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An Objective Justification of
Bayesianism II: The Consequences of

Minimizing Inaccuracy*

Hannes Leitgeb and Richard Pettigrew†‡

In this article and its prequel, we derive Bayesianism from the following norm: Ac-
curacy—an agent ought to minimize the inaccuracy of her partial beliefs. In the prequel,
we make the norm mathematically precise; in this article, we derive its consequences.
We show that the two core tenets of Bayesianism follow from Accuracy, while the
characteristic claim of Objective Bayesianism follows from Accuracy together with an
extra assumption. Finally, we show that Jeffrey Conditionalization violates Accuracy
unless Rigidity is assumed, and we describe the alternative updating rule that Accuracy
mandates in the absence of Rigidity.

1. Introduction. It is often said that the epistemic norms governing full
beliefs are justified by the more fundamental epistemic norm Try to believe
truths. For instance, the synchronic norm that demands that an agent
have a consistent set of full beliefs at any given time follows from this
along with the fact that the propositions in an inconsistent set of beliefs
cannot possibly all be true together. Similarly, the diachronic norm that
demands that an agent update her beliefs by valid rules of inference follows
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from this fundamental norm along with the fact that a valid rule of
inference preserves truth from premises to conclusion.

In this article, we attempt to justify the Bayesian’s putative norms
governing partial beliefs in a similar way. We will appeal to the more
fundamental norm Approximate the truth, which is plausibly the analogue
of the fundamental norm for full beliefs stated above. From this, we will
derive the central tenets of Bayesianism, we will show that the charac-
teristic claim of the Objectivist Bayesian also follows from this norm in
the presence of a further rather strong assumption, and we will cast doubt
on one of the other extensions to Bayesianism proposed in the literature.

However, before we begin, we must present the framework of partial
beliefs, the Bayesian norms, and the precise version of the accuracy norm
stated above. The derivation of this precise version was the subject of this
article’s prequel (Leitgeb and Pettigrew 2010), and we presuppose the
conclusion of that prequel in what follows.

In this article, as in its prequel, we will be concerned only with agents
who have an opinion about only a finite set of possible worlds. As in the
prequel, if W is such a set of possible worlds, let denote the powerP(W )
set of W, and let denote the set of functions . The�Bel(W ) b : P(W ) r �0

functions in are (potential) belief functions on the power set ofBel(W )
W. It is a presupposition of any form of Bayesianism that, if W is the
set of possible worlds about which an agent holds an opinion, then that
agent’s epistemic state at a given time t may be represented quantitatively,
by a belief function that takes each proposition A, representedb � Bel(W )t

as a subset of W, to a real number that measures the degree ofb (A)t

credence the agent assigns to A.
The first tenet of Bayesianism is a synchronic norm. Indeed, it is the

analogue of the synchronic norm for full beliefs stated above: An agent
ought to have a consistent set of beliefs. The Bayesian demands that an
agent has a coherent belief function.

Probabilism. For any time, t, an agent’s belief function at time tbt

ought to be a probability measure on the power set of W: that is, (i)
for all , ; (ii) and ; and (iii) forA P W b (A) ≥ 0 b (M) p 0 b (W ) p 1t t t

any disjoint , .1A, B P W b (A ∪ B) p b (A) � b (B)t t t

The second tenet is diachronic and might be thought of as analogous
to a diachronic norm for full beliefs that demands that an agent updates

1. Bayesians are divided on whether to demand also that belief functions satisfy countable
additivity in those cases in which W is infinite; see Schurz and Leitgeb (2008) for a general
criticism of requiring countable additivity. In this article, we consider only the case in
which W, and thus its power set, is finite. Thus, this question will not arise.
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by applying valid rules of inference.2 It is characteristic of virtually all
forms of Bayesianism (at least as long as only plain factual evidence about
the world is concerned):

Conditionalization. Suppose that, between t and t′, an agent learns
proposition with certainty and nothing more. And supposeE P W
further that .3 Then her belief function at time t′ oughtb (E) ( 0 b ′t t

to be such that, for each ,A P W

b (A ∩ E)tb (A) p b (AFE) p .t′ t b (E)t

Together, Probabilism and Conditionalization constitute the core of Bayes-
ianism. Various philosophers have added various further claims, but they
have not gained the unanimous support of the faithful. Two such further
proposals will be of particular interest to us here.

The first is the characteristic claim of the Objectivist Bayesian.4 In our
context, in which the agent has an opinion about only finitely many
possible worlds, this amounts to the following norm:

Uniform Distribution. Suppose W is finite. And suppose that, at time
t, E is the strongest proposition given to the agent by her evidence.

2. Of course, not all philosophers agree that there is such a norm for full beliefs (see,
e.g., Harman 1986 and Foley 1992).

3. Conditionalization prescribes an updated belief function only when the piece of evi-
dence learned was not completely ruled out by the agent’s original belief function: that
is, Conditionalization says nothing of how an agent with belief function b ought to update
her belief function on receiving evidence E, where . The norms that govern suchb(E) p 0
situations are interesting, and we will have a little more to say about them when we
consider Jeffrey’s proposed extension of the core Bayesian tenets. However, a full epistemic
account of these cases would require an extension of our theory to a more general class
of belief functions, as, e.g., Popper functions (cf. Popper 1968), which we leave as an
open problem.

4. We use the term ‘Objectivist Bayesianism’ to mean the conjunction of Probabilism,
Uniform Distribution, and Conditionalization. Often it is used to cover the conjunction
of Probabilism and Conditionalization with any principle that specifies a rational prior
belief function for an agent. However, while these proposals sometimes differ in those
cases in which W is infinite, they rarely deviate from Uniform Distribution when W is
finite. Thus, our terminology is quite standard (see, e.g., Berger 1985; Jeffreys 1998;
Jaynes 2003). See Williamson (2007) for an overview of ways in which an agent’s belief
function can be objective while additionally being constrained by certain kinds of em-
pirical knowledge. We also want to stress that the term ‘Objective’ as used in the title of
our article is meant to characterize the manner of justification that we are after, which
should not be confused with the target of justifying Objectivist Bayesianism. Indeed, we
are mainly interested in defending subjective Bayesianism in this article.
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Then her belief function at t ought to be such that, for all ,b A P Wt

FA ∩ EF
b (A) p .t FEF

In particular, if the agent has not learned any evidence by t, then
, and her belief function ought to be such that, for all ,E p W A P W

FAF
b (A) p .t FWF

Bayesians who do not subscribe to Uniform Distribution are known as
subjectivists (see, e.g., van Fraassen 1989, pt. 2). Having given our ar-
gument for Probabilism and Conditionalization in sections 6.1 and 6.2,
we give an argument for Uniform Distribution in section 6.3. However,
it relies on rather a strong assumption, which may be read as begging the
question. Thus, we present it much more tentatively than the others. Our
main interest in it consists in observing which additional assumptions one
might make in order to extend our justification of Bayesianism simpliciter
to one of its Objectivist variants.

The second proposed extension of Bayesianism that will concern us
here was advanced by Richard Jeffrey. So far, we have assumed on behalf
of the Bayesian that an agent acquires new evidence only when she learns
the truth of a particular proposition with certainty. Jeffrey denied this:
he claimed that new evidence can take a form different from the one
considered in Conditionalization. Moreover, he argued for a rule that
specified how an agent should respond to this different sort of evidence
(see Jeffrey 1965, chap. 11). Here is his rule:5

Jeffrey Conditionalization. Suppose is a partition of W,{E , . . . , E }1 m

, and . Suppose that, between t and0 ≤ q , . . . , q q � . . . � q p 11 m 1 m

t′, the agent obtains evidence that imposes the following side con-

5. As Carl Wagner pointed out to us, Jeffrey did not actually propose his updating rule
in the form given here. In the form he proposed, extra side constraints are placed on the
updated belief function . In particular, Jeffrey requires Rigidity with respect to allb ′t

partition sets : that is, for all and all , . It is easy to showE A P W E b (AFE ) p b (AFE )′i i t i t i

that Jeffrey’s rule is in fact equivalent to, or uniquely determined by, these extra constraints
on . So once these side constraints are subsumed under the overall constraints that theb ′t

target belief function at time t′ has to satisfy, then there is no room for discussion anymore
on what the right method of updating is in such a situation. In the light of this, we will
concentrate on the version of Jeffrey’s epistemic norm that is stated in Jeffrey Condi-
tionalization, which has interested many philosophers (e.g., van Fraassen 1986), inde-
pendently of how Jeffrey introduced the rule originally. For more on the philosophical
status and justification of Rigidity, see Bradley (2005). We will return to the topic of
Rigidity in sec. 7.5.
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straints on belief function : for , . Then, sheb i p 1, . . . , m b (E ) p q′ ′t t i i

ought to have a belief function at t such that, for each ,b A P W′t

m

b (A) p q # b (AFE ),′ �t i t i
ip1

providing for all .b (E ) ( 0 i p 1, . . . , mt i

In section 7, we will show not only that one cannot extend the justi-
fication that we will give of Probabilism and Conditionalization in order
to justify Jeffrey Conditionalization; we will show further that Jeffrey
Conditionalization is illegitimate in certain circumstances since it does not
always minimize inaccuracy. Fortunately, an alternative method of update
is available that respects, and is commanded by, inaccuracy minimization,
and in the last part of this article, we study its properties.

