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Abstract

Oxytocin neurons represent one of the major subsets of neurons in the paraventricular hypothalamus (PVH), a critical brain
region for energy homeostasis. Despite substantial evidence supporting a role of oxytocin in body weight regulation, it
remains controversial whether oxytocin neurons directly regulate body weight homeostasis, feeding or energy expenditure.
Pharmacologic doses of oxytocin suppress feeding through a proposed melanocortin responsive projection from the PVH to
the hindbrain. In contrast, deficiency in oxytocin or its receptor leads to reduced energy expenditure without feeding
abnormalities. To test the physiological function of oxytocin neurons, we specifically ablated oxytocin neurons in adult mice.
Our results show that oxytocin neuron ablation in adult animals has no effect on body weight, food intake or energy
expenditure on a regular diet. Interestingly, male mice lacking oxytocin neurons are more sensitive to high fat diet-induced
obesity due solely to reduced energy expenditure. In addition, despite a normal food intake, these mice exhibit a blunted
food intake response to leptin administration. Thus, our study suggests that oxytocin neurons are required to resist the
obesity associated with a high fat diet; but their role in feeding is permissive and can be compensated for by redundant
pathways.
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Introduction

The paraventricular hypothalamus (PVH) is a critical brain

region for both feeding and energy expenditure regulation [1–2].

Within the PVH, there are distinct subsets of peptidergic neurons

including oxytocin, vasopressin (AVP), thyrotropin releasing

hormone (TRH) and corticotropin releasing hormone (CRH)

neurons, which send projections throughout the brain as well as to

the median eminence (TRH and CRH) or posterior pituitary

(oxytocin and vasopressin, also including projections from the

supraoptic nucleus) [3]. These projections form the structural basis

through which the PVH in the regulates a diverse set of

physiologic functions including energy homeostasis.

Substantial data supports a role for oxytocin in regulating body

weight. Oxytocin neurons show relatively high co-localization with

the expression of FTO gene, a gene in which mutations have been

shown to be significantly associated with human obesity [4].

Reduced oxytocin neuron number and cell volume, and reduced

baseline oxytocin profiles have been associated with the Prader-

Willi syndrome, a human obesity syndrome notable for severe

hyperphagia [5–6]. Oxytocin neurons appear to at least partially

mediate the anorexigenic action of leucine [7]. Administration of

oxytocin decreases food intake while administration of oxytocin

receptor antagonists results in hyperphagia [8]. Current evidence

supports a model in which PVH oxytocin neurons project to the

nucleus of solitary tract (NTS) and release oxytocin to modulate

the activity of local hindbrain neurons and ‘‘fine tune’’ the

response of NTS neurons to satiety signals arising in the gut and/

or periphery [9–12]. In addition, diminished oxytocin has been

shown to be associated with hyperphagic obesity secondary to

haploinsufficiency of Single-minded 1, a transcription factor required

for PVH development [13]. Importantly, oxytocin reduces high-fat

induced obesity by restricting energy intake [14–15]. Consistent

with this result, a recent study suggested that synaptotagmin-4

regulates oxytocin release to modulate feeding and that defects in

this regulation may mediate diet-induced obesity [8,16]. Taken

together, these data demonstrate an important role for oxytocin in

the regulation of food intake.

Despite the compelling evidence for a role of oxytocin in feeding

regulation, there are inconsistencies regarding the role of oxytocin

in other animal studies. Mice with deficiency of oxytocin or its

receptor show either normal body weight or mild obesity [3,17–

20]. Even in the case of obesity, mice show reduced energy

expenditure but normal feeding [17,20–21]. Whether these

discrepancies could be attributable to developmental compensa-

tion in response to germline gene deletion is not clear. Previous

studies targeting agouti-related peptide (AgRP) neurons revealed
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that disruption of these neurons in the neonatal period induced

profound developmental compensation that almost completely

masked the physiologic function of these neurons [22]. To test the

necessity of oxytocin neurons in feeding regulation and avoid any

developmental compensation occurring from germline deletion of

oxytocin or its receptor, we generated mice with a specific lesion of

oxytocin neurons in adult mice using a temporally controlled,

genetic lesioning approach. After achieving , 95% ablation of

oxytocin neurons, our results demonstrate that oxytocin neurons

are dispensable for feeding regulation in males and females, but

are required for diet induced energy expenditure and for

pharmacologic leptin action on feeding in males.

