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Abstract

As more business applications have become web enabled, the web server architecture has evolved to provide performance isolation,

service differentiation, and QoS guarantees. Various server mechanisms that provide QoS extensions, however, rely on external

administrators to set the right parameter values for their desirable performance. Due to the complexity of handling varying workloads and

bursty traffic, configuring such parameters optimally becomes a challenge. In this paper, we describe an observation-based approach for self-

managing web servers that can adapt to changing workloads while maintaining the QoS requirements of different classes. In this approach,

the system state is monitored continuously and parameter values of various system resources—primarily the accept queue and the CPU—are

adjusted to maintain the system-wide QoS goals. We implement our techniques using the Apache web server and the Linux operating system.

We first demonstrate the need to manage different resources in the system depending on the workload characteristics. We then experimentally

demonstrate that our observation-based system monitors such as workload changes and adjusts the resource parameters of the accept queue

and CPU schedulers in order to maintain the QoS requirements of the different classes.

q 2005 Elsevier B.V. All rights reserved.

Keywords: Web server; Self-managing; Dynamic resource allocation

1. Introduction

1.1. Motivation

Current Web applications have evolved from simple file

browsing to complex tools for commercial transactions,

online shopping, information gathering and personalized

service. To accommodate this diversity, Web servers have

evolved into complex software systems. Web servers today

perform a variety of tasks such as (a) dynamic HTML

generation, (b) personalized page assembly using scripting

languages (e.g. JSP), (c) SSL processing for secure

transmission, (d) persistent HTTP protocol processing, to

reduce connection setup over-heads and improve end-user

performance, and (e) communication with the application

server components via servlets. In doing so, the server

interacts in complex ways with the underlying OS

mechanisms that manage resources such as the CPU,

memory, disk and the network interface. Another emerging

trend is the growing popularity of Web hosting services that

collocate multiple Web domains on the same host machine

or a cluster and provide different levels of service to these

domains based on various pricing options. In such

environments, service differentiation and performance

isolation become necessary for efficient operation.

Numerous mechanisms for service differentiation and

performance isolation have been proposed in the literature.

Such mechanisms for Web servers include QoS-aware

extensions for admission control [1], SYN policing and

request classification [2], accept queue scheduling [3], and

CPU scheduling [4]. These mechanisms enable a Web

server to differentiate between requests from different

classes and provide class-specific guarantees on perform-

ance (for instance, by providing preferential treatment to
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users who are purchasing items at an e-commerce site over

users who are merely browsing, or by providing better

service to institutional investors over individual investors at

a financial site). One limitation of these QoS mechanisms is

that they rely on an external administrator to correctly

configure various parameter values and set policies on a

system-wide basis. Doing so not only requires a knowledge

of the expected workload but also a good understanding of

how various operating system and Web server configuration

parameters affect the overall performance. Thus, while these

QoS mechanisms undoubtedly improve performance, they

also exacerbate the problems of configuration and tuning—

each mechanism provides one or more tunable ‘knobs’ that

the system administrator needs to deal with. More

importantly, these mechanisms are not independent of one

another—depending on the configuration, each mechanism

can have repercussions on the behavior of others, which

further complicates the configuration process. Furthermore,

past studies have made contradictory claims about the utility

and benefits of these mechanisms. For instance, one recent

study has claimed that the (socket) accept queue is the

bottleneck resource in Web servers [3], while another has

claimed that scheduling of requests on the CPU is the

determining factor in Web server performance [4]. Thus, it

is not evident a priori as to which subset of QoS mechanisms

should be employed by a Web server and under what

operating regions.

The increasing complexity of the Web server architec-

ture, the dynamic nature of Web workloads [5,6], and the

interactions between various QoS mechanisms makes the

task of configuring and tuning modern Web servers

exceedingly complex. It has been argued that the more

complex the system, the greater are the chances of a mis-

configuration and sub-optimal performance [7,8]. To

address this problem, in this paper, we develop an adaptive

architecture to make Web servers self-managing. By self-

managing, we mean mechanisms to automate the tasks of

configuring and tuning the Web server so as to maintain the

QoS requirements of the different service classes. The

emphasis on manageability of computing systems has

gained momentum in recent years with the ever increasing

complexity of these systems—in fact, several researchers

have argued that, in today’s environments, the problems of

manageability, availability and incremental growth have

overshadowed that of the traditional emphasis on perform-

ance [9,10].

1.2. Research contributions

This paper focuses on the architecture of a self-managing

Web server that supports multiple QoS classes—a scenario

where multiple virtual servers run on a single physical

server or where certain classes of customers are given

preferential service. Assuming such an architecture, we

make three key contributions in this paper. (1) We conduct

an experimental study using the Apache Web server to

identify bottleneck resources for different Web workloads;

our study illustrates how the bottleneck resource can vary

depending on the nature of the workload and the operating

region. (2) Based on the workloads in our study, we identify

a small subset of resource control mechanisms—the

incoming request queue scheduler and the CPU share-

based scheduler—that are likely to provide the most benefits

in countering the performance degradation. (3) We then

present an observation-based technique to automate the

tasks of configuring and tuning of the parameters of these

OS mechanisms. A key feature of this technique is that it

can handle multiple OS resources in tandem. Our

architecture consists of techniques to monitor the workload

and to adapt the server configuration based on the observed

workload. The adaptation system can adjust to: (i) a change

in the request load, (ii) the QoS requirements of the classes,

(iii) the workload behavior, and (iv) the system capacity.

Since the system dynamically monitors and adjusts the

parameters it makes no underlying assumption of the

workload characteristics and the parameter behaviors.

We implement our techniques into the Apache Web

server on the Linux operating system and demonstrate its

efficacy using an experimental evaluation. Our results show

that we can adjust dynamically to a change in workload, a

change in response time goal and a change in the type of

workload.

The rest of this paper is structured as follows. Section 2

presents our experimental study to determine the bottle-

necks in the Apache request path. Section 3 discusses the

architecture and kernel mechanisms used to support

multiple classes of Web requests. Section 4 presents our

framework to configure and tune the Web server. Section 5

presents the results of our experimental evaluation. Section

6 discusses related work, and finally, Section 7 presents our

conclusions.

2. Analyzing the bottlenecks in web request processing

In this section, we examine the bottlenecks encountered

in the processing of Web requests. We use Apache as a

representative example of a Web server and subject it to a

variety of different workloads. For each workload, we

determine the bottlenecks in the request path at different

operating regions. In what follows, we first present a brief

overview of the software architecture employed by Apache

before presenting our experimental results.

