
ICCAD ’96
1063-6757/96 $5.00 1996 IEEE

An Observability-Based Code Coverage Metric
for Functional Simulation

Srinivas Devadas Abhijit Ghosh Kurt Keutzer
Department of EECS Sunnyvale R&D Laboratory Advanced Technology Group

MIT, Cambridge Mitsubishi ITA Synopsys, Mountain View

Abstract— Functional simulation is the most widely used
method for design verification. At various levels of abstrac-
tion, e.g., behavioral, register-transfer level and gate level, the
designer simulates the design using a large number of vectors
attempting to debug and verify the design. A major problem
with functional simulation is the lack of good metrics and tools
to evaluate the quality of a set of functional vectors. Metrics used
currently are based on instruction counts and are quite simplis-
tic. Designers are forced to use ad-hoc methods to terminate
functional simulation, e.g., CPU time limitations.

We propose a new metric for measuring the extent of design
verification provided by a set of functional simulation vectors.
This metric is universal, and can be used uniformly for all de-
signs. Our metric computes observability information to deter-
mine whether effects of errors that are activated by the program
stimuli can be observed at the circuit outputs.

We provide preliminary experimental evidence that supports
the validity of the proposed metric. We believe that using this
metric in design verification will result in higher-quality func-
tional tests and improved correctness checking.

I. INTRODUCTION

Design verification is the problem of verifying that a design,
specified at whatever level, has certain properties required by a spec-
ification. The most common approach to design verification is to
verify that a description of the design in some hardware description
language has the proper behavior as elicited by a series of simula-
tion vectors. The drawbacks of this approach are well understood;
exhaustive simulation is required to guarantee correctness and is pos-
sible only for the smallest circuits. A degree of confidence can be
obtained by simulating the design using a large number of vectors.
Currently, there is a lack of good metrics to quantify this degree of
confidence, or to gauge the quality of the vector set. The only metrics
used correspond to instruction counts, i.e., how often, if at all, an
instruction or statement in the code is exercised. More often than not,
a design is simulated using a small set of designer-created vectors
and then random vectors for as long as is feasible. In this paper we
demonstrate the inadequacy of some existing metrics and propose
an additional well-defined, easily-computable metric that provides a
better measure of the extent of design verification obtained through
functional simulation.

Formal verification methods are an alternative to simulation-
based verification. Ideally, the architect would like to formally verify
and guarantee that the design is correct relative to some specifica-
tion, such that if it is implemented and fabricated without error, it
will result in a correct circuit that performs all the tasks required by
the specification. Unfortunately, writing such a specification is itself
a hard problem, and further even if such a specification exists, the
complexity of checking the equivalence of the specification and the
implementation, in the worst case, degenerates to the complexity of
exhaustive simulation. The use of formal verification methods for
design verification is currently limited.

The manufacturing test and software test processes provide the
inspiration for the metric proposed in this paper. In manufacturing
test, defects that occur in fabrication are abstracted at the logic or
gate level using the stuck-at fault or delay fault models. Given a set
of test vectors, fault simulation (under the appropriate fault model) is
used to measure the fault coverage of the test vector set. In software
testing, given a set of program stimuli, coverage metrics such as line
coverage, branch coverage and path coverage are used for software
quality assurance.

Coverage metrics in software testing [2] are based on the activa-
tion of statements, branches or sequences of statements and do not
address observability requirements; the fact that a statement with
a bug has been activated by input stimuli does not mean that the
observed outputs of the program will be incorrect. While fault cov-
erage notions in manufacturing test address both controllability and
observability requirements, they are, for the most part, limited to the
gate level, although some functional fault models (e.g., [4], [16])
have been proposed.

In this paper, we propose a new metric that gives a better measure
of the extent of design verification provided by a set of functional
simulation vectors. This metric is universal, and can be used uni-
formly for all designs, unlike design-specific strategies such as those
described in [12]. Our metric computes observability information to
determine whether effects of errors that are activated by the program
stimuli can be observed at the circuit outputs. In order to compute
observability information we tag variables during simulation and use
a simulation calculus, explained in this paper, to efficiently calculate
the coverage provided by an arbitrary set of functional vectors.

We emphasize that these tags on variables are not tied to particular
design errors; they serve as a mechanism for extending standard
coverage metrics to include observability requirements. The designer
of the circuit can use this coverage information to drive the functional
verification process, generating vectors until a satisfactory level of
coverage is achieved.

In Section II, we describe different validation mechanisms used
in the verification, software test and manufacturing test disciplines
and discuss the relative merits and demerits of these mechanisms.
In Section III we present an observability metric based on tagging
variables and an associated simulation calculus that can be used to
quantify the degree of design verification provided by an arbitrary
set of functional simulation vectors. We briefly describe a method
to compute coverage in Section IV. We give a simple example
illustrating the merits of the observability-based coverage metric
in Section V. In Section VI we provide preliminary experimental
evidence that demonstrates the effectiveness of the proposed metric.

