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Objective: Cognitive impairment (CI) is a common disorder in patients with

epilepsy (PWEs). Objective assessment method for diagnosing CI in PWEs

would be beneficial in reality. This study proposed to construct a diagnostic

model for CI in PWEs using the clinical and the phase locking value (PLV)

functional connectivity features of the electroencephalogram (EEG).

Methods: PWEs who met the inclusion and exclusion criteria were divided

into a cognitively normal (CON) group (n = 55) and a CI group (n = 76). The

23 clinical features and 684 PLVEEG features at the time of patient visit were

screened and ranked using the Fisher score. Adaptive Boosting (AdaBoost) and

Gradient Boosting Decision Tree (GBDT) were used as algorithms to construct

diagnostic models of CI in PWEs either with pure clinical features, pure PLVEEG

features, or combined clinical and PLVEEG features. The performance of these

models was assessed using a five-fold cross-validation method.

Results: GBDT-built model with combined clinical and PLVEEG features

performed the best with accuracy, precision, recall, F1-score, and an area

under the curve (AUC) of 90.11, 93.40, 89.50, 91.39, and 0.95%. The top

5 features found to influence the model performance based on the Fisher

scores were the magnetic resonance imaging (MRI) findings of the head for
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abnormalities, educational attainment, PLVEEG in the beta (β)-band C3-F4,

seizure frequency, and PLVEEG in theta (θ)-band Fp1-Fz. A total of 12 of the

top 5% of features exhibited statistically different PLVEEG features, while eight

of which were PLVEEG features in the θ band.

Conclusion: The model constructed from the combined clinical and PLVEEG

features could effectively identify CI in PWEs and possess the potential

as a useful objective evaluation method. The PLVEEG in the θ band

could be a potential biomarker for the complementary diagnosis of CI

comorbid with epilepsy.

KEYWORDS

epilepsy, cognitive impairment, EEG, phase locking value, GBDT, AdaBoost,
diagnostic model, Fisher score

Introduction

Cognitive impairment (CI) is one of the very common
comorbidities occurring in 70–80% of patients with epilepsy
(PWEs) (Helmstaedter and Witt, 2017). Previous studies have
revealed several factors that may induce CI in PWEs, including
age at onset, duration of illness, surgical head trauma, perinatal
injury, temporal lobe epilepsy, hippocampal abnormalities,
seizures, status epilepticus, medications, and psychiatric factors
(Black et al., 2010; Titiz et al., 2014; Vrinda et al., 2019;
Jarcuskova et al., 2020; Wang et al., 2020; Novak et al.,
2022a). Furthermore, interictal epileptiform discharges (IEDs)
in electroencephalogram (EEG) recordings are an important
indicator of CI in PWEs (Ung et al., 2017; Gavrilovic et al., 2019;
Balcik et al., 2020), but the exact role of EEG in diagnosing CI in
such patients has rarely been studied.

Cognitive scales serve as the primary method for diagnosing
CI, with the Montreal Cognitive Assessment (MoCA) scale
considered the most appropriate and more sensitive than the
Mini-Mental State Examination (MMSE) scale for screening
cognitive impairment in epileptic individuals (Montano-Lozada
et al., 2021; Huang et al., 2022; Novak et al., 2022b). Notably,
the MoCA-30 point scale is superior to the MoCA-20 scale
for CI assessment in clinical practices (Bergeron et al., 2017;
Del Brutto et al., 2019; Rodrigues et al., 2020; Melikyan et al.,
2021). However, the scale has some shortcomings, most notably
its susceptibility to subjective factors from both patients and
physicians, which may lead to errors in the test. Although
the MoCA scale is well suited to screening for CI in epileptic
patients, however, it is a generic neurological screening tool

Abbreviations: PWEs, patients with epilepsy; MoCA, Montreal Cognitive
Assessment; CI, cognitive impairment; CON, cognitively normal; EEG,
electroencephalogram; PLV, phase locking value; AdaBoost, Adaptive
Boosting; GBDT, Gradient Boosting Decision Tree; MRI, magnetic
resonance imaging; AUC, area under the curve.

for cognitive assessments. Therefore, there is an urgent need
for developing an efficient objective assessment indicator for
cognitive functions, specifically for individuals with epileptic
symptoms.

Electroencephalogram plays a vital role in the diagnosis and
management of epilepsy, as it provides an objective and accurate
response to functional changes in the brain, thus avoiding the
influence of subjective factors in the patient. A growing body
of research has demonstrated a strong correlation between
altered cognitive functions and the neural connectivity of
different brain regions (He et al., 2018; Fadaie et al., 2021;
Duma et al., 2022). Functional connectivity is a type of neural
connectivity that mediates the temporal correlation between
neurophysiological events at different brain regions and is
primarily used to measure the degree of dependency and
correlation between the signals. The phase locking value (PLV)
is one of the quantitative indicators for functional connectivity
(Elahian et al., 2017; Duma et al., 2021). Furthermore, EEG-
based functional connectivity is employed to predict vagus nerve
stimulation (VNS) responsiveness in children with refractory
epilepsies (Ma et al., 2022), as well as to diagnose CI in patients
comorbid with Parkinson’s disease (PD) (Cai et al., 2021).
However, this approach has not been applied to the diagnosis
of cognitive dysfunctions in PWEs. The Adaptive Boosting
(AdaBoost) and Gradient-Boosted Decision Trees (GBDT) are
classic algorithms for ensemble learning (EL) and have been
widely used in areas of neurologic disorders such as epilepsy,
Alzheimer’s disease (AD), PD, etc. (Peng et al., 2020; Wenbo
et al., 2021; Zhang S. et al., 2021; Edeh et al., 2022). These
follow the models constructed based on the clinical and PLVEEG

functional connectivity features of EL algorithms and have
shown the potential of an efficient objective evaluation tool for
diagnosing CI in PWEs.

