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An Observer Looks at Synchronization
Henk Nijmeijer and Iven M. Y. Mareels

Abstract—In the literature on dynamical systems analysis and
the control of systems with complex behavior, the topic of syn-
chronization of the response of systems has received considerable
attention. This concept is revisited in the light of the classical
notion of observers from (non)linear control theory.

Index Terms—Detectability, dynamical systems, observers, re-
duced order observers, synchronization.

I. INTRODUCTION

I N RECENT years there has been considerable interest in
the dynamics and control of systems exhibiting complex

behavior. The number of papers related to this subject seems
to grow at an almost exponential rate [1]. For an admittedly
already “dated” review of some of the prevailing research
problems the reader may consult the seminal papers in [2].

The purpose of the present paper is to revisit the concept of
synchronizationfrom a mathematical control theoretic perspec-
tive. More specifically we want to explore how theobserver
notion from (non)linear control theory links in with synchro-
nization. For an introduction to nonlinear control theory we
refer to [4]–[6].

Synchronization, as introduced by Pecora and Carroll [7],
[8] has been studied from various angles. Often a master–slave
formalism is taken, e.g., [7]–[12]. Given a particular dynamical
system, the master, together with an identical (sub)system,
the aim is to synchronize to the master system the complete
response of the slave system, by driving the latter with a
(scalar) signal derived from the master system. In this context
synchronization is often considered to be a remarkable prop-
erty when the master dynamics are chaotic and thus sensitive to
initial condition variations. A promising application in secure
communication suggested in [9] and [40] uses such a chaotic
master dynamics to mask a message and a synchronized slave
system to recover the message.

The above master–slave viewpoint leaves some ambiguity
as to what the actual slave system should be, given the master
system. A naive, but often realistic approach, would be to
consider the master dynamics (transmitter) as transmitting a
signal to the slave dynamics (receiver) and the receiver is
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requested to recover the full state trajectory of the transmitter.
The problem is of course only interesting if the signal received
is not equal to the full state. In this situation the receiver
has in principle the freedom to build any dynamical system.
The receiver system could be a copy of the master system,
but it need not be. The real requirement is that given the
received signal the receiver dynamics will synchronize to
the transmitters’ dynamics. In thus allowing the receiver the
freedom of which dynamical system to implement, we enlarge
the class of master–slave systems that allow synchronization.
Note that at this point we do not consider the actual physical
realization of the new receiver’s dynamical system. In certain
applications this may be crucial, but this aspect lies beyond
the scope of the present paper.

The problem just described is closely related to theobserver
problem from control theory. For linear dynamical systems
a complete solution to the problem is well known [13],
[14]. For nonlinear systems a few partial results exist [15],
[16], [26]–[28]. This observation is at the core of the paper.
Another point that will transpire from the exposition is that
the complexity of the dynamics involved is of little concern
in our discussion of observer design or synchronization.

Besides the master–slave perspective on synchronization
another viewpoint is expressed in [3]. There synchronization is
seen as the design of a (feedback) mechanism for the receiver,
using the transmitted signal, so as to ensure that the controlled
receiver synchronizes with the transmitter. This approach to
synchronization is in essence acontrol problem, which we do
not discuss in this paper, but see [30].

A standard approach in solving the observer problem in
control theory is to use as receiver a copy of the transmitter
(of course with unknown initial state) modified with a term
depending on the difference between the received signal and its
prediction derived from the observer. The additional term aims
at attenuating the difference between the state of the transmitter
and the state of the observer system. This procedure may be
shown to be successful in many instances, but certainly no
global validity can be claimed. The synchronization problem
requires one to establish global asymptotic stability for the
zero solution of the error dynamics, the dynamics governing
the difference between the transmitter state and observer state.
Rigorous proofs often rely on Lyapunov arguments [22]–[24].
Most of the existing results concerning synchronization also
rely on Lyapunov based arguments [9], [12], and [10].