II. DESIGN VALIDATION MODELS AND MECHANISMS

We describe different validation methods that are relevant to the
design verification problem.

A. Formal Design Verification

Approaches to design verification include the use of temporal-
logic-based model checking (e.g., [5]), automata-oriented techniques

(e.g., [7], [15]), and the use of higher-order logic and theorem proving
techniques (e.g., [8] [10]).

Formal verification approaches have the advantage of guaran-
teeing partial or complete correctness but can be computationally
expensive. Further, they often require the designer to specify cor-
rectness properties and/or abstract models of the design.

B. Manufacturing Test

From a commercial and popular usage standpoint, manufacturing
testing is easily one of the most successful of the validation mech-
anisms. The basic premise of manufacturing test is the modeling
of manufacturing defects as logical faults. Since manufacturing is a
physical process that can be analyzed (as opposed to program writ-
ing), credible fault models can be derived. For example, defects are
known to cause breaks and shorts in metal wires. These breaks or
shorts can be modeled as logical faults since there is a direct cor-
respondence between wires in silicon and connections in the logic
circuit.

B.1 Fault Models

One of the most popular fault models in manufacturing test is
the stuck-at fault model [1]. The stuck-fault model is a logical fault
model where any wire in the logic circuit can be stuck-at-1 or stuck-
at-0. A test vector that produces the opposite value (0 for a stuck-at-1,
and 1 for a stuck-at-0) will excite the fault. The effect of the fault
has to be propagated to an observable circuit output in order for the
fault to be detected by the vector.

B.2 Fault Coverage and Simulation

For any fault model, given a test vector set, the fault coverage of
the test vector set can be computed using fault simulation. For every
possible fault in the fault model, we check for each vector in the
vector set, if the fault is excited and propagated to a primary output.
Fault coverage for a vector set is defined as the number of detected
faults divided by the total number of faults. Fault coverage measures
the “goodness” of a vector set in detecting all the faults. A test set
with higher fault coverage is more likely to detect bad integrated
circuits and so fault coverage is used to drive the test generation
process.

B.3 Functional Testing and Functional Fault Models

As mentioned earlier, the direct correspondence between a metal
wire in the silicon integrated circuit and a connection in the logic
circuit motivates logical fault models. No such correspondence may
exist for a behavioral description in some Hardware Description
language (HDL) or structural RTL description. Statements in the
HDL description may correspond to hundreds of gates and wires in
the final design. Some efforts have been made to model faults as
perturbations of transitions in a State Transition Graph description
of a circuit [4] and at the register-transfer level for microprocessors
[3] [16]. Error models that reflect incorrect connections or gates in
a gate-level circuit have been proposed along with error simulation
methods in [11].

The quality of a functional fault model is determined by the
number of single stuck-at faults detected by a functional test set
that produces 100% coverage for the functional fault model. The
proposed functional fault models attempt to obtain high stuck-at
fault coverage, rather than attempting to discover bugs in the HDL

description. Further, the effectiveness of test sequences cannot be
evaluated directly at the functional level [1].

C. Software Testing

The problem of verifying the correctness of an HDL description
of circuit behavior is similar to the software testing problem because
the description of circuit behavior is similar to a program written in
some high-level programming language like C or C++. Two main
differences are:

� Software programming languages are more expressive than
HDL’s, leading to more complicated descriptions and test pro-
cedures. Examples are pointers, complex types, recursion,
inheritance, etc.

� Hardware descriptions are usually written by a process of suc-
cessive refinement, i.e., abstract descriptions of circuit behavior
are converted to structural descriptions by progressively adding
detail. It is not unusual to begin with a software programming
language description like C and move toward behavioral HDL

and finally to structural HDL. In the software engineering world,
program specifications rarely exist, and the refinement strategy
is not used.

C.1 Control Flowgraphs and Path Testing

A control flowgraph is a graphical representation of a program’s
control structure [2, Chapter 3]. A control flowgraph is comprised
of processes, decisions, and junctions. A process is a sequence of
program statements uninterrupted by either decisions or junctions.
A process has one entry and one exit. A decision is a program point
at which the control flow can diverge. A junction is a point in the
program where the control flow can merge.

An example of a control flowgraph for a simple program is given
in Fig. 1. A process is a rectangle, a decision is a diamond, and a
junction is a circle.

A path in the control flowgraph is a sequence of processes that
starts at an entry, junction, or decision and ends at another, or possibly
the same, junction, decision or exit.

Given a set of program stimuli, one can determine the state-
ments activated by the stimuli by applying the stimuli to the control
flowgraph. The line coverage metric measures the number of times
every process (and therefore constituent statements) is exercised by
the program stimuli. In the case of branch coverage, we measure
the number of times each branch is taken under the set of program
stimuli. Path coverage measures the number of times every path
in the control flowgraph is exercised by the set of program stimuli.
The goal of software testing is to have 100% path coverage, which
implies branch and line coverage. However, 100% path coverage is
a very stringent requirement and the number of paths in a program
may be exponentially related to program size.