Here, we used EL algorithms to construct three distinct
models for the diagnosis of CI in PWEs, purely based on the
clinical and PLVEEG features. Additionally, we investigated to
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identify potential biomarkers for the diagnosis of cognitive
functions in PWEs.

Materials and methods

Selection of the participants

A total of 131 PWEs from the outpatient clinic of the
Epilepsy Center of Henan Provincial People’s Hospital between
June 2018 and May 2022 were retrospectively screened and
enrolled in the study. The inclusion criteria were: (1) the patient
must meet the criteria of the International League Against
Epilepsy (ILAE) for the diagnosis of epilepsy, seizures, and other
epileptic syndromes (Fisher et al., 2014); (2) the age range at
the time of consultation must be 12–60 years; (3) the patient
must had a MoCA test at the time of consultation and should
not have any history of MoCA scale testing in the last year;
(4) at least 20 min of outpatient scalp EEG at the time of
consultation, along with the availability of retrospective EEG
data; and (5) the patient must have a complete clinical history
and previous cranial MRI findings. Subjects were excluded
if: (1) the patient’s age was less than 12 years or more than
60 years at the time of consultation; (2) the patient was
diagnosed with psychogenic non-epileptic seizures, or epilepsy
syndrome; (3) the patient was treated with drugs other than
antiseizures medications that affect cognitive functions, such
as benzodiazepines, anti-psychotics, and memory-enhancing
drugs, at the time of consultation; and (4) the patient was
missing the 20-min EEG recording data at the time of the
enrollment.

Based on the patients’ MoCA scores during their visits to
the epilepsy clinic, 131 PWEs were recruited for the study
and were subsequently divided into the control (CON) group
(MoCA ≥ 26; n = 55) and the CI group (MoCA < 26; n = 76)
(Figure 1 and Table 1). The study was approved by the Ethics
Committee of Henan Provincial People’s Hospital and all eligible
subjects signed the written informed consent before their final
recruitment to the study.

Clinical features

Based on the patients’ medical history and clinical
investigations at the time of the current visit to the epilepsy
clinic, 23 clinical features were identified, in conjunction with
previous studies: (1) age; (2) age at the first onset; (3) time from
the first onset to current visit (Black et al., 2010); (4) gender;
(5) family history of epilepsy (defined as whether a first or
second degree relative had epilepsy); (6) history of previous head
surgery or trauma; (7) history of previous the central nervous
system (CNS) infections; (8) history of perinatal injuries due to

premature birth, obstructed labor, hypoxia, and/or intracranial
hematoma; (9) TLE; (10) MRI of the head for abnormalities;
(11) hippocampal atrophy, or sclerosis (Titiz et al., 2014); (12)
different types of seizures like generalized, focal, or both; (13)
status epilepticus; (14) generalized tonic-clonic seizures (GTCS);
(15) seizure frequency in the last year (Wang et al., 2020)
(rare: ≤1 event; occasional: 2–3 events; frequent: ≥4 events);
(16) class of antiseizures medications (Wang et al., 2020); (17)
valproate (VPA) therapy in the last year; (18) phenytoin (PHT)
therapy in the last year; (19) topiramate (TPM) therapy in the
last year; (20) aura of epilepsy; (21) anxiety [according to the
Hamilton Anxiety Inventory (HAI) scale rating: none, possible,
definitely, or definitely obvious]; (22) depression [according to
the Hamilton Depression Inventory (HDI) scale rating: none,
possible, or definite]; and (23) educational attainment (≤6 years,
7–9 years, 10–12 years, or ≥13 years) (Table 2).

EEG acquisition and preprocessing

All patients in both CON and CI groups had scalp EEG
recordings monitored for at least 20 min during this visit.
All tests were performed in the awake closed-eye state, while
EEG recordings performed during the sleep and awake open-
eye states were excluded. The EEG-1200◦C machine (Nihon
Kohden, Tokyo, Japan), with a sampling frequency of 256 Hz, an
amplification multiplier of 1000×, a low-pass filter of 70 Hz, and
a high-pass filter of 0.5 Hz, was used for this study. This system
uniformly used the international 10–20 lead system for placing
the scalp electrodes, including 19 recording leads, namely Fp1,
Fp2, Fz, Cz, Pz, C3, C4, T3, T4, T5, T6, F3, F4, F7, F8, O1, O2,
P3, and P4, and 2 reference leads A1 and A2.

Preprocessing of EEG data was performed using the
EEGLAB toolbox in MATLAB software (Mathworks Inc., USA)
(Delorme and Makeig, 2004). Briefly, the EEG recordings were
first filtered to extract only the 0.5–30 Hz recordings. Afterward,
the artifacts of eye movements in electromyogram (EMG) were
removed using independent component analysis. Finally, the
20-min EEG recording of each patient was intercepted into 6 s
segments, and PLVEEG features were extracted.

Parameters setting for AdaBoost and
GBDT

AdaBoost and GBDT are typical methods of boosting
algorithm. In the AdaBoost model, the number and learning rate
of base classifiers were also determined by grid search, ranging
from 50 to 150 and 0 to 1, respectively and the algorithm of
AdaBoost set to SAMME.R. The base classifier of AdaBoost
was SVM, the kernel was RBF and the C and gamma of which
were also determined by grid search, ranging from 2−10 to
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FIGURE 1

Flow chart. PWEs, patients with epilepsy; MoCA, Montreal Cognitive Assessment; EEG, electroencephalogram; CI, cognitive impairment; CON,
cognitively normal; EL, ensemble learning.

TABLE 1 Types of epilepsy in patients with epilepsy used in the study.

