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An Observer Looks at Synchronization

Henk Nijmeijer and Iven M. Y. Mareels

Abstract—In the literature on dynamical systems analysis and requested to recover the full state trajectory of the transmitter.

the control of systems with complex behavior, the topic of syn- The problem is of course only interesting if the signal received

chronization of the response of systems has received considerablqS not equal to the full state. In this situation the receiver
attention. This concept is revisited in the light of the classical has | inciple the freed A build d ical
notion of observers from (non)linear control theory. as In principle the freedom to build any dynamical system.

The receiver system could be a copy of the master system,
but it need not be. The real requirement is that given the
received signal the receiver dynamics will synchronize to
the transmitters’ dynamics. In thus allowing the receiver the
|. INTRODUCTION freedom of which dynamical system to implement, we enlarge

N RECENT years there has been considerable interesttfi¢ class of master—slave systems that allow synchronization.

the dynamics and control of systems exh|b|t|ng comp|é}!0te that at this point we do not consider the actual physical
behavior. The number of papers related to this subject seef@glization of the new receiver's dynamical system. In certain
to grow at an almost exponential rate [1]. For an admittedBpplications this may be crucial, but this aspect lies beyond
already “dated” review of some of the prevailing researdhe scope of the present paper.
problems the reader may consult the seminal papers in [2]. The problem just described is closely related todheerver

The purpose of the present paper is to revisit the conceptasbblem from control theory. For linear dynamical systems
synchronizatiorirom a mathematical control theoretic perspe& complete solution to the problem is well known [13],
tive. More specifically we want to explore how tiabserver [14]. For nonlinear systems a few partial results exist [15],
notion from (non)linear control theory links in with synchro{16], [26]-[28]. This observation is at the core of the paper.
nization. For an introduction to nonlinear control theory wénother point that will transpire from the exposition is that
refer to [4]-[6]. the complexity of the dynamics involved is of little concern

Synchronization, as introduced by Pecora and Carroll [1h our discussion of observer design or synchronization.
[8] has been studied from various angles. Often a master—slav8esides the master—slave perspective on synchronization
formalism is taken, e.qg., [7]-[12]. Given a particular dynamicalnother viewpoint is expressed in [3]. There synchronization is
system, the master, together with an identical (sub)systeseen as the design of a (feedback) mechanism for the receiver,
the aim is to synchronize to the master system the completsing the transmitted signal, so as to ensure that the controlled
response of the slave system, by driving the latter with raceiver synchronizes with the transmitter. This approach to
(scalar) signal derived from the master system. In this contextnchronization is in essencecantrol problem, which we do
synchronization is often considered to be a remarkable pragpt discuss in this paper, but see [30].
erty when the master dynamics are chaotic and thus sensitive ta\ standard approach in solving the observer problem in
initial condition variations. A promising application in secureontrol theory is to use as receiver a copy of the transmitter
communication suggested in [9] and [40] uses such a chaqi## course with unknown initial state) modified with a term
master dynamics to mask a message and a synchronized si@fgending on the difference between the received signal and its
system to recover the message. prediction derived from the observer. The additional term aims

The above master—slave viewpoint leaves some ambiguiiyattenuating the difference between the state of the transmitter
as to what the actual slave system should be, given the magfg the state of the observer system. This procedure may be
system. A naive, but often realistic approach, would be ¥hown to be successful in many instances, but certainly no
consider the master dynamics (transmitter) as transmittingy@bal validity can be claimed. The synchronization problem
signal to the slave dynamics (receiver) and the receiver isyuires one to establish global asymptotic stability for the

Manuscript received January 15, 1997; revised June 7, 1997 and JuneZ8(0 solution of the error dynamics, the dynamics governing
1937i 'Klﬂost\(ofl\/ltgize\;\éozlf’a\;va: r%%n%%ztregfvmgeDHe' gygsgfz) ;NE?] \{Lseilt(i;r\?the difference between the transmitter state and observer state.
sz the Coéperative Research Centre for Robugt and Adaptiveg Syste Lgorous proofs Q“e“ rely on Lyapun'ov argument; [2_2]_[24]'
Australian National University, Canberra, Australia. This work was supportdd0st of the existing results concerning synchronization also
by the Cooperative Research Centre for Robust and Adaptive Systemsréyy on Lyapunov based arguments [9], [12], and [10].