Materials and Methods

Experimental Animals
Oxytocin-Ires Cre mice were generated using recombineering

techniques as previously described [23–24]. Briefly, a selection

cassette containing and internal ribosomal entry sequence linked

to Cre recombinase and an Frt-flanked kanamycin resistance gene

was targeted just downstream of the stop codon of the Oxytocin

gene in a bacterial artificial chromosome (RP24-388N9; Chil-

dren’s Hospital Oakland Research Institute). A targeting plasmid

containing the Cre-containing selection cassette and 4 kb genomic

sequence upstream and downstream of the Oxytocin stop codon

was isolated and used for embryonic stem cell targeting. Correctly

targeted clones were identified by long range PCR and southern

blot analysis and injected into blastocysts. Chimeric animals

generated from blastocyst implantation were then bred for

germline transmission of the altered Oxytocin-allele. Flp-deleter

mice were then used to remove the neomycin selection cassette.

Mice carrying Cre-dependent expression of diphtheria toxin

receptor (DTR) were purchased from the Jackson Laboratory

(Gt(ROSA)26Sortm1(HBEGF)Awai/J, item number: 7900, named

Rosa26iDTR/iDTR. Study subjects were generated by mating

Rosa26iDTR/iDTR mice with Oxytocin-Ires-Cre mice, from Oxytocin-

Ires-Cre:Rosa26iDTR/+ mice and their littermate control group

Rosa26iDTR/+ mice were generated. Since study subjects are

littermates, potential genetic variation is equally distributed to

study groups. To visualize Oxytocin-Ires-Cre expression, Oxytocin-Ires-

Cre mice and Oxytocin-Ires-Cre:Rosa26iDTR/+ mice were crossed with

B6.Cg-Gt(ROSA)26Sortm9(CAG-tdTomato)Hze/J mice (Ai9 mice,

Jackson Laboratory, Bar Harbor, ME) to generate Oxytocin-Ires-

Cre:Ai9 mice and Oxytocin-Ires-Cre:Rosa26iDTR/+Ai9 mice in which

Cre expression can be directly visualized by tdTomato, a variant

red fluorescence protein (RFP), using fluorescent microscopy [25].

Mice were housed at 22uC–24uC with a 12 hr light/12 hr dark

cycle with food and water provided ad libitum. To achieve specific

oxytocin neuron ablation, we used a strategy similar to that used

previously for hypothalamic neuron ablation. Briefly, Oxytocin-Ires-

Cre:Rosa26iDTR/+ mice around 9 weeks of age were injected

intraperitoneally with diphtheria toxin (DTX; 40 ng/g body-

weight); a second dose was administered one week later. Control

Rosa26iDTR/+ mice also received the same DTX treatment. All

animals and procedures were approved by the animal welfare

committee of the University of Texas Health Science Center at

Houston.

Body Weight Studies
Weekly body weight was monitored in Rosa26iDTR/+ mice (or

control mice after DTX treatment) and Oxytocin-Ires-Cre:Ro-

sa26iDTR/+ mice (or lesion mice after DTX treatment) fed standard

mouse chow (Teklad F6 Rodent Diet 8664, Harlan Teklad,

Madison, WI) from 4 to 20 weeks of age. For the high-fat diet

study, a separate cohort of control and lesion mice were switched

from chow diet to high fat, high sucrose diet (HFD, D12331 from

Research Diets, NJ) from 10 weeks of age and maintained on HFD

for 12 weeks. Body weight was monitored weekly. Body

composition was measured at the end of study (22 weeks of age)

using an Echo-MRI machine.

Energy Expenditure and Food Intake Measurements
Energy expenditure was assessed by measuring oxygen

consumption with indirect calorimetry. Individually housed

control and lesion mice maintained on chow diet at 12 weeks of

age were placed at room temperature (22uC–24uC) in chambers of

a Comprehensive Lab Animal Monitoring System (CLAMS,

Columbus Instruments, Columbus, OH). Food and water were

provided ad libitum. Mice were acclimated in the chambers for

48 hr prior to data collection. Oxygen consumption was first

measured using mice fed chow for 2 days followed by another 2

days on HFD. Average O2 consumption was calculated for chow

diet and HFD, and compared between genotypes. Daily food

intake was measured for 1 week using mice that were individually

housed for at least 1 week prior to assessment. Daily food intake

was calculated from averaged food intake across the week.