2.1. Architecture of the Apache Web Server

Apache employs a process-based software architecture.

Apache spawns a pool of child processes at startup time, all

of which listen on a common socket (typically, port 80). A

newly arriving request is handed over to one of the children

for further processing; the process rejoins the pool after it is

done servicing the request and waits for subsequent
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requests. Apache can vary the size of the process pool

dynamically depending on the load—it starts with a certain

number of children and spawns additional processes as the

load increases. The limit on the maximum number of

children is determined by a statically defined parameter,

MaxClients (this parameter imposes a limit on the number

of concurrent Apache processes to prevent memory

exhaustion and thrashing in the system). Once this limit is

reached, no additional children are created and newly

arriving requests must wait for an existing child to become

idle before getting serviced. Apache can also terminate child

processes when the load decreases, thereby reducing the

number of idle processes in the system.

Next, we examine the control path of a Web request.

Since HTTP employs TCP as its underlying transport

protocol, the client first establishes a TCP connection with

the server. This is done using a three-way TCP handshake,

which is initiated by sending a TCP SYN packet to the

server. Once the handshake is complete, the new connection

is appended to the accept queue of the listening socket. The

HTTP request waits in this queue until a child process

accepts the connection. In case of HTTP/1.0, each request

uses a separate TCP connection, whereas in HTTP/1.1,

multiple HTTP requests can share a single connection (the

connection is kept open for a timeout duration, during which

multiple HTTP requests can be serviced).

For each request, the Apache child process first parses the

request, retrieves the requested object (from the disk or the

cache) and sends back a response. Dynamic HTTP requests

involve additional CPU processing before a response can be

generated. Thus, the servicing of each request involves a

certain amount of CPU, disk and network I/O.

With this background, we present the results of our

experimental study to determine the bottlenecks in the

Apache request path.

2.2. Determining web server bottlenecks

The testbed for our experiments consists of an

unmodified Apache server running on a Pentium III PC

with 512 MB RAM and Redhat Linux 7.1. The client

workload is generated using an off-the-shelf Web workload

generator—httperf [11]—that can emulate various kinds of

workloads (e.g. persistent HTTP, SSL encryption) and

different request rates. All machines were interconnected by

a 100 Mb/s switched Ethernet and the network was assumed

to be lightly loaded in our experiments.

We instrumented the Linux kernel to measure various

parameters that affect the performance of Web requests,

namely (i) the length of the socket accept queue and the time

spent by an incoming request in the accept queue, (ii) the

amount of CPU time spent in servicing a request, and (iii)

the time spent by a request waiting in the CPU run queue.

Other metrics such as the network transfer time and the end-

to-end response time were measured at the client using

httperf. Unless specified otherwise, all kernel and Apache

configuration parameters were set to their default values.

The only (kernel) parameter that was modified was the

maximum length of the accept queue, which was increased

from its default value of 128–65,536 (this was done to avoid

TCP SYN packet drops due to accept queue overflow at

heavy loads).

For this setup, we examined the performance of Apache

for the following workloads: (i) static Web requests over

non-persistent HTTP connections, (ii) static Web requests

over persistent HTTP connections, (iii) static requests using

SSL encryption, and (iv) dynamic requests using Apache’s

CGI scripting. Whereas the first two workloads are I/O-

intensive, the third is both CPU- and I/O-intensive and the

fourth is predominantly CPU-intensive. Due to the memory

sizes on our machines, we observed that the OS buffer cache

was able to easily cache popular files in memory, and hence,

most requests are serviced directly from the cache and did

not result in disk I/O. Since most requests are serviced from

memory rather than from disk, we find that I/O time is

independent of the load and depends only on the file size,

and hence, do not report it in our results (this assumption

does not hold for scenarios where, for instance, a Web

request triggers a query in a backend database server;

however, such scenarios are outside the scope of this paper,

given our focus on Web server performance).

We now present our experimental results. Due to space

constraints, we present detailed results only for two

scenarios (persistent HTTP and SSL processing).

2.2.1. Static web requests using persistent HTTP

In this experiment, we configured httperf to use persistent

HTTP connections and to request multiple (static) files over

the same connection. We increased the connection rate and

observed its impact on the Web server and client

performance. As shown in Fig. 1(a), at low loads, Apache

can easily handle all incoming connections (and requests

over those connections); requests do not incur any

significant delays in the socket accept queue or the CPU

run queue. Note that the persistent nature of each connection

causes each Apache process to keep the client connection

open for a timeout duration waiting for subsequent requests

(which delays its return to the idle process pool). Hence,

when the load increases, Apache spawns additional child

processes to service newly arriving connections (since

existing processes are servicing other connections). As the

load increases, the MaxClient limit is reached eventually

(MaxClients was set to 50 in this experiment). Beyond this

point, the accept queue delay increases rapidly and becomes

the dominant factor of the total response time (this is

because a newly arriving connection must now wait in the

accept queue until an existing child process terminates a

persistent connection). Fig. 1(a) also shows that the CPU

service time and the CPU run queue delay are relatively

constant, indicating that most Apache processes are waiting

for requests over persistent connections, rather than actively

servicing requests. This indicates that the accept queue is
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the bottleneck resource in this scenario, while the CPU is

under-utilized.

A simple fix to prevent accept queue from becoming the

bottleneck would be to increase the MaxClient limit.

However, most Web servers such as Apache set a threshold

on this limit to prevent spawning of too many processes in

the system that could result in other performance problems

due to excessive swapping and context switching.

2.2.2. Static web requests using SSL encryption

In this experiment, we configure httperf to request static

files using SSL encryption over non-persistent HTTP

connections. The SSL protocol involves public-key

authentication and key exchange during connection setup,

after which it uses symmetric key encryption for transmit-

ting the data over the connection. Due to the computational

overheads involved in encrypting data, this is a CPU-

intensive workload. Like in our previous experiment, we

increase the client request rate and measure its impact on

server performance. Fig. 1(b) depicts our results. The figure

shows that the CPU run queue waiting times increase

steadily with the load—the larger the CPU load, the greater

is the time a request needs to wait in the run queue before it

can be scheduled on the CPU (since the CPU is busy

servicing other requests). The figure also shows that the

CPU run queue delay dominates the server response time.