That a solution to the above synchronization problem, or
observer problem, may be feasible under certain conditions
may be deduced from the Takens embedding theorem [17],
which is closely related to the observability property for
nonlinear dynamical systems [18], [19]. In essence the ob-
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servability property states that the history of the transmitted
signal contains all the information required to reconstruct
a state variable for the master dynamics. The observability
property is a generic property of dynamical systems. However
it falls short of implying the existence of an observer or
receiver that synchronizes. In the case of linear systems the
link between observability (or better detectability) and the
existence of an observer can be made explicitly. However
in the nonlinear context the situation is not that clear, and
apart from some local results, cited before, few results are
available.

Often, the observer complexity can bereducedby noting
that the given transmitter signal already contains part of the
state information. Hence, one only needs to reconstruct the
complementary part of the transmitter state, that part which is
not explicitly contained in the transmitted signal. This leads
naturally to the concept of a reduced observer.

The presentation in the paper is kept simple. No attempt
is made at stating the most general results available from
(non)linear control theory. Appropriate references are pro-
vided. Also in order to avoid (sometimes nontrivial) com-
plications, we assume throughout that all dynamical systems
are defined on an open subset of an Euclidean space and
have sufficient regularity such as to guarantee the existence
of unique solutions. In this paper only dynamical systems
described in continuous time are considered. A completely
similar treatment for dynamical systems defined via maps is
possible.

The observer perspective in approaching synchronization is
to the best of our knowledge new.

The paper is organized as follows. In the next section we
define the problem of synchronization in some detail and state
clearly the standing assumptions. Sections II–V each revisit
the observer problem for a specific subclass of systems. In
Section VI we make some observations about the general
problem.

A. Preliminaries

For more details we refer to [5].
denotes the Jacobian of it is the matrix with entries
being the partial derivative of theth component of

with respect to the th argument of
By we denote the partial derivative of with respect

to its th argument.
Given a vector field and a scalar valued

function define the (iterated) directional deriva-
tive of in the direction of as:

with and

denotes the Lie bracket of two vector fields, it
is defined as the vector field

is defined via
and

Given vector fields we define asdistribution
the object We call the distribution

involutive if it is closed under the Lie bracket operation.
Vector fields live in the tangent space of the manifold

under consideration. In this paper we consider dynamics over
Euclidean space, hence the tangent space can equally be
identified with Euclidean space. When discussing the dual
space of the tangent space we refer to cotangent space,
covector fields and codistribution.

In order to decide on the non existence of observers, the
notions of observability and detectability are crucial. Consider
the time invariant system

(1)

Denote by a solution to (1), i.e. and
Assume and to be smooth.

The system (1) is calledlocally observable at if for all
initial conditions in some neighborhood of if

for all such that
implies that The system (1) is calledlocally

observableif it is locally observable at any
The observation space is the linear space over of the

vector fields for and 0, 1, 2,
A sufficient, and almost necessary, condition for local observ-
ability is that the codistribution

satisfies
In case then the vector field leaves

the kernel of the observability codistribution invariant
(i.e., The is an involutive
distribution. A necessary condition for the existence of a
valid observer becomes that the dynamics ofrestricted to

be asymptotically stable. In this case we say that
the system isdetectable.

Specializing to linear dynamics, and
for appropriate matrices and detectability is expressed by:

if rank then Real (2)

In the case that the matrix

(3)

has rank for all complex we say that the system is
observable. This condition for observability is equivalent to

which in the linear case reduces
to

...
(4)

II. PROBLEM STATEMENT

We state two particular problems in the area of observer
design, which are closely linked to synchronization. First we
introduce the full observer, next the reduced observer problem.

Let us consider dynamics governed by:

(5)

We assume throughout that the vector fieldis smooth and
that the system (5) has a unique solution passing
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through the initial state defined on an interval
with

The state is not directly available, only anoutput
is measured, say:

(6)

We assume throughout that is smooth.