the Australian Government under the Cooperative Research Centres Progra . L
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of Twente, 7S00AE Enschede, The Netherlands. _ “may be deduced from the Takens embedding theorem [17],
I. M. Y. Mareels is with the Department of Electrical and Electronic

Engineering, The University of Melbourne, Parkville,\ﬁctoria3052,Australia\."/hiclh is Closely_ related to the Observabi“ty property for
Publisher Item Identifier S 1057-7122(97)07615-0. nonlinear dynamical systems [18], [19]. In essence the ob-
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servability property states that the history of the transmittathder consideration. In this paper we consider dynamics over
signal contains all the information required to reconstruéuclidean space, hence the tangent space can equally be
a state variable for the master dynamics. The observabililentified with Euclidean space. When discussing the dual
property is a generic property of dynamical systems. Howevgpace of the tangent space we refer to cotangent space,
it falls short of implying the existence of an observer ocovector fields and codistribution.
receiver that synchronizes. In the case of linear systems thén order to decide on the non existence of observers, the
link between observability (or better detectability) and theotions of observability and detectability are crucial. Consider
existence of an observer can be made explicitly. Howevere time invariant system
in the nonlinear context the situation is not that clear, and . "
apart from some local results, cited before, few results are o(t) =f(@()), =(0) =z, €R", 120,
available. y(t) =h(z(t), yeR. @)
Often, the observer complexity can beducedby noting
that the given transmitter signal already contains part of th
state information. Hence, one only needs to reconstruct th he system (1) is calletbcally observable atz, if for all

complementary part of the transmitter state, that part Wh'Ch'FﬁtiaI conditions 1, 2> in some neighborhood” of x, if

not explicitly contained in the transmitted signal. This Iead o
naturally to the concept of a reduced observer. ﬁ(x(t’xl)) = (a(t,z,) for all ¢ such thate(t, 1), 2 (¢, z2) €

o . . U implies thatz; = z2. The system (1) is calledocally
The presentation in the paper is kept simple. No attem&t)servableif it is locally observable at any:, € R".

is made at stating the most general results available fromThe observation space is the linear space ovét of the

(pgnéllnilar c_ontr%II th(taory. Agproprla:_e referentcc_as_ lare P&ctor fieldsL’}hi(a:) fore=1,---,pandk =0, 1, 2,---.
vided. Also in order to avoid (sometimes nontrivial) comy sufficient, and almost necessary, condition for local observ-

plications, we assume throughout that all dynamical systerggi ity is that the codistributioniO(x) = span {DLkhy(x)
are defined on an open subset of an Euclidean space arﬂl c,pk=0,1,--) satisfieslim dO(x) = n Va{an’

have sufficient regularity such as to guarantee the exister%c?n 7<':ase dimdO(z)<n, then the vector field leaves
of unique solutions. In this paper only dynamical systen%@ !

Denote byz(t, z,) a solution to (1), i.ex(0,z,) = z, and
t,x,) = f(z(t,z,)). Assumef andh to be smooth.

. ; . . . e kernel of the observability codistribution invariant
described in continuous time are considered. A complet

imilar treatment for d ical svst defined vi ‘e., [f.kerdO] C kerdO). The kerdO is an involutive
:Ion;[s?lglerea ment for dynamical systems defined via maps dgyripution. A necessary condition for the existence of a

L . ... valid observer becomes that the dynamicsfofestricted to
The observer perspective in approaching synchronizatio

nk'gr(dO) be asymptotically stable. In this case we say that
to the best of our knowledge new. the system isdetectable

The paper is organized as follows. In the next section WeSpeciaIizing to linear dynamicg{x) = Az andh(z) = Ca

define the problem of synchronization in some detail and st . . S
. . . TOr appropriate matriced andC, detectability is expressed by:
clearly the standing assumptions. Sections II-V each revisit pprop ’ y P y

b s s o s ocs 1 93U 0 (V) comenenty<n o
problem. In the case that the matrix
- <)\I - A) -
A. Preliminaries C
For more details we refer to [5]. has rankn for all complex A we say that the system is

Dh denotes the Jacobian 6f it is the matrix with entries opservable. This condition for observability is equivalent to
Dhy; being the partial derivative of thigth component of  dim dO(z) = n,¥z € R”, which in the linear case reduces

with respect to thejth argument ofh. to

By D;h we denote the partial derivative éf with respect C
to its sth argument. CA