Observe that the CPU service time of a request is

independent of the load, since the time to service a request

(e.g. encrypt data) depends only on the request size. Thus, a

high run queue delay is an indication of the CPU becoming

the bottleneck. The figure also shows that the accept queue

delay is initially small and then increases rapidly beyond a

certain load. This is because the CPU saturates at those

loads, causing newly arriving requests to wait in the accept

queue until an Apache process can be scheduled on the CPU

to accept the connection. At very heavy loads, the

MaxClients limit is reached, further adding to the accept

queue delay. Thus, our experiment indicates that the CPU is

the primary bottleneck in this scenario, as indicated by the

high run queue delays. Although the accept queue delays are

significant, this is primarily due to the saturation of the CPU,

rather than any shortcomings at the accept queue.

We performed two additional experiments that we do not

report here due to space constraints. The first experiment

involved requests for static Web pages over non-persistent

connections. Due to the memory sizes on our machine, the

OS buffer cache was able to absorb most of the requests,

resulting in few disk accesses; consequently, we found the

CPU to be the bottleneck resource in this experiment. The

second experiment involved dynamic HTML generation

using CGI scripting; we found that executing CGI scripts is

compute-intensive, causing the CPU to be a bottleneck.

Together, these experiments indicate that depending on

the workload and the operating region, different resources

can become bottlenecks in the request path. For the

workloads that were examined and for our hardware

configurations, we observed that the CPU and the accept

queue were the primary bottlenecks1. This indicates that a

Web server needs to intelligently detect these scenarios and

manage these resources accordingly.

3. Adaptive QoS architecture

Our experimental study in the previous section high-

lighted that different resources could become the bottleneck

based on the workload characteristics. Based on these

insights, we choose a small set of kernel mechanisms to

control these resources via dynamic resource scheduling. In

this paper we target two resources—the accept queue and

the CPU—that most affected server performance for our

selection of workloads, to highlight the need for multi-

resource adaptation. Observe that our goal is not to design

Fig. 1. Bottleneck resources for different workloads. (a) Accept queue bottleneck. (b) CPU bottleneck.

1 Neither the disk nor the network interface became a bottleneck in our

experiments. Cache hits in the OS buffer cache prevented the disk from

becoming a bottleneck. The network interface did not appear to be a

bottleneck either. As noted earlier, these observations may not hold for

environments that differ significantly from those considered here, for

instance, e-commerce sites with large amounts of backend database I/O.
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new resource control mechanisms; rather, it is to pick

existing mechanisms in current commercial or open-source

operating systems and build an adaptive framework to

parameterize and control these mechanisms.

We assume that the Web server supports multiple classes

of requests (also referred to as service classes) each with its

specified QoS requirement. In this paper, we consider class-

specific response time as the default QoS metric.

Throughput is another metric that can be controlled, but

discussion of such metrics is beyond the scope of this paper.

To control the performance offered to requests within each

class, we employ an adaptive QoS architecture that consists

of three main components.

Kernel resource controllers: The two resources, the

socket’s accept queue and the CPU run queue, are controlled

by a proportional-share scheduler to meet the performance

goals of different service classes. Specifically, we use a

weighted fair queuing scheduler for the accept queue, and

the hierarchical start-time fair queuing (HSFQ) scheduler

for the CPU. A SYN classifier is used to classify incoming

TCP connections into their service classes.

Monitoring framework: The monitoring framework

continuously obtains measurements from the system for

each resource, and each class, which are used by the

adaptation engine. Examples of these measurements include

per-class delays, request service times and resource

utilizations.

Adaptation engine: The adaptation engine uses an

observation-based approach to adjust the resource allo-

cations for each class based on the monitored performance

and the desired QoS goal. The adaptation progresses on two

levels—a local, per-resource level and a global one across

resources.

Fig. 2 illustrates the interactions between these com-

ponents. The flow of control during the lifetime of the

request is as follows. The kernel performs early demulti-

plexing and classification of incoming TCP (SYN) packets

and assigns each request to a service class. After a request is

admitted and added to a class-based accept queue, the

weighted fair queuing accept queue (WFQAQ) scheduler

determines the order in which the waiting Apache processes

accept the requests. After accepting a new request, each

Apache process is attached to the corresponding CPU

service class of the request and scheduled by the HSFQ CPU

scheduler. Through the monitoring framework, the per-

formance of each class is monitored continuously by the

adaptation engine. In response to changing workload, the

adaptation engine adjusts the shares assigned to each class

in the accept queue and the CPU scheduler such that their

QoS goals are met.

In what follows, we first describe the kernel mechanisms

used in our adaptive QoS architecture and then describe the

monitoring framework and the adaptation algorithms.

3.1. SYN classifier

The SYN classifier uses the network packet headers to

perform classification of incoming requests into different

service classes. Since a majority of Web requests use TCP

as the underlying transport, the SYN classifier resides in the

TCP/IP processing path. The classifier employs classifi-

cation rules to determine the class to which an incoming

connection belongs. The classifier includes mechanisms for

admission control via SYN policing, however, we do not

focus on the admission control aspects in this paper. The

classification rules, shown in Table 1, are based on the

network 4-tuple (IP address and port number). In our

prototype on Linux, the iptables command is used to insert

and delete rules in the kernel packet filtering tables. These

filters are maintained by the netfilter framework inside the

Linux kernel [12]. While our prototype performs its

classification based on IP addresses and TCP port numbers,

it is also possible to classify requests based on their HTTP

header information, such as the requested URL (e.g. html

vs. php) [2] has a description of how to extend the

classification within the kernel to include application

headers.

Fig. 2. Architecture for adaptive QoS.
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3.2. Accept queue scheduler

For a new incoming request, after the three-way TCP

handshake is complete, the connection is moved from the

SYN queue (called the partial-listen queue in a BSD-based

stack) to the listening socket’s accept queue. Instead of a

single FIFO accept queue for all requests, our architecture

employs a separate accept queue for each service class.

Requests in these queues are scheduled using a work-

conserving weighted fair queuing (WFQAQ) scheduler. The

scheduler controls the order in which requests are accepted

from these queues for service by the Web server processes.

The scheduler allows a weight to be assigned to each class;

the rate of requests accepted from a class is proportional to

its weight. Thus, the weight setting of a class allows us to

control its delay in the accept queue. As soon as an Apache

process becomes idle, a request is dequeued from one of the

class-specific accept queues in accordance with their weight

assignments. Thus, the Apache process pool is not statically

partitioned across classes. WFQAQ is a work-conserving

scheduler—an Apache process will not idle if there is a

request in any one of the accept queues. If a queue is empty,

the unused allocation of that class is proportionately

redistributed among other classes.