A. Full Observer Problem

Given the system description (5) with (6), a natural question
is ‘When is it possible to reconstruct the statefrom mea-
surements of the output?’ This is the so called observability
problem. Notice that this question is clearly aligned with the
synchronization problem discussed in the introduction ‘Given
the signal when can we synchronize the state of another
dynamical system to the state of (5)?’

A full observerfor the system (5) with (6) is defined as

(7)

where and is a smooth vector field, parameterized by
and such that the error asymptotically

converges to zero as for all initial conditions and
and moreover if then for all

B. Reduced Observer

In a sense if we reconstruct the state via (7), we are
reconstructing more information than necessary. Indeed the
output already contains some information about the state
which we need not reconstruct. To discuss this point further
let us specialize to the case where the output equation does
not depend explicitly on time, The time
dependence in the output (6) leads to some complications we
prefer to avoid.

More precisely let us assume that there exists a diffeomor-
phism such that:

(8)

Given the output it suffices to reconstruct in order to
know Now is governed by the differential equation:

(9)

The vector field is defined as
This expression follows

from (8) together with (5).
Let be defined by:

(10)

If the diffeomorphism can be chosen such that the error
converges to zero asymptotically as

and moreover if implies that for all
then we call the system (10) areduced observerfor

the nonlinear system (5).

Of course once a reduced observer is found the full state is
asymptotically recovered via

Remark 1: In formulating the observer problem above,
the links with synchronization are obvious. We emphasize
the importance of the state space transformations allowed
for in the reduced observer problem and the freedom to
choose the vector field in the full observer problem. This
additional freedom, which appears to be largely lacking in the
discussions on synchronization, enlarges considerably the class
of systems for which the observer/synchronization problem
can be addressed successfully.

III. L INEAR SYSTEMS

In the case of linear time invariant dynamics the problem of
constructing a full or reduced observer is solved completely
[13], [14].

The relevant (5) and (6) or (1) now simplify to

(11)

For any matrix the solutions of (11) are defined on
the observer problem is hence always well posed.

A. Full Observer

For the linear system (11) an observer system (7) takes on
the form

(12)

Here is known as an output injection matrix. The
error is governed by

(13)

These dynamics represent a valid observer if a gain matrix
can be found such that the matrix has eigenvalues
with negative real part.

B. Reduced Observer

Clearly when measuring it appears that we only
need to reconstruct where is chosen such that

has full column rank. Let us assume thathas
full row rank This amounts to stating that there are no
redundant measurements in the outputWe can then find

such that

The partial state satisfies the differential equation

(14)

It can be shown that under the assumption that the matrix
pair be detectable that can be chosen such that
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is asymptotically stable. Areduced orderobserver is
then given by

(15)

Notice that if the matrix pair is not observable,
but detectable, it may be that a reduced observer of lower
dimension than exists, eg. in the case that is
asymptotically stable, one could use as reduced observer

Let us finalize this section on observer design/synchron-
ization for linear systems with the observation that the above
ideas may be applied in the nonlinear context when we are
interested in the neighborhood of an hyperbolic and stable
fixed point to yield local results in observer/synchronization
theory. However this is of limited value. Stability is essential
as otherwise we are not guaranteed that the solutions will
remain in a small neighborhood of the fixed point. Hyper-
bolicity is needed in order that the linearization captures the
local behavior. This leads to a trivial observer problem, as
the system is trivially detectable, setting the state estimate
equal to the fixed point is an allowable observer strategy!
This situation is unsatisfactory, and hence the need to have
a more global point of view. This will be considered in
the following sections. In the case where control can be
applied to guarantee local stability, the linear perspective
may be sufficient, however control aspects do complicate the
discussion considerably.