Given a vector field f and a scalar valued ker O :=ker . = {0}. 4)
function A define the (iterated) directional deriva- :n_l
tive of A in the direction of f as: LiT'h(z) = cA

k i 0 _ _

gg%{%g;jﬂ(\gth Lyh(z) = Nx) and Lyh(z) = Il. PROBLEM STATEMENT

[X,Y] denotes the Lie bracket of two vector fields, it We state two particular problems in the area of observer
is defined as the vector fielgt,Y](z) = (DY (x))X(z)— design, which are closely linked to synchronization. First we

(DX (2))Y (z). ad% Y is defined viaad}Y = Y, adxY = introduce the full observer, next the reduced observer problem.
[X,Y] and ad’;‘(ﬂy = [X,ad% Y. Let us consider dynamics governed by:
Given vector fieldsX;,j = 1,--- we define aglistribution #(t) = f(z(t),), 2(0) = zo € R", t>0. (5)

the objectd = span {X;,j = 1,---}. We call the distribution
d involutiveif it is closed under the Lie bracket operation. We assume throughout that the vector fi¢lds smooth and
Vector fields live in the tangent space of the manifolthat the system (5) has a unique solutio(t,zo) passing
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through the initial state:(0,zo) = zo defined on an interval ~ Of course once a reduced observer is found the full state is

(=T_,+0), with T_ > 0. asymptotically recovered via(t) = ¢=1(y(t), 2(t)).
The statez(¢,x¢) is not directly available, only aoutput Remark 1:In formulating the observer problem above,
is measured, say: the links with synchronization are obvious. We emphasize

_ » the importance of the state space transformations allowed
y(t) = h(z(t), 1) €RP, p<n. ) for in the reduced observer problem and the freedom to
We assume throughout thatis smooth. choose the vector fielg' in the full observer problem. This
additional freedom, which appears to be largely lacking in the
discussions on synchronization, enlarges considerably the class
A. Full Observer Problem of systems for which the observer/synchronization problem
Given the system description (5) with (6), a natural questiaran be addressed successfully.
is ‘When is it possible to reconstruct the statéfrom mea-
surements of the outpyt?’ This is the so called observability
problem. Notice that this question is clearly aligned with the
synchronization problem discussed in the introduction ‘Given In the case of linear time invariant dynamics the problem of
the signaly(¢) when can we synchronize the state of anoth@enstructing a full or reduced observer is solved completely

Ill. LINEAR SYSTEMS

dynamical system ta:(t), the state of (5)?’ [13], [14].
A full observerfor the system (5) with (6) is defined as The relevant (5) and (6) or (1) now simplify to
B(t) = f(@(),u(t),1), #(0)=d€R", 20 #(t) = Az(t), «(0)=wo, AeR™M
g(t) =h(2(t),t) € R () y(t) =Cx(t), CeRP™, (11)

wherez € R™ andf is @ smooth vector field, parameterized by, any matrix A the solutions of (11) are defined on

y andt, such that the erroe(t) = x(t) — &(t) agymptE)ticaIIy (—o0, +00), the observer problem is hence always well posed.
converges to zero as— oc for all initial conditionsz, and

xo and moreover ife(tg) = 0 thene(t) = 0 for all ¢ > to.
A. Full Observer

B. Reduced Observer For the linear system (11) an observer system (7) takes on
. . the form
In a sense if we reconstruct the state via (7), we are
reconstructing more information than necessary. Indeed the
output ¢ already contains some information about the state
which we need not reconstruct. To discuss this point further

let us specialize to the case where the output equation d@&§e <« R*? is known as an output injection matrix. The
not depend explicitly on timey(t) = h(z(t)). The time error o(t) = a(t) — #(t) is governed by
dependence in the output (6) leads to some complications we

8>
~

Az(t) + K(9(t) — (1),  #(0) = do

t)
t) = C2(t). (12)

>
—~

prefer to avoid. e(t) = (A+ KC)e(t). (13)
More precisely let us assume that there exists a diffeomor-
phism ¢: R* — R" such that: These dynamics represent a valid observer if a gain matrix
can be found such that the matrix+ K'C has eigenvalues
P(z) = <h(x)> = <y> with negative real part.
v(x) z )’
T =¢"}(y,2). (8)

B. Reduced Observer
Given the outputy it suffices to reconstruct in order to

know x. Now z is governed by the differential equation: Clearly when measuring = C'z, it appears that we only

need to reconstruct = Hxz where H is chosen such that
2t) = fr(z(),y(t),t), 2(0)=uv(xo), t>0. (9 (CTHT)T has full column rank. Let us assume th@thas
] . ] full row rank p. This amounts to stating that there are no
The vector field f. is defined as f.(z,4,f) = redundant measurements in the outgutWe can then find

Du(¢™(y,2))f(¢7 (y,2),t). This expression follows g o R(r—p)xn sych that
from (8) together with (5).