2. Our Justification of Bayesianism: The Outline. So much for the Bayes-
ian norms; let us turn to our attempt to justify them. We will present this
attempt in outline here, then survey and critique other attempts, and then
return to our justification to fill in the details. In the prequel to this article,
we argued for a particular way of making the following norm precise:

Accuracy. An agent ought to approximate the truth. In other words,
she ought to minimize her inaccuracy.

We began by introducing the notions of (potential) local and global
inaccuracy measures. A local inaccuracy measure is a mathematical func-
tion that takes a proposition A, a world w, and a real number to�x � �0

a measure of the inaccuracy of the degree of belief x in prop-I(A, w, x)
osition A at world w. And a global inaccuracy measure is a function that
takes a belief function b and a possible world w to a measure ofG(w, b)
the inaccuracy of b at w.

With these definitions in hand, we introduced the notions of expected
local and global inaccuracy. The expected local inaccuracy of degree of
belief x in proposition A by the lights of belief function b, with respect
to local inaccuracy measure I, and over the set E of epistemically possible
worlds is defined as follows:

LExp (I, A, E, x) p b({w})I(A, w, x).�b
w�E

While the expected global inaccuracy of belief function b′ by the lights of
belief function b, with respect to global inaccuracy measure G, and over
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the set E of epistemically possible worlds is defined similarly:

′ ′GExp (G, E, b ) p b({w})G(w, b ).�b
w�E

Using these notions, we argued for the following four more precise
versions of Accuracy. First, the two synchronic versions:

Accuracy (Synchronic expected local). An agent ought to minimize
the expected local inaccuracy of her degrees of credence in all prop-
ositions by the lights of her current belief function, relativeA P W
to a legitimate local inaccuracy measure and over the set of worlds
that are currently epistemically possible for her.
Accuracy (Synchronic expected global). An agent ought to minimize
the expected global inaccuracy of her current belief function by the
lights of her current belief function, relative to a legitimate global
inaccuracy measure and over the set of worlds that are currently
epistemically possible for her.

The latter condition is close in spirit Allan Gibbard’s (2008) ‘minimal
requirement’ that an agent ought to have a belief function that is immodest
relative to a measure of inaccuracy. Like Gibbard, we appeal to the ob-
vious norm that one ought not to have a belief function that is worse by
its own lights than it needs to be.

Second, the two diachronic versions of the Accuracy norm, where an
agent has learned evidence between t and t′ that imposes constraints C
on her belief function at time t′ or on the set E of worlds that areb ′t

epistemically possible for her at t′ or both:

Accuracy (Diachronic expected local). At time t′, such an agent ought
to have a belief function that satisfies constraints C and is minimal
among belief functions thus constrained with respect to the expected
local inaccuracy of the degrees of credence it assigns to each proposi-
tion by the lights of her belief function at time t, relative toA P W
a legitimate local inaccuracy measure and over the set of worlds that
are epistemically possible for her at time t′ given the constraints C.
Accuracy (Diachronic expected global). At time t′, such an agent ought
to have a belief function that satisfies constraints C and is minimal
among belief functions thus constrained with respect to expected global
inaccuracy by the lights of her belief function at time t, relative to a
legitimate global inaccuracy measure and over the set of worlds that
are epistemically possible for her at time t′ given the constraints C.

To complete our specification of these mathematically precise versions
of Accuracy, we required a characterization of the legitimate inaccuracy
measures, both local and global. To obtain this, we showed that the only



242 HANNES LEITGEB AND RICHARD PETTIGREW

measures that do not lead any agent who follows these norms into three
different undesirable epistemic dilemmas are the quadratic inaccuracy mea-
sures. That is, the legitimate local inaccuracy measures are those of the
following form:

2I(A, w, x) p l(x (w) � x) ,A

where is the characteristic function of A and .x : W r {0, 1} l � �1A 0

And the legitimate global inaccuracy measures are those of the following
form:

2G(w, b) p lFFw � b FF ,glo

where w and b are represented by their corresponding vectors—that is, wi

is represented by the unit vector , and b is represented by the(d , . . . , d )i,1 i,n

vector that we call the global belief function tob p (b({w }),. . . , b({w }))glo 1 n

which b gives rise—and is the Euclidean distance between theFFu � vFF
vectors u and v: that is, . These2 2 1/2FFu � vFF p [(u � v ) � . . . � (u � v ) ]1 1 n n

characterizations of the legitimate local and global inaccuracy measures
are called Local Inaccuracy Measures and Global Inaccuracy Measures,
respectively.

Note that, in the presence of local and global inaccuracy measures, and
on the basis of our results on accuracy in the prequel to this article, it is
easy to show that the following implications hold:6

Accuracy (Synchronic expected local) ⇒ Accuracy (Synchronic expected global),

Accuracy (Diachronic expected local) ⇒ Accuracy (Diachronic expected global).

It is also easy to see that neither converse holds. After all, the global
versions of the norm impose constraints only on the global belief function

to which the belief function b gives rise. Andb p (b({w }), . . . , b({w }))glo 1 n

there are many belief functions that give rise to the same global belief
function. Thus, the global versions of the norms can impose no constraints
on the values of when A is not a singleton proposition withb(A) {w}i

. So, even if the global versions of the Accuracy norm can bew � Wi

satisfied only by one global belief function ,b p (b({w }), . . . , b({w }))glo 1 n

they can nonetheless be satisfied by many different belief functions, where
those belief function agree on the singleton propositions.

However, the global versions of the norms are far from idle; indeed,
as we shall see in one situation that we will consider, they are essential.

6. To see this, note first that, if and ,2 2I(A, w, x) p l(x (w) � x) G(w, b) p lkw � b kA glo

then is minimal for . Then note that, if , then′LExp (I, ¬E, E, x) x p 0 b (¬E) p 0b

, which follows in exact analogy to the′ ′GExp (G, E, b ) p � LExp (I, {w}, E, b ({w}))b bw�E

proof of theorem 3 of the prequel to this article.
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In section 6.1, we will show that it follows from Accuracy (Synchronic
expected local) that, at any time t, an agent’s belief function at t oughtbt

to be a probability function. Now, while there are many belief functions
that give rise to a particular global belief function, there is only one
probability function that gives rise to it. Thus, if the global versions of
Accuracy demand a particular global belief function, then together with
Accuracy (Synchronic expected local) they demand a particular belief
function, namely, the unique probability function to which that global
belief function gives rise.

It will turn out that exactly this sort of reasoning is demanded by our
discussion of those instances of Accuracy (Diachronic expected local) and
Accuracy (Diachronic expected global) that cover the cases with which
Jeffrey Conditionalization is concerned (see sec. 7). For it turns out that
while the relevant instances of the latter norm can always be satisfied,
some of the relevant instances of the former cannot.7 Thus, in these in-
stances of Accuracy (Diachronic expected global), we must appeal to
Accuracy (Synchronic expected local) in order to narrow the range of
belief functions that the norm permits—as we will see in these cases, it
has the effect of narrowing that range from many to one.

So much for the relations between the various versions of the Accuracy
norm. Let us turn to their consequences. In this article, we derive Prob-
abilism from Accuracy (Synchronic expected local) (sec. 6.1) and Con-
ditionalization from Accuracy (Diachronic expected local) (sec. 6.2), both
on the assumption of Local Inaccuracy Measures. We derive Uniform
Distribution from Accuracy (Synchronic expected local) and Local In-
accuracy Measures, along with a rather strong extra assumption called
Minimize (sec. 6.3). And, as we have noted above, if we assume Local
Inaccuracy Measures, we find that the instances of Accuracy (Diachronic
expected local) relevant to Jeffrey Conditionalization cannot always be
satisfied; however, on the assumption of Global Inaccuracy Measures, the
relevant instances of Accuracy (Diachronic expected global) can be sat-
isfied. We show that Jeffrey’s updating rule does not always satisfy it, and
we describe the rule that does (sec. 7).

3. Other Justifications of Bayesianism. Before we give this justification,
let us compare our strategy to other putative justifications of the tenets
of Bayesianism. The form of our argument is this: we identify a desirable
property of belief functions—namely, minimal expected inaccuracy by the
lights of the best available belief function—and we define this property
with mathematical precision in local and global inaccuracy measures; then,

7. We prove the latter part of this statement in the appendix.
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we show that an agent satisfies the norms that follow from the desirability
of this property if and only if her belief function satisfies the constraints
imposed by Bayesianism, which is the topic of this article. As Alan Hájek
(2008) points out, this is the form in which the most important arguments
for Probabilism must be presented if they are to be valid: in the case of
the synchronic Dutch Book argument of de Finetti (1931) and Ramsey
(1931), the desirable property is invulnerability to Dutch Book bets; for
van Fraassen (1989), it is calibration; Ramsey’s argument from his rep-
resentation theorem turns on the normativity of a certain set of rationality
constraints (see Ramsey 1931 again); and, for Joyce (1998), Probabilism
follows from the desirability of gradational accuracy.

The same observation holds for belief change and the most important
arguments in favor of Conditionalization: Lewis’s diachronic Dutch Book
argument (1999) relies on the same desirable feature as the synchronic
version mentioned above; Lange (1999) derives the Bayesian updating
rule from the desirability of calibration; Williams’s argument (1980) is
premised on the assumption that an agent’s belief function ought to en-
code no more information than is available to him, where informational
content is measured by Shannon’s entropy measure; van Fraassen’s (1989)
symmetry argument demands that an agent’s updating rule assign to ep-
istemically equivalent inputs epistemically equivalent outputs, deriving
Conditionalization from these symmetry conditions; and, finally, Greaves
and Wallace (2006) show that Conditionalization follows from the nor-
mative claims of decision theory, if each property out of a class of purely
epistemic properties of belief functions is considered desirable. The single
argument in favor of Uniform Distribution also fits the pattern that Hájek
identifies: Jaynes’s argument (2003) for this tenet of Objectivist Bayesian-
ism appeals to the desirability of a belief function with maximal Shannon
entropy relative to the available evidence.