C. Linear Time Varying Systems

Apart from nontrivial technical details, the situation for
observer design in the case of linear time varying systems
resembles strongly the theory for linear time invariant systems.
We refer the interested reader to [20]. In [21], an application
of a time varying linear system observer in the context of
controlling chaos can be found. Time varying linear systems
arise naturally when considering the linearization of nonlinear
behavior in the neighborhood of a periodic orbit. They are
also a standard tool in the context of extended Kalman
filters.

IV. SYSTEMS WITH LINEARIZABLE ERROR DYNAMICS

From the previous examples a straightforward, yet nontrivial
extension toward nonlinear systems transpires. The idea is to
consider systems that may give rise to linear error dynamics
perhaps via an appropriate change of coordinates and/or rescal-
ing of the output variables. We first present a class of systems
characterized by the fact that the nonlinearity only depends on
the available output. Then we introduce the general idea. Next
we present some fairly complete results to decide if a given
system may give rise to linear error dynamics after suitable
coordinate transformation. Again we treat the full observer
case first, then the reduced observer.

A. Output Only Nonlinearities

When the only nonlinear terms in the system dynamics
are function of the output only, the ideas pertaining to linear
systems apply immediately.

Example 1: Consider the th-order nonlinear, time depen-
dent differential equation in the scalar output variable:

(16)

Assume that the functions have sufficient regularity to
guarantee the existence of unique solutions on

A particular state space realization for this differential
equation (16) is obviously

...
...

(17)

Because the matrix pair is observable, and due to
the specific structure of the state equation (17), it is obvious
how to construct a full observer yielding asymptotically stable
linear error dynamics

(18)

It suffices to choose such that is asymptotically
stable.

A generalization of the above example is the class of
systems ofLur’e type, considered in, e.g., [38], [31], otherwise
known asthe output injectioncase

(19)

Here are constant matrices of appropriate dimensions.
Suppose that the solutions of (19) are well defined on [ ).
Assuming that the matrix pair is detectable, a full
observer system takes the form:

(20)

It suffices to choose such that is asymptotically
stable.

In [38], the authors consider the case whereis asymp-
totically stable. This allows one to choose 0 in (20).
The advantage of is of course that we can consider the
case where is not stable and that we can affect the error
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convergence. Well known examples of systems that fall into
this category are the Chua circuit, the Duffing equation and
van der Pol oscillator. We present a few examples.

Example 2: Consider the Duffing equation with periodic
driving term

(21)

The solutions of (21) are well defined on for
any initial condition, provided This can easily
be verified by considering the derivative of the comparison
function along the solutions of
(21). It is well known that the solutions may exhibit chaos for
particular parameter combinations.

This equation (21) is in the form of (19). With obvious
definitions, the matrix pair is observable, and a full
observer may be constructed as indicated in (20). The error

satisfies

(22)

By an appropriate selection of the gain the
error dynamics (22) can be made asymptotically stable.

Example 3: Chua’s circuit [11] can be described by the
following state equations:

(23)

Clearly this is of the form of (19). The nonlinearityin (23)
is given by for
some positive and This nonlinearity is not smooth,
but this does not affect the discussion. Because
for some it is easily shown that the solutions for all
initial conditions are well defined on

Clearly the linear part of the system equations (23) is
observable. An observer may thus be constructed as before

(24)

As in the previous Example 2 the-matrix is asymptotically
stable. The choice will yield asymptotically
stable linear error dynamics [11]. Using different gains allows
us to select a faster error response.

B. Full Observer

Starting from systems of the form (5) with output
a more general idea is to find a coordinate transfor-

mation and output transformation such
that in the new coordinates we have a system description of
the form

(25)

Provided the matrix pair is detectable we can construct
an observer which gives rise to linear error dynamics in the
usual way.

Notice that although we may obtain error dynamics which
are seemingly defined on this does not imply that the
observer problem is well defined. The solutions to (25) have
to be defined on (0, ) before it makes sense to discuss the
error dynamics.