Let 7 be defined by: <y) _ <C>x and = (ST) <y)
, z H z )
2t) = fr(2(8),u(t), 1), 2(0) =%, t=0.  (10)
) ) The partial state: satisfies the differential equation
If the diffeomorphism¢ can be chosen such that the error
er(t) = z(t)—2(t) converges to zero asymptotically s+ co 2(t) = HAT2(t) + HASy(t). (14)
and moreover ife.(to) = 0 implies thate,(¢) = 0 for all
t > to then we call the system (10) reduced observefor It can be shown that under the assumption that the matrix
the nonlinear system (5). pair (A,C) be detectable thalf can be chosen such that
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H AT is asymptotically stable. Aeduced orderobserver is A. Output Only Nonlinearities

then given by When the only nonlinear terms in the system dynamics
are function of the output only, the ideas pertaining to linear
2(t) = HATA(t) + HASy(t) systems apply immediately.
#(t) = T5(t) + Sy(t) (15) Example 1: Consider thenth-order nonlinear, time depen-
o g dent differential equation in the scalar output variadple
) ] . . ] dr dn—l d
Notice that if the matrix pair(A,C) is not observable, dt—ny(t) + Wfl(y(t)vt) +oee %fn—l(y(t)vt)
but detectable, it may be that a reduced observer of lower F fa(y(t),8) = 0. (16)

dimension thann — p exists, eg. in the case that is
asymptotically stable, one could use as reduced observeAssume that the functiong; have sufficient regularity to
zt = 0. guarantee the existence of unique solutiondRon

Let us finalize this section on observer design/synchron-A particular state space realization for this differential
ization for linear systems with the observation that the aboeguation (16) is obviously
ideas may be applied in the nonlinear context when we are .
interested in the neighborhood of an hyperbolic and stable &(t) = Ex(t) + f(Cx(), 1),
fixed point to yield local results in observer/synchronization y(t) =Cx(t)

theory. However this is of limited value. Stability is essential 010 0

as otherwise we are not guaranteed that the solutions will 0 0 1 0

remain in a small neighborhood of the fixed point. Hyper- E = e R,

bolicity is needed in order that the linearization captures the 0 0 1

local behavior. This leads to a trivial observer problem, as 0 0 .0

the system is trivially detectable, setting the state estimate Ixn

equal to the fixed point is an allowable observer strategy! ¢=@1 0 - 0)eR,

This situation is unsatisfactory, and hence the need to have f(¥:t) =(=/fi(y,t) —fa(y,t) - —faly, 1)

a more global point of view. This will be considered in a7)

the following sections. In the case where control can be ) ) )
applied to guarantee local stability, the linear perspective Because the matrix paifE, C') is observable, and due to

may be sufficient, however control aspects do complicate tH¥® Specific structure of the state equation (17), it is obvious
discussion considerably. how to construct a full observer yielding asymptotically stable

linear error dynamics
&(t) = Ba(t) + f(y(t), ) + K(§(t) — y(t)),

- . _ o 9(t) = Cz(t). (18)
Apart from nontrivial technical details, the situation for

observer design in the case of linear time varying systertissuffices to choosd{ such thatF + K C is asymptotically
resembles strongly the theory for linear time invariant systensable.
We refer the interested reader to [20]. In [21], an application A generalization of the above example is the class of
of a time varying linear system observer in the context slystems of_ur'e type considered in, e.g., [38], [31], otherwise
controlling chaos can be found. Time varying linear systenkgiown asthe output injectioncase
arise naturally when considering the linearization of nonlinear
behavior in the neighborhood of a periodic orbit. They are () = Ax(t) + f(C2(t),1), 2(0)=z0, 20
also a standard tool in the context of extended Kalman u(t)=Cxz(t). (19)
filters.