In the presence of these powerful arguments for Bayesianism, we must
justify making our own attempt. We share with Joyce the conviction that
the ultimate desideratum for a belief function is that it be close to the
truth, that is, that it have what one may call gradational accuracy. Now
suppose an agent were presented with the option of gaining greater ex-
pected gradational accuracy at the cost of Dutch Book vulnerability, cal-
ibration, diachronic coherence in van Fraassen’s sense, or Shannon en-
tropy relative to her accumulated evidence. We submit that she should
take that option. Although it is obvious that these other features are
desirable, it is equally obvious that they are trumped by minimal expected
inaccuracy as far as purely epistemic considerations are concerned. De-
spite the obvious joys and dangers of betting, and despite the practical
consequences of disastrous betting outcomes, an agent would be irrational
qua epistemic being if she were to value her invincibility to Dutch Books
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so greatly that she would not sacrifice it in favor of a belief function that
she expects to be more accurate. And the same is true of the other features
on which the arguments enumerated above turn. For instance, we value
Shannon entropy because it seems to measure the extent to which we have
come to our opinion purely on the basis of the evidence; however, it would
be irrational not to go beyond the evidence if in doing so one was aware
of being guaranteed to decrease one’s expected inaccuracy. And so on.

Thus, following Hájek’s line of reasoning, we raise the following ob-
jection against all but the arguments of Joyce and Greaves and Wallace.
In each argument given, the tenets of Bayesianism are derived from some
desideratum. However, in all cases except those of Joyce and Greaves and
Wallace, the desideratum is not ultimate epistemologically: that is, there
are epistemic desiderata that trump the desideratum to which the argu-
ment appeals. Thus, it simply does not follow from the corresponding
argument that an agent ought to satisfy the constraints of Bayesianism,
for nothing in the argument precludes a situation in which the desideratum
to which the argument appeals is trumped by a more compelling desid-
eratum and in which satisfying this latter desideratum requires the agent
to violate Bayesianism. Thus, the arguments given above are invalid and
can be made valid only by the introduction of an implausible premise,
that is, asserting that the desideratum in question is ultimate. Only when
we derive Bayesianism from the ultimate epistemic desideratum of minimal
expected inaccuracy—of closeness to the truth formalized in the context
of partial beliefs—can we claim to have established it. Before we turn to
our own justification of the Bayesian tenets, we will consider briefly Joyce’s
argument for Probabilism and the argument of Greaves and Wallace in
favor of Conditionalization.

4. Joyce’s Argument for Probabilism. Joyce (1998, 2009) puts forward
what he calls a ‘nonpragmatic’ justification of Probabilism. This, he hopes,
will replace the pragmatic justifications that are based on Dutch Book
arguments and against which he raises powerful objections. In those ar-
ticles, he employs a strategy very similar to the one that we shall employ
here to establish all of the tenets of Bayesianism; indeed, Joyce (1998)
was a significant source of inspiration for the present article. For instance,
we share with Joyce the focus on accuracy as the central epistemic virtue.
However, as will become apparent below, the detailed execution of this
shared strategy differs in our case and in Joyce’s. In particular, the notion
of expected inaccuracy will be central to our argument, while it plays no
part in Joyce’s (1998) theory or in the central theorem of its successor
paper (theorem 2; 2009). Moreover, as we will see, we impose other con-
ditions on inaccuracy than Joyce does, and we use them to defend not
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just Probabilism, but in fact we will deal with all of the tenets of Bayesian-
ism.

Joyce (1998) presented six properties that a global inaccuracy measure
must possess and showed that, by the lights of any global inaccuracy
measure with these properties, for every belief function b that violates
Probabilism, there is a belief function b′ that satisfies it, such that b′ is
more accurate than b at every possible world. Of course, this does not
establish Probabilism unless it is also the case that there is no belief
function b′′ that violates Probabilism and that is at least as accurate as b′

at all possible worlds. The six properties to which Joyce (1998) appeals
do not guarantee this, but he states (2009) four different properties that
do guarantee both claims. If G is a global inaccuracy measure and b is
a belief function, we say that b is admissible relative to G, just in case
there is no belief function b′ such that for all′G(b , w) ≤ G(b, w) w � W
with strict inequality in at least one case. Then we can state Joyce’s the-
orem as follows (theorem 2; 2009):

Theorem 1 (Joyce). Suppose is a global inaccuracy measureG(w, b)
that satisfies the following four conditions:

1. Truth Directedness.—Suppose and ′ ′b p (a , . . . , a ) b p (a ,1 n 1

are belief functions, and . Then,′. . . , a ) w p (d , . . . , d ) � Wn 1 n

if for all , with strict inequality′Fa � dF ≤ Fa � dF i p 1, . . . , ni i i i

for at least one i, then .′G(w, b) ! G(w, b )
2. Coherent Admissibility.—Each probability function is admissible

relative to G.
3. Finitude.—Value for all b and w.G(w, b) � �

4. Continuity.—For any world w, is a continuous function.G(w, _)

Then,

i) Each nonprobability function b is not admissible relative to G.
Furthermore, there is a probability function b′ such that

for all with strict inequality for at least′G(w, b ) ≤ G(w, b) w � W
one .w � W

ii) Each probability function b is admissible relative to G.

Clearly, the controversial claim is Coherent Admissibility since it accords
a privileged status to probability functions. We are inclined to ask: Why
is it that we are justified in demanding that every probability function is
admissible? Why are we not justified in demanding the same of a belief
function that lies outside that class? And, of course, we must not make
this demand of any nonprobability function; if we do, i will not follow.

Joyce defends Coherent Admissibility as follows (2009, 279). Before an
argument for Probabilism, we are not justified in saying that the proba-
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bility functions are the only rational belief functions, but we are justified
in saying that they lie among the rational belief functions. After all, for
any probability function b, it is at least possible that an agent obtains
evidence that the objective chance of each is . Thus, if Lewis’sA P W b(A)
Principal Principle is correct, we would not want a scoring rule that pre-
cludes this belief function as rational.

The problem with this argument is that it restricts the scope of Joyce’s
result. If this is the justification of Coherent Admissibility, then Joyce’s
argument for Probabilism will only apply to an agent with a belief function
that can be realized as a possible representation of objective chances. And
there are many agents with belief functions that cannot be realized in this
way. Alan Hájek gives a nice example (2008, 246–49). Suppose one of the
propositions about which the agent has an opinion is that the chance of
the next coin toss landing heads up is 1/2. Maybe this proposition does
not have an objective chance, or its objective chance is 0 or 1. But it is
quite possible that the agent’s evidence leads her, quite rationally, to assign
degree of credence 1/2 to that proposition. Since her resulting belief func-
tion is not guaranteed to be rational by appealing to objective chances
and the Principal Principle, it does not fall within the scope of Coherent
Admissibility, and thus Joyce’s argument does not establish that it should
satisfy Probabilism. Furthermore, would it not be problematic if a sup-
posedly purely epistemological justification of Bayesianism relied on prop-
erties of chance and on probabilistic reflection principles relating credence
and chance?

5. Greaves and Wallace’s Argument for Conditionalization. A global ep-
istemic utility function U takes a belief function and a world to the ep-
istemic utility of having that belief function at that world. Greaves and
Wallace (2006) offer a justification for Conditionalization that turns on
the following property of global epistemic utility functions (625):

Weak Propriety. Suppose U is a legitimate global epistemic utility
function and that and are probability functions. Then, ifb b1 2

,E P W

b ({w}FE)U(b , w) ≤ b ({w}FE)U(b (7FE), w).� �1 2 1 1
w�W w�W

Put informally, this says that, relative to a legitimate global epistemic
utility function, updating in accordance with Conditionalization yields a
belief function that does not expect that any other way of updating would
have produced greater epistemic utility.

The putative justification for Weak Propriety seems to be analogous to
Joyce’s argument for Coherent Admissibility, although without the ad-
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ditional appeal to objective chances and the Principal Principle. Greaves
and Wallace note that, before an argument for Conditionalization, we are
not justified in believing that it is the only rational way to incorporate
new evidence, but, they claim, we are justified in believing that it is one
rational way. (Unlike Joyce, they do not give any argument for this claim.)
Thus, we should rule out global epistemic utility functions on which Con-
ditionalization yields a belief function that expects another updating rule
to have produced greater epistemic utility.

Our objection to Weak Propriety is slightly different from our objection
to Coherent Admissibility. As we saw in section 3, there are many epistemic
virtues: for example, accuracy, Dutch Book invulnerability, potential cal-
ibration, and so on. While we consider the updating rule Conditionali-
zation to be rational, this may be because we judge that it preserves just
one of these virtues, perhaps the virtue of potential calibration (cf. Lange
1999). If this is the case, there is no reason to think that an epistemic
utility function that aligns utility with accuracy will satisfy Weak Propriety,
even though such a utility function is clearly legitimate. Thus, the effect
of Weak Propriety is to limit the class of legitimate utility functions to
those that measure whatever epistemic virtues Conditionalization pre-
serves. This might be regarded as begging the question.