Epil. type Unitemp. Bitemp. Par. Occ. Central Front. Undetermined

CON (n = 55) 25 2 0 9 8 2 9

CI (n = 76) 44 4 3 7 7 3 8

Epil. type, epilepsy type; Unitemp, unitemporal; Bitemp, bitemporal; Par, parietal; Occ, occipital; Front, frontal.

210 and 0.0001 to 10, respectively. Other parameters were set
to default values. In the GBDT model, the number, learning
rate, and subsample of base classifiers were also determined
by grid search, ranging from 50 to 150, 0 to 1 and 0.5 to 0.8,
respectively. The base classifier of GBDT was CART, the max
depth and the max leaf nodes of which were also determined by
grid, search ranging from 10 to 15 and 10 to 30, respectively.
Other parameters were set to default values. In order to reduce
the contingency and improve the generalization ability, the
five-fold cross-validation method was used to evaluate the
performance of the model and select the best model. All
of the above algorithms were programmed and realized by
sklearn in PyCharm IDE using Python 3.7. The computer
system is windows 10 professional, the CPU is Inter Core i7-
10700K Processor @3.9 GHz, and the RAM is 32 GB. The final
parameters of the model are shown in Table 3.

PLV-based functional connectivity
features

Phase locking value is a type of connection characteristic,
which quantifies the degree of phase synchronization between
the two EEG signals (Aydore et al., 2013; Leguia et al., 2021).
The Hilbert transform was first applied to the preprocessed EEG
data to calculate the instantaneous amplitude and instantaneous
phase for each lead site. The PLV indicator was then calculated
using the following formula:

PLV t =
1
N

∣∣∣∣∣
N∑

n = 1

exp
(
jθ (t, n)

)∣∣∣∣∣
Where N denoted the number of EEG segments per

subject, θ (t, n) presented the instantaneous phase difference
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TABLE 2 Demographic information and clinical characteristics.

Clinical features CON group (n = 55) CI group (n = 76) P-value

Age. y, mean± SD 26.38± 10.49 31.34± 13.93 0.061

Age at first onset. y, mean± SD 18.76± 11.02 20.71± 14.74 0.788

Time from first onset to current visit. y, mean± SD 7.44± 7.79 10.63± 8.14 0.009*

Female 24 39 0.385

Family history of epilepsy. Y, n 2 5 0.730

History of previous head surgery or trauma. Y, n 6 17 0.089

History of previous CNS infections. Y, n 8 18 0.196

History of perinatal injury. Y, n 4 8 0.741

TLE. Y, n 27 48 0.108

MRI of the head for abnormalities. Y, n 28 51 0.061

Hippocampal atrophy, sclerosis. Y, n 14 37 0.004*

Seizure type, n 0.875

Generalized 13 21

Focal 7 9

Both 35 46

Status epilepticus. Y, n 4 15 0.080

GTCS. Y, n 45 67 0.309

Seizure frequency, n 0.006*

Rare 17 12

Occasionally 15 11

Frequent 23 53

Class of antiepileptic drugs ≥2. Y, n 18 41 0.016*

VPA. Y, n 17 40 0.013*

PTH. Y, n 1 2 1.000

TPM. Y, n 3 4 1.000

Aura of epilepsy. Y, n 22 24 0.319

Anxiety, n 0.444

None 14 12

Possible 13 21

Definitely 25 35

Definitely obvious 3 8

Depression, n 0.555

None 23 25

Possible 31 48

Definitely 1 3

Educational attainment, n <0.001*

≤6 y 1 23

7–9 y 11 18

10–12 y 15 19

≥13 y 28 16

y, year; Y, yes; CNS, central nervous system; TLE, temporal lobe epilepsy; MRI, magnetic resonance imaging; GTCS, generalized tonic-clonic seizures; VPA, valproate; PHT, phenytoin,
TPM, topiramate.
P < 0.05 is considered as statistically significant. *The features that have statistically significance. For continuous variables, independent-samples t-test or Mann–Whitney U-test was
carried out. For categorical variables, chi-square test or Fisher’s exact test were carried out.
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TABLE 3 The parameters of the models.

AdaBoost Value GBDT Value

Clinical feature-based model

Base_estimator SVC Base_estimator CART

N_estimators 60 N_estimators 90

Learning_rate 0.2 Learning_rate 0.5

C 1024 Subsample 0.8

Gamma 0.0025 Max_depth 8

Kernel RBF Max_leaf_nodes 15

PLVEEG feature-based model

base_estimator SVC Base_estimator CART

N_estimators 100 N_estimators 90

Learning_rate 0.1 Learning_rate 0.2

C 256 Subsample 0.7

Gamma 0.25 Max_depth 10

Kernel RBF Max_leaf_nodes 13

Combined clinical-PLVEEG feature-based model

Base_estimator SVC Base_estimator CART

N_estimators 80 N_estimators 110

Learning_rate 0.3 Learning_rate 0.3

C 64 Subsample 0.7

Gamma 0.0125 Max_depth 12

Kernel RBF Max_leaf_nodes 15

between different leads of the same segment, exp
(
jθ (t, n)

)
represented the complex signal obtained with the help of Euler’s
formula using phase, and

∑N
n 1 exp

(
jθ (t, n)

)
represented the

superimposed value of the complex signals of all segments
of a patient, which was averaged to obtain the PLV feature
value of a subject.

The PLV feature was then quantized into a value in the
range [0,1]. When PLV = 1, the phase difference between the
two signals was constant, i.e., perfectly synchronized. When
PLV = 0, the phase difference was uniformly distributed over the
complex plane unit circle according to time, indicating that there
was no synchronization. Between 0 and 1, the signal difference
exhibited an “overall convergence” nature, such that as PLV
tended to 1, two close signals exhibited better synchronization.