Immunohistochemistry (IHC) Assays
For IHC experiments, free-floating brain sections were rinsed

with PBS (pH 7.4) containing 0.1% Triton X-100 for 30 minutes,

followed by the blocking in PBS containing 5% normal goat serum

(Thermo scientific, Rockford, IL) and 0.3% Triton X-100 for 1

hour at room temperature. The sections were then incubated with

polyclonal rabbit anti-OXYTOCIN (1:1000, Phoenix), or poly-

clonal anti-AVP (rabbit 1:500, Sigma or guinea pig 1:1000,

Phoenix) in PBS containing 2% normal goat serum and 0.2%

Triton X-100 overnight at 4uC, respectively. For IHC on pituitary,

pituitary tissues were taken out and post-fixed in 4% formalin

overnight. Pituitary sections at 10 mM thickness were cut using

a crytostat (Leica, Germany) and IHC was performed as described

above on floating sections using the anti-AVP antibody. All

sections were visualized and photographed with a TCS SP5

confocal microscope (Leica, Germany). To quantify cell numbers,

in each mouse (n = 324), three sections at corresponding

rostrocaudal levels (Bregma levels 20.58, 20.82 and

20.94 mm) were chosen. All immune-positive cells with clear

profile were counted and the numbers from all animals were

summed and then averaged as the number per section.

Leptin and MTII Effects On Food Intake
For leptin feeding experiments, a protocol similar to that

previously described was used [26]. Individually housed male mice

(11 wks) were acclimatized to daily injections of 200 ml of saline

solution for 5 consecutive days before drug treatment. The day

before experiment, mice were fasted overnight. After that, each

mouse received either a saline or an intraperitoneal (i.p.) injection

of recombinant murine leptin (Dr. F. Parlow, NHPP, 4.0 mg/g).

Cumulative food intake and body weight was measured 2, 4 and

24 h after injection. After one week of recovery, the same protocol

was performed in a cross-over fashion: the mice previously treated

with saline received leptin and vice versa. The effect of leptin on

food intake was calculated by normalizing food intake after leptin

treatment to that observed after saline for each individual animal;

this ratio was then averaged within each genotype.

MTII was purchased from Bachem (Torrance, CA). Male

control and lesion mice on a chow diet, aged 12 wks, were housed

individually for 5 days. Three days before the experiment the mice

were habituated to daily i.p. injections using sterile saline. The

Oxytocin Neurons in Energy Balance
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experiment was performed on 2 separate days (2 days washout).

On the day of the experiment, food was removed 4 h before the

onset of the dark cycle (1400 h). At the onset of the dark cycle

(1800 h), mice were injected i.p. with saline or 5 mg/kg MTII in

saline. Cumulative food intake and body weight was measured 2,

4, and 24 h after injection.

Quantitative PCR Assay
RNA was extracted from hypothalamic micro-punches using

the Trizol Reagent (Invitrogen), reverse transcribed with RETRO-

script (Ambion) and amplified using SYBR green technology (Bio-

Rad, Hercules, CA). The primers for oxytocin are 59-CAA-

GAGGGCTGTGCTGGACCTGGATAT-39 and 59-

GCGGGGTCTGTGCGGCAGCCA-3, for AVP are 59-

CTCCGCTTGTTTCCTGAGCCTGCTG -39 and 59-AG-

CAGCGTCCTTTGCCGCCCGG-39, for TRH are 59-

GATGGCTCTGGCTTTGATCTT-39 and 59- GATCTAT-

GAACCTCCGGCCT-39, and for CRH are 59-

CATGCGGCTGCGGCTGCTGGTGT-39 and 59-

GCGGCGCTCGGGGGACGGAT-39. Assays were linear over

five orders of magnitude.

Statistical Analyses
Data sets are presented as mean 6 SEM and analyzed for

statistical significance using PRISM (GraphPad, San Diego, CA)

for appropriate Student’s t tests. A P value of ,0.05 was required

for significance.

Results

To achieve specific targeting of oxytocin neurons using Cre-

loxP technology, we generated mice with Cre expression selective

to oxytocin neurons. To ensure that Cre expression matches that

of oxytocin, we employed a knock-in strategy and placed a DNA

cassette containing an internal ribosomal sequence (IRES), Cre

coding sequence and polyadenylation sequence directly after the

stop codon of the endogenous oxytocin gene using homologous

recombination (Fig. 1A). In this configuration, Cre and oxytocin

are transcribed as a single mRNA and the IRES sequence allows

simultaneous translation of both oxytocin and Cre proteins from

the same mRNA, thus ensuring the co-expression of oxytocin and

Cre. To confirm appropriate co-expression, we crossed mice

harboring Oxytoin-Ires-Cre with a Td-tomato reporter strain which

expresses Td-Tomato in a Cre-dependent manner. Using brain

sections from the double transgenic mice (Oxytocin-Ires-Cre:Td-

tomato), we performed immunostaining for oxytocin. We found

a near complete colocalization of dsRed(red) and oxytocin (green)