Thus, although Greaves and Wallace’s justification of Conditionali-
zation is in several respects quite close to ours—as is Joyce’s justification
of Probabilism—we do not actually endorse it. Furthermore, even if we
did, it would not be clear how it could be generalized to an argument for
Probabilism and Uniform Distribution. It will be important to show that
the technique by which we establish the synchronic tenet(s) of Bayesianism
can also establish its diachronic tenet. We hope that our argument will
have this advantage over the arguments of Joyce and Greaves and Wallace.

6. Our Justification of Bayesianism: The Argument in Detail. Finally, we
turn to a detailed presentation of our justification of Bayesianism. As
promised, it depends on the synchronic and diachronic versions of the
local and global versions of the Accuracy norm. In particular:

1. Probabilism follows from Accuracy (Synchronic expected local)
(sec. 6.1).

2. Conditionalization follows from Accuracy (Diachronic expected
local) (sec. 6.2).

3. Uniform Distribution follows from a related but stronger norm
(sec. 6.3).
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4. We show that, in the situations usually supposed to be covered by
Jeffrey conditionalization, there is no updating rule that satisfies
Accuracy (Diachronic expected local) (see appendix). However,
there is such a rule that satisfies (the strictly weaker norm) Ac-
curacy (Diachronic expected global). We describe the rule that does
this and note that it is not Jeffrey’s rule and that Jeffrey’s rule in
fact violates the norm in certain circumstances (sec. 7).

6.1. Probabilism and Accuracy (Synchronic Expected Local). Suppose
E is the set of worlds that are epistemically possible for an agent, and
suppose that I is a quadratic local inaccuracy measure. Then, by Accuracy
(Synchronic expected local), her belief function must be such that, for
every proposition A, the expected local inaccuracy of the degree of cre-
dence in A by the lights of b, relative to I, and over the epistemicallyb(A)
possible worlds in E is minimal. This entails Probabilism by the following
theorem:

Theorem 2. Suppose b is a belief function, ,E P W � b({w}) (w�E

, and I is a quadratic local inaccuracy measure.8 Then the following0
two propositions are equivalent:

i) For all and any ,�A P W x � �0

LExp (I, A, E, b(A)) ≤ LExp (I, A, E, x).b b

ii) Belief function b is a probability function with .b(E) p 1

The proof is given in the appendix.

6.2. Conditionalization and Accuracy (Diachronic Expected Local). Sup-
pose an agent has a belief function at time t, and suppose that I is abt

quadratic local inaccuracy measure. Suppose further that, between t and
a later time t′, she obtains evidence that restricts the set of worlds that
are epistemically possible for her to the set , where W is the setE P W
of epistemically possible worlds at t. Then, by Accuracy (Diachronic ex-
pected local), her new belief function at t′ must be such that, for everyb ′t

proposition A, the expected local inaccuracy of the degree of credence
in A by the lights of , relative to I, and over the ‘new’ set E ofb(A) bt

epistemically possible worlds must be minimal. This entails Condition-
alization by the following theorem:

8. If , then for all x. So any choice of x would� b({w}) p 0 LExp (I, A, E, x) p 0bw�E

minimize , although in a completely trivial way, which is why we excludeLExp (I, A, E, x)b

this case from the start.
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Theorem 3. Suppose and are probability functions, ,b b E P W′t t

, and I is a quadratic local inaccuracy measure. Then� b ({w}) ( 0tw�E

the following two propositions are equivalent:

i) For all and any ,�A P W x � �0

LExp (I, A, E, b (A)) ≤ LExp (I, A, E, x).′b t bt t

ii) For all ,A P W

b (A ∩ E)tb (A) p p b (AFE).t′ tb (E)t

As above, the proof is given in the appendix.
Note that, in this theorem, we presuppose that the belief functions in

question are probability functions. This is permitted by the result of sec-
tion 6.1 that an agent’s belief function must be a probability function, on
pain of epistemic irrationality.

6.3. Uniform Distribution and Minimize. Next, we consider Uniform
Distribution, the distinctive claim of Objectivist Bayesianism in cases in
which the agent has an opinion only about a finite set of possible worlds.
We do not derive Uniform Distribution from one of the four precise
versions of the Accuracy norm stated above but from a stronger norm
called Minimize, which we state below.

Minimize does not exactly employ the notion of the expected local
inaccuracy measure but something like an epistemic forerunner of it. This
is one reason why we do not regard Minimize to be on equal terms with
Accuracy (Synchronic expected local) and Accuracy (Diachronic expected
local), which are used to derive the core tenets of Bayesianism. The other
reason is that Uniform Distribution follows from Minimize a bit too easily,
which is in contrast with the other proofs we present. So we do not insist
on Uniform Distribution, since we do not see how we could—for example,
if you want to use a nonuniform prior belief function, maybe in order to
make sure you can learn inductively, then so be it.9 In any case, the
normative claim in question is as follows:

Minimize. Suppose I is a legitimate local inaccuracy measure, and
suppose that E is the set of worlds that are epistemically possible for
the agent. Then the agent ought to have a belief function b such that,
for all and every ,�A P W x � �0

I(A, w, b(A)) ≤ I(A, w, x).� �
w�E w�E

9. We thank Dorothy Edgington for this Carnapian point.
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The sum in Minimize might appear to be given by an expected inaccuracy
measure for a uniform belief function b, such that for allb(w) p 1 w �

. Thus, it might seem that Uniform Distribution is presupposed byW
Minimize, rather than implied by it, as we claim. But this would be the
wrong interpretation: instead, Minimize should be taken to express the
epistemic goal of being as accurate as possible in a situation in which the
agent does not have a belief function at her disposal that she can use to
assess her own expected inaccuracy; thus, a fortiori, she does not have a
uniform belief function by which to do this.

Note that the nature of the belief function b that minimizes � I(A,w�W

depends on the local inaccuracy measure I, and the choice andw, b(A))
justification of this in turn partially depends on the geometric framework
we have determined in the prequel. So the prior belief function that a
rational agent is bound to choose will reflect formal properties of the
geometrical representation that we simply took for granted in the last
section. Fair enough—that is how it goes with presuppositions.

Granted Minimize, Uniform Distribution follows by the following the-
orem:

Theorem 4. Suppose b is a belief function, , and I is a quadraticE P W
local inaccuracy measure. Then the following two propositions are
equivalent:

i) For all and all ,�A P W x � �0

I(A, w, b(A)) ≤ I(A, w, x).� �
w�E w�E

ii) For all ,A P W

FA ∩ EF
b(A) p .

FEF

Again, the proof is given in the appendix.

6.4. Hence, Bayesianism. This concludes our justification of the main
tenets of Bayesianism in the case of agents who hold opinions concerning
only a finite set of possible worlds. On the assumption of Local Inaccuracy
Measures, we derived the normative claims of Probabilism and Condi-
tionalization from the normative claims of the synchronic and diachronic
local versions of the Accuracy norm, respectively. Moreover, if Minimize
is accepted as well, then Uniform Distribution follows, too.

In the prequel, we derived Local Inaccuracy Measures by three separate
arguments, each of which turned on excluding a certain sort of dilemma.
As we promised in section 3, our argument for all of the Bayesian tenets
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turns ultimately on the epistemic virtue of a single goal, namely, the goal
of having accurate belief functions, that is, the Accuracy principle, in
conjunction with the (internalistically) valid Ought-Can principle and the
geometric framework that we presupposed in the present article and which
we explained in the prequel.

7. Jeffrey’s Updating Rule. Before we turn to the general prospects of
this theory and to the proofs of our central theorems, we investigate the
status of Jeffrey Conditionalization in the context of the Accuracy norm.
We show that it sometimes violates one of the instances of this norm, and
we describe the updating rule that satisfies that instance.

As we noted above, Jeffrey’s aim was to give an updating rule that
covers those scenarios in which an agent obtains evidence corresponding
to a format of side constraints other than those considered by Condi-
tionalization. In the cases covered by Conditionalization, the agent ob-
tains evidence between times t and t′ that restricts the set of worlds that
are epistemically possible for her. However, in the cases covered by Jef-
frey Conditionalization, her evidence does not rule out any possible
worlds, but it does impose constraints on the belief function that the agent
adopts at t′. These constraints are given in the following form: suppose

is a partition of W, and suppose that are�{E , . . . , E } q , . . . , q � �1 m 1 m 0

such that ; then, for each , .10q � . . . � q p 1 i p 1, . . . , m b (E ) p q′1 m t i i

However, as we will see below, Jeffrey’s rule violates the version of the
Accuracy norm that governs updating in the situations he considers. What
is this norm? One might think at first that it is Accuracy (Diachronic
expected local), the norm from which Conditionalization was derived
above (sec. 6.2). After all, this norm governs exactly the sort of situation
that interested Jeffrey. However, this norm cannot be satisfied in all the
situations in which Jeffrey Conditionalization applies.11 Thus, we retreat
to the strictly weaker norm Accuracy (Diachronic expected global). This
demands that when an agent’s evidence imposes the constraints described
above, the agent’s belief function at t′ must satisfy those constraints,b ′t

and it must be minimal among the belief functions that satisfy those
constraints with respect to its expected global inaccuracy by the lights of

, relative to a quadratic global inaccuracy measure G, and over the setbt

of possible worlds that are epistemically possible at t.
To introduce the norm that follows from Accuracy (Diachronic expected