Since it would be more accurate to calculate the
instantaneous phase of narrowband signals using the Hilbert
transform, the preprocessed EEG segments were divided into
four narrow bands according to different frequency ranges,
namely delta (δ) (1–4 Hz), θ (4–7), alpha (α) (8–13 Hz), and β

(14–30 Hz) bands. The PLVEEG values of these four frequency
bands were calculated separately for 200 windows (6 s) of each
subject’s 20-min EEG recording. Finally, 200 PLVEEG feature
matrices of 19 × 19 in each of the four frequency bands were
obtained for each subject and averaged into a single matrix

for each frequeny band, so that each subject ended up with a
total of four feature matrices for four frequency bands. These
PLVEEG feature matrices would be further filtered and sorted
characterized (Figure 2).

Feature extraction

As shown earlier, 23 clinical features were selected based on
the previous studies and contents of available medical records.
The EEG records of all subjects were divided into four different
frequency bands. For each subject’s 200 6 s segments in any
of the frequency bands, 19 leads were paired as two by two,
and a 19 × 19 PLVEEG functional connectivity matrix was
calculated for each segment’s EEG, excluding duplicate PLVEEG

features that made comparisons with the leads themselves, to
obtain a total of 171 PLVEEG features for the EEG recordings
of a given subject. The PLVEEG features from 80 segments
were then averaged. A total of 707 clinical-PLVEEG features,
including 684 PLVEEG and 23 clinical features, were obtained
in the four frequency bands for each subject. However, it was
unknown which features were valid for a particular learning
algorithm, and for this reason, we needed to filter all the features
to select those that were beneficial to the learning algorithm.
Filtering features not only optimized the algorithm to make
the model more generalized but also reduced the running time
of the algorithm resolving overfitting issues and the difficulty
of the learning task, thereby improving the efficiency and the
interpretability of the model.

Fisher score is a common feature filtering method (Zhang J.
et al., 2021). Features with a strong discriminatory performance
exhibit the smallest possible intra-class distance and the largest
possible inter-class distance. The higher the inter-class variance
and the lower the intra-class variance of PLVEEG features in
the same frequency band from different patients, the higher
the Fisher score value is. We ranked the features from the
largest to the smallest, based on their Fisher score values,
with the higher ranked features being theoretically more
discriminative.

Modeling process

The classification models were trained using AdaBoost and
GBDT platforms as classifiers. Models were constructed based
on the pure clinical features, PLVEEG features, and combined
clinical- PLVEEG features, as well. To improve the classification
performance, generalization skills, and speed of each model,
Fisher scores were used to filter the features. Five-fold cross-
validation was used to construct the classification model, using
80% of the two sets of data each time, and the remaining 20% of
the data was used for model validation.
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FIGURE 2

Mean PLVEEG features in the four frequency bands for the CON and the CI groups of PWEs. PWEs, patients with epilepsy; PLV, phase locking
value; CI, cognitive impairment; CON, cognitively normal.

Statistical analysis

To compare the variability of clinical and normalized
PLVEEG features between the CON and CI groups, the
quantitative data were first tested for normality using the
Shapiro–Wilk test, followed by a comparison of the data
with a normal distribution expressed as mean ± standard
deviation (SD) using the independent samples t-test, and the
Mann–Whitney U-test was applied for data with an abnormal
distribution expressed as median ± interquartile range (IQR).
For qualitative information, the chi-squared (χ2) test or Fisher’s
exact test was used to assess the variability between the two data
sets. A p- or p’- value of < 0.05 was considered statistically
significant, where p’ referred to a p-value that was corrected by
the false discovery rate (FDR) correction. We used SPSS v26.0
for all kinds of statistical analyses.

Results

Clinical feature-based model
construction

Of the 23 clinical features, we used Fisher scores to
filter the top 15 clinical features in terms of weightage to
construct the diagnostic model (Table 4A). The selected features
were educational attainment, seizure frequency, VPA, class of
antiseizures medications, hippocampal atrophy and sclerosis,
age, status epilepticus, MRI of the head for abnormalities, time
from the first onset to the current visit, history of previous
CNS infections, TLE, anxiety, age at the first onset, history of
previous head surgeries or trauma, and gender. The features
that showed significant statistical differences between the two

groups were educational attainment, seizure frequency, VPA,
class of antiseizures medications, hippocampal atrophy and
sclerosis, and time from the first onset to the current visit. In the
classification model, constructed based on the clinical features
using AdaBoost, the model performances after a five-fold cross-
validation for accuracy, precision, recall, F1-score, and AUC
were 67.89, 66.69, 91.57, 76.71, and 0.75%, respectively. While,
in case of the classification model built by GBDT, the final
performances after cross-validation for accuracy, precision,
recall, F1-score, and AUC were, respectively, 68.09, 70.80, 75.84,
72.62, and 0.76% (Figure 3 and Figure 4A). Therefore, these
two algorithms were found to differ slightly in the construction
of a model for identifying impaired consciousness in epilepsy
patients using the clinical features only.

PLVEEG feature-based model
construction

A total of 171 PLVEEG features were extracted for each of
the 4 bands of the 20-min EEG recording for each patient,
accounting for a total of 684 features (Table 4B). Then the
model was constructed using those features with Fisher scores
in the top 150 ranks. In the AdaBoost-based classification
model, the model performance after a five-fold cross-validation
for accuracy, precision, recall, F1-score, and AUC were 83.93,
84.76, 88.08, 86.30, and 0.91%, respectively. Likewise, for the
GBDT-based classification model, the final performances after
the cross-validation for accuracy, precision, recall, F1-score, and
AUC were 88.58, 92.17, 88.17, 90.05, and 0.94%, respectively
(Figure 3 and Figure 4B). Importantly, the GBDT was found to
outperform AdaBoost in classification model construction using
PLVEEG features, demonstrating that the GBDT-based model
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TABLE 4 Ranking table of features affecting the model performance.