There are other alternatives for managing the accept

queue; we discuss these alternatives briefly and contrast

them to our WFQAQ scheduler. The first alternative is to

employ a fixed static-priority accept queue [2] that always

services a higher priority request before servicing a lower

priority request. The problem with a prioritized scheduler is

that lower priority classes can be starved by the higher

priority classes. As shown in Table 2(c), the lower priority

class (C3) gets affected by the request rate of the high

priority classes (C1 and C2). In contrast, a proportional-

share scheduler like WFQAQ provides performance

isolation across classes, since an accept queue buildup in

one class does not affect the performance of other classes. If

the accept queue of a class becomes full, then further

requests are dropped as in the traditional (single FIFO)

accept queue scenario. This effect is shown in Table 2(a)

that lists the request rate and observed delay for three

classes scheduled by a WFQAQ scheduler. Each class is

given the same share, i.e. the weight assignments are 1:1:1.

Note that even when classes C2 and C3 increase their rates,

from 375 to 400 and 425 req/s, the delay of class C1 remains

unchanged. Classes C2 and C3 eventually start showing

errors in the form of client drops, since they only affect their

own queue build-up.

The second problem with a prioritized scheduler is that it

can only adapt to changing loads in a very coarse-grained

manner. Table 2(c) shows that for a given priority ordering

among classes, a prioritized scheduler provides exactly one

combination of delays that will be seen by the classes based

on the offered load of each class. In contrast, a WFQAQ

scheduler can offer a wide range of delays for the classes by

tuning their share allocation. Thus, the schedulability region

of a WFQAQ scheduler is larger than that of a prioritized

scheduler. Table 2(b) shows the delay values provided by

WFQAQ for different weight assignments to three service

classes, each receiving requests at a rate of 400 req/s.

Instead of static priority, another technique is to statically

partition the Apache server processes among the service

classes and rely on a feedback system to dynamically adjust

the number of processes assigned to a class. Although the

approach can adapt to changing loads, its primary drawback

is that it is non-work-conserving—an Apache process

assigned to a class can idle if its queue is empty, even

though other classes may have pending requests. Such static

allocation also requires large number of processes to be pre-

spawned a priori, which typically results in larger context

switch, memory, and scheduling overheads. Moreover, this

approach also suffers from poor responsiveness in the

presence of sudden changes in allocation, due to large

swapping and context-switch overhead.

A third approach is to employ deadline-based scheduling

of tasks (e.g. EDF). This approach assigns a deadline to each

request and orders/schedules requests in increasing order of

deadlines. An EDF scheduler by itself does not provide

performance isolation across classes and additional mech-

anisms are necessary to limit the utilization of each class.

Table 1

Classification rules

Filter QoS specification

128.1.1.*, 80,*,* DelayZ200 ms

128.1.1.*, 21,*,* DelayZ1 s

*,*, 112.3.4.*,* ThruputZ100 req/s

Table 2

Properties of WFQAQ and static priority scheduler

(a) WFQAQ performance isolation

Request rate per class WFQAQ delay (s)

C1 C2 C3

375, 375, 375 1.5 1.5 1.5

375, 400, 400 1.5 1.8 1.9

375, 425, 425 1.5 1.9 2.1

(b) WFQAQ delay control (400 req/s per class)

WFQAQ shares Delay (s)

C1 C2 C3

2:1:1 0.005 2.4 2.2

3:2:1 0.006 1.42 3.15

4:3:1 0.005 0.75 3.68

5:4:1 0.006 0.49 3.89

6:5:1 0.007 0.26 4.15

(c) Performance with static priority scheduler

Request rate per class Delay (s) static priority

C1 C2 C3

425, 425, 425 1.4 1.5 1.8

450, 425, 400 1.5 1.7 1.9
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3.3. CPU scheduler

Traditionally, the CPU scheduler on a Unix-based system

schedules all OS application processes using a time-shared

priority based scheduler. The scheduling priority depends

on the CPU usage of the process, the I/O activity, and the

process priority.

To achieve the desired response time goal of a class and

provide performance isolation, we use a hierarchical

proportional-share scheduler that dynamically partitions

the CPU bandwidth among the classes. Specifically, we use

the hierarchical start-time fair queuing (HSFQ) [13]

scheduler, to share the CPU bandwidth among various

classes. HSFQ is a hierarchical CPU scheduler that fairly

allocates processor bandwidth to different service classes

and uses a class-specific scheduler for processes within a

class. The scheduler uses a tree-like structure with each

process (or thread) belonging to exactly one leaf node. The

internal nodes implement the start-time fair queuing (SFQ)

scheduler that allocates weighted fair shares, i.e. the

bandwidth allocated to a node is in proportion to its weight.

Unused bandwidth is redistributed to other nodes according

to their weights. The properties of SFQ, namely: (i) it does

not require the CPU service time to be known a priori, and

(ii) it can provide provable guarantees on fairness, delay and

throughput received by each process (or thread), make it a

desirable proportional-share scheduler for service

differentiation.

In our implementation, we use only a two-level hierarchy

(consisting of the root and various service classes). On

accepting a Web request, each Web server process is

dynamically attached to the corresponding service class; the

CPU share of the class is determined dynamically based on

the requirements of the class and the current workload.

One question that arises regarding the CPU control is

whether share-based CPU scheduling is required if the

number of processes attached to a class can be adjusted

dynamically. A direct co-relation between number of

processes per class and the CPU bandwidth that a class

receives does not always hold. While it may be a valid

assumption for small file accesses and single tiered systems,

it does not hold in general when processes have different

service time requirements, different disk I/O idling times, or

are kept alive by HTTP/1.1 for connection re-use across

requests. For more fine-grained performance control, a

share-based CPU scheduler is required.

3.4. Monitoring framework

The monitoring framework continuously obtains

measurements on the state of each resource and class that

are used by the adaptation engine. These measurements can

be broadly categorized into per-class, or local measure-

ments, and resource-wide, or global measurements.

Examples of local measurements include per-class delays

in a resource, per-class request arrival rates, or the work

required by a class’s requests in a resource. Examples of

global measurements include resource utilization, or global

queue lengths.

The monitoring subsystem is essentially a set of kernel

mechanisms to extract measurements from each of the

resources managed by the adaptation framework. As an

example, we briefly describe the per-class delay measure-

ment implemented for the accept queue and the CPU run

queue. In case of the accept queue, when a connection is

enqueued in the accept queue, we times-tamp its arrival in

the associated socket data structure. When TCP dequeues a

request from the accept queue, as dictated by the accept

queue scheduler, we timestamp the departure of the request

and compute the time spent in the accept queue. This

measurement is aggregated in a running counter together

with the number of requests seen by the accept queue. In a

similar manner, for CPU, we measure the time spent by a

process waiting in the run queue and running on the CPU.