10. This is not the most general form of constraints of this sort. More generally, the
’s may not be pair-wise disjoint, in which case the value of need not beE q � . . . � qi 1 m

1. However, Jeffrey did not consider this case, and we postpone its consideration for
another time.

11. We prove this fact in the appendix.
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global) in the Jeffrey cases, let us consider two very natural ways in which
one might try to satisfy the constraints imposed by the evidence in those
cases.12 On the first, we specify, for each member of the partition, aEi

constant . And we obtain the degree of credence in each worldc w � Ei i

at t′ by taking the degree of credence in w at t and multiplying it by .ci

That is, for ,w � Ei

b ({w}) p c # b ({w}).′t i t

It is straightforward to see that, if is to satisfy the constraints, there isb ′t

only one way to define the constant , namely, . Doing thisc c p q /[b (E )]i i i t i

gives Jeffrey Conditionalization.
On the second, we specify, for each , a constant . And we obtainE di i

the degree of credence in each world at t′ by taking the degree ofw � Ei

credence in w at t and adding to it (where may be negative). Thatd di i

is, for ,w � Ei

b ({w}) p b ({w}) � d .′t t i

It is straightforward to see that, if is to satisfy the constraints, there isb ′t

only one way to define the constant , namely, . How-d d p [q � b (E )]/FEFi i i t i i

ever, there is no guarantee that, on this definition, is nonneg-b ({w}) � dt i

ative. Indeed, in some cases, it will be negative. We avoid this consequence
as follows: in such cases, we let , for some worlds in , andb ({w}) p 0 E′t i

we seek a different value of so that, for the remaining worlds in ,d Ei i

. Thus, we want our new value for to be such that:b ({w}) p b ({w}) � d d′t t i i

a) If , then .b ({w}) � d 1 0 b ({w}) p b ({w}) � d′t i t t i

b) If , then .b ({w}) � d ≤ 0 b ({w}) p 0′t i t

c) And .� b ({w}) p q′t iw�Ei

It is straightforward to show that there is such a constant and that thisdi

constant is unique. Defining to be this constant, we obtain an alternativedi

to Jeffrey Conditionalization:

b ({w}) � d if b ({w}) � d 1 0t i t ib ({w}) p .′t { 0 if b ({w}) � d ≤ 0t i

We state this as a norm below and justify it by proving that it is the
updating rule to which Accuracy (Diachronic expected global) gives rise
in Jeffrey cases.

12. We greatly appreciate the help provided by Alan Hájek and Kenny Easwaran in
making our formulation and presentation of our alternative updating rule as intuitive as
possible.
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Here is the norm:

Alternative Jeffrey Conditionalization. Suppose that, between t and
t′, an agent obtains evidence that leads her to impose the following
constraints on her belief function at t′: for each ,b i p 1, . . . , m′t

. Then, for each , define as above: that is,b (E ) p q i p 1, . . . , m d′t i i i

let be the unique real number such thatdi

b({w}) � d p q .� i i
1{w�E : b({w})�d 0}i i

Then the agent ought to have belief function at t′ such that, forb ′t

,w � Ei

b ({w}) � d if b ({w}) � d 1 0t i t ib ({w}) p .′t { 0 if b ({w}) � d ≤ 0t i

And here is the justification:

Theorem 5. Suppose G is a quadratic inaccuracy measure. If b is also
a probability function, then we say that b is feasible if, for i p

, . Then the following two propositions are equiv-1, . . . , m b(E ) p qi i

alent:

i) Fuction is feasible and, for any feasible probability functionb ′t

b,

GExp (G, W, b ) ≤ GExp (G, W, b).′b t bt t

ii) Function is defined as in Alternative Jeffrey Conditionali-b ′t

zation.

As in the other cases, we postpone the proof until the appendix.
Admittedly, the statement of this norm is not so transparent as Jeffrey’s,

but it follows from the proof of theorem 5 that there is a natural geometric
interpretation of the update rule that it describes. This is illustrated in
figure 1. Consider the element of the partition. And suppose that withEi

respect to , the agent’s belief function at t is represented by a point thatEi

lies within the larger gray triangle (as and do).(a , a , a ) (b , b , b )1 2 3 1 2 3

Then our evidence imposes the constraint that her belief function at t′

assigns to and hence must be represented by a point that lies withinq Ei i

the smaller gray triangle. As it turns out, the point that minimizes global
expected inaccuracy relative to this constraint is the point within the
smaller gray triangle that lies closest to the point representing the original
belief function, when that distance is measured by the Euclidean metric.
Our statement of the updating rule above provides an analytic description
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Figure 1.

of this point. Indeed, there are two cases: if the projection of the original
belief function lies within the smaller gray triangle, then this projection
already represents the belief function demanded by the updating rule (as
is the case for and its projection in fig. 1). If it does(a , a , a ) (x , x , x )1 2 3 1 2 3

not, the updated belief function is represented by the point on the smaller
gray triangle that lies closest to that projection (as is the case for

and in fig. 1).(b , b , b ) (y , y , y )1 2 3 1 2 3

Having seen the updating rule sanctioned by the relevant version of
Accuracy in Jeffrey cases, a number of its features deserve our attention.
In section 7.1, we give an example to show that Jeffrey’s rule results in
belief functions with greater expected global inaccuracy than those given
by our alternative rule. In section 7.2, we note that, as with Jeffrey’s rule,
the order in which compatible side constraints are imposed affects the
posterior probability given by our rule: that is, our rule is noncommu-
tative. We appeal to an insight of Marc Lange to show that this raises
no objection. In section 7.3, we observe that Conditionalization is not a
particular case of our rule, and we explain why this is as it should be. In
section 7.4, we note that, unlike Jeffrey’s rule, our rule can be used to
raise probabilities from zero. And, in section 7.5, we reconsider the way
in which the objective or ‘quasi-logical’ content of the diachronic versions
of our Accuracy norm combine with the subjective or ‘extralogical’ con-
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straints C that are fed into it, and we thereby address a possible objection
concerning the rigidity of conditional probabilities.

7.1. The Expected Global Inaccuracy of Jeffrey’s Rule. Suppose I see
a person in the distance, and I know that it is one of three people: in

, it is Paul, who is male and has blond hair; in , it is Jeff, who isw w1 2

male and has black hair; in , it is Taj, who is female and has black hair.w3

Suppose further that I know that the actual world is a member of
. At time t, I have the following belief function:W p {w , w , w }1 2 3

1 1 1b ({w }) p , b ({w }) p , b ({w }) p .t 1 t 2 t 33 2 6

And between t and t′, I have an experience that does not rule out any
possible worlds but that imposes the following side constraints on my
beliefs:

1b (the person is male) p b ({w , w }) p .′ ′t t 1 2 2

Then Jeffrey’s rule leads to the following values for :b ′t

1 3 1J J Jb ({w }) p , b ({w }) p , b ({w }) p .′ ′ ′t 1 t 2 t 35 10 2

If we let , then2G({w, b}) p FFw � b FFglo

JGExp (G, W, b )′b tt

1 3 12 2 2p b ({w })[(1 � ) � ( ) � ( ) ]t 1 5 10 2

1 3 12 2 2� b ({w })[( ) � (1 � ) � ( ) ]t 2 5 10 2

1 3 1 392 2 2� b ({w })[( ) � ( ) � (1 � ) ] p .t 3 5 10 2 50

However, our rule leads to the following values for :13b ′t

1 1 1A A Ab ({w }) p , b ({w }) p , b ({w }) p .′ ′ ′t 1 t 2 t 36 3 2

13. To see this, notice that this is a case in which withb ({w}) p b ({w}) � d d p′t t i i

does not result in negative values for and then calculate.[q � b (E )]/FE F b ({w})′i t i i t
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So

AGExp ({G, W, b })′b tt

1 1 12 2 2p b ({w })[(1 � ) � ( ) � ( ) ]t 1 6 3 2

1 1 12 2 2� b ({w })[( ) � (1 � ) � ( ) ]t 2 6 3 2

1 1 1 352 2 2� b ({w })[( ) � ( ) � (1 � ) ] p .t 3 6 3 2 54

Thus, the expected global inaccuracy of the feasible belief function that
results from Alternative Jeffrey Conditionalization is lower than the ex-
pected global inaccuracy of the feasible belief function that results from
Jeffrey Conditionalization.14

7.2. Noncommutativity and the Sameness of Experience. We can extend
the example of the previous section to show that, like Jeffrey Condition-
alization, our rule is fundamentally noncommutative: that is, given a series
of side constraints, and given successive applications of the rule that
respect each of these side constraints in turn, the order in which the side
constraints are imposed affects the final result; what is more, this remains
true even when the side constraints are compatible in the sense that there
are probability functions that satisfy them all at once.

One immediate—and, as we think, valid—reply to this is, so what? If
we have to balance some of our pretheoretical intuitions against a (hope-
fully) carefully crafted argument based on mathematical proof and es-
tablished normative principles, it should be obvious which way to go. But
let us examine the issue more closely and independently of such consid-
erations.