Some examples may serve to illustrate the basic idea.
Example 4: Let us consider the R¨ossler system:

(26)

In the above (26) the coefficients Assume also
that then for all Keeping
this restriction in mind we may use the comparison function

Taking the derivative along
the solutions of (26) which
implies that the solutions (with are well defined on

The observer problem is hence well posed.
We introduce now the following coordinates:

(27)

In the new coordinates the system equations are then given by

(28)

The linear part of (28) is again observable and hence an
observer with linear, asymptotically stable dynamics may be
constructed as before.
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Example 5: The hyper chaotic R¨ossler system can be
treated in a similar way, see also [36]

(29)

Assume also that then for all
Let us restrict ourselves to the domain in which

the chaotic attractor exists. With a coordinate transformation
similar to what was introduced in the Example 4

(30)

we may proceed as in the Example 4.
We now present for time invariant systems of the form (1)

with scalar output conditions that allow one to transform via
appropriate coordinate changes the system (1) into a system
of the form (25). The more general case of multiple outputs
has also been treated in [15], [27], and [28].

We consider the situation where the transformation from
(1) to (25) only involves a state space coordinate change

This result is discussed in detail in [4]. Let
be the state dimension of (1). The conditions under which the
transformation may be achieved are given by the following.

1) Local observability

(31)

2) The mapping defined as

(32)

is a global diffeomorphism on
3) The unique vector field on that satisfies

(33)

is such that

(34)

A necessary and sufficient result which involves both a
state space transformation as well as an output
transformation is discussed in [15]. See also
[26]–[28].

C. Reduced Observer

The above result(s) are clearly relevant for the full observer
problem. If a full observer with linear error dynamics may
be found, a reduced observer with linear error dynamics can
also be constructed. The reverse may not be the case. As
far as we are aware, no results are available that provide
conditions, under which via a state transformation and output
transformation, a reduced observer with linear error dynamics
may be found.

The Examples 2–4 readily allow for reduced observers to
be found that yield linear error dynamics. After the coordinate
transformation the methods valid for linear systems apply
immediately.

Let us give an example for which the conditions (31)–(34)
are not all satisfied, yet the system is such that we are still able
to solve the reduced observer problem with error dynamics
which are linear.

Example 6: Consider the van der Pol equation with driving
term.

(35)

The parameter is positive. It is well known that the solutions
of (35) are well defined on and that they may exhibit
chaotic behavior for certain parameter selections (and ).

It is easily verified that (31) is satisfied. Moreover the
constant vector field satisfies (33) but fails
to satisfy (34). Hence it is not possible to produce via a state
coordinate transformation alone linear error dynamics for an
observer.

However a reduced order observer with linear error dynam-
ics can be found. Consider the new variable

It satisfies the differential equation

(36)

Selecting and we get

(37)

This suggest the reduced observer

(38)

The corresponding error dynamics are where

Example 7: In [34], the following hysteretic circuit is de-
scribed:

(39)

The parameters and are all assumed to
be positive. The output (described in [8] as the drive signal)
is given by The particular output chosen
in [8] had Expressing (39) in terms of the equivalent
coordinates we obtain

(40)
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The subsystem formed by is linear, time-invariant
and can be rendered stable by selecting appropriately
(e.g., and ). It is therefore suitable to construct a
reduced observer. In actual fact, we have full control over the
speed of convergence of the reduced observer through tuning
the parameters

D. Linear Time Varying Error Dynamics

In the above examples we were lead to time invariant error
dynamics. This may not always be achievable, but it may be
possible to attain linear time varying error dynamics. For a
more complete discussion we refer to [29].

Example 8: Let us reconsider the van der Pol equation with
driving term (35), but this time we want to obtain a full
observer.