only in the PVH and the supraoptic nuclear, where oxytocin is

known to be expressed (Fig. 1B). Approximately 92% of cells

containing oxytocin immunoreactivity also expressed Cre activity

in the PVH (n= 2). Similar patterns of colocalization were also

seen using other Cre-dependent fluorescent reporter strains (data

Figure 1. Oxytoin-Ires-Cre knock-in mice express Cre recombinase in oxytocin neurons. A) Cre recombinase was targeted just after the stop
codon of the Oxytocin gene using an internal ribosomal entry site (ires). B) Immunohistochemistry for Oxytocin on brain slices of Oxytocin-Ires-Cre:Td-
tomato reporter (Ai9) mice indicates that nearly all oxytocin-containing neurons (green) express Cre recombinase. C) Oxytocin-ires Cre activity (red)
does not colocalize significantly with AVP immunoreactivity (green) in the PVH. Images were taken at 20X magnification.
doi:10.1371/journal.pone.0045167.g001

Oxytocin Neurons in Energy Balance
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Figure 2. Specific lesion of oxytocin neurons. A and A9: Cre-dependent reporter RFP expression in Oxytocin-Ires-Cre:Ai9 mice (control, A) and
Oxytocin-Ires-Cre:Rosa26iDTR/+:Ai9 mice (lesion, A9) after DTX administration. While numerous RFP positive neurons in control mice, reminiscent of
oxytocin neurons, only a few positive neurons in lesion neurons (Arrows in A9). B and B9: Immunostaining for oxytocin in Oxytocin-Ires-Cre:Ai9 mice
(control, B) and Oxytocin-Ires-Cre:Rosa26iDTR/+:Ai9mice (lesion, B9) after DTX administration. While numerous oxytocin positive neurons in control mice,
negligible number of oxytocin positive neurons in lesion neurons (Arrows in B9). C and C9: Immunostaining for AVP in Oxytocin-Ires-Cre:Ai9 mice

Oxytocin Neurons in Energy Balance
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not shown). A few dsRed-positive neurons representing Cre

expression appear not to express oxytocin in the overlay (Fig. 1B,

arrows). This may reflect the fact that oxytocin expression in these

neurons is too low for detection by immunostaining as it has been

shown before that the number of oxytocin-expressing neurons

depends on physiologic status [3]. In addition, almost all

neighboring AVP neurons in the PVH are devoid of Cre activity

in the Oxytocin-ires Cre mice (Fig. 1C), further suggesting that

nearly all Cre activity is limited to oxytocin neurons. Thus, we

have successfully generated Oxytocin-Ires-Cre mice, in which Cre

expression nearly completely matches that of oxytocin. This strain

can therefore be used for specifically targeting oxytocin neurons.