In the previous section, we began with a belief function and somebt

side constraints on . Then we compared the effect of updating to a beliefb ′t

14. Those readers aware of an important article of Diaconis and Zabell (1982) might be
concerned that our result is in tension with theirs. They prove that the updated belief
function given by Jeffrey Conditionalization is the feasible belief function that is ‘closest’
to the original belief function on various plausible measures of closeness. However, there
are differences between our approach and theirs. They seek the ‘closest’ function to the
original function, whereas we seek the function whose expected inaccuracy is minimal
by the lights of the original function. This said, it is a by-product of our proof of theorem
5 that the updated belief function given by our rule is also the feasible belief function
that is closest to the original belief function on the Euclidean distance measure. But this
is a measure of closeness that Diaconis and Zabell do not consider; if they had done so,
they would have noticed that the updated belief function given by Jeffrey’s updating rule
is not the closest to the original belief function on this measure of closeness. We thank
Brian Skyrms for pointing us to this literature.
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function that satisfies these side constraints using our rule and using Jef-
frey’s. We begin the following consideration by stating a new set of side
constraints:

3b (the person has black hair) p b ({w , w }) p .′ ′t t 2 3 4

It is clear that this is compatible with the side constraints in the previous
section, for there is at least one probability function that satisfies both.15

However, as the calculations below show, if one begins with and thenbt

imposes the side constraint from the previous section and then the side
constraint from this section, our rule demands a belief function that differs
from the belief function it demands if the order is reversed:16

1. First, impose :b ({w , w }) p 1/2′t 1 2

1 1 1b ({w }) p , b ({w }) p , b ({w }) p .′ ′ ′t 1 t 2 t 36 3 2

Second, impose :b ({w , w }) p 3/4′′t 2 3

1 7 11b ({w }) p , b ({w }) p , b ({w }) p .′′ ′′ ′′t 1 t 2 t 34 24 24

2. First, impose :b ({w , w }) p 3/4′t 2 3

1 13 5b ({w }) p , b ({w }) p , b ({w }) p .′ ′ ′t 1 t 2 t 34 24 24

Second, impose :b ({w , w }) p 1/2′′t 1 2

5 19 1b ({w }) p , b ({w }) p , b ({w }) p .′′ ′′ ′′t 1 t 2 t 348 48 2

Some have taken the analogous result in the case of Jeffrey Condition-
alization to be a flaw that is fatal for that rule (van Fraassen 1989; Döring
1999). The objection, which is a reductio, is based on the following premise,
which is made plausible in some toy story: in the situations described in
1 and 2 above, the first side constraint in 1 and the second side constraint
in 2 have to be consequences of the same sensory experience; likewise,
the second side constraint in 1 and the first side constraint in 2 have to
be consequences of the same sensory experience. From this it follows that,
on our rule or on Jeffrey’s, one could obtain different belief functions
simply by having the same sensory experiences but in a different order.
This, the objector claims, is counterintuitive, and the reductio is complete.

15. In fact, there is exactly one such probability function: ,b({w }) p 1/4 b({w }) p1 2

, .1/4 b({w }) p 1/23

16. Again, this is a case in which with doesb ({w}) p b ({w}) � d d p [q � b (E )]/FE F′t t i i i t i i

not result in negative values for .b ({w})′t
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The correct reply to this objection is already present in Field (1978)
and Skyrms (1986, 197), but it is only stated explicitly by Marc Lange
(2000; see also Wagner [2002], 274–75, for a similar point). It is simply
that reversing the order of side constraints does not necessarily correspond
to reversing sensory experiences. Being subject to the same side constraints
due to what has been going on qualitatively in one’s sensory organs is
not sufficient for having the same sensory experiences; in order to indi-
viduate sensory experiences, one also has to take into account the effect
that the side constraints have on one’s prior belief function and indeed
the prior belief function on which they have that effect.

Thus, rather than being a flaw in our rule and in Jeffrey’s, we should
expect commutativity to fail for updating rules that apply to the cases
Jeffrey considers. After all, on the view just explained, a particular side
constraint corresponds to different sensory experiences if it is imposed on
different prior belief functions. And we should not be surprised to find
different sequences of sensory experience to give rise to different posterior
belief functions.

7.3. Why Conditionalization Is Not a Special Case. Conditionalization
is the special case of Jeffrey Conditionalization obtained by taking the
partition and letting and . One might{E p E, E p ¬E} q p 1 q p 01 2 1 2

expect the same to hold of our rule, but this is not the case.
The reason is simple. There are two different sorts of constraint that

new evidence can impose on an agent’s epistemic state: it can impose side
constraints on the belief function that the agent should adopt in the light
of the evidence, and it can restrict the set of worlds that are epistemically
possible for the agent in the light of the evidence. Jeffrey Conditionali-
zation is usually supposed to cover the former sort of situations; Con-
ditionalization covers situations in which the latter sort of constraint is
imposed. In the context of our theory, one deals in the former case with
minimizing sums of the form

′b({w})G(w, b ),�
w�W

where b is the (given) current belief function and where b′ is unspecified
except for the demand to satisfy the side constraints. In the latter case,
however, one intends to minimize sums of the form

′b({w})G(w, b ),�
w�E

in which b is again the (given) current belief function, b′ is left completely
unspecified, and where the sum is taken only over the worlds in E. If
one tried to emulate conditionalization by the Jeffrey-type requirement
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that , then any permissible choice of b′ would indeed assign 0′b (E) p 1
to , but this would still not necessarily be so for b; hence, in the¬E
emulation of conditionalization, inaccuracies with respect to worlds out-
side of E might still play a role, in contrast with the proper condition-
alization case.

Thus, it is entirely appropriate that Conditionalization is not a special
case of our rule. Learning a proposition with certainty is not the limiting
case as the side constraints and on the partitionq q {E p E, E p1 2 1 2

tend to 1 and 0, respectively, for as these values tend to zero, the set¬E}
of epistemically possible worlds remains constantly W. Thus, the correct
updating rule in the situations normally assumed to be covered by Jeffrey
Conditionalization should not necessarily tend to Conditionalization in
the limit.

7.4. Raising Credences from Zero. It is a well-known feature of Jeffrey
Conditionalization that it cannot raise the probability of a proposition
from zero. Thus, if this is the correct updating rule, we must forever assign
zero to each proposition to which we currently assign zero. This, it has
sometimes been argued, is too strong. It rules out the possibility of ra-
tionally coming to believe something that one once considered certainly
false, yet this is surely possible.

It is a virtue of our rule that it does not have this consequence. Indeed,
given a proposition A and a belief function such that , ourb b (A) p 0t t

rule applies even if the evidence an agent obtains results in the following
side constraint on her belief function at t′: andb (A) p p 1 0 b (¬A) p′t t′

. Jeffrey Conditionalization is not even defined in this case.1 � p

7.5. The Logic versus the Art of Judgment. In the light of the previous
findings, let us reconsider one more time the norm on which the justifi-
cation of our new rule of update is based:17

Accuracy (Diachronic expected global). At time t′, an agent ought to
have a belief function that satisfies constraints C and is minimal
among belief functions thus constrained with respect to expected
global inaccuracy by the lights of your belief function at time t,
relative to a legitimate global inaccuracy measure and over the set
of worlds that are epistemically possible for her at time t′ given the
constraints C.

The norm combines two kinds of constraints: (i) one ought to minimize
one’s expected global inaccuracy given certain parameters; (ii) the latter

17. This section benefited a lot from discussions with Carl Wagner, Richard Bradley, and
Franz Dietrich.
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parameters are characterized in the way that they ought to satisfy C.
What is the philosophical status of these constraints?

We regard ii as being given subjectively or ‘extralogically’. Within our
theory, there is no room for justifying why C is such and such in a concrete
application of Accuracy (Diachronic expected global) by a real-world
agent. However, within the range of possibilities left open by C, it is a
matter of epistemic rationality—a matter of getting as close to the truth
as possible—to obey i. In this sense, i is an objective or ‘quasi-logical’
constraint but one that is conditional on the antecedently specified C
condition. If C is, for example, such that the one and only belief function

can satisfy it, then minimizing one’s expected global inaccuracy in theb ′t

range of possibilities as determined by C will be a trivial affair, and so
be it according to our proposal.

As explained in the previous sections, conditionalization results from
an application of Accuracy (Diachronic expected global) with an ante-
cedent constraint C of the form ‘restrict your set of epistemically possible
worlds at t′ to the set E’. In contrast, the new update rule that we have
focused on in this last part of our article is due to an application of
Accuracy (Diachronic expected global) with an antecedent constraint C
of the form ‘change your degrees of belief in a way such that for all i,

is believed at t′ with degree qi’. While these applications of AccuracyEi

(Diachronic expected global) are clearly of broad interest, nothing pre-
vents us from demanding other extralogical constraints C to be satisfied
at t′ and consequently to search for rules of update that would minimize
expected global inaccuracy in such circumstances.

For instance, one might be interested in a constraint C of the form
‘change your degrees of belief in a way such that for all i, is believedEi

at t′ with degree , and furthermore Rigidity is satisfied; that is,qi

for all propositions ’. As noted before, Jeffrey’sb (AFE ) p b (AFE ) A P W′t i t i

rule is the unique updating rule that leads to belief functions that satisfy
this type of constraint. The fact that our rule of update differs from
Jeffrey’s should not be taken to imply that ours is ‘logically valid’ and
Jeffrey’s is not (or vice versa) but rather that the two rules are the ob-
jectively justified outcomes of solving one and the same epistemic prob-
lem—to get as close to the truth as possible—but in two different problem
spaces.