Rank Clinic feature FS-value Rank Clinic feature FS-value

(A) Top 15 features affecting the pure clinical feature-based model.

1 Educational attainment 0.2092 9 Time from first onset to
current visit

0.0257

2 Seizure frequency 0.1037 10 History of previous CNS
infections

0.0254

3 VPA 0.1033 11 TLE 0.0172

4 Class of antiepileptic drugs 0.0673 12 Anxiety 0.0134

5 Hippocampal atrophy,
sclerosis

0.0558 13 Age at first onset 0.0128

6 Age 0.0453 14 History of previous head
surgery or trauma

0.0118

7 Status epilepticus 0.038 15 Gender 0.0108

8 MRI of the head for
abnormalities

0.0268

Rank EEG feature FS-value Rank EEG feature FS-value

(B) Top 20 features affecting pure PLVEEG- based feature model.

1 θ_T5-T6 0.1191 11 θ_F4-F7 0.0816

2 θ_Fp1-Pz 0.1082 12 θ_Fp2-T6 0.0815

3 δ_Fp1-Pz 0.1076 13 δ_F4-F7 0.0793

4 β_P3-F4 0.1003 14 α_Fp2-T4 0.079

5 β_C3-F4 0.0911 15 θ_P3-F8 0.079

6 α_Fp1-F8 0.0907 16 β_Fp1-F8 0.0787

7 β_F4-F7 0.0848 17 θ_P3-F4 0.0785

8 α_P3-T4 0.0829 18 θ_Fp1-F8 0.078

9 θ_P3-C4 0.0826 19 α_O2-C3 0.0764

10 α_Fp1-F7 0.082 20 β_Fp1-F3 0.0737

Rank Features FS-value Mean ± STD P-value P’-value

(C) Features affecting the top 5% of the clinical-PLVEEG feature-based model.

1 MRI of the head for
abnormalities

0.211 0.557± 0.497 0.061 <0.001*

2 Educational attainment 0.194 2.748± 1.108 <0.001 0.004*

3 β_C3-F4 0.077 0.155± 0.058 0.154 0.265

4 Seizure frequency 0.072 1.359± 0.820 0.006 0.052

5 θ_Fp1-Fz 0.072 0.205± 0.195 <0.001 <0.001*

6 Hippocampal atrophy,
sclerosis

0.069 0.382± 0.486 0.004 0.019*

7 β_F3-F8 0.067 0.146± 0.048 0.216 0.411

8 β_C3-P4 0.059 0.205± 0.074 0.160 0.074

9 θ_C3-P4 0.057 0.237± 0.067 0.345 0.156

10 β_T5-T6 0.056 0.139± 0.049 0.028 0.012*

11 θ_P4-T5 0.054 0.220± 0.116 0.045 0.038*

12 θ_Fp2-T6 0.053 0.235± 0.099 0.003 0.008*

13 β_T5-F7 0.052 0.151± 0.074 0.028 0.019*

14 β_P3-P4 0.050 0.132± 0.050 0.830 0.655

(Continued)

Frontiers in Neuroscience 08 frontiersin.org

https://doi.org/10.3389/fnins.2022.1060814
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-1060814 January 9, 2023 Time: 16:42 # 9

Ren et al. 10.3389/fnins.2022.1060814

TABLE 4 (Continued)

Rank Features FS-value Mean ± STD P-value P’-value

(C) Features affecting the top 5% of the clinical-PLVEEG feature-based model.

15 VPA 0.049 0.435± 0.496 0.013 0.369

16 β_F4-F7 0.048 0.159± 0.067 0.179 0.220

17 β_O1-T6 0.047 0.146± 0.064 0.282 0.106

18 Class of antiepileptic drugs 0.046 0.450± 0.498 0.016 0.125

19 θ_F3-F8 0.046 0.211± 0.057 0.467 0.213

20 θ_F4-F7 0.044 0.228± 0.067 <0.001 <0.001*

21 δ_P4-T5 0.043 0.293± 0.068 0.172 0.321

22 δ_F4-F7 0.042 0.305± 0.070 0.009 0.015*

23 β_Fp1-F8 0.042 0.282± 0.128 0.579 0.352

24 Time from first onset to
current visit

0.040 9.290± 8.087 0.009 <0.001*

25 β_P3-F4 0.039 0.315± 0.146 0.006 <0.001*

26 Age 0.038 29.260± 12.746 0.061 0.075

27 θ_P3-F4 0.038 0.347± 0.169 0.013 0.049*

28 β_Fp2-T6 0.038 0.172± 0.065 0.130 0.063

29 θ_T5-F7 0.037 0.230± 0.082 0.012 0.025*

30 θ_Fp1-T6 0.036 0.290± 0.200 <0.001 <0.001*

31 δ_Fp2-T6 0.035 0.320± 0.085 0.450 0.157

32 β_Fp1-C3 0.035 0.144± 0.050 0.784 0.842

33 θ_O2-Pz 0.034 0.282± 0.095 0.211 0.082

34 α_C3-P4 0.034 0.260± 0.039 0.331 0.312

35 β_Fp2-F4 0.033 0.359± 0.096 0.093 0.165

36 θ_Fp1-F8 0.033 0.332± 0.121 0.046 0.025*

FS-value, Fisher score value; α, alpha; β, beta; δ, delta;θ, theta; For qualitative data, Chi-square tests were used; For normal data independent sample t-tests were used.
δ Fp1-Fz: δ band from Fp1-Fz and so on; p and p’ < 0.05 is considered statistically significant, p’ refers to p-value that is corrected by false discovery rate (FDR) correction. Although the
selected features may not be statistically significant, they did have a classification value in the model.
*Is defined as features that have statistically significant between CI group and CON group.

could be more accurate in identifying epilepsy patients suffering
from cognitive dysfunctions. It was also found that PLVEEG

features in θ band T5-T6, θ band Fp1-Pz, δ band Fp1-Pz, β band
P3-F4, and β band C3-F4 were the top 5 most important ones
that might influence the model.