A system call interface is used to allow the adaptation

algorithm to perform monitoring as well as resource control.

We added an ioctl like system call, sys_mul-

tisched( ), to the Linux kernel for this purpose.

sys_multisched( ) takes as arguments a command

and some command-specific arguments. The commands

allow the local class-specific values and global resource

values to be queried or updated. For local class-specific

measurement, the call arguments identify the command, the

resource, the resource-specific metric of interest, and the

class identifier. For global measurements they only identify

the resource and the metric of interest.

Operationally, two timers are used, viz. a monitoring

timer and an adaptation timer. The values are measured by

the monitor every monitoring instant, or ‘tick’, where the

time-interval per tick, Tm, is a configurable value. The time-

interval between the adaptation instants, TaZkTm, i.e. an

adaptation instant happens after multiple monitoring

instants, or every k ticks. The measured values over the k

ticks are averaged to give the current value at the start of a

new adaptation instant. The value at the previous adaptation

instant is exponentially averaged using a weighting factor a.

For a resource parameter a, whose exponentially averaged

value in the last cycle was aprev and the new set of values at

the start of the current adaptation instant were a1,a2,.,ak,

the new value, acur is given by:

acur Zaaprev C ð1KaÞ

P

k

iZ1

ai

k
; 0%a%1

4. Adaptation engine

The adaptation engine builds upon the monitoring,

scheduling and control infrastructure described in the
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previous section. Based on the measured values returned by

the monitoring agent, the adaptation algorithm computes

and sets new shares and weights in the schedulers in order to

meet the QoS goals of each class.

4.1. Adaptation techniques

There are three general approaches that can be employed

to build an adaptation framework: (i) a control theoretic

approach with a feedback element, (ii) an open-loop

approach based on a queuing model of the system, and

(iii) an observation-based adaptive system that uses run-

time measurements to compute the relationship between the

resource parameters and the QoS goal.

A control theoretic approach is a powerful technique in

general. However, most solutions that apply control theory

for Web server adaptation require training the system at

different operating points to determine the control par-

ameters for a given workload. Moreover, these control

parameters have to be re-computed when the workload

characteristics change, e.g. from CPU-bound SSL requests

to network bandwidth-bound multimedia requests. Second,

these solutions assume a linear relationship between the

resource parameters and the QoS goals for all operating

regions. While linear assumptions may hold, in practice, for

throughput control they cannot be generalized for other QoS

goals such as response time. An assumption that the

reciprocal of the response time can be modeled by a linear

behavior does not capture the delay relationship correctly.

The response time, in general, depends on the utilization of

the system and the scheduling policy and is, therefore,

difficult to capture by using a linear model throughout the

range of system utilization values.

On the other hand, an open loop system, for example, one

based on a queuing model, is difficult to solve analytically

for complex arrival patterns and service time distributions.

Queuing models are useful for steady-state analysis and do

not handle transients accurately. Simple approximations of

arrival and service time distributions lead to incorrect

choice of parameters. Moreover, not all schedulable

resources can be modeled as queuing systems.

We chose an observation-based approach for adaptation

as it is most suited for handling varying workloads and non-

linear behaviors. Fig. 3 depicts how delay may vary with

share assigned to a class (the share for a class translates to its

resource utilization). This figure illustrates that (i) the

delay–share relationship may change with the request

arrival rate li (as depicted by the two l curves), and (ii)

the delay–share relationship is non-linear even when the

request rate remains the same. The basic idea in our

observation-based approach is to approximate the non-

linear relationship between the delay of a class and its share

(or weight), by multiple piecewise linear parts. The

algorithm continuously keeps track of the current

operating point of each class on its delay–share curve.

The observation-based approach depends on run-time

adaptation, and hence is well-suited for highly variable

and dynamic workloads. While we demonstrate our

observation-based approach using the CPU and the accept

queue, which are exclusively used resources, our approach

can also be extended to non-exclusive resources such as

memory and disk. This is because our approach makes no

assumption about the shape of the delay–relation curves that

it uses for allocation. While these curves may be less smooth

and more load-sensitive for these resources, our approach

relies only on the empirical determination of the delay–

share relations, and is thus applicable to these resources as

well.

The observation-based adaptation proceeds on two

levels—a local per-resource adaptation and a global

system-wide adaptation. The next two sections describe

the adaptation algorithm in detail.

4.2. Resource-specific local adaptation

The local adaptation algorithm of each resource needs to

ensure that each class achieves its QoS (in this case response

time) goal for that resource. For each class i, let Di represent

its desired response time and di be its observed average

delay in that resource. Furthermore, for each class i, the

algorithm maintains an estimate of the slope,mi of its delay–

share (or delay–weight) curve at the current operating point.

The adaptation algorithm tries to adapt the share of each

class, wi, such that the delay value di, lies in the range [(1K

3)Di,(1C3)Di]. The adaptation proceeds in the following

four steps.

Determining class state: At every adaptation instant, the

local adaptation engine computes the current value of di
from the monitored values, as described in Section 3.4.

At every adaptation instant, the algorithm checks

whether each class is missing its local response time goal

by comparing the values of di and Di. A class that is missing

its goal, i.e. diR ð1C3ÞDi, is called an underweight class.

Similarly, a class that is more than meeting its goal, i.e.

di% ð1K3ÞDi is called an overweight class. Other classes

that have their delay within the range of the desired delay

Fig. 3. Delay-share relation for different request arrival rates.
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are called balanced classes. The underweight classes are

ordered to determine the most underweight class. The

algorithm tries to borrow shares from the overweight classes

such that the most underweight class becomes balanced.

This redistribution step, however, must ensure that the

overweight classes are not over compensated to make them

underweight as a result.