C. Linear Time Varying Systems

Here A, C are constant matrices of appropriate dimensions.
Suppose that the solutions of (19) are well defined®r-pc).
Assuming that the matrix paifA,C) is detectable, a full

observer system takes the form:
From the previous examples a straightforward, yet nontrivial

extension toward nonlinear systems transpires. The idea is to 2(t) = Az(t) + f(y(t),t) + K(5(t) — y(t)

consider systems that may give rise to linear error dynamics 2(0) = 2o, t>0

perhaps via an apprqpnate change of coordinates and/or rescal- g(t) = Ci(t). (20)

ing of the output variables. We first present a class of systems

characterized by the fact that the nonlinearity only depends tirsuffices to choosd( such that4d + KC is asymptotically
the available output. Then we introduce the general idea. Netable.

we present some fairly complete results to decide if a givenin [38], the authors consider the case wherds asymp-
system may give rise to linear error dynamics after suitabletically stable. This allows one to choodé = 0 in (20).
coordinate transformation. Again we treat the full observdihe advantage of is of course that we can consider the
case first, then the reduced observer. case whered is not stable and that we can affect the error

IV. SYSTEMS WITH LINEARIZABLE ERROR DYNAMICS
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convergence. Well known examples of systems that fall into As in the previous Example 2 thé-matrix is asymptotically

this category are the Chua circuit, the Duffing equation arstiable. The choicg, = k> = k3 = 0 will yield asymptotically

van der Pol oscillator. We present a few examples. stable linear error dynamics [11]. Using different gains allows
Example 2: Consider the Duffing equation with periodicus to select a faster error response.

driving term

i1 (t) =22(t) B. Full Observer

Eo(t) = —praa(t) — pax1(t) — paxi(t) + g cos (wt) Starting from systems_of th_e forr_n (5) with qutpyi([t) =
y(t) =21 (F). 21) h(z(t)), a more general idea is to find a coordinate transfor-
mation { = ¢(x) and output transformation = (y) such
The solutions of (21) are well defined o, +oc) for that in the new coordinates we have a system description of

any initial condition, providegy, po, p3 > 0. This can easily the form
be verified by considering the derivative of the comparison ]
function V- = 23 + (ps3/2)x} + pex? along the solutions of () = AE(t) + g(n(t),t), &(0) = &, t>0
(21). Itis well known that the solutions may exhibit chaos for n(t) = CE(). (25)
particular parameter combinations.

This equation (21) is in the form of (19). With obvious . : . :
definitions, the matrix paif 4, C) is observable, and a fu ” Provided the matrix paifA, C) is detectable we can construct

n observer which gives rise to linear error dynamics in the

observer may be constructed as indicated in (20). The error

ual way.
ot) = x(t) — &() satisfies Notice that although we may obtain error dynamics which

k1 1 are seemingly defined oR, this does not imply that the
ks —ps —p1 >e(t)' (22) opserver problem is well defined. The solutions to (25) have
to be defined on (04 cc0) before it makes sense to discuss the
By an appropriate selection of the gain= (k1 k2)* the error dynamics.

&(t) = (A+ KC)e(t) = <

error dynamics (22) can be made asymptotically stable. Some examples may serve to illustrate the basic idea.
Example 3: Chua’s circuit [11] can be described by the Examp|e 4: Let us consider the é&sler system:
following state equations:
G G PNENG —x2(t) — z3(t)
¢ C — | =) | = 1 (t) + axa(t)
d (il%) G G 1 (il%) E\ant))  \ert zalt)en(6)— )
T 2 = -~ A =Y 2
0 —— 0
1 L In the above (26) the coefficients b, ¢ > 0. Assume also
_Ef(xl(t)) that z3(0) > 0, thenz3(¢) = y(¢) > 0 for all ¢t > 0. Keeping
+ 0 this restriction in mind we may use the comparison function
0 V = 1/2(z? + 23 + z3) > 0. Taking the derivative along

y()=(1 0 0)z(t). (23) the solutions of (26} = az3 + ¢ — bes < aV + ¢ which
implies that the solutions (witlr3(0) > 0) are well defined on
Clearly this is of the form of (19). The nonlinearifyin (23) (0, 4-00). The observer problem is hence well posed.
is given by f(y) = Q1y+1/2(Q2—Q1) (ly+uvs|—|y—wl) for  We introduce now the following coordinates:
some positive), 2 andy,. This nonlinearity is not smooth,
but this does not _affect _the discussion. Beca|gf$g)| < |yl (€ & &)=(z1 @ In(zs)), n=Iny. (27)
for some~ >0 it is easily shown that the solutions for all
initial conditions are well defined oR.
Clearly the linear part of the system equations (23) ,
observable. An observer may thus be constructed as before