There are other coverage metrics as well, for example, multicon-
dition coverage, loop coverage and relational operator coverage that
are variants of branch coverage. The Generic Coverage Tool GCT

[13] can automatically determine the coverage of an arbitrary set of
program stimuli.

These coverage metrics require activation but say nothing about
the observability conditions required to see the effect of possible
errors in the activated statements. For example, in our control flow-
graph of Fig. 1 an error in the computation of V never propagates
to the LOOP if Z >= 0. The path coverage metric will satisfy
observability requirements if paths from program inputs to program
outputs are exercised and the values of variables are such that the
erroneous value is not masked (this is analogous to side inputs hav-
ing non-controlling value in fault propagation). However, the path
coverage metric does not explicitly evaluate whether the effect of an
error is observable at an output.

INPUT X,Y Z=X+Y V=X−Y

Z=Z−1 Z=Z+V U=0

SAM

JOE SAM LOOP

Z>=0
YES

NO

Fig. 1. A Control Flow Graph of a Program

The problem of observing the effect of an activated (possibly
erroneous) statement is deferred to the test implementation step in
software testing [13]. In test implementation, additional testing code
is added to points in the program which are hard to force to particular
values (added controllability), and at those points where information
is lost (added observability). One problem with these internal test
drivers is that variable values may not be easily translatable into
useful data that the programmer can understand and check against
the specification.

C.2 Error-Sensitive Test Case Analysis

It has long been clear that even complete path coverage does not
detect all bugs [9]. The technique of error-sensitive test case analysis
[6] inspired by hardware fault simulation, provides three rules for
generating test cases that are sensitive to code errors. These rules are
heuristics to guide a test case generation process and are necessary
in software testing since comprehensive observability analysis is not
performed.

D. Summary

Formal design verification methods are currently limited in their
applicability. Fault models and fault simulation methods have been
very successful in manufacturing test; however, they have only been
applied at the logic circuit level. Software test methodologies work
for high-level languages, however their coverage metrics ignore ob-
servability issues for the most part.

Coverage analysis in functional simulation is relatively well-
developed for specific classes of designs such as microprocessors.
Many different coverage metrics are used [12], including line cover-
age in HDL models, toggle coverage which determines if signals are
switching or not, and transition coverage for finite state machines.
Rarely are observability requirements factored into computing cov-
erage metrics.

III. A COVERAGE METRIC INCORPORATING OBSERVABILITY

REQUIREMENTS

The notions of fault coverage in manufacturing test and coverage
metrics of software test lead us to our metric for evaluating the extent
of design verification.

In order to model observability requirements, we have to check
the sensitizability of paths from inputs to outputs, i.e., whether effects
of errors are propagated through paths. Checking the sensitizability
of paths requires us to “tag” variables.

Given input stimuli to a HDL model, we can compute the out-
put response using a simulator. We will enhance the simulator to
propagate tags from module inputs to module outputs. In order to
deterministically propagate tags through a module, we will need to
make certain assumptions. However, these assumptions will not re-
quire us to assign particular binary values to the tag, except in the
case of tags on single binary variables. (In the D-calculus used in
stuck-at fault testing the tag is the Boolean variableD, which is tied
to a fault-free value of 1 and a faulty value of 0.)

We develop a simulation calculus for tags which defines the prop-
agation of tags through HDL constructs. Coverage computed by tag
simulation is our measure of the extent of design verification pro-
vided by a set of functional vectors.

A. Tags

We view a circuit as computing a function and we view the
computation as a series of assignments to variables. Errors in com-
putation are therefore modeled as errors in the assignment, i.e., any
value assigned to any variable in the behavioral or RTL description
may possibly be in error.1

The possibility of an error is represented by tagging the variable
(on the left hand side of the assignment) by the symbol � which
signifies a possible change in the value of the variable due to an
error. We will consider both positive and negative tags,+� written
simply as �, and ��.

We introduce positive and negative tags on every assignment
statement in the HDL description of a circuit. For each functional
vector, or functional vector sequence, we simulate the circuit to
determine which of the tags are first activated (by the activation of
the corresponding assignment statement) and then propagated to the
circuit’s outputs. When a tag is propagated to an output, it means
that there is a path from the point where the tag was introduced to the
output, and that the path was activated by the functional vector(s).
We then compute the coverage for the functional vector set. Note
that during simulation, the effect of each tag is considered separately
(analogous to the single stuck-at fault paradigm). However, the
simulator can simulate effects of several tags in parallel as in parallel
fault simulation.

