ RTTI functional-
ity being too limited to use. A sample C++ object for an In-
terSense IS-300 tracker is demonstrated in Figure 8, with object 
and method declarations depicted. Special wrapper macros are 
used to indicate callback functions and internal variables that 
should be processed. These macros pass through during C++ 
compilation but are used by TCC to easily find the desired val-
ues without having to write a full C++ parser (although this 
could be avoided with more effort). The code generation is per-
formed automatically because it is tedious and error prone for 
humans to do this by hand. When internal changes are made, 
TCC is used to regenerate the derived code in a separate file 
which is hidden from the programmer. Separate definition files 

(such as used by CORBA and SUN RPC) are not transparent 
and require the programmer to keep the definitions synchronised 
with the implemented source code. 

Figure 8 depicts statically compiled methods such as getOri-
entation() and getMatrix() that are used to access internal values 
in the object. Inheriting the Orientationable and Matrixable in-
terfaces in the class implements polymorphism and the use of 
the class as a generic tracker. The internal Storable methods 
getVarList(), getVarType(), and getVarPointer() are used for the 
run time discovery of object contents, providing similar func-
tionality to SmallTalk and Java. The getNode(“name”) method 
is implemented by Storable and can be used to traverse to chil-
dren objects, and is also used by the object store. The use of 
these method calls does add small overheads for lookup against 
internal object tables, but only has to be used when static refer-
ences are not possible. 

This object discovery mechanism is used to automatically 
implement serialisation functions. Storable implements toXml() 
and fromXml() methods that can write out objects in an XML 
format that is human and machine readable. An alternate format 
is with the toBinary() and fromBinary() methods that use a 
compact binary representation in an endian neutral format. An 
important limitation of serialisation is that it cannot handle proc-
ess specific values such as file descriptors or graphical handles, 
and so these must be implemented using manually written code. 
5.2 Callback propagation 

The data flow model described previously is implemented 
using pointer based method callbacks. Instead of statically defin-
ing specific methods to be called when an event occurs, a 
pointer to any method defined with GEN_CALLBACK_H may 
be used. A single callback may listen to a number of event 
sources and a pointer to the modified object is passed as an ar-
gument to delimit between many objects. These callbacks are 
simple and efficient to perform since they involve a pointer 
dereference and then a function call, which is only slightly more 
overhead than using static function calls. 

When a callback is attached to an object, it will be notified 
whenever the object or any of its children are changed. When an 
object is modified it will execute the handlers attached at that 
level of the object store, and then work up the hierarchy of the 
object store executing handlers until it finds an object that is not 
contained within a parent object. The execution of callbacks is 
automatically implemented for copy and set operations using 
C++ operator overloading, so the programmer does not need to 
be aware of this mechanism. For objects containing internal 
class IS300 : public Storable, public Orientationable, public Matrixable 
{ 
#define STORABLE_CLASS IS300  // Declare class name 
#include “interface/storable-generic.h” // Include customised template code 
 
public:    // Declare callback using macro wrapper 
 GEN_CALLBACK_H (IS300, process_device, IOdevice, _dev); 
  
 Orientation *getOrientation (void); // Implement orientationable interface 
 IS300tracker *getIS300tracker (void); // Access custom IS300 values 
 Matrix  *getMatrix (void); // Implement matrixable interface 
 RateTimer *getRateTimer (void); // Implement statistics interface 
  
 IS300 (IOdevice *in_dev = NULL); // Constructor with input I/O source 
 
private:    // Process dependent variables 
 IOdevice *device;  // Device pointer, not serialised by TCC 
  
 TCC_OBJ (Orientation, ori); // Serialised orientation object 
 TCC_OBJ (IS300tracker, is300); // Serialise IS300 values 
 TCC_OBJ (RateTimer, rt); // Serialise statistics information 
 TCC_VAR (double, value); // Serialise C double value 
}; 