D the new coordinates the system equations are then given by

£i(t) 0 -1 0 [&(®)
() 2 H)E)
FNERQ) G ¢ o1 | /[m® &(t) 10 0/ \&@®)
¥7 Io(t) | = ) Ta(t) —ct ()
0 : (1) + 0
0 -7 0 —b + ce8()
Loy (B n(t)=(0 0 1. (28)
" <_C ’ ) 7 o - v
0 The linear part of (28) is again observable and hence an
0 k3 observer with linear, asymptotically stable dynamics may be
g)=(1 0 0)Z(t) (24) constructed as before.
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Example 5: The hyper chaotic BSsler system can be The Examples 2—4 readily allow for reduced observers to

treated in a similar way, see also [36] be found that yield linear error dynamics. After the coordinate
21 (t) o (t) — wa(t) _transfo_rmation the methods valid for linear systems apply
d [ (1) 21(t) + 0.252(t) + 24 (t) immediately. _ N
P za(t) = 3+ () () Let us give an example for wh|ch the conditions (31)7(34)
N g are not all satisfied, yet the system is such that we are still able
x4(t) —0.5z3(t) + 0.05z4(t) : )
to solve the reduced observer problem with error dynamics
y=0 0 1 Oz =z (29 which are linear.
Assume also thak;(0) >0 then z5(t) = y(t) >0 for all Example 6: Consider the van der Pol equation with driving
t > 0. Let us restrict ourselves to the domain in whicherm.
the chaotic attractor exists. With a coordinate transformation #1(£) = o (t)
similar to what was introduced in the Example 4 ! 2
Ba(t) = p(1 — 22 (1)) 2o (t) — 21(t) 4 g cos (wt)
(G & & &)=(z1 22 In(xs) ) y(t) = x1(t). (35)

n=1Iny (30)
_ The parametey is positive. It is well known that the solutions
we may proceed as in .the Examme 4. of (35) are well defined oR* and that they may exhibit
We now present for time invariant systems of the form (Ighaotic behavior for certain parameter selectiqns;@ndw).
with scalar outpuy conditions that allow one to transform via |t is easily verified that (31) is satisfied. Moreover the
appropriate coordinate changes the system (1) into a systediistant vector field-(z) = (0 1)7 satisfies (33) but fails
of the form (25). The more general case of multiple outpuig satisfy (34). Hence it is not possible to produce via a state
has also been treated in [15], [27], and [28]. coordinate transformation alone linear error dynamics for an
We consider the situation where the transformation frogbserver.
(1) to (25) only involves a state space coordinate changeHowever a reduced order observer with linear error dynam-
¢ = ¢(x). This result is discussed in detail in [4]. Let ics can be found. Consider the new variable: x5 + kiy +
be the state dimension of (1). The conditions under which thg,3, It satisfies the differential equation
transformation may be achieved are given by the following. ) )
1) Local observability 2(t) = (p + k1)wa(t) + (3ke — p)x1(t)z2(t) — 21(2)
L + g cos (wi). (36)
dim (span {Dh(z), DL¢h(x), - DL} h(z)}) = n, Vz.
(31) Selectingk; + 4 = —1 and 3k; — 1 = 0 we get

2) The mapping defined as 4(8) = —2(t) + (=2 = y(t) + EyP(8) + qeos (wt). (37)
&:=¢(x) = (h(x)Lyh(x)- - L} h(x)" (32) This suggest the reduced observer
is a global diffeomorphism ofR™. 5() = —5(8) + (=2 — 8+ EBe) + ¢
3) The unigue vector field on R™ that satisfies A0) 20+ o )u 3Y (t) + geos(w1)
L,Ly  h(z) =1, 33) 21(t) =y(t). (38)
is such that The corresponding error dynamics a€t) = —e,.(t), where
e = 2 — 2.
r,adsr] =0 =1,3,5,--+,2n— 1. Example 7:In [34], the following hysteretic circuit is de-
d’} Yk (34) I he following h ic circuit is d
scribed:

A necessary and sufficient result which involves both a
state space transformaticgh = ¢(x) as well as an output z;(¢)

xg(t) + ga:l(t) + C.Ig(t)

transformationn = (y) is discussed in [15]. See also da(t) = —wz1 (t) + daza(t)

26]-[28]. .