Redistribution: For redistributing the share across

classes, the algorithm needs to quantify the effect of

changing the share allocation of a class on its delay. This

is computed by using the slope estimate mi, at the current

operating point on the delay–share curve. The total extra

share needed by an underweight class i is given by

Dwi Z
ðdiKDiÞ

mi

as shown in Fig. 3. The extra share required by the

underweight class is not equally distributed among the

overweight classes. Instead, the amount of share that an

overweight class can donate is based on its sensitivity to a

change in share. There are two factors that affect the

sensitivity of an overweight class j: (i) its delay slack given

by (DjKdj), which measures how much better off it is from

its desired delay goal, and (ii) the current slope of its delay–

share curve mj, which measures how fast the delay changes

with a change in share. Based on these factors, the surplus sj,

for an overweight class j is given by:

sj Z
ðDjKdjÞ

mj

The surplus of each overweight class is proportionally

donated to reduce the likelihood of an overweight class

becoming underweight. The donation, donationj, of an

overweight class is a fraction of the required extra share

weighted by its surplus, and is given by

donationj ZDwi

sj
P

k sk

� �

Before committing these donations, we must check that

the new delay value does not make the overweight class

miss its delay goal. Based on the slope mj, we can predict

that the new delay value of the overweight class would be

given by:

d
0
j Z dj Cmjdonationj

If the new delay value misses the delay goal, i.e.

d 0
jR ð1C3ÞDj, the donation is clamped down to ensure that

new delay is within the range of the desired delay. The

clamped donation is given by

clamped_donationj Z
½ð1K3ÞDjKdj�

mj

The actual donation of an overweight class is, therefore,

actual_donationj Zminfdonationj; clamped_donationjg

The total donation available to the underweight class i,

which is the sum of the actual donations of all the

overweight classes, i.e.
P

j actual_donationj, is never

greater than the required extra share Dwi.

One underlying principle of the redistribution step is that

the overweight classes are never penalized more than

required. This is necessary because the slope measurements

are accurate only in a localized operating region and could

result in a large, but incorrect, surplus estimate. When

workloads are changing gradually, it is most likely that the

extra share requirements of an underweight class will be

small, thereby, making the proportional donation of the

overweight classes to be smaller.

Gradual adjustment: Before committing the actual

donations to the overweight and underweight classes, the

algorithm relies on gradual adjustment to maintain stability.

This is another hook to ensure that there are no large

donations by the overweight classes. A large donation could

change the operating region of the classes which would

make the computations based on the current slope value,

incorrect.

Hence, we perform gradual adjustment by only commit-

ting a fraction b (0%b%1), of the computed actual

donation, which is given by:

commit_donationj Z b actual_donationj

The algorithm commits the new shares (or weights) to all

the involved classes by using the resource control hooks

described in Section 3.4.

Settling: After committing the donations, the adaptation

algorithm delays the next adaptation instant, by scaling the

adaptation timer, to allow the effect of the changes to settle

before making further adaptation decisions. We keep the

adaptation cycle short during stable states to increase

responsiveness and only increase it when settling is required

after a change to increase stability.

The committed donations change the current operating

points of the involved classes along their delay–share

curves. At the next adaptation instant, the algorithm

measures the actual observed change in the per-class delays,

and uses these values to obtain updated values of the slope

mi for each class. The updated mi values are used in the

above adaptation equations whenever adaptation is per-

formed next.

4.3. System-wide global adaptation

The system-wide global adaptation algorithm maps the

overall response time goals for each class to local response

time goals for each resource used by that class. One

approach is to use the same value for both system-wide

response time goal and the local goal per resource. Although

this is a nice choice for initial values, it can reduce

performance when different classes have a different bottle-

neck resource. The main intuition behind our utilization-
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based heuristic for determining local goals is to give a class

a more relaxed goal in its bottleneck resource, i.e. the

resource where the class requirements are high relative to

the resource capacity.

To determine the per-class resource utilizations, the

global adaptation engine, at every adaptation instant, uses

the monitored values of the work required Ci,j, by each class

i using resource j, and the total capacity Cj of each resource

j. While the capacity may be a fixed constant (e.g. MIPS) in

the case of CPU, for the accept queue it is the measured

process regeneration rate of the Web server, i.e. the rate at

which connections are accepted from the accept queue.

Let Di be the global response time goal of class i, and Di,j

be the local response time goal of class i in resource j. The

sum of the local response time goals should equal the

system-wide goal. The local value depends on the utilization

ui,j, for the class i in resource j, which is given by:

ui;j Z
Ci;j

Cj

Using the utilization value, the global response time goal

is proportionally allocated between the resources, to give

the local response time goals for each class, i.e.

Di;j ZDi

ui;j
P

k ui;k

� �

A utilization-based deadline splitting approach has also

been used in [14], however, their optimization goal is to

balance resource utilization. Our intent, instead, is to

examine the workload of each class in isolation and relax

the goal in the bottleneck resource for that class.

Note that while our global adaptation approach has been

described in the context of multiple resources within a

server, the same approach could also be applied to multiple

tiers within a multi-tiered application (such as a multi-tiered

Website). In this case, the response time goal could be split

among the different tiers and used to identify the bottleneck

tiers as well.

5. Experimental evaluation

In this section we evaluate the effectiveness of our

system’s per-resource and global adaptation algorithms in

providing response time guarantees under varying workload

conditions. We first demonstrate adaptation of the two

system resources—accept queue and CPU—in isolation.

We study adaptation behavior for workloads with both

deterministic and Poisson request arrival distributions.

Deterministic workloads do not generate significant

queuing delays in systems that are not overloaded. With

such workloads, the predominant delay is the service time

which depends on the resource share assigned to each class.

Such workloads are useful to analyze for preemptively

scheduled resources like the CPU, but not for resources like

the accept queue where the only delay is caused by queuing.

Deterministic workloads allow us to demonstrate the

effectiveness of the adaptation algorithm in controlling

delays by properly scaling per-class resource shares. On the

other hand, Poisson-distributed workloads, which are more

representative of real-world workloads, allow us to

demonstrate the effectiveness of the algorithm in managing

queuing delays. Such delays are relevant for both the CPU

and the accept queue resource.

We demonstrate the adaptation behavior of the obser-

vation-based approach for: (i) changes in workload arrival

rates that shift the operating region, (ii) changes in response

time goals of the classes that can change within a resource

based on global system state, and (iii) change in workload

characteristics that shift the resource bottlenecks.

After evaluating adaptation for each resource along the

above dimensions, we evaluate system-wide global adap-

tation that implements the adaptation machinery for both

resources, and adjusts resource allocations in the appro-

priate resource depending upon the current system work-

load, current resource utilizations, and the global response

time goals.

5.1. Experimental testbed

The experimental testbed consists of a server machine

running a kernel with the adaptation mechanisms and

algorithms, and two client machines that generate workload.

The server is a 660 MHz P-III machine with 256 MB RAM

and runs Linux 2.4.7. Each client machine is a 450 MHz P-II

with 128 MB RAM, also running Linux 2.4.7. The machines

are connected by a 100 Mbps Ethernet. The server runs

Apache 1.3.19 with SSL support enabled. The MaxClients

parameter of Apache was set to 150 processes.