To achieve specific lesion of oxytocin, we crossed Oxytocin-Ires-

Cre mice with Rosa26iDTR/+ mice to generate Oxytocin-Ires-

Cre:Rosa26iDTR/+ mice. Rosa26iDTR/+ mice express DTR, which is

absent in mice, in a Cre-dependent manner. Upon administration

of diptheria toxin (DTX), cells with DTRs take up DTX, which

then causes cell death [27]. This approach has been successfully

used for the lesion of neurons and other cell types [22,28–29]. To

efficiently detect the Cre-expressing neurons, we further crossed

Oxytocin-Ires-Cre:Rosa26iDTR/+ mice with a Cre-reporter line, Ai9

mice, which express ds-red with strong red fluorescence in a Cre-

dependent manner [25]. To lesion oxytocin neurons in adulthood,

we injected DTX (40 ng/g) by i.p. to Oxytocin-Ires-Cre:Rosa26iDTR/+

mice (lesion) and Rosa26iDTR/+ mice mice (control). Two weeks

after injection, while we saw numerous neurons with dsRed-signal,

representing Cre-expressing oxytocin neurons in control mice

(Fig. 2A), we were only able to observe a few neurons in lesion

mice (Fig. 2A9), suggesting efficient ablation of Cre-expressing

neurons. To directly confirm the killing of oxytocin neurons, we

performed immunostaining for oxytocin. As expected, we saw

numerous oxytocin neurons in the PVH (Fig. 2B) and the

supraoptic nucleus (not shown) of control mice. However, only

a few oxytocin neurons can be observed in the PVH (Fig. 2B9) and

the SON (not shown) of lesion mice (Fig. 2B9). To assess the degree

of oxytocin lesion, we counted the number of oxytocin positive

neurons. Whereas there were around 70+/25 oxytocin positive

neurons in a control PVH field, only 3+/21oxytocin positive

neurons were observed in a similar area in lesion mice (Fig. 2E,

n = 3 mice). To determine whether the lesion is specific to oxytocin

neurons, we performed immunostaining for vasopressin (AVP),

which is expressed in a subset of neurons located in close proximity

to oxytocin neurons. We observed a similar expression pattern of

vasopressin neurons in control (Fig. 2C) and lesion mice (Fig. 2C9).

When counted, the numbers of vasopressin neurons are similar

between the treatments (Fig. 2F). Consistent with dramatic

reduction in number of oxytocin neurons, oxytocin positive fibers

in the posterior pituitary, the major projection site of oxytocin

neurons was also dramatically reduced in lesioned mice (Fig. 2D9),

compared to control mice (Fig. 2D). To further verify lesion of

oxytocin neurons, we examined oxytocin expression in the

hypothalamus and oxytocin levels in the blood. Using hypotha-

lamic tissues obtained from mice 2 weeks after last DTX injection,

oxytocin mRNA was severely reduced in lesioned mice compared

to control mice (Fig. 3A). In agreement with our cell counts, AVP

mRNA expression in the hypothalamus was not different between

control and lesioned mice (Fig. 3B). Furthermore, mRNA levels in

the hypothalamus were comparable between control and lesioned

(control, C) and Oxytocin-Ires-Cre:Rosa26iDTR/+:Ai9 mice (lesion, C9) after DTX administration. Similar patterns of AVP immunostaining were observed in
both genotypes. D and D9: Immunostaining for oxytocin in the posterior pituitary of Oxytocin-Ires-Cre:Ai9 mice (control, D) and Oxytocin-Ires-
Cre:Rosa26iDTR/+:Ai9 mice (lesion, D9) after DTX administration. While intensive oxytocin positive projections were observed in control mice (arrow in
D), weak immunostaining was observed in lesion mice (Arrows in D9). We counted oxytocin and AVP positive neurons from matched PVH sections
from each genotype (n = 3 each). The number of oytocin neuron was dramatically reduced (E) while AVP neuron number remained comparable (F).
***: p,0.001 using two tailed Student’s T test. Scale bars, 100 mm.
doi:10.1371/journal.pone.0045167.g002

Figure 3. Expression of transcripts of PVH neuropeptides. Hypothalamic tissues were punched out from 10 weeks old mice of Oxytocin-Ires-
Cre:Rosa26iDTR/+ mice (lesion, n = 6) and Oxytocin-Ires-Cre mice (control, n = 7) that received DTX injections two weeks before. Expression of mRNA
assessed by Q-PCR assays with GAPDH as an internal control using the punched tissues were shown for oxytocin (A), AVP (B), CRH (C) and TRH (D).
**P,0.01 using two tailed Student’s T test.
doi:10.1371/journal.pone.0045167.g003

Oxytocin Neurons in Energy Balance
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mice for both corticotropin releasing hormone (Fig. 3C) and

thyrotropin releasing hormone (Fig. 3D). Thus, we have achieved

efficient and specific lesion of oxytocin neurons in adult mice.

Cre expression alone can sometimes cause a difference in

baseline body weight. To control for the potential effect of

Oxytocin-Ires-Cre expression on body weight, we monitored body

weight of Oxytocin-Ires-Cre:Rosa26iDTR/+ mice and its control

Rosa26iDTR/+ mice up to 8 weeks of age. There was no difference

in body weight between genotypes in males or females on chow

(data not shown). In addition, to ensure a stable body weight with

drug treatments, we administered saline once a week at the ages of

8 and 9 weeks before DTX administration. We found that the

body weights of both groups remained stable and comparable

during 2 weeks of measurement in males and females (Fig. 4 A–C).

These data demonstrate that Oxytocin-Ires-Cre:Rosa26iDTR/+and

Rosa26iDTR/+ mice have the same baseline body weight. At 9

weeks of age, we administered DTX as described in Fig. 2.

Following DTX administration, we monitored weekly body

weights of control and lesion groups fed chow diet. Compared

to the control group, lesioned male (Fig. 4A) and female (data not

shown) mice exhibited similar body weight through 20 weeks of

age, suggesting that oxytocin neurons are dispensable for body

weight regulation on standard chow diet.