126128] cis(t) = (1 — 23(0)(S1(t) = D + 3(0)) — dis(0). (39)
C. Reduced Observer The parameters, ¢, w, ds, S, D, ds and ¢ are all assumed to

The above result(s) are clearly relevant for the full observBg positive. The output (described in [8] as the drive signal)
problem. If a full observer with linear error dynamics mays given byy = x3+ Bx1 + axo. The particular output chosen
be found, a reduced observer with linear error dynamics c#h[8] had o = 0. Expressing (39) in terms of the equivalent
also be constructed. The reverse may not be the case.G®erdinates(v,w,y) = (z1,z2,y) we obtain
far as we are aware, no results are available that provide .
conditions, under which via a state transformation and output 0(t) =(1 = caju(t) + (g = eB)v(t) + ey(®)
transformation, a reduced observer with linear error dynamics w(t) = —wu(t) + daw(t)
may be found. ey(t) = F(u(t), w(t),y(t)). (40)
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The subsystem formed bw,w) is linear, time-invariant order observer. It is also based upon Lyapunov theory. The
and can be rendered stable by selectihgy appropriately observer may be constructed as
(e.g.,g = ¢B anda = 0). It is therefore suitable to construct a S .
reduced observer. In actual fact, we have full control over the &(t) = Aly(1))2(t) + Bly(#)) + K(y(®)y(?)
speed of convergence of the reduced observer through tunifigere K (v) = —R(y)~*C* and R(y) is the unique symmet-
the parametersy, /3. ric positive definite solution of the Riccati equation [41]

_ T T _ T
D. Linear Time Varying Error Dynamics 0= R(y)Aly) + A" ()R(y) + Ry)C" CRy) - C°C.

In the above examples we were lead to time invariant err6Xamples where this technique may be applied are the Lorenz
dynamics. This may not always be achievable, but it may §8uations, as discussed in, e.g., [9], and Example 7 when
possible to attain linear time varying error dynamics. For ¢Phsidering a full observer and also the previous Example
more Complete discussion we refer to [29] 8. This approach is non trivial as it I’equn’es one to solve

Example 8: Let us reconsider the van der Pol equation witienalytically) a Riccati equation which depends on a parameter
driving term (35), but this time we want to obtain a full¥-

observer.
Design the observer to be of the form V. GENERAL SYSTEMS
5 . As stated before providing conditions under which the
afl(t) =2(t) +2al(y5t))el(t); general observer problem as stated in Section |l may be solved,
Ta(t) = p(1 =y~ (1)) 22(t) — £1(F) + (a2(y(t)) — Dew(®) s very difficult. However, under the reasonable restriction that
+ g cos (wt) the dynamics are constrained to a compact domain, which is in
G(t) =#1(t) particular the case when the system dynamics evolve on some
o(t) = 2(t) — 2(t). (41) strange attractor, a positive result using a high gain observer

can be derived.
This gives rise to the following error dynamics
A. High Gain Observer

él(t) =e2(t) - Sl(y(t))el(t) If we limit ourselves to dynamics defined on some compact
éa(t) = p(l — y=(8))e2(t) — ca(y(t))er(t). (42)  set, then the following result is available [16].

The error dynamics, consideringt) as given, are linear time Consider a time invariant system of the form (1). Let
y 9 = 1. Assume that{? C R"™ is a compact and a

varying. In order to select the functions anda, we proceed osmvely mvanant set for the dynamics (1). Assume that
with a Lyapunov analysis. As candidate Lyapunovfuncnon ée oz (@)L sh(z) - L" )T is a diffeomor
f .

roposeV (ey, 1/2 1/2 1/2)e2. For
iF:S gerivati(\felz ;fgng t§1 e/ S)O(ﬁ.lltion(s é fﬁglf(322))we f(m{j phism on an open subset contalnlﬂg The system equation
(2) in the new coordinate$ are represented by

V(t) = - (1+y ())es(t) () =F (L)
( 200, (y ia2<y<t>>)e%<t> Y =4l “
2 Consider also the system
+((3+3 ) + o) = gzaalut) ) E(t) = () + Ko (3(0) — (1)
Cer(t)e ) () =&i(t). (44)