A combined clinical-PLVEEG
feature-based model construction

The combined clinical-PLVEEG features were found the most
appropriate for constructing the best performing classification
models, using either AdaBoost or GBDT algorithm. A total of
707 features were screened using Fisher scores for 23 clinical
features and 684 PLVEEG features. A total of 4 clinical features
were selected within the top 10 weighted features, namely MRI
of the head for abnormalities in the first rank, educational
attainment in the second rank, seizure frequency in the fourth

rank, and hippocampal atrophy or sclerosis in the sixth rank;
all of which were significantly differed between the two groups.
Between the two groups, the remaining PLVEEG features with
significant differences were C3-F4 in the β-band, Fp1-Pz in
the θ-band, F3-F8 in the β-band, C3-P4 in the β-band, C3-P4
in the θ-band, and T5-T6 in the β-band, with only Fp1-Pz in
the θ-band, and T5-T6 in the β-band. Although many features
were not statistically different between the two groups, they
exhibited a very strong impact on the model after the Fisher
score screening. Whereas a total of 12 PLVEEG features in
the top 5% of features affecting the model performance were
significantly different between the two groups, including eight
features in the θ band and three PLVEEG features in the β band.
We suspected that PLVEEG in the θ band might be the biomarker
that could distinguish between these two groups (Table 4C and
Figure 5).

For AdaBoost, the top 150 Fisher scores were selected
to build the classification model, and the final performances
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FIGURE 3

The evaluation indexes after five-fold cross-validation. GBDT, Gradient Boosting Decision Tree; AdaBoost, Adaptive Boosting.

after five-fold cross-validation were 87.78, 85.95, 93.17, 89.35,
and 0.92% for accuracy, precision, recall, F1-score, and AUC,
respectively. While for GBDT, the top 250 Fisher scores were
selected to build the classification model, and the model
performances after five-fold cross-validation were 90.11, 93.40,
89.50, 91.39, and 0.95% for accuracy, precision, recall, F1-score,
and AUC, respectively (Figure 3 and Figure 4C). The recall
performance of the AdaBoost model was found to be slightly
higher than that of the GDBT, while GDBT outperformed
AdaBoost in terms of other metrics.

Comparison between different models

Six models, based on the clinical features only, PLVEEG

features only, and combined clinical-PLVEEG features, were
constructed for 55 CON and 76 epilepsy patients suffering
from cognitive dysfunctions, using the ensemble algorithms like
AdaBoost and GBDT. We found that the models constructed
with combined clinical-PLVEEG features outperformed those
developed with either pure clinical or pure PLVEEG features
for both the AdaBoost and GBDT algorithms. Notably, the
models constructed solely with clinical features performed
the worst. The cross-sectional comparisons also revealed that
GBDT-built models outperformed the AdaBoost-based ones in
both classification models constructed with PLVEEG features.
Furthermore, GBDT also outperformed AdaBoost in cases

of both pure clinical features and combined clinical-PLVEEG

features, with an exception for recall performance (Table 5).
Not only that, but we could also identify potential

biomarkers like EEG indicators using the combined clinical-
PLVEEG feature-based models that might be able to detect
CI in epilepsy patients, which could be highly useful in the
diagnosis of epilepsy in clinical settings. Additionally, many of
the clinical features used have also been reported in previous
studies suggesting their strong association with CI symptoms
in epilepsy patients, but have not been ranked to the extent to
which these clinical features might affect cognition. Therefore,
we ranked these clinical features by their respective Fisher
scores. Our findings suggest that EEG could be of great interest
to subjects with cognitive deficits, especially those with epileptic
symptoms. Previously, technical limitations were the main
obstacle in improving the application of EEG for epilepsy
diagnosis and treatment. By estimating the combined effects
of clinical and PLVEEG features, we could predict the current
cognitive status in epilepsy patients, providing clinicians with
more options for precise diagnosis and effective treatment plans.

Discussion

To the best of our knowledge, the present study is the first
of its kind to use an integrated algorithm for the construction
of a classification model for facilitating the diagnosis of
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FIGURE 4

The performance of six models. (A) Pure clinical features. (B) Pure electroencephalogram (EEG) features. (C) Combined clinical and PLVEEG

features. GBDT, Gradient Boosting Decision Tree; AdaBoost, Adaptive Boosting; AUC, area under the curve; ROC, receiver
operating-characteristic curve; std. dev, standard deviation.
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FIGURE 5

In the combined clinical-PLVEEG model, there were statistically significant differences in 12 PLVEEG features between the CON and CI groups of
PWEs. The higher the fisher score, the tighter the connection between the leads. P < 0.05 is considered statistically significant. (A) Alpha band;
(B) beta band; (C) theta band; (D) delta band. PWEs, patients with epilepsy; PLV, phase locking value; CI, cognitive impairment; CON, cognitively
normal.

CI in PWE by combined clinical and PLVEEG functional
connectivity features.