The server kernel was modified to implement monitor-

ing, scheduling and control mechanisms for the accept

queue and the CPU, as discussed in Section 3. These

mechanisms form the building blocks for the adaptation

algorithm described in Section 4.

The workload generator used at the clients was httperf

[11]. Httperf was chosen because it is an open-loop

workload generator that not only allows request rates to

be specified as a parameter, but also allows generation of

deterministic as well as randomly distributed workloads. To

stress different resources in the system we use two kinds of

workloads:

† CGI workload: In this workload, a CGI script is used that

blocks for a variable time duration before returning a

response. This models blocking for a back-end database

request that reduces the Apache process regeneration

rate, thereby, stressing the accept queue without loading

the CPU.

† SSL workload: The SSL workload models a CPU-

intensive workload, which does not stress other

resources in the system for moderate request rates.
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In the experiments that follow, the monitoring frame-

work records the measurements every system ‘tick’ whose

value is set to be 5 s. For deterministic workloads,

adaptation is triggered every 10 ticks in the stable state. In

case of Poisson workloads, where the delays show

significantly more deviation about their mean, adaptation

is triggered every 40 ticks to avoid over-reaction to transient

delays. To allow the system to settle after a share is changed,

the adaptation interval is increased by a factor of 2.

5.2. CPU adaptation

For evaluating the adaptation behavior of the CPU, we

choose SSL requests as the CPU-intensive workload. The

clients request an SSL-encrypted file from the server at a

given rate. At the server, response time goals are specified

for two classes. In each experiment, we start with an equal

share allocation to each class.

Fig. 4 illustrates the results of CPU share adaptation with

a varying workload request rate and a deterministic arrival

distribution. The CPU target delay for both classes was

0.1 s. Clients of both classes generate a combined aggregate

workload of 12 SSL req/s. The fraction of the requests

coming from each client was varied from 1:1 to 1:2 to 1:1 to

2:1, with the transitions occurring at 100, 500, and 900 ticks,

respectively. In other words, the class pair had request rates

of (6, 6 req/s) from 0 to 100 ticks, (4, 8 req/s) from 100 to

500 ticks, (6, 6 req/s) from 500 to 900 ticks, and (8, 4 req/s)

from 900 to 1200 ticks. Fig. 4(a) is a plot of the average per-

class delays with time, and shows that adaptation was

successfully triggered in each case such that the response

time of each class was close to its goal. Fig. 4(b) plots the

relative shares assigned to each class. As the figure shows,

share of class 1 was increased at the first transition to handle

its increased load. This share could be borrowed from class

0 because it had a reduced load. When the request rates were

balanced again at the second transition, share of class 0 was

increased to re-balance the previous share setting. Finally, to

handle the increased load of class 0, its share was increased

at the expense of class 1. Thus, the figure demonstrates the

gradual share adaptation being performed by the algorithm

in the CPU scheduler.

Fig. 5 illustrates the results of CPU share adaptation with

varying response time goals and a deterministic arrival

distribution. Both clients send requests at the rate of 6 SSL

req/s. Initially, the goals of both classes were set to be equal.

After 100 ticks, the response time goal of class 0 and 1 was

changed to 0.05 and 0.15 s, respectively. After 500 ticks, the

response time goal for these classes was reversed. Note that

this reversal causes a large relative change in the response

time goals. We use this to stress the adaptation algorithm

and verify that large changes do not send the system into

Fig. 4. CPU adaptation for deterministic request arrivals and dynamically changing request rates. (a) Average delays. (b) Share settings.

Fig. 5. CPU adaptation for deterministic request arrivals and dynamically changing response time goals. (a) Average delays. (b) Share settings.
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oscillations. Fig. 5(a) plots the average per-class delays and

demonstrates the adaptation to the changes, whereas

Fig. 5(b) shows the CPU share adjustments performed by

the adaptation algorithm.

The above experiments used a deterministic workload to

show that the adaptation algorithm can adjust shares to

handle changes in request rates and target delays. Next, we

study the effectiveness of the adaptation algorithm in

managing queuing delays. This is done by using a workload

with Poisson request arrivals. Both clients generate requests

whose arrival is Poisson distributed with mean 6 req/s.

During the first 200 ticks, the queue length is allowed to

settle, and adaptation does not trigger during this period.

Then, at 200 ticks, class 0 is given a goal of 0.25 s, whereas

class 1 is given a goal of 1 s. At 600 ticks, these goals are

reversed, which is again a large relative change. Fig. 6

shows the adaptation results. Fig. 6(a) plots the average

delays that are seen by the adaptation algorithm while

making adaptation decisions. The weight adjustments made

by the algorithm are shown in Fig. 6(b). Note that the share

adjustment done by the algorithm at the second transition is

larger and faster than that done at the first transition. The

reason is that at the second transition, the lower delay class 0

has more slack in terms of donating from its share to class 1.

5.3. Accept queue adaptation

For evaluating accept queue adaptation behavior, we use

the CGI workload as described earlier. Again, in each

experiment we start with an equal share allocation to each

class. Note that since the only kind of delay in the accept

queue is the queuing delay, only workloads with Poisson-

distributed arrivals are relevant. Fig. 7 shows the accept-

queue share adaptation for varying response time goals.

Both classes of clients generate requests whose arrival is

Poisson distributed with a mean of 24.6 req/s. During the

first 400 ticks, the queue length is allowed to settle. During

this period, the response time goal is kept at a high value for

both classes, so that adaptation does not trigger. Then, at

400 ticks, class 0 is given a goal of 0.05 s, whereas class 1 is

given a goal of 0.15 s. At 900 ticks, a large relative change is

made by reversing these goals. Fig. 7(a) plots the average

per-class delays and Fig. 7(b) shows the accept queue share

adjustments. As can be seen from the graphs, the adaptation

algorithm changes the shares for the classes to meet their

delay goals2. We do not show the initial 400 ticks of the

experiment, as there is no adaptation taking place there.

5.4. System-wide adaptation

In this experiment, we demonstrate the combined

adaptation of both resources when a change in the type of

workload shifts the bottleneck resource.

For the experiment shown in Fig. 8, the clients alternate

between generating CGI and SSL workloads. To keep the

delay values in each resource comparable, we use a

combination of an SSL workload with deterministic arrivals

and a CGI workload with Poisson arrivals. Fig. 8(a) and (b)

plots the average CPU delay and the average accept queue

delay, respectively, for each class.

The experiment proceeds in three phases.