This general line of reasoning could only be undermined by an argument
that would show that some constraints C are ‘more objective’ or ‘more
logical’ or ‘more rational’ than others. While we do not think that this
can be ruled out completely, our theory does not offer any resources to
put forward any plausible argument of that sort, and at least with respect
to the question of whether to demand Rigidity or not, it is very hard to
see that any such argument could be given at all. Indeed, we agree with



262 HANNES LEITGEB AND RICHARD PETTIGREW

Bradley (2005) that sometimes Rigidity ought not to be demanded, in
particular, when changes in belief give inferential grounds for changes in
conditional belief. In principle, very much the same applies to the con-
straint that leads to simple conditionalization, however with one differ-
ence: in our theory, conditionalization is the objective consequence of
the extralogical constraint ‘restrict your set of epistemically possible
worlds at t′ to the set E’ in which Rigidity with respect to the partition

is not contained. It is only once the minimization problem is{E, ¬E}
solved that Rigidity is seen to hold for the resulting solution strategy, that
is, conditionalization. In this sense, the rigidity of plain conditionalization
is ‘more objective’ than the rigidity of Jeffrey conditionalization. But of
course even standard conditionalization might have to go if some other
extralogical constraint C is chosen, for whatever reason.

8. Some Open Questions. Obviously, our defense of Bayesianism in terms
of minimizing expected inaccuracy leaves a lot of problems untouched.
It is only fair to summarize the main open questions in the final section
of this article, posed as a challenge to future expansions of the theory:

• We asked this in the final section of this article’s prequel, but it is
relevant again: How can the approach be extended to the case of
an infinite set of worlds, in particular, to the case of nondenumerably
many possible worlds? What role does countable additivity play in
such extensions?

• Is it possible to develop a similar theory for primitive conditional
belief functions, such as Popper measures, which allow for condi-
tionalization on zero sets? Alternatively, what does a corresponding
approach to nonstandard probability measures look like?

• Is it possible to adapt this style of argument—by changing one of
our presuppositions in some way—in order to justify other accounts
of belief and belief update as well (e.g., the Dempster-Shafer ap-
proach)?

• Given a different sort of constraint imposed by a piece of evidence,
which updating rule does Accuracy (Diachronic expected global)
prescribe? For instance:

• Suppose an agent’s evidence leads her to impose the following
side constraints on : and , whereb b (A) p p b (B) p q A ∩′ ′ ′t t t

. What is the prescribed rule of update?B ( M
• Or suppose that is a partition on W and the agent’s{E , E , E }1 2 3

evidence leads her to impose the following side constraints on
: , where . What is the prescribed rule�b b (E ) p kb (E ) k � �′ ′ ′t t 1 t 2 0
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of update in this case? (This is closely related to van Fraassen’s
[1981] well-known Judy Benjamin problem.)18

• It is easy to show that Accuracy (Diachronic expected local) is not
always satisfiable given constraints C on the future belief function
as used in Jeffrey Conditionalization (see appendix). Which belief
functions at time t and which choices of epistemically possible worlds
yield satisfiable instances of Accuracy (Diachronic expected local)
for such C? In cases in which Accuracy (Diachronic expected local)
cannot be satisfied, what do the belief functions look like that ap-
proximate Accuracy (Diachronic expected local) in the ‘best possible’
way, and how do these belief functions formally relate to the up-
dating rule that we derived from Accuracy (Diachronic expected
global)?

Answering these questions satisfactorily should not only lead to interesting
extensions of our theory, but it should also help minimizing the inaccu-
racies of the theory as it stands.

Appendix: Proofs of Theorems 2–5 and Accuracy (Diachronic
Expected Local) Again.

Proofs of Theorems 2–4. The proof of each of our theorems depends on
the following lemma.

Lemma 6. Suppose . Suppose W is finite,2I(A, w, x) p l(x (w) � x)A

b and are belief functions, , and . Then′b A, E P W � b(w) ( 0w�E

the following two propositions are equivalent:

i) For all and all ,�A P W x � �0

′b({w})I(A, w, b (A)) ≤ b({w})I(A, w, x).� �
w�E w�E

ii) For all ,A P W

� b({w})w�A∩E′b (A) p .� b({w})w�E

18. We thank Alan Hájek and Kenny Easwaran for rightly urging for us to include this
in our list of open problems.
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Proof. By definition,

2b({w})I(A, w, x) p b({w})l(x (w) � x) .� � A
w�E w�E

So,

d
b({w})I(A, w, x) p 2l(x b({w}) � b({w})x (w)).� � � Adx w�E w�E w�E

Therefore,

d
b({w})I(A, w, x) p 0,�

dx w�E

if and only if

� b({w})x (w) � b({w})Aw�E w�A∩E
x p p .� b({w}) � b({w})w�E w�E

Since is a positive quadratic in the variable x,� b({w})I(A, w, x)w�E

this extremum is a minimum, as required. QED

Proof of Theorem 2. Suppose b is a belief function and , withE P W
. Then, by lemma 6, it suffices to show that� b({w}) ( 0w�E

� b({w})w�A∩E
b(A) p ,� b({w})w�E

if and only if b is a probability function on the power set of W and
for .b({w}) p 0 w � E

First, we prove the ‘if ’ direction. We begin by showing that, if b is a
probability measure and for , then for all ,b({w}) p 0 w � E A P W

� b({w})w�A∩E
b(A) p .� b({w})w�E

If b is a probability measure and for , thenb({w}) p 0 w � E

1 p b(W ) p b({w}) p b({w}) � b({w}) p b({w}).� � � �
w�W w�E w�E w�E

So,

� b({w})w�A∩E
b(A) p b({w}) p b({w}) p ,� �

w�A w�A∩E � b({w})w�E

as required.
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Second, we prove the ‘only if ’ direction. That is, we show that, if b is
a belief function and, for all ,A P W

� b({w})w�A∩E
b(A) p ,� b({w})w�E

then, as required, it follows that b satisfies 1–3 below, the Kolmogorov
axioms:

1. If , then . This is obvious, since .�A P W b(A) ≥ 0 b : P(W ) r �0

2. Function and :b(M) p 0 b(W ) p 1

� b({w})w�M∩E
b(M) p p 0,� b({w})w�E

and

� b({w}) � b({w})w�W∩E w�E
b(W ) p p p 1.� b({w}) � b({w})w�E w�E

3. If are disjoint, then . IfA, B P W b(A ∪ B) p b(A) � b(B) A, B P

, thenW

� b({w})w�(A∪B)∩E
b(A ∪ B) p � b({w})w�E

� b({w}) � b({w})w�A∩E w�B∩E
p �� b({w}) � b({w})w�E w�E

p b(A) � b(B),

since .(A ∪ B) ∩ E p (A ∩ E) ∪ (B ∩ E)

Furthermore, if , then obviously . QEDw � E b({w}) p 0

Proof of Theorem 3. Suppose is a probability function,b I(A, w, x) pt

, and with . Then it follows immediately2l(x (w) � x) E P W b (E) ( 0A t

from lemma 6 that, for all ,A P W

b({w})I(A, w, x)�
w�E

is minimal, if and only if

b(A ∩ E)
x p p b(AFE),

b(E)

as required. QED
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Proof of Theorem 4. Suppose . Then, in2I(A, w, x) p l(x (w) � x)A

lemma 6, let for all . Thenb({w}) p 1 w � W

I(A, w, x)�
w�E

is minimal, if and only if

� 1w�A∩E FA ∩ EF
x p p ,

FEF� 1w�E

as required. QED

Proof of Theorem 5. Suppose is a partition of W. Suppose{E , . . . , E }1 m

and . Suppose ,20 ≤ q , . . . , q q � . . . � q p 1 G(w, b) p FFw � b FF1 m 1 m glo

and suppose that is a probability function: let forb a p b ({w}) j pt j t j

. We wish to find the probability function represented by the1, . . . , n b ′t

vector such that the function(x*, . . . , x*)1 n

GExp (G, W, b )′b tt

2p b ({w}) # FFw � b FF′� t t
w�W

n

2 2 2 2 2p a [x � . . . � x � (x � 1) � x � . . . � x ]� j 1 j�1 j j�1 n
jp1

is minimal at relative to the following side constraints:(x*, . . . , x*)1 n

x ≥ 0 for j p 1, . . . , n,j

b (E ) p q for i p 1, . . . , m.′t i i

We say that a vector is feasible if it satisfies these constraints.(x , . . . , x )1 n

Now, we begin by reformulating the function we wish to minimize as
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follows:
n

2 2 2 2 2GExp (G, W, b ) p a (x � . . . � x � (x � 1) � x � . . . � x )′ �b t j 1 j�1 j j�1 nt
jp1

n

2p (x (a � . . . � a ) � 2a x � a )� j 1 n j j j
jp1

n

2p (x � 2a x � a ) since a � . . . � a p 1� j j j j 1 n
jp1

n

2 2p ((x � a ) � (a � a ))� j j j j
jp1

n n

2 2p (x � a ) � (a � a ).� �j j j j
jp1 jp1

Now, it is clear that
n n

2 2GExp (G, W, (x*, . . . , x*)) p (x* � a ) � (a � a )� �b 1 n j j j jt
jp1 jp1

is minimal among the feasible vectors, if and only if
n

2(x* � a )� j j
jp1

is minimal among the feasible vectors. Thus, is minimal, just in case itb ′t

is represented by the closest feasible vector to as(x*, . . . , x*) (a , . . . , a )1 n 1 n

measured by the Euclidean metric. But how do we find this closest feasible
vector?