Advantages of combined
clinical-PLVEEG features for
classification model building

Although several risk factors affecting cognitive functions
in epilepsy have been identified, however, only a few studies
have used these clinical features to predict whether PWEs
have a comorbid CI situation. Importantly, it’s been difficult
to determine the extent to which these clinical features might
affect cognition with a background of epilepsy. A meta-analysis
(Novak et al., 2022a) has found that duration of epilepsy,
frequency of seizures, and use of antiseizures medications are
important clinical features that can affect cognition. Moreover,
some studies suggest that education, history of surgical head

trauma, anxiety and depression, hippocampal abnormalities,
TLE, and seizure types may influence cognitive functions in
PWEs (Piazzini et al., 2006; Bell et al., 2011; Vrinda et al.,
2019; Jarcuskova et al., 2020; Wang et al., 2020; Phuong
et al., 2021; Elsherif and Esmael, 2022). A previous study (Lin
et al., 2021) collected 12 clinical features from outpatients
with epilepsy to construct a model for diagnosing CI with
a performance accuracy, recall, precision, and AUC of 60,
51, 88, and 0.71%, respectively, and concluded that status
epilepticus, history of previous surgical head trauma, and seizure
frequency were the top three clinical features affecting cognition.
However, the clinical features considered in this study were not
comprehensive enough, for example, it did not take into account
important factors affecting PWEs such as education level and the
classes of antiseizures medications taken (Wang et al., 2020). It
was previously thought that VPA, PHT, and TPM could cause
cognitive dysfunctions in PWEs (Brunbech and Sabers, 2002;
Dang et al., 2021; Lozano-Garcia et al., 2021), and for this reason,
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TABLE 5 The performance of the six classifier models.

Features and
algorithms

Performance Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean-value

Clinical features
GBDT

Accuracy (%) 55.56 80.77 61.54 73.08 69.23 68.03

Precision (%) 61.54 83.33 61.90 72.22 75.00 70.80

Recall (%) 53.37 88.23 86.67 86.67 64.28 75.84

F1-score (%) 57.17 85.71 72.22 78.79 69.23 72.62

AUC 0.61 0.82 0.75 0.84 0.78 0.76

Clinical features
AdaBoost

Accuracy (%) 74.07 84.62 65.38 61.54 53.85 67.89

Precision (%) 75.00 80.95 62.50 60.00 55.00 66.69

Recall (%) 80.00 100.00 100.00 100.00 78.57 91.57

F1-score (%) 77.42 89.47 76.92 75.00 64.71 76.71

AUC 0.73 0.78 0.67 0.84 0.72 0.75

EEG features
GBDT

Accuracy (%) 85.19 84.62 92.31 96.15 84.62 88.58

Precision (%) 87.50 86.67 100.00 100.00 86.67 92.17

Recall (%) 87.50 86.67 86.67 93.33 86.67 88.17

F1-score (%) 87.50 86.67 92.86 96.55 86.67 90.05

AUC 0.86 0.86 1.00 0.99 0.96 0.94

EEG features
AdaBoost

Accuracy (%) 88.89 84.62 80.77 76.92 88.46 83.93

Precision (%) 88.24 82.35 85.71 80.00 87.50 84.76

Recall (%) 93.75 93.33 80.00 80.00 93.33 88.08

F1-score (%) 90.91 87.50 82.76 80.00 90.32 86.30

AUC 0.93 0.91 0.90 0.86 0.96 0.91

Clinical+EEG features
GBDT

Accuracy (%) 85.19 84.62 96.15 96.15 88.46 90.11

Precision (%) 87.50 86.67 100.00 100.00 92.86 93.40

Recall (%) 87.50 86.67 93.33 93.33 86.67 89.50

F1-score (%) 87.50 86.67 96.55 96.55 89.66 91.39

AUC 0.86 0.95 1.00 0.99 0.97 0.95

Clinical+EEG features
AdaBoost

Accuracy (%) 88.89 88.46 92.31 84.62 84.62 87.78

Precision (%) 85.71 88.24 90.00 76.92 88.89 85.95

Recall (%) 92.31 93.75 100.00 90.91 88.89 93.17

F1-score (%) 88.89 90.91 94.74 83.33 88.89 89.35

AUC 0.98 0.94 0.95 0.89 0.83 0.92

GBDT, Gradient Boosting Decision Tree; AdaBoost, Adaptive Boosting; AUC, area under the curve.

the presence or absence of these three drugs was used as a
clinical feature. The study showed that only VPA had significant
weightage for this model, while PHT and TPM, probably due
to insufficient data, were not statistically significant, and did not
contribute to the construction of the model.

Of the models constructed using pure clinical features,
the performance accuracy, recall, precision, and AUC for

the AdaBoost/GBDT models were 67.89/68.03%, 91.57/75.84%,
66.69/70.80%, and 0.75/0.76%, respectively. Using Fisher scores,
we selected 23 clinical features. Of these, education level, seizure
frequency, and VPA therapy ranked the top three clinical
characteristics affecting cognition in PWEs. Among the models
constructed with combined clinical and PLVEEG features, the
accuracy, recall, precision, and AUC of the AdaBoost/GBDT
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models were 87.78/90.11%, 93.17/89.50%, 85.95/93.40%, and
0.92/0.95%, respectively. We applied the Fisher scoring method
for the 23 clinical features and 684 PLVEEG features to jointly
screen and rank. Among these features, MRI abnormalities,
education level, and seizure frequency were the top 3 most
influential clinical features. The performance of the models
constructed using clinical features alone was better than that
shown in previous studies for all metrics, except for the
performance accuracy. While the performance of the models
constructed using combined clinical and PLVEEG features was
significantly improved than that reported previously. Thus, we
concluded that combined clinical and PLVEEG features were
more appropriate for PWEs and that a combination of different
types of features would be an optimal choice for constructing
diagnostic prediction models.