From 0 to 400 ticks, the clients generate SSL requests at

the rate of 6 req/s. No adaptation is triggered for the first 100

ticks to allow the system state to stabilize. At 100 ticks, the

global response time goal of class 0 is set to 0.05 s and that

of class 1 is set to 0.15 s. For the rest of the experiment,

these global target delays are kept fixed. As seen in these

figures, the accept queue delay is negligible (around

0.002 s) for the first 400 ticks since the workload is CPU-

intensive. Hence, the entire delay budget is available to the

CPU. As the graph shows, the CPU shares adapt to provide

each class with their target delay values.

Fig. 6. CPU adaptation for Poisson request arrivals and dynamically changing response time goals. (a) Average delays. (b) Share settings.

2 We note from Fig. 7(a) that at 900 ticks, the delay of class 0 increases

abruptly and takes some time to settle down.We believe the main reason for

this behavior is the way requests are processed in the accept queue. The

accept queue is a non-preemptive resource (unlike the CPU for example),

and requests from each class-specific queue are still processed in FCFS

manner. This causes a large jump in the delay of Class 0 when the delay

goals are changed by relatively large amounts (the goals are reversed), that

takes some time to settle down.
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Between 400 and 800 ticks, the clients switch from an

SSL workload to a CGI workload with a request rate of

24.6 req/s each. This reduces the CPU delay to a negligible

value (around 0.0002 s) but ramps up the accept queue

delay. Most of the delay budget for each class is now

available for the accept queue. The accept queue adaptation

algorithm responds by adjusting shares to achieve the target

delays.

Finally, from 800 to 1200 ticks, the clients switch back to

an SSL workload, thus making the CPU the bottleneck

resource again. Moreover, the request rates of the clients are

also changed to 4 and 8 req/s, respectively. Once again, as

shown in the graphs, the accept queue delay becomes

negligible, while the CPU scheduler parameters are adjusted

to help the classes achieve their goal.

This experiment demonstrates the ability of the system to

choose the appropriate resource to adapt with changes in the

type of workload, and to trigger the appropriate local

adaptation to meet per-class response time goals.

6. Related work

Several approaches for self-managing systems have been

proposed in the literature in the context of storage systems

[15–17], general operating systems [18], network services

[19], etc. Our focus is to design adaptive techniques to make

Web servers self-managing while providing QoS guarantees

to various customer classes.

Recently, several research efforts have focused on the

design of adaptive Web servers. A control theoretic

approach for adaptation has been proposed in [3,20,21].

This approach involves a training phase using a given

workload to perform system identification, based on which a

controller is designed that assumes a linear relationship

between the QoS metric and the scheduler parameters.

Unlike this effort, we employ an alternate observation-based

approach for adaptation. Since delay is not linearly related

to the share parameters of proportional-share schedulers,

and the system model changes with variations in the

workload, we perform adaptation by measuring the system

state on a continual basis and adapting based on the current

operating region. Thus, system identification is an ongoing

process in our system, and while we assume linearity around

a particular operating point, the operating region as a whole

is assumed to be non-linear.

A number of recent and ongoing research efforts have

looked at various aspects of providing QoS support for Web

servers. WebQoS [1] is a middle-ware layer that provides

admission control and service differentiation in user space.

Unlike the WebQoS effort, the focus of our work is not to

design new scheduling or resource management

Fig. 7. Accept queue adaptation for Poisson request arrivals and dynamically changing response time goals. (a) Average delays. (b) Weight settings.

Fig. 8. Delays for system-wide adaptation for the CPU and the accept queue. (a) average delays for CPU. (b) Average delays for accept queue.
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mechanisms per se, rather it is to design an adaptive

framework to effectively parameterize existing mechan-

isms. An adaptive mechanism for admission control for

Web servers is described in [22]. Goal-based CPU

scheduling using coarse-grained resource allocation tech-

niques for meeting service level agreements has been

studied in the context of WLM [23]. In contrast, our work

focuses on the combined fine-grained adaptation of multiple

resource allocations both in terms of resource units as well

as the time scale.

To achieve performance guarantees on a Web server,

several research efforts have developed predictable resource

management mechanisms and techniques for the host

operating system. Resource Containers [24] is a kernel

mechanism for accurate accounting of resource usage that

can be used for service differentiation on a Web server. SFQ

[13], BVT [25], SMART [26] are predictable scheduling

algorithms that can be employed as basic scheduling

mechanisms in the kernel. Kernel mechanisms for early

classification and managing of accept queue delay have

been proposed in [27,2]. Our work is complementary to the

development of such mechanisms. In fact, we assume the

existence of such mechanisms and show how to automate

the task of parameterizing these mechanisms to achieve

self-manageability in the system.

Previous work on resource management for Web servers

has typically focused on individual resources. Almeida et al.

[4] has proposed a CPU scheduling algorithm to dynami-

cally distribute CPU bandwidth to Apache processes.

Connection setup delay has been identified as the bottleneck

in [20] that proposes a scheduling scheme to manage the

accept queue. A key contribution of our work was that we

showed the need for managing multiple resources, and

developed an adaptation technique for controlling multiple

resources dynamically.

Many research efforts have looked at resource control

from the application perspective. Jeffay [28] proposes a

mechanism to guarantee end-to-end delays for a periodic

real-time application with well-defined stages. SEDA [29] is

a framework for designing applications that allows

controlled resource allocation for each application stage.

In [30], a feedback-driven scheme has been proposed that

uses application-specific indicators to determine the

resource allocation. Most of these approaches require

knowledge or make assumptions about the application

structure. In our work, we try to infer the application

behavior through system-level observations and do not

require any knowledge of the application internals.

7. Conclusions and future work

In this paper, we proposed an observation-based

approach for self-managing Web servers that can adapt to

changing workloads while maintaining the QoS require-

ments of different classes. First, we illustrated the need to

manage different resources for different kinds of workloads.

Later, we described an adaptation framework, which

monitors the system state continuously and adjusts the

various resource parameters to maintain the response time

requirements of different classes.

As part of an ongoing effort, we are extending the scope

of the adaptation architecture to include other system

resources such as disk arrays, network interfaces, etc. This

includes integrating the adaptation system with the

admission controller. In future we plan to investigate more

varieties of Web workloads and server architectures, in

particular, workloads that involve accessing a back-end

server and multi-tier server architectures that include a Web

server, an application server and a back-end database. We

would also like to explore the possibilities of using our

adaptation technique in other self-managing scenarios such

as large storage systems, database systems, etc.

Overall, we believe that an observation-based approach

is a useful technique to adapt to unpredictable loads and

other system factors, and our techniques show how this

approach can be applied in a Web server environment.
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