We do not claim that bugs in the code will always result in an
incorrect value of some HDL variable. Bugs that are errors of omis-
sion, or global misassumptions regarding program/algorithm behav-
ior may not cause this effect. Tags reflect the two basic requirements

1This includes variables in control statements.

in verifying a model, namely activating statements in the code, and
observing the effect of activation.

B. Tag Propagation Issues

In order for an input’s value to be propagated through a module,
the other inputs to the module must be at non-controlling values. For
example, if an AND gate has a 0 input, no value on the other input
will propagate to the output since 0 is a controlling value for the AND

gate. In a multiplier, a 0 at one of the inputs will block propagation
of any value on the other input.

If there is an error in some assignment, the magnitude of the
error determines whether the error will be propagated or not. As
an example consider the expression f = a+ b > c. Assume 4-bit
integers for a, b and c, and assume that the functional simulation
vector given is S = ha = 3; b = 4; c = 5i. A positive error on a is
not propagated to f , since the comparison provides the same value
of 1 for f . A negative error may be propagated to f resulting in an
erroneous value of 0. This will occur if the magnitude of the error is
greater than or equal to 3.

It is obvious that the detection of an error in an assignment de-
pends on the magnitude and sign of the error. Positive and negative
tags are used to model the sign of the errors. However, the magnitude
issue results in a dilemma – if we add magnitude as a parameter to
the tags, not only are we vastly increasing the number of possible
tags, we are also tying ourselves to particular design errors which
may or may not occur.

Our approach is to make the assumption that the error will be of
the right magnitude(s) to propagate through modules; an optimistic
assumption. As mentioned above, positive and negative tags model
the sign of error in relation to variable values. (Note that in the binary
variable case, the sign determines the value, since� is equivalent to
D which corresponds to a 1 in the faulty circuit and 0 in the fault-free
circuit. Similarly for ��.)

In our�-model for tags, we will assume that the tag introduced in
an assignment (i.e., the change in the value of the variable on the left
hand side of the assignment) corresponds to an error of appropriate
magnitude such that it will propagate through any module provided
(a) it is of the appropriate sign and (b) the other inputs to the module
are non-controlling (i.e., do not block propagation). Coverage is
computed based on whether a tag is propagated through modules to
a circuit output under the above rules.

C. Functional Simulation and Statement Coverage

Tag simulation is carried out on a given circuit description in ex-
actly the same manner as functional simulation. A functional simula-
tor such as the VERILOG simulator executes initialization statements,
and propagates values from the inputs of a circuit to the outputs. It
keep tracks of time, causing the changed values to appear at specified
times in the future. Future changes are typically stored in a time-
ordered event queue. When the simulator has no further statements
to execute at a given time instant, it finds the next time-ordered event
from the event queue, updates time to that of the event, and executes
the event. This simulation loop continues until there are no more
events to be simulated or the user terminates the simulation [17].

Some functional simulators have features that allow the user to
determine the execution counts of every module/statement in the
HDL description, when the description is simulated with a functional
vector set. This allows the user to detect possibly unreachable state-
ments and redundant conditional clauses. Our tag simulation method
augments this coverage as described in the sequel.

INPUT X,Y

Z=X+Y V=X−Y

Z=Z−1

Z=Z+V

Z>=0

YES

NO

Fork

Mrg

Mrg

Fig. 2. Control Flow Graph with Fork Nodes

D. Control Flow Graph

The circuit description is preprocessed to extract a control flow-
graph of the circuit. The control flowgraph of Fig. 1 does not model
concurrency; the HDL model may have interacting concurrent pro-
cesses. We will add a fork node to the control flowgraph that will
allow us to model parallelism. An example of a control flowgraph
with fork nodes is shown in Fig. 2.

Note that we do not use the control flowgraph to perform simu-
lation. Rather, we compute reachability information for use in tag
propagation (cf. Section III-F.3).

E. Tag Injection

We will consider assignment statements consisting of arithmetic
operations, Boolean word operations and Boolean operations. Posi-
tive and negative tags are injected at every assignment statement and
attached to the variables or the left hand side of the assignment.

If a variable is a collection of bits, we will treat it as a single
entity. However, if the variable is defined as a collection of bits
but individual bits are sometimes manipulated, we will treat the
individual bits as Boolean variables throughout. For example, if a
(an n bit entity) is used only as inputs to arithmetic and Boolean
word operators, then we will treat a as a single entity. If a is used
as an input to a combinational logic module that operates on any
ai; 0 � i � n � 1, we will treat each of the ai’s as a Boolean
variable and introduce tags on each of the ai’s separately.

An if statement has a control condition which is a Boolean vari-

AND 0 1 0 + � 1 �� INVERT
0 0 0 0 0 1
1 0 1 0 + � 1 - � 0

0 + � 0 0 + � 0 + � 0 1 - �
1 - � 0 1 - � 0 1 - � 0 + �

TABLE I
�-CALCULUS FOR AND GATE AND INVERTER

able. If this Boolean variable is computed, i.e., it is not a primary
input, it appears as the left hand side of some assignment. The
tag that is injected for that assignment models errors in the control
flow.2 No tags are injected for control constructs, though we have to
propagate tags based on the control flow.