Figure 8 - Edited extract from the is-300.h tracker definition file 



C++ values, these must be stored privately and wrapper meth-
ods written that generate callbacks. Figure 9 is a code fragment 
depicting how callbacks can be configured and then executed. 
The first set of code retrieves an object pointer from the object 
store and then uses the setHandler method to specify the call-
back method. The second set of code uses access methods to 
modify the internal values individually. The disadvantage to 
updating in this way is that callbacks are propagated for each 
modification and there is no way to indicate to the system that 
changes may be performed as a single unit (the programmer 
never calls an update method). The faster and preferred method 
depicted in the third set of code is to declare a new temporary 
object and initialise the values to those desired. The temporary 
object does not generate callbacks during initialisation, the data 
is copied using an overloaded equals (=) operator, and only a 
single callback is executed for the entire copy. Temporary ob-
jects are used in tracker abstractions to read incoming data, with 
only the latest version being copied over. This reduces the 
amount of callback traffic in the system and helps to improve 
performance. 

The callback system and the object store are tightly inte-
grated, with callbacks being propagated up the tree until a top 
level container object such as /devices/trackers/gps is discov-
ered. The path /devices/trackers is simply a set of empty paths 
used to contain objects and does not implement any object inter-
faces as such. This propagation of callbacks to parent objects is 
useful for when objects need to listen on areas of the object store 
but do not want to attach to individual objects since they may be 
transient. An example is an object listening on the entire scene 
graph for changes to distribute to other machines. 
5.3 Distributed processing 

In most applications, a single non-threaded process is used as 
an execution container for objects to be connected together via 
data flow and callbacks. It may however be desired in some 
cases to distribute the application across separate processes run-
ning on a number of computers. Objects are placed into execu-
tion containers (Unix processes, not threads) and connected 
together using the network distribution technique described pre-
viously. Each execution container has its own memory and 
code, and may contain internal threads although these are dis-
couraged. The communication within an execution container is 
performed using local callbacks, but these do not work across 
containers in different address spaces. The network distribution 
mechanism described previously is used to connect together 
execution containers so that they can communicate with each 
other. 

Each execution container implements a NetServer object that 
listens for incoming connections. Clients connect to the server 
and make requests to listen to particular object paths. The Net-
Server object attaches itself to these objects in the object store, 
and when they change the NetServer will be notified. When the 
notify callback is executed, the NetServer object takes the up-
dated object pointer and serialises it into XML or binary format 
depending on the client’s request. The client receives this stream 
of data and then deserialises it into an equivalent matching ob-
ject created previously and stored locally. When the value is 
copied into the local object, other processing objects that are 

listening to this local object will receive a newly generated call-
back and the data flow process continues. With this mechanism 
objects can be easily separated into arbitrary execution contain-
ers. 

When updates are made in large trees such as the scene 
graph, the amount of data generated can be quite large although 
there are only a small number of changes. The XML format 
allows differences to be sent that only contain the changed data. 
Each object records an incrementing serial number to keep track 
of the last object version sent so the server can send correct 
differences to the interested clients. Since the binary protocol is 
a fixed format it does not support varying differences. The type 
of protocol used also affects the choice of network transport. 
UDP is high speed, connectionless, has a 64kb packet length, 
possible loss of packets, and may arrive out of order. TCP is 
slower, maintains a connection, has virtually unlimited 
transmission sizes, and guaranteed transmission of data. UDP 
with binary mode may be used for absolute updates where lost 
packets do not need to be recovered, such as head trackers. TCP 
with XML is used for communicating with the server and 
testing for connectivity, and for data that cannot be lost, such as 
object differences of scene graph updates. The requesting client 
can specify the format to use during the connection setup, and 
can switch protocols if needed. 

An object inside a server execution container is owned and 
updated by that container exclusively. The execution container 
makes this object available for other objects (both local and re-
mote) to receive updates for further processing. The data flow 
approach can support circular flows of data, but is generally 
avoided unless one of the objects contains a mechanism to end 
processing and not continually propagate in an infinite loop. 
Alternatively a client can connect in and upload a new value for 
the server to store, and it will remain until replaced by whatever 
source originally generated it in the server. Uploading values is 
not generally used but can be used to control internal values of 
an application such as user interface controls that are only peri-
odically changed. 
5.4 Threads 