. . . . where the constant gaify € R™ is defined via
The following selection ofa; and as will make V <0, galts

which implies asymptotic stability for the error dynamics: Ky =—5,+C",

1
a1(y) =u<3+y2 + ?>

az(y) =2+ 4p*(3 + 7).

where Sy, = S% >0 solves
0=405)+ AT59 + SgA — cte

where

The method followed in solving the above example appears
misleadingly straightforward, in general it is extremely hard to
establish stability properties for linear time varying systemgpg
Finding suitable Lyapunov functions is difficult, nevertheless 0 I
Lyapunov theory is a very useful tool. For systems of the form A= < " 01><1 o ! )
i(t) = A(y(t))z(t)+ B(y(t)) with y = Cxz, where A depends b=l
in a smooth way ory and such that the family of matrices The system (44) is an observer for the system (43) for all
(A(y), C) is uniformly (in ) detectable, there is however asufficiently larged >0, in that for all &, and all&, in ¢(€2),
slightly more systematic design method for achieving a futhe errore(t) = £(¢) — 5( ) decreases exponentially.

C=(1 0 .- 0)eRY™
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Choosingk > M2+ (M*/23) leads to an exponentially stable

solved for S, is known as an algebraic Riccati equationobserver given by
The observability of(A,C) guarantees the existence of a

positive definite solution with the property that+ K,C is
an asymptotically stable matrix.

The error dynamics are in general nonlinear, but due to
the large gain K, the error dynamics o(€2) are essentially

dominated by the stability ofti + K,C.

B. Nonlinear Error Dynamics

We conclude this section with one more example inspired; (¢)
by the Lorenz equations and which gives rise to a nonlinear
observer with nonlinear error dynamics. We again exploit,
Lyapunov arguments [23], [24] to establish global asymptoti(?Q( )=

stability for the nonlinear error dynamics.
Example 9: Consider the dynamical system

d1(t) = o(xa(t) — 23(1))
da(t) = pry(t) — 5(t) — w1 ()2 (t)zs(t)
d3(t) = w1 (t)as () — Bas(t)
y(t) = z1(2). (45)

This system is not observable, but detectable/far 0 and

o,p#0.
we obtain

dO(z) =span {(1,0,0), (x,0,0), (*, *, cx122)

(¢, * —02372 paa:1+0$1$29( IR ¥

Clearly if either z; # 0 or zo # 0 we have that
dim dO(z) = 3. It can be seen that if; = 0 andzz = 0 then
dim dO(z) = 2 and theker dO(z) = {(0,0, z3)}. Moreover
this ker is invariant. Indeed:;(0) = 0 and z2(0) = 0
imply that x;(¢,0) = 0,z2(¢,0) = 0 for all £ and also

21(8) = —k(21(t) + ky(t)) — (51(2) + ky(2))?
‘ — y()(21(t) + ky(t))22(t) — ky®(t) + py(t)
25(t) =y(t)(21(t) + ky(t))? — B2a(t). (47)

The error dynamics witle; = 2 — 21 andes = 20 — 25
are governed by the nonlinear and time varying differential
equation

=—ke1(t) — ex(D)[323(t) = Bwa(t)es(t) + L (1)]
y(Haa(t)ea(t) — y(Bas(t)er(t) + y(B)er(t)ea(t)
—Bea(t) = y(t)et(t) + 2y(B)z2(t)es(t). (48)

Using the comparison functio’” = ¢? + ¢3 we can now
establish that the error dynamics (48) have a uniformly asymp-
totically stable trivial solution provided > M? + (M*/273).

VI.

We have drawn attention to the fact that the problem
of synchronization as introduced in the control of chaos
literature can be viewed as a special case of the observer
design problem, which is well known in the nonlinear control

CONCLUSION

Indeed computing the observability codistributioriheory literature. The formalism offered via the observer theory

allows us to provide a reasonable comprehensive framework
for synchronization issues. Some open research problems have
been identified. We did not discuss the connections with the

literature discussing the filtering problem.

This paper was preoccupied with the existence question.
In a companion paper we will focus attention on the control
problem formulation of synchronization [30] and in particular
consider issues relating to sensitivity with respect to measure-
ment errors and/or errors in the representation of the system
dynamics. These are of great importance when considering

thatis(t) = —fBz4(t). The system is thus detectable, but n0('1>bserver/sync:hronization problems in a practical setting.

observable.
Consider the situation where the parameters, 3 > 0. In
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