F. Tag Calculus

Every assignment statement executed during simulation of func-
tional vectors is also “tag simulated” to determine which tags are
propagated. Tags attached to variables on the right hand side of
the assignment are propagated and attached to the left hand side
according to the calculus presented in this section.

In the case of strictly Boolean variables, this calculus is equiva-
lent to the D-calculus [14]. For ease of exposition, we demonstrate
the propagation of a single tag during simulation. In actual imple-
mentation, several tags can be injected and propagated in parallel.

F.1 Tag Propagation through Logic Gates

We will first define the calculus for Boolean logic gates. The
calculus for a two-input AND gate and an inverter are shown in Table
I. The four possible values at each input are are f0; 1; 0+�; 1��g.
(Note that 0 � � � 0 and 1 + � � 1.) The entries are self-
explanatory.

Using the above calculus any collection of Boolean gates com-
prising a combinational logic module can be tag simulated.

F.2 Tag Propagation through Arithmetic Operators

We describe the tag simulation calculus procedurally for arith-
metic and Boolean word operators.

All modules are assumed to be n bits wide. For each operator op,
after the simulator computes v(f) = v(a) hopi v(b), we tag v(f)
with a positive or negative�. We write it as v(f)+� or v(f)��.

We now describe the tag propagation rules for different modules.
Adder : If all tags on the adder inputs are positive, and if the

value v(f) < MAXINT , we will assign the adder output
v(f) + �. MAXINT is the maximum value possible for f .
Similarly, if all tags are negative. If both positive and negative
tags exist at adder inputs, the output is assumed to be tag-free.

Multiplier : All tags have to be of the same sign for propagation.
A positive � on input a is propagated to the output f provided
v(b) 6= 0 or if b has a positive�. We will assign the multiplier
output v(f) + �. Similarly for negative �.

> Comparator : If tags exist on inputs a and b, they have to be
of opposite sign, else the tag is not propagated to the output.
Assume a positive tag on a alone, or a positive tag on a and
a negative tag on b. If v(a) � v(b) then the tag(s) is (are)
propagated to the output, else the tag(s) is (are) not. We will
assign the comparator output 0 + �. Similarly for other tags
and other kinds of comparators.

2Errors will result in the then branch being taken rather than the else branch,
or vice versa.

Bitwise AND : All tags have to be of the same sign for propaga-
tion. Given a positive tag on a and a tag-free b, if at least one of
the bits in b is not 0, and v(a) 6= 2n� 1, then we will compute
v(f) = v(a)& v(b) and assign the output v(f)+�. For pos-
itive tags on both a and b, if v(a) 6= 2n�1 and v(b) 6= 2n�1,
then we will compute v(f) = v(a) & v(b) and assign the
output v(f) + �. Similarly for negative tags.

Bitwise NOT : v(fi) = v(ai); 0 � i < n. For a positive tag on
a, we will assign the output v(f)��.

F.3 Tag Propagation through If Statements

Propagation through if statements requires preprocessing the pro-
gram. We determine the reachability of processes from decisions (if
statements) in the control flowgraph. Since each process has a single
entry and a single exit, all the statements within each process will
have the same reachability properties.

Assume without loss of generality that each decision is binary.
We determine for each decision the set of all processes that can be
reached if the control condition c is true, namely Pc, and the set that
can be reached if the control condition is false, namelyPc.

When an if statement is encountered by the simulator, there are
two cases:

1. There is no tag in the control condition. In this case simulation
proceeds normally. In the appropriate processes, statements
are executed and tags (if any) are propagated/injected.

2. If a tag is attached to the control condition c (which is a Boolean
variable), it means that the tag will result in the incorrect branch
being taken. Assume a positive tag on c. If the value of c on
the applied vector is 1, the tag is not propagated. However,
if the value of c is 0, then we tag all the assigned variables
in the processes Pc � Pc. Under the tagged condition these
assignments will be missed, and hence the output variables
are tagged. A positive tag is applied if the new value (after
assignment) is less than the old value, a negative tag if the new
value is greater than the old value, and no tag if both values are
equal or if old value is undefined. This assumes that equivalent
statements in both clauses have been extracted out of the if
(placed before the decision).3

IV. COMPUTING COVERAGE USING TAG SIMULATION

A. Tag Simulation

We describe a procedure to compute coverage based on tag sim-
ulation. Our focus in this paper is on establishing coverage metrics
rather than computational efficiency; many tag simulation methods
are possible based on different fault simulation algorithms [1].