Mice lacking oxytocin or oxytocin receptor display late onset

obesity with normal food intake [17,20]. This suggests a defect in

energy expenditure. To assess this possibility, we used high fat diet

as a physiologic challenge for mice lacking oxytocin neurons. The

animals were treated as described for the chow diet, but switched

to high fat diet upon completion of DTX administration. Weekly

body weights of lesion and control groups were measured through

22 weeks of age. In males, compared to the control group, lesion

mice exhibited a comparable body weight up to 14 weeks of age,

and then slowly developed higher body weight (Fig. 4B). At 22

weeks of age, lesion mice had body weight of (36.1+/21.3 grams)

while control group had body weight of (32.0+/21.1 grams). In

contrast, in females, lesioned mice exhibited no difference in body

weight on HFD up to 22 weeks of age (Fig. 4C). These data suggest

that oxytocin neurons are required for normal body weight

regulation in response to HFD feeding in males, yet are

dispensable in females. Since only lesioned males showed a body

weight phenotype on HFD, we focused primarily on males in the

following experiments.

To characterize the higher body weight in lesioned mice, we

measured the body composition of lesioned and control mice fed

HFD at 22 weeks of age (Fig. 4B). While lean masses of the

different genotypes are comparable, fat mass is significantly higher

in lesioned mice than in controls (Fig. 4D). To examine whether

oxytocin neuron lesion affects feeding, we measured food intake of

control and lesion mice on both chow and HFD. Average daily

food intake over a one week period was comparable between

genotypes on both chow and HFD (Fig. 5A), suggesting that

oxytocin neurons are dispensable for food intake regulation on

both chow and HFD. Given the difference in body weight between

high fat diet treated groups but no difference in food intake, we

next examined whether oxytocin neuron lesion alters energy

expenditure in response to high fat diet challenge. We subjected

mice to O2 consumption measurement using metabolic chambers

(comprehensive lab animal monitoring system, CLAMS, Colum-

bus, Ohio). We used cohorts of weight-matched mice at 14–15

weeks of age treated with DTX at 9 and 10 weeks of age, and there

was no difference in body weight between genotypes. The animals

were first measured for O2 consumption on chow for 2 days

Figure 4. Body weight homeostasis in control and lesion mice. For body weight studies, Oxytocin-Ires-Cre:Rosa26iDTR/+:Ai9 mice (lesion) and
Oxytocin-Ires-Cre:Ai9 mice (control) were first received two doses of saline treatment, each at 8 and 9 weeks of age, and then 2 doses of DTX, each at
10 and 11 weeks of age. Weekly body weight of these mice was measured up to 22 weeks of age on males fed chow (A, n = 7–8), males fed HFD (B,
n = 6–8) and females fed HFD (C, n = 9–10). D. Body composition was determined at 22 weeks of mice shown in B. *p,0.05, two tailed Student’s T
test.
doi:10.1371/journal.pone.0045167.g004

Oxytocin Neurons in Energy Balance
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followed by another 2 days on HFD, as previously described [23].

When normalized to body weight, there was no difference in O2

consumption between genotypes during the chow period; howev-

er, O2 consumption appeared to be lower in lesioned mice

compared to control mice during the HFD period, especially

during the dark cycle (Fig. 5B). To rule out the possibility that

lower O2 consumption is due to a difference in body weight or

composition [30]., we also analyzed the data based on individual

animal and saw a similarly lower O2 consumption in lesion mice

on HFD (Fig. 5C). Indeed, statistical analysis showed that O2

consumption on HFD was significantly lower in lesioned mice

compared to control mice; on a standard chow diet there was no

difference in oxygen consumption between the groups.(Fig. 5D).

Taken together, these data suggest that oxytocin neurons are

required for the stimulation of energy expenditure in response to

HFD feeding.

A previous study on lesioned AgRP neurons suggests the

possibility of functional compensation in response to acute lesion

[31]. To examine the possibility that acute lesion of oxytocin

neurons induces functional compensation in feeding circuits and

thereby masks a feeding effect in mice with oxytocin lesion, we

tested the feeding response to leptin and MTII, an agonist of the

melanocortin receptors. We used a cohort of control and lesion

mice with comparable body weights. After overnight fasting, leptin

administration significantly reduced 2- and 4-hour feeding in

control mice by 25%, and also blunted 24-hour feeding by 20%

(although this difference between treatment groups didn’t reach

the level of significance). However, in lesion mice, leptin only

produced 25% reduction of 2-hour feeding and the effects of leptin

on 4- and 24-hour feeding are not significant between treatment

groups (Fig. 6A). These results suggest that oxytocin neuron lesion

leads to a blunted response to pharmacologic leptin action on

feeding. For MTII, we examined its effect on feeding in the dark

cycle, as previously established [1]. MTII potently reduced food

intake to a similar degree in both control and lesion mice at 2- 4-

and 12-hours post injection (Fig. 6B), suggesting that oxytocin

neurons are dispensable for MTII mediated effects on feeding.