In most cases, execution containers do not require the use of 
threads to perform their processing of data flows. Data flow 
calculations tend to be very sequential and most libraries im-
plement thread safety using a single lock, forcing most opera-
tions to run exclusively. Since the display depends on all calcu-
lations being completed it must be performed last and so cannot 
be run in parallel. While some calculations may be parallelised, 
the benefit is small considering the added costs of context 
switching and the complexity of implementing multi threaded 
libraries using locking. The programming model is therefore 
designed around the use of a single thread of control within an 
/* Find source object and attach destination callback to listen for changes */ 
Position *source_position = Position::getStorage (“/devices/trackers/gps/pos”);
source_position->setHandler (dest_position->process_position); 
 
/* Make changes to source value – 3 separate callbacks generated */ 
source_position->setLatitude (138.00); 
source_position->setLongitude (34.00); 
source_position->setAltitude (0.0); 
 
/* Make changes to source value – efficient single callback */ 
Position temp (138.00, 34.00, 0.0); 
*source_position = temp; 

Figure 9 - Code demonstrating setup and execution of callbacks 



execution container to simplify the design of the system. While 
many calculations complete quickly, others such as video cap-
ture and vision tracking (as used in Tinmith-Metro) require 
longer periods of time. Separate execution containers are prefer-
able, but in Tinmith-Metro the video frames must be available to 
the renderer and IPC is too resource intensive so a thread is 
used. Since the object store is not thread safe, a special commu-
nications mechanism using simple locking primitives is imple-
mented to pass the video frame to the main thread. 
5.5 Operating system interface 

The data flow model used by the software architecture is not 
supported directly by any operating system and so a suitable 
abstraction layer is required. POSIX compliant operating sys-
tems generally provide a file based interface to all devices in the 
system, with open(), read(), write(), ioctl(), and close() system 
calls. A generic set of classes are provided to interface to these 
calls for devices such as serial ports, disk files, TCP sockets, 
UDP sockets, and generic file descriptors. The global I/O man-
ager object keeps track of all file descriptors in use and gener-
ates data flow events when they become ready for reading or 
writing. Non-blocking I/O is used with a select() processing 
loop to allow a single thread to process many I/O sources and 
time outs simultaneously. This is in contrast to languages such 
as Java where programmers are encouraged to use a thread for 
each blocking I/O device, increasing overheads and requiring 
thread synchronisation. The I/O manager developed for this 
software architecture is similar to the concept of a kernel used in 
DIVERSE [16] and VR Juggler [3]. 

The software is portable across platforms and currently runs 
on Linux and FreeBSD systems, as well as Windows using the 
Cygwin libraries. Rendering to the display is performed using 
OpenGL graphics under X Windows. When running on a local 
server, the OpenGL graphics rendering is performed directly to 
the hardware using Direct Rendering Extensions (DRI). The X 
Windows server is used to provide window handling and the 
management of events from the keyboard and mouse. 

6 Sensors and events 
Tinmith-evo5 processes incoming sensors and events using a 

set of abstraction models and representation formats appropriate 
for the type of input data. It has been designed mainly for input 
devices used in typical mobile AR applications. 
6.1 Tracking devices 

Tracking devices return a number of degrees of freedom, 
with either position or orientation or both depending on the 
technology being used. Some of these results may be absolute in 
that the values may be relative to the Earth’s coordinate system, 
while others return their results relative to the coordinate system 
of another device. These distinctions are used to categorise 
trackers into four separate classes: Position, Orientation, Posi-
tionOffset, and OrientationOffset. Each of these classes repre-
sents 3DOF information, and for devices that produce less 
DOFs some of the values will be set to a constant value. For 
6DOF trackers the result will be split across both an orientation 
and a position class. Each class contains a number of different 
formats internally, and by adjusting one the data flow model is 
used to recalculate the other values automatically. 

The Position class is used to represent objects stored relative 
to the Earth [14]. This class implements storage of values in 
polar coordinates (LLH - latitude, longitude, height), Earth cen-
tred (ECEF - metres from the centre), and grid coordinates 
(UTM - metres relative to flat zones on the Earth). The GPS 
inputs are normally mapped to LLH inputs, while the OpenGL 
rendering is performed using the grid based UTM system. UTM 
coordinates are expressed relative to a local origin although in 
most cases will be millions of metres away. If OpenGL is pre-
sented with these values directly, it will exceed the internal 
range of the transformation matrices and fine objects near the 
user will jitter and deform. The Position class implements a 
fourth coordinate system based on UTM, but with all coordi-
nates relative to a movable local anchor point. The local anchor 
reduces the range of floating point values and performs render-
ing of millimetre accurate objects (such as the hand tracker) 
correctly. The PositionOffset class represents relative position 
change from an absolute position in UTM surface XYZ coordi-
nates as well as a matrix format. Indoor trackers as well as 2D 
desktop mice use PositionOffset. 