For each functional vector, or functional vector sequence, for
every positive or negative tag injected on each assigned variable, we
use the calculus described in the previous section to determine which
of the tags are propagated to the model’s outputs. We then compute
the coverage for the functional vector set as the percentage of tags
propagated to the outputs divided by the total number of tags.

Simulation proceeds on the HDL simulation model in an event-
driven manner as described in Section III-C. For each functional vec-
tor sequence, though the effect of each tag is considered separately,
a parallel tag simulation can be performed where the propagation
of multiple independent tags is determined.4 After each assignment

3We could have also assigned tags to variables in Pc � Pc, because under
the tagged condition these assignments are wrongly made, but doing so would
require multiple trajectory simulation which we deem too expensive.

4This is similar to the parallel fault simulation methods used in logic testing.
See [1].

statement is evaluated, we determine if the tags on the variables on
the right hand side of the statement are propagated to the variable on
the left hand side. Tags are also injected for the assignment on the
variable on the left hand side. Some tags may not be activated by
the functional test sequence if the statement in which the tag occurs
is not reached.

After each vector in the sequence is simulated, we inspect the
observable outputs of the HDL model to determine the tags propagated
to the outputs. In the case of sequential machines, tags may propagate
to the output only after multiple vectors have been applied.

B. Coverage on Specific Paths or Subpaths

In many cases a designer may be interested in exercising particular
sequences of statements in the HDL model, and observing the effect
at the output. Alternately, a designer may be interested in exercising
particular modules in a given order and checking the output response.
The tag simulation algorithm can be extended to keep track of the
subpath(s) that are activated in propagating the tag to the output.
Information regarding the activated paths can be passed along with
the coverage numbers.

C. Using Coverage Based on Tags

The designer typically learns from the tags that are not propa-
gated to the output. For example, a tag on a frequently exercised
assignment statement that goes undetected tells the designer that the
assigned variable is never used to compute useful output under the
applied vector set. If a tag on the condition of an if statement is not
detected, it means that the statements in the then and else clauses
are interchangeable under the vector set.

All of the above assumes a comprehensive functional vector set.
Else, the first step of the designer should be to devise vector sets
that detect a larger fraction of errors. This may be difficult to do
for models with limited observability. In this case, tag simulation
can point out intermediate variables or statements that are blocking
error propagation. The designer can place a trace on the variable(s)
to improve coverage.

V. ILLUSTRATIVE EXAMPLE

We give a simple example of a design error that may not be de-
tected if functional simulation is terminated using the line or branch
coverage metrics, but which will be detected if a vector set with
100% tag coverage is applied. The design error would also be de-
tected using path coverage metrics, but applying vector sets targeting
100% path coverage is, in general, not viable.

The VERILOG example in Figure 3 is a stripped-down version of
an an address generation unit that is used for generating addresses
to store queue entries. The ext mode signal when 1 indicates
that memory external to the chip is available for storing queue en-
tries. When 0, it means only internal memory has to be used. The
queue full signal when 1 indicates that the internal queue mem-
ory is full. When the internal queue memory is full, future entries are
stored in the external memory. It is assumed that if there is external
memory, there is enough so that the queue never gets full. If there is
no external memory, a particular entry in the internal queue (as given
by entry) is overwritten. The address generation formula is given
in the code. The only error is in the generation of extern base,
where the shift should be by 2 and not by 4.

This module is embedded inside a complicated finite state ma-
chine and initially ext base reg and int base regwere set to
the same value. It was tested with the entire system. Upon analysis
of the results of testing, it was clear that all lines in the module had
been covered and all branches had been covered. However, only

paths f1, 3, 5g, f1, 4, 5g and f2, 3, 5g were covered. Path f2, 4,
5g was not covered and therefore the design error was not detected,
though we had 100% line and branch coverage.

However, if we add observability as a measure, our tag simulation
algorithm will immediately indicate that the � at the line marked
ERROR is never propagated to the output under all vector sequences
and therefore more testing is needed. When a vector that propagates
the � to the output is applied, the error will be detected.

VI. EXPERIMENTS

In this section we provide evidence of the effectiveness of our pro-
posed coverage metric model through experimental data on several
different examples.

Our current simulator is a rudimentary implementation that works
on a subset of VERILOG. For each vector, tags are injected one at
a time and the vector is simulated in an event-driven manner to
determine propagation of tags and circuit output values.

Tag simulation speed is slower than commercial VERILOG sim-
ulators; however, this speed can be significantly improved by in-
corporating the tag simulation calculus directly into compiled-code
simulation.

A. Line Coverage Versus Tag Coverage

We ran several different examples to compare the line coverage
metric against our observability-based tag coverage metric. For each
example we computed the tag coverage for a directed functional test
set, which is either created by a designer or automatically generated
from a gate-level description (e.g., ATPG patterns). We also tag
simulated 5 random vector sets of different lengths on each example
and computed tag coverage for each random set. For each random
vector set, we continued generating vectors from a random seed until
90% line coverage was achieved.