Discussion

Compelling pharmacologic evidence suggests that oxytocin is

anorexigenic, yet genetic models of oxytocin or oxytocin receptor

deficiency display normal food intake with reduced energy

expenditure [3]. To investigate this discrepancy, this study was

designed to examine the physiological function of oxytocin

neurons through specific oxytocin neuron lesion in adulthood.

This approach eliminates the possibility of developmental com-

pensation potentially associated with gene deletion during early

Figure 5. Food intake and energy expenditure in control and lesion mice. A. Daily food intake measured as average of 7-day consecutive
daily food consumption of males fed chow and HFD at 14–15 weeks of age shown in Fig. 3A and B. Oxygen consumption was measured for male
mice during 2 days on chow following by 2 days on HFD (n= 627 each), and the oxygen consumption of both genotypes was analyzed based on
body weight (B) and on individual animal (C). D. O2 consumption across chow and HFD periods shown in C was averaged and compared between
genotypes. *p,0.05, two tailed Student’s T test.
doi:10.1371/journal.pone.0045167.g005
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embryonic stages in available models of oxytocin or oxytocin

receptor deficiency. Using Oxytocin-Ires-Cre mice generated in this

study, we have achieved specific lesion of oxytocin neurons

through a combination of Cre-mediated expression of DTR in

oxytocin neurons and adult DTX administration. This DTR-

based lesion approach has been used by others to effectively lesion

POMC and AgRP neurons [22,28]. Our lesion targeted more

than 95% of oxytocin neurons with a high degree of specificity, as

there was no reduction in nearby AVP neurons or levels of CRH

or TRH mRNA after oxytocin neuron lesioning. This suggests

that our Oxytocin-Ires-Cre mice express Cre selectively in the vast

majority, if not all, of oxytocin neurons and will be useful in future

studies targeting oxytocin neurons for genetic manipulation.

Our results showed that adult lesion of oxytocin neurons had no

effect on body weight, food intake or energy expenditure on chow.

Previous results using mice with deficiency of oxytocin or its

Figure 6. Food intake response to leptin and MTII. Control and lesion mice (n = 9 each) were treated with saline and DTX as in Fig. 3. All
animals were singly housed for at least 1 week before feeding experiments. A. After overnight fasting, half of animals received saline and the other
half leptin treatment, and one week later the same feeding experiment was repeated but in a crossover fashion. Food intake with leptin treatment
was normalized and compared to that with saline treatment at 2, 4 and 24 hour periods. *p,0.05; #p= 0.082; $p= 0.069; ns, p.0.05 using paired
Student’s T test. B. Food intake measurement was started at the onset of the dark cycle (8 pm) after 2-hour food deprivation. The MTII administration
and data analysis was conducted in the same fashion as described in A. *p,0.05, ns, p.0.05 using paired Student’s T test.
doi:10.1371/journal.pone.0045167.g006
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receptor showed evidence for reduced energy expenditure on

chow [17,20]. The difference between these studies and ours may

be related to different genetic backgrounds between study subjects,

housing conditions or different diets used. Evidence for the

potential importance of dietary differences stems from our results

showing that mice that lack oxytocin neurons develop obesity on

HFD with normal food intake but reduced energy expenditure.

The selective effect on energy expenditure is consistent with the

metabolic effects associated with deficiency of oxytocin or its

receptor, both of which also exhibit selective reduction in energy

expenditure, but not food intake [17,20]. In addition, oxytocin

neurons are anatomically positioned to regulate energy expendi-

ture. Oxytocin neurons are located in the PVH and the PVH has

been implicated in energy expenditure regulation through

projections to the raphe pallidus or to the spinal cord, which

control sympathetic output to the brown fat tissues, the major

thermogenic organ in rodents [2,32].