Orientation values are specified relative to the local UTM 
surface. While Euler angles can be used to specify orientation 
they suffer from known Gimbal lock problems and so 4x4 ma-
trices can also be used. A third method named Aerospace angles 
are used based on heading, pitch, and roll values that mimic 
those used to express aircraft orientation. The use of three angles 
is used by many common tracking devices that generate abso-
lute orientation. Similar to previously, an OrientationOffset class 
represents relative orientation change from an absolute orienta-
tion. These values are stored using 4x4 Matrix values only since 
Euler and Aerospace angles are difficult to correctly combine. 
6.2 Filters 

Incoming tracker data usually requires some processing be-
fore it can be presented to the scene graph or other data flow 
objects for operations. Using the data flow model operations 
such as filtering, combining degrees of freedom from multiple 
trackers, conversions between coordinate systems, and perform-
ing mathematical operations can be performed. This is similar to 
that performed by OpenTracker [25]. The various 3DOF classes 
can be combined using matrix multiplication to form complex 
articulated calculations if desired. While this combination can be 
performed using processing objects it is difficult to visualise and 
so the next section discusses the use of the scene graph to per-
form calculations instead. 
6.3 Input devices 

Discrete events are handled differently in the data flow 
model due to their non-continuous nature. There are a number of 
types of button presses to handle, some examples being mouse 
buttons, keyboard buttons, and glove pinches. All inputs are 
described using a keyboard model, where the object stores an 
identifier for the last button activated with a press or release 
action. The identifier may be either an ASCII character code or 
an extended enumerated value for mouse buttons or glove fin-
gers. Processing objects may listen for input device events and 
receive notification when they occur. Callbacks must process 
each event as they arrive and multiple events are executed as 
individual callbacks. Devices such as keyboards map directly to 



this model, while others such as mice are represented using a 
supplementary PositionOffset for motion. 

Since software development is performed on a desktop vari-
ous tracking devices may not be available. Simulator objects are 
available that can generate artificial events for many stages of 
the data flow. For example, IOdevice simulators provide raw 
data to test parsers and Position simulators are used to test the 
user moving through the scene graph. 

7 Demonstrations 
The software architecture has been used to implement a 

number of powerful applications such as the Tinmith-Metro 
modelling application [22] [24], simplifying development. 
7.1 Scene graph 

A component of many applications based on the software ar-
chitecture is a hierarchical scene graph system with a structure 
similar to that of Open Inventor [32] or SGI’s Performer [26], 
with 3D geometry controlled by transformation nodes. Primitive 
objects such as spheres, cones, cylinders, polygons, and triangle 
meshes are supported and are contained within grouping objects. 
Each object can contain transformations and levels in the scene 
graph map directly to path names in the object store. XML files 
with syntax similar to the X3D standard [40] are used to repre-
sent the scene graph during serialisation, and VRML and Inven-
tor formats are also supported. 

An integrated part of the scene graph is a real time construc-
tive solid geometry (CSG) object based on data flow. The CSG 
object is attached to two input nodes (which can be either single 
objects or entire hierarchies) and listens for changes when they 
occur. When an input object changes, the node performs the 
CSG operation on the two inputs and generates an output mesh 
that can then be rendered in the scene graph. The CSG engine is 
capable of operating in real time so that the user can manipulate 
the input objects and see the final output immediately. 