In Table II we summarize the results obtained. The number of
tags for each example are indicated in the first column. In the column
marked Directed we provide coverage information for the directed
functional test set. The number of vectors, tag coverage and line
coverage are indicated. In the column marked Random we provide
the same information averaged over the 5 random vector sets.

The line coverage numbers are virtually the same for the directed
and random vector sets. However, the tag coverage metric is always
higher for the better, directed vector set. In terms of finding bugs,
we found the directed vectors to be superior to the random vectors.
The directed vectors test the designs more thoroughly than random
vectors (for these examples) and our metric indicates likewise. This
demonstrates the usefulness of adding this metric to line and branch
coverage metrics.

B. Details of Examples

B.1 Wallace Tree Multiplier

Our first example is a register-transfer level description of a 16-
bit Wallace tree multiplier written in VERILOG. It consists of four
modules written in about 130 lines of VERILOG code. The model was
written in synthesizable VERILOG with a one-to-one correspondence
between the model constructs and hardware.

Upon inspecting the unobserved tags for the functional test set,
we found the unobserved tags were as follows:

� Some tags were not propagated to the outputs because there
were initialization statements for variables followed immedi-
ately by assignments to the variables. Thus, the initialization
statements are unnecessary, though in general it is good practice
to include them.

Ex #Tags Directed Random
#Vec #Observed Tag Line #Vec #Observed Tag Line

Tags Coverage% Coverage% Tags Coverage% Coverage%

mult 44 109 38 86% 100% 25 34 77% 100%
pport 33 18 29 87% 92% 100 22 67% 90%
arbiter 60 88 56 93% 100% 5000 34 57% 90%
count 100 3000 68 68% 92% 3000 68 68% 92%
schsm 52 70 44 85% 94% 4300 28 54% 90%

TABLE II
COMPARING COVERAGE METRICS

� Some tags were not propagated because they appeared on a
carry out signal of a module that was instantiated in the multi-
plier array, but was not declared as a primary output.

� Some tags were not propagated because the carry in signal was
always zero and meant that certain signals could have arbitrary
values without affecting the outputs of the multiplier.

In the case of the multiplier, the stuck-at fault test set was clearly
designed to propagate faults to the outputs, and hence it gives a good
coverage based on tags also. The random tests also give reasonably
good coverage because multipliers are inherently random pattern
testable.

B.2 Parallel Port for Embedded Processor

Next, we experimented with a parallel port for an embedded
processor. This circuit is connected to the bus of the processor on one
side and to external inputs/output wires on the other. The processor
can write the direction register in the port to determine which external
wires are used as inputs and which are used as outputs. The data
written by the processor into the data latch of the port is transmitted
to the external output lines and whenever the processor reads the data
latch, external inputs are sampled and their values stored in the data
latch. It consists of about 170 lines of VERILOG code.

The parallel port is a more interesting example since its descrip-
tion is at a higher level than the register-transfer level. The designer
of the parallel port provided the directed vector set which thoroughly
exercised the port, except for the reset logic. The tags unobserved
by the functional vector set are the tags injected in the reset logic.
We were able to design a functional vector set that also exercised the
reset logic and this set resulted in 100% tag coverage.

B.3 Other examples

The other examples in the table are from an Asynchronous Trans-
fer Mode segmentation and reassembly circuit. Example arbiter is
a bus arbiter that arbitrates access to memory from several on-chip
modules. The example count counts upto 87 and then to 2784 clock
pulses, producing a pulse at the output whenever the count reaches
87 or 2784. Example schsm is a finite-state machine that controls re-
quests to the arbiter to access shared memory. All circuit descriptions
are in the synthesizable RTL subset of Verilog.

For each example, directed test sets exercised each module thor-
oughly, especially for the finite-state machines where almost all
branches of the machine were exercised. Several bugs were found
during the design stage by the directed tests. However, the random
tests, terminated after 90% line coverage was obtained did not exer-
cise the designs thoroughly, and found few bugs. This was reflected
in the poorer tag coverage for the the random vector set.

For the example count, the random set and functional set were
identical because the only input to the module is a clock signal.

It is noteworthy that for many examples high line coverage does
not necessarily imply high tag coverage. This is especially true for
the example schsm. More directed tests were designed to improve
the tag coverage to 100% for this example. Though no additional
bugs were discovered, the new vector set more thoroughly exercised
the circuit.

VII. ONGOING WORK

Several extensions need to be made to the simulation calculus.
Concurrency and looping constructs used in popular HDL’s need to be
handled. Tristate signals are another important extension; we need
to precisely define what it means for a tag to be observed at a tristate
output.

Once the simulation calculus is augmented, efficient compiled-
code simulation methods popularly used in HDL simulators can be
extended to propagate tags in parallel. Efficient simulation will
allow coverage-directed test generation by the designer under the
new metric, thereby enabling a greater degree of design verification.