PLVEEG features are valid indicators for
diagnosing CI in PWEs

PLVEEG is used to remotely examine the task-induced
changes in neural activities, synchronized in EEG recordings,
which is a classic metric for computing functional brain
connectivity features. Jones et al. (2022) have used PLVEEG

functional connectivity features as an evaluation metric
for assessing the efficacy of transcranial alternating current
stimulation (tACS) on age-associated cognitive decline. Li et al.
(2022) have constructed a model combining the clinical and
PLVEEG features to diagnose Alzheimer’s disease (AD), which
exhibits satisfactory performance and robustness. Another study
(Lanzone et al., 2021) has found that PLVEEG in the α band
of patients who were effective on treatment with perampanel
as an add-on drug could be used as a biomarker to predict
the responsiveness to perampanel drugs. Cho et al. (2017)
have reported that PLVEEG in the γ band may be a potential
biomarker for predicting seizures. In this study, the accuracy,
recall, precision, and AUC of the AdaBoost/GBDT models were
83.93/88.58%, 84.76/92.17%, 88.08/88.17%, 86.30/90.05%, and
0.91/0.94%, respectively, when only the PLVEEG features were
used for the model construction. The θ-band T5- T6, θ-band
Fp1-Pz, and δ-band Fp1-Pz were the top three PLVEEG features
affecting the model weightage, indicating that the PLVEEG

functional connectivity features might be valid indicators for the
diagnosis of cognitive dysfunctions comorbid with epilepsy.

PLVEEG features in the θ band may be a
potential biomarker for diagnosing CI
in PWEs

Here, we calculated the PLVEEG features of the four
frequency bands (α, β, θ, δ), and found that the PLVEEG features,
especially of the θ band, might be potential biomarkers to

distinguish between epilepsy patients with or without comorbid
CI. In our constructed model of the combined clinical and
PLVEEG features, we employed Fisher scoring to rank individual
features, which revealed 12 PLV features that ranked in the top
30 were significantly different between the CON and CI groups.
Notably, eight of these features were related to the θ band and
three to the β band.

The θ band has been found to have an important
relationship with epilepsy and cognitive function in previous
studies. One study (Douw et al., 2010) has demonstrated that
functional connectivity features in the θ band could be used
to aid in the diagnosis of epilepsy with a recall of 62% and
a specificity of 72%. Other studies (Jun et al., 2020) have also
suggested that stimulation of the hippocampus may increase the
release of θ rhythms, thereby improving the associative memory
function. These studies suggest that increasing the θ rhythm in
the hippocampus may provide a theoretical basis for the neural
mechanisms of memory enhancement. Moreover, Gupta et al.
(2012) have identified that θ rhythms in the hippocampus of rats
are associated with visuospatial abilities and executive abilities
related to memory and cognition. Another study (Braithwaite
et al., 2020) has revealed that increased power of the θ rhythm
in children can be a valid biomarker for predicting non-verbal
cognitive abilities. Furthermore, it (Ahmadlou et al., 2014) has
been concluded that functional connectivity features in the θ

band could be used to differentiate between patients with mild
CI and healthy elderly populations. Briels et al. (2020) have
found that functional connectivity indicators in the θ and β

frequency bands in AD patients may help diagnose the disease
severity. Other studies (Singh et al., 2018) have shown that
a reduction in midfrontal θ wave frequency responds to the
degree of effective control of cognitive functions in PD patients.
The θ rhythms in the frontal lobe are highly correlated with
cognitive function (Cavanagh and Frank, 2014), with Fp1-Fz
being within the frontal lobe. Our results showed that the
PLVEEG features of Fp1-Fz in the θ band were significantly
different between the CON and CI groups of epilepsy patients,
accounting for a high weightage in the diagnostic model. In
this context, one study (Cao et al., 2022) has reported an
important relationship between the θ rhythm and cognition in
patients with schizophrenia, indicating that superior cognitive
performance may be significantly associated with a smaller θ

wave power, and altered θ rhythm and cognition are highly
correlated mainly in the parieto-occipital lobe. The P4 and T5
were close to the occipital region in our investigation. The
PLVEEG for P4-T5 were also significantly different between
the two groups and accounted for a higher weightage in
the model. Furthermore, it is shown (Usami et al., 2019)
that β oscillations can enhance the responsiveness of the
cerebral cortex to inputs from distant cortices, suggesting
that β frequencies may have an important role in functional
connectivity. Interestingly, α frequency is significantly increased
in AD patients presenting with mild cognitive dysfunctions
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(Moretti, 2015). The α frequency was found to be less influential
in our study, in terms of statistical significance and the
weightage of the model, possibly due to the exclusion of AD
patients’ data.

Previous studies have amply demonstrated the significance
of functional connectivity features in the θ band in the diagnosis
of epilepsy and cognitive dysfunctions. Therefore, our study
demonstrated that PLVEEG features in the θ band might be
reliable biomarkers for diagnosing CI in PWEs, especially those
with high Fisher scores.

Limitations and future directions

Despite these excellent results, there are still certain
limitations to this study. First, this was a single-center
retrospective study with data from only one institutional
epilepsy center and a small sample population. Although
the combined clinical and PLVEEG features and advanced
algorithms ensured the accuracy of our results, multi-center
prospective studies are warranted for the generalization of our
results. Here, we provided a theoretical basis and demonstrated
the possibilities of further improving the diagnostic methods
for PWEs comorbid with CI. Second, this study was based
on the MoCA scale. However, we classified the features based
on the total MoCA scores rather than the subtest scores.
Although our model could address the issue of differentiating
PWEs with or without cognitive deficits, the content of each
subtest should be investigated more carefully in the future.
Finally, the potential biomarkers that we extracted were mainly
functional connectivity features of the EEG and a subset of
clinical features. The future brain network features extracted
from MRI examinations can be useful in improving the accuracy
and superiority of the model. We propose to validate the
performance of our models with larger datasets from multiple
epilepsy centers in the future, as well as add new features to
improve the accuracy of the model.

Conclusion

In this study, we constructed a diagnostic model for
CI in PWEs based on the combined clinical and PLVEEG

features. Besides, we found that PLVEEG functional connectivity
features in the θ band might be potential biomarkers for the
diagnosis of CI in PWEs.
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