Interestingly, despite the limited affect on physiological food

intake on chow or HFD, oxytocin neuron lesion led to a blunted

response to the anorexigeic effect of leptin. This result suggests that

oxytocin neurons at least partly mediate leptin action on feeding

and that functional compensation for leptin action occurs in

response to inducible loss of oxytocin neurons. It has been shown

previously that adult lesion of AgRP neurons produces a starvation

phenotype, which is averted in the setting of leptin-deficient

obesity [31]. This result suggests that rapid functional compensa-

tion from redundant pathways exist and are sufficient to

ameliorate the detrimental effects of acute neuron loss or

dysfunction. Given the biological importance of food intake

regulation, it is plausible that oxytocin neurons represent just one

subset of downstream neurons that mediate leptin action on food

intake. In the setting of oxytocin neuron loss or dysfunction one

might imagine that non-oxytocin, leptin-responsive pathways

assume the function of the ‘‘lost’’ oxytocin neurons and restrain

food intake. For example, in the absence of oxytocin, AVP can

bind and activate oxytocin receptors [33] and AVP is up-regulated

in response to salt challenging [34]. These results suggest that AVP

can be one of the candidates that compensate for oxytocin neuron

function. In support of this, the AVP pathway has previously been

shown to be involved in feeding regulation [35]. Of note, mRNAs

of AVP and other known neuropeptides in the PVH remain at

comparable levels in oxytocin neuron lesioned mice relative to

controls, suggesting that these neuropeptides cannot compensate

for oxytocin neuron ablation at the transcription level under these

experimental conditions. Nonetheless, the blunted feeding re-

sponse to leptin following oxytocin neuron ablation suggests that

redundant pathways are not sufficient to fully compensate in

response to acute pharmacologic leptin administration. In this

regard, it is important to note that the observed effects of oxytocin

on feeding are largely based on pharmacologic studies [9,13–

14,36]. On the other hand, the deficits in high fat diet induced

energy expenditure observed in this experimental paradigm

suggest a less ‘‘plastic’’ neural pathway regulating diet induced

energy expenditure that is unable to compensate for the acute loss

of oxytocin neurons. Thus, our results suggest that oxytocin

neurons are involved in both energy expenditure and food intake.

Specifically, oxytocin neuron-mediated energy expenditure is

required for response to high-fat feeding while their function in

food intake can be masked by redundant pathways under normal

conditions but may be revealed by acute pharmacologic

approaches. These results provide an explanation for the

discrepancy between results from pharmacological studies suggest-

ing a selective role of oxytocin in feeding and those from genetic

studies suggesting a selective role in energy expenditure.

Oxytocin neuron lesion had no effect on melanocortin agonist

inhibition of feeding, but produced a blunted response to leptin.

Although somewhat unexpected, this finding supports the concept

that melanocortin and leptin feeding circuits do not completely

overlap. For example, GABAergic non-POMC neurons in the Arc

may mediate leptin action on feeding through GABAergic action

onto PVH neurons including oxytocin neurons [24,37]. In

addition, a recent report suggests that a small subset of PVH

neurons express leptin receptors, which may directly engage

oxytocin neurons in mediating leptin action on feeding [38]. The

dispensable role of oxytocin neurons in MTII action on feeding is

consistent with the result that oxytocin is dispensable for feeding

inhibition by Cholecystokinin, which requires MC4R action

[18,39].

Surprisingly, our results suggest that the function of oxytocin

neurons in body weight regulation is sexually dimorphic, i.e.

oxytocin neurons are required for energy balance in males, but not

in females. A literature survey indicates that previous studies on

oxytocin in feeding and body weight were primarily focused on

males. This result is consistent with the previous result that

oxytocin receptor deletion leads to obesity only in males, but not in

females [20]. It might be the case that in females oxytocin neurons

are preferentially involved in other functions such as reproduction

and stress. For example, oxytocin has been reported to have

opposite roles in anxiety-related behaviors in males and females

[40]. One study, however, demonstrated that oxytocin deficiency

in females led to obesity in a similar fashion to males [17]. The

discrepancy cannot be explained by different diets used since our

lesion females had comparable body weights to controls on both

chow and HFD. Whether it is due to difference genetic

background or represents a variable associated with developmen-

tal compensation is unknown.

In summary, inducible lesion of oxytocin neurons in adult mice

demonstrates that oxytocin neurons are required for diet induced

energy expenditure but are not necessary for food intake

regulation. Moreover, whereas oxytocin neurons are required for

a full physiologic response to leptin administration, they are

dispensable for the anoretic action of melanocortin agonists. This

suggests that additional, non-oxytocin dependent neural circuits

play important roles in the regulation of food intake.
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