Performing transformations on tracker values directly can be 
time consuming and tedious and so scene graphs were devel-
oped to abstract away many of these tasks. By attaching tracking 
devices to transformation nodes, complex articulated models 
can be rendered with ease. Instead of using the scene graph just 
for rendering, we propose to use the scene graph as a calculation 
engine and extract values out of it after computations are per-
formed (sometimes without rendering anything). The use of the 
scene graph means the results can be verified graphically by the 
programmer instead of dealing with equations directly. An ex-
ample of these calculations in use is the processing of hand 
tracking in Tinmith-Metro [22] [24], and the implementation of 
an indoor ARToolKit based roof tracking system [23]. 
7.2 NFS server 

To demonstrate that the software architecture implements file 
system semantics, a Network File System (NFS) server object 
was written and integrated into our applications. NFS [27] was 
first introduced to provide remote file system capability over a 
network. Files on a server appear to be mounted directly on a 
client machine. NFS operates using Remote Procedure Calls 
(RPC) over UDP packets and defines procedures to support 
primitive file system operations lookup, create, remove, getattr, 
setattr, read, write, rename, link, symlink, readlink, mkdir, 

rmdir, readdir, and statfs. As a user browses the file system the 
operating system’s virtual file system layer (VFS) generates 
RPC requests to the NFS server. The NFS server processes each 
request and generates a result with the required data. 

Our NFS server implements the same RPC requests but 
maps these to the object storage system. When the client re-
quests information about a file the server traverses the object 
store and generates artificial information such as permissions, 
inode values, and sizes based on the contents of the object found 
and its type. Read requests on a virtual file will receive an XML 
or text representation of the object that is generated on the fly, 
and write operations can be used to modify the internals of an 
object in the server. This NFS server implementation allows 
interfacing to other legacy software using only simple file based 
I/O. 
7.3 DIS protocol support 

Our original DIS protocol based collaboration work per-
formed previously [21] has been rewritten for this software ar-
chitecture except it is even more highly integrated and transpar-
ent. Entity state updates arriving from the network contain a 
unique set of identifier values to separate it from other entities 
such as site, host, and entity id values. Instead of having a sepa-
rate internal list of objects, the scene graph is used to represent 
each entity at a path location such as /models/world/dis-
/siteid/hostid/entityid. As the position and orientation values are 
extracted from the DIS entity state PDU packet [13], they are 
converted into a 6DOF matrix and then pushed directly into the 
scene graph. This method treats the DIS update the same as a 
tracking device, with the numeric id values used to directly iden-
tify the correct place in the scene graph. Each entity can be rep-
resented using a 3D model for realistic rendering and updated in 
real time as packets arrive. 
7.4 Low end hardware 

One of the goals of the software architecture was to be able 
to develop applications for a wide range of computers. Our high 
end platform is a Pentium-III laptop with a GeForce2 OpenGL 
accelerator, but low end hardware is much slower and less capa-
ble. We performed tests using an old Pentium-I embedded com-
puter with no 3D acceleration to test the performance of the 
architecture. The ARQuake game [36] uses a driver program 
based on Tinmith-evo5 to generate UDP packets that control the 
6DOF internal values in the game. The software architecture 
processes the sensors with minimal overheads, the Quake ren-
derer using most of the processor. 

The full Tinmith-Metro application was also tested on this 
computer, but some changes were required in order to make the 
software run. The lack of 3D acceleration requires software 
emulation which is very slow and inefficient. Generating a sin-
gle frame takes many seconds and so this is not useful as a real 
time AR system. We use a small open source emulation library 
called TinyGL [2] which provides basic OpenGL functionality 
but leaves out more complex features. This library is capable of 
providing 3D rendering with textures on very old computers and 
can generate a number of frames per second. The optical overlay 
mode was used to avoid processing the video streams since the 
hardware is not powerful enough. 



8 Conclusion 
This paper has described the Tinmith-evo5 software architec-

ture, explaining our integrated and uniform approach to building 
applications for mixed reality environments. The architecture 
uses a data flow methodology with an object-oriented design 
and using an object store based on Unix file system semantics to 
provide a simple model for programmers to use to write applica-
tions. Using these concepts, a number of powerful features such 
as distributed programming, persistent storage, and run time 
configuration are possible. The design is based on the C++ lan-
guage and although the language has a number of limitations, 
these are overcome using a variety of techniques to develop 
efficient applications that operate on a wide range of mobile 
computers. The capabilities of this software architecture are 
demonstrated by the Tinmith-Metro mobile outdoor modelling 
application, as well as other examples presented in this paper. 
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