ACKNOWLEDGMENTS

S. Devadas was supported in part by a grant from Siemens Cor-
poration, Munich, and and in part by a grant from Schlumberger
Foundation. We thank Curt Widdoes and Steve Tjiang for criticism
on a earlier draft of this paper.

REFERENCES

[1] M. Abramovici, M. A. Breuer, and A. D. Friedman. Digital
Systems Testing and Testable Design. IEEE Press, 1990.

[2] B. Beizer. Software Testing Techniques. Van Nostrand Rhein-
hold, New York, second edition, 1990.

[3] D. Brahme and J. A. Abraham. Functional Testing of Micropro-
cessors. IEEE Transactions on Computers, C-33(6):475–485,
June 1984.

[4] K-T. Cheng. Transition Fault Testing in Sequential Circuits.
IEEE Transactions on Computer-Aided Design, 12(12):1971–
1983, December 1993.

[5] E. M. Clarke and O. Grumberg. Research on Automatic Ver-
ification of Finite-State Concurrent Systems. Annual Reviews
of Computer Science, 2:269–290, 1987.

[6] K. A. Foster. Error-Sensitive Test Case Analysis. IEEE Trans-
actions on Software Engineering, SE-8(3):258–264, May 1980.

[7] I. Gertner and R. P. Kurshan. Logical Analysis of Digital
Circuits. In M. Barbacci and C. J. Koomen, editors, Com-
puter Hardware Descriptions Languages and Their Applica-
tions, pages 47–67, New York, 1987. Elsevier.

[8] M. Gordon. Hardware Verification by Formal Proof. In Tech-
nical Report No. 74, Computer Laboratory, University of Cam-
bridge, Cambridge, England, August 1985.

module get_address (ext_mode, queue_full,
int_base_reg, ext_base_reg, ext_index_reg,
entry, phy_address);

input ext_mode; // 1 if ext. mem. available
input queue_full; // internal queue full

// new messages to ext. mem.

input [15:0] int_base_reg; // int. base addr.
input [15:0] ext_base_reg; // ext. base addr.
input [15:0] ext_index_reg; // ext. base index
input [15:0] entry; // number of entry

output [15:0] phy_address; // phys. address
reg [15:0] phy_address;

reg [15:0] extern_base; // ext. phys. addr.
reg [15:0] internal_base; // int. phys. addr.
reg [15:0] queue_ptr; // Ptr to entry queue

initial
begin

internal_base = int_base_reg;
end

always @ (ext_mode or queue_full)
begin

extern_base = ext_base_reg;

if (ext_mode == 1’b0) begin
// Call this branch 1
internal_base = int_base_reg;

end
else begin

// Call this branch 2
extern_base = ext_base_reg +
ext_index_reg << 4; // ERROR !!

end

if (queue_full == 1’b0) begin
// Call this branch 3
queue_ptr = internal_base + entry << 8;

end
else begin

// Call this branch 4
queue_ptr = extern_base + entry << 8;

end

// Call this edge 5
phy_address = queue_ptr + 4;

end

endmodule //of get_address

Fig. 3. Example illustrating difference between line and tag coverage

[9] W. E. Howden. Reliability of the Path Analysis Testing
Strategy. IEEE Transactions on Software Engineering, SE-
2(3):208–215, September 1976.

[10] W. Hunt. The Mechanical Verification of a Microprocessor
Design. In D. Borrione, editor, From HDL descriptions to
guaranteed correct circuit designs, pages 89–129, Amsterdam,
1986. North Holland.

[11] S. Kang and S. A. Szygenda. Modeling and Simulation of
Design Errors. In Proceedings of the Int’l Conference on Com-
puter Design: VLSI in Computers and Processors, pages 443–
446, October 1992.

[12] M. Kantrowitz and L. M. Noack. I’m Done Simulating; Now
What? Verification Coverage Analysis and Correctness Check-
ing of the DECchip 21164 ALPHA microprocessor. In Pro-
ceedings of the 33rd Design Automation Conference, pages
325–330, June 1996.

[13] B. Marick. The Craft of Software Testing. Prentice-Hall, En-
glewood Cliffs, N. J., 1995.

[14] J. P. Roth. Diagnosis of Automata Failures: a Calculus and a
Method. IBM journal of Research and Development, 10:278–
291, July 1966.

[15] K. K. Sabnani, A. M. Lapone, and M. U. Uyar. An Algorithmic
Procedure for Checking Safety Properties of Protocols. IEEE
Transactions on Communications, 37(9):940–948, September
1989.

[16] S. M. Thatte and J. A. Abraham. Test Generation for Micropro-
cessors. IEEE Transactions on Computers, C-29(6):429–441,
June 1980.

[17] D. E. Thomas and P. R. Moorby. The Verilog Hardware De-
scription Language. Kluwer Academic Publishers, Boston,
MA, second edition, 1994.