It is clear that
n

2f((x*, . . . , x*)) p (x* � a )�1 n j j
jp1

is minimal among the feasible vectors if and only if, for each i p
, if , then1, . . . , m E p {w , . . . , w }i l l1 k

k

2f ((x*, . . . , x*)) p (x* � a )�i l l l l1 k j j
jp1

is minimal among those vectors for which(x , . . . , x ) x � . . . �l l l1 k 1

and for all . Thus, it suffices to solve thex p q x ≥ 0 j p 1, . . . , kl i lk j

minimization problem separately for each element of the partition.Ei

We now give two different ways of showing that the vector given by
Alternative Jeffrey Conditionalization solves each of these separate min-
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imization problems. The first is our original proof and proceeds via the
theory of convex quadratic programming and the Karush-Kuhn-Tucker
(KKT) conditions that are central to that theory. The second is a purely
geometric argument that we owe to Kenny Easwaran. We include both
here since they exhibit quite different virtues. On the one hand, Easwaran’s
argument is simpler and requires less mathematical apparatus, but it is
not clear how to generalize his approach so that it applies in updating
situations that arise when different sorts of constraints are imposed on

. On the other hand, our original argument from KKT conditions re-b ′t

quires more powerful machinery, but it has the advantage of being fully
general.

In what follows, we assume, without loss of generality, that E pi

. This will avoid unnecessarily complicated subscripts. First,{w , . . . , w }1 k

the argument from KKT conditions. The mathematical theorem we re-
quire is as follows:19

Theorem 7 (KKT conditions). Suppose kf, g , . . . , g ,h , . . . , h : � r1 m 1 n

are smooth functions. Consider the following minimization prob-�

lem. Minimize relative to the following constraints:f(x , . . . , x )1 k

g (x , . . . , x ) ≤ 0 for i p 1, . . . , m,i 1 k

h (x , . . . , x ) p 0 for j p 1, . . . , n.j 1 k

If is a (nonsingular) solution to this minimization
r

x* p (x*, . . . , x*)1 k

problem, then there exist , such thatm , . . . , m l , . . . , l � �1 m 1 n

m n
r r r∇f(x*) � m∇g (x*) � l ∇h (x*) p 0� �i i j j

ip1 jp1

r

m g (x*) p 0 for i p 1, . . . , m,i i

m ≥ 0 for i p 1, . . . , m,i

r

g (x*) ≤ 0 for i p 1, . . . , m,i

r

h (x*) p 0.i

If, furthermore, f and g are convex functions, then the existence of
, is sufficient for a solution to the mini-m , . . . , m l , . . . , l � �1 m 1 n

mization problem. If f is strictly convex, then their existence is suf-
ficient for a unique solution.

Stated in the form used in the theorem, here is the problem we must solve.

19. For a proof of this theorem together with a discussion of its uses, see Pedregal (2003),
secs. 3.3, 3.4.
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Minimize
k

2f (x , . . . , x ) p (x � a )�i 1 k j j
jp1

relative to the following constraints:

g (x , . . . , x ) p �x ≤ 0 for j p 1, . . . , k,j 1 k j

h(x , . . . , x ) p x � . . . � x � q p 0.1 k 1 k i

Thus, since , , and h are smooth functions and since is strictlyf g , . . . , g fi 1 k i

convex, it is sufficient for to be a unique solution to this(x*, . . . , x*)1 k

minimization problem that satisfies the constraints and there(x*, . . . , x*)1 k

exist such that, for all ,m , . . . , m , l � � j p 1, . . . , k1 k

i) Value m ≥ 0.j

ii) Value .m x* p 0j j

iii) And .2x* � 2a � m � l p 0j j j

Now, define as in Alternative Jeffrey Conditionalization, and letdi

a � d if a � d 1 0j i j ix* p .j { 0 if a � d ≤ 0j i

In order to prove theorem 5, it suffices to show that thus(x*, . . . , x*)1 k

defined satisfies the constraints and that there are thatm , . . . , m , l � �1 k

satisfy i–iii. It is straightforward to see that satisfies the(x*, . . . , x*)1 k

constraints. Now define

l p �2di

and

0 if a � d 1 0j im p .j {�2(a � d ) if a � d ≤ 0j i j i

It is straightforward to see that i–iii then hold. This completes our first
proof of theorem 5.

We turn now to Kenny Easwaran’s geometric proof. First, we note that,
since the set of feasible vectors is closed and bounded and since the
Euclidean distance from to is a continuous func-(a , . . . , a ) (x , . . . , x )1 k 1 k

tion of , there is at least one feasible vector such(x , . . . , x ) (x*, . . . , x*)1 k 1 k

that the Euclidean distance from to that vector is minimal.(a , . . . , a )1 k

Next, we use the following lemma to identify the unique such feasible
vector.

Lemma 8. Suppose is feasible. Then, if and(x , . . . , x ) x 1 0 x �1 k b a
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, then the distance from to isa ! x � a (a , . . . , a ) (x , . . . , x )a b b 1 k 1 k

not minimal among the feasible vectors.
Proof. Suppose is feasible, and suppose(x , . . . , x , . . . , x , . . . , x )1 a b k

that and . Then let � be a positive real numberx 1 0 x � a ! x � ab a a b b

such that

� ! x and � ! (x � a ) � (x � a ).b b b a a

Then is also feasible. Moreover,(x , . . . , x � �, . . . , x � �, . . . , x )1 a b k

a quick calculation shows that it is closer to than is(a , . . . , a )1 k

. This completes the proof of the lemma.(x , . . . , x , . . . , x , . . . , x )1 a b k

With this in hand, we can identify the unique vector whose distance from
is minimal. We require two corollaries to the lemma.(a , . . . , a )1 k

First corollary. Suppose is minimal; then there is a real(x*, . . . , x*)1 k

number such that, if , then .d x* 1 0 x* p a � di a a a i

Proof. Suppose . Then, by the lemma, it must be thatx*, x* 1 0a b

. Thus, there is , as required.x � a p x � a d p x � a p x � aa a b b i a a b b

Second corollary. Suppose is minimal, and suppose that,(x*, . . . , x*)1 k

whenever , we have ; then, whenever ,x* 1 0 x* p a � d a � d 1 0a a a i a i

we have .x* p a � da a i

Proof. Suppose not. That is, suppose and .a � d 1 0 x* ( a � da i a a i

Then, by the previous corollary, . Now suppose . Thenx* p 0 x 1 0a b

x* � a p �a p �(a � d ) � d ! d p x* � a .a a a a i i i b b

Thus, by the lemma, is not minimal. This contradicts the(x*, . . . , x*)1 k

assumption, as required.
From these two corollaries to the lemma, we have that, if (x*, . . . , x*)1 k

is minimal, there is such that, for all ,d j p 1, . . . , ki

a) If , then .a � d 1 0 x* p a � dj i j j i

b) If , then .a � d ≤ 0 x* p 0j i j

c) And .
k� x* p qj ijp1

That is, the vector to which Alternative Jeffrey Conditionalization gives
rise is the closest vector to , as required. This completes the(a , . . . , a )1 k

second proof of theorem 5, due to Kenny Easwaran. QED

Accuracy (Diachronic Expected Local) Cannot Always Be Satisfied in
Jeffrey Situations. In proofs of theorems 2 and 3, we derived Probabilism
and Conditionalization from the local synchronic and diachronic versions
of Accuracy, respectively. But we derived our alternative to Jeffrey’s rule
from the global diachronic version of Accuracy (along with Probabilism,
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which is guaranteed by Accuracy (Synchronic expected local)). Above,
we mentioned why this is: the local version cannot always be satisfied in
the situations to which Jeffrey Conditionalization claims to apply. In this
section, we prove this.

First, recall that Accuracy (Diachronic expected local) entails Accuracy
(Diachronic expected global). That is, any belief function that satisfies
the former satisfies the latter. Also, we know which belief function satisfies
the latter, in virtue of theorem 5, proved above. Thus, it will suffice to
describe a Jeffrey situation in which the belief function that satisfies Ac-
curacy (Diachronic expected global) does not satisfy Accuracy (Dia-
chronic expected local).

Consider again the example of section 7.1. That is, W p {w , w , w }1 2 3

and

1 1 1b ({w }) p , b ({w }) p , b ({w }) p .t 1 t 2 t 33 2 6

We then impose the following constraint: . Then ourb ({w , w }) p 1/2t 1 2

updating rule gives

1 1 1A A Ab ({w }) p , b ({w }) p , b ({w }) p .′ ′ ′t 1 t 2 t 36 3 2

Let , and consider the expected local inaccuracy2I(A, w, x) p (x (w) � x)A

of the degree of credence in the singleton proposition byAb ({w }) {w }′t 1 1

the lights of , relative to I and over all possible worlds in W:bt

1 1 1 1 1 1 2A 2 2 2LExp (I, {w }, W, b ({w })) p (1 � ) � (� ) � (� ) p .′b 1 t 1 3 6 2 6 6 6 8t

Now consider the following belief function:

1 1 1C C Cb ({w }) p , b ({w }) p , b ({w }) p .′ ′ ′t 1 t 2 t 33 6 2

Then

1 1 1 1 1 1 2C 2 2 2LExp (I, {w }, W, b ({w })) p (1 � ) � (� ) � (� ) p .′b 1 t 1 3 3 2 3 6 3 9t

Thus,
C ALExp (I, {w }, W, b ({w })) ! LExp (I, {w }, W, b ({w })).′ ′b 1 t 1 b 1 t 1t t

As noted above, this suffices to show that Accuracy (Diachronic expected
local) cannot be satisfied in all Jeffrey situations. QED
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