Design the observer to be of the form

(41)

This gives rise to the following error dynamics

(42)

The error dynamics, considering as given, are linear time
varying. In order to select the functions and we proceed
with a Lyapunov analysis. As candidate Lyapunov function we
propose For
its derivative along the solutions of (42) we find

The following selection of and will make
which implies asymptotic stability for the error dynamics:

The method followed in solving the above example appears
misleadingly straightforward, in general it is extremely hard to
establish stability properties for linear time varying systems.
Finding suitable Lyapunov functions is difficult, nevertheless
Lyapunov theory is a very useful tool. For systems of the form

with where depends
in a smooth way on and such that the family of matrices

is uniformly (in detectable, there is however a
slightly more systematic design method for achieving a full

order observer. It is also based upon Lyapunov theory. The
observer may be constructed as

where and is the unique symmet-
ric positive definite solution of the Riccati equation [41]

Examples where this technique may be applied are the Lorenz
equations, as discussed in, e.g., [9], and Example 7 when
considering a full observer and also the previous Example
8. This approach is non trivial as it requires one to solve
(analytically) a Riccati equation which depends on a parameter

V. GENERAL SYSTEMS

As stated before providing conditions under which the
general observer problem as stated in Section II may be solved,
is very difficult. However, under the reasonable restriction that
the dynamics are constrained to a compact domain, which is in
particular the case when the system dynamics evolve on some
strange attractor, a positive result using a high gain observer
can be derived.

A. High Gain Observer

If we limit ourselves to dynamics defined on some compact
set, then the following result is available [16].

Consider a time invariant system of the form (1). Let
Assume that is a compact and a

positively invariant set for the dynamics (1). Assume that
is a diffeomor-

phism on an open subset containing The system equation
(1) in the new coordinates are represented by

(43)

Consider also the system

(44)

where the constant gain is defined via

where solves

where

and

The system (44) is an observer for the system (43) for all
sufficiently large in that for all and all in
the error decreases exponentially.
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The equation to be
solved for is known as an algebraic Riccati equation.
The observability of guarantees the existence of a
positive definite solution with the property that is
an asymptotically stable matrix.

The error dynamics are in general nonlinear, but due to
the large gain the error dynamics on are essentially
dominated by the stability of

B. Nonlinear Error Dynamics

We conclude this section with one more example inspired
by the Lorenz equations and which gives rise to a nonlinear
observer with nonlinear error dynamics. We again exploit
Lyapunov arguments [23], [24] to establish global asymptotic
stability for the nonlinear error dynamics.

Example 9: Consider the dynamical system

(45)

This system is not observable, but detectable for and
. Indeed computing the observability codistribution

we obtain

Clearly if either or we have that
It can be seen that if and then
and the Moreover

this ker is invariant. Indeed and
imply that for all and also
that The system is thus detectable, but not
observable.

Consider the situation where the parameters In
this case the origin is a saddle point for the system (45). Using
the comparison function it can be shown that
the solutions are well defined on and that the solutions are
ultimately bounded. Indeed

. It follows that outside some compact domain
let denote the maximum value that attains on . is
positively invariant.

We look for a reduced observer. Introduce the variable

The partial state is governed by the differential equation

(46)

Choosing leads to an exponentially stable
observer given by

(47)

The error dynamics with and
are governed by the nonlinear and time varying differential
equation

(48)

Using the comparison function we can now
establish that the error dynamics (48) have a uniformly asymp-
totically stable trivial solution provided

VI. CONCLUSION

We have drawn attention to the fact that the problem
of synchronization as introduced in the control of chaos
literature can be viewed as a special case of the observer
design problem, which is well known in the nonlinear control
theory literature. The formalism offered via the observer theory
allows us to provide a reasonable comprehensive framework
for synchronization issues. Some open research problems have
been identified. We did not discuss the connections with the
literature discussing the filtering problem.

This paper was preoccupied with the existence question.
In a companion paper we will focus attention on the control
problem formulation of synchronization [30] and in particular
consider issues relating to sensitivity with respect to measure-
ment errors and/or errors in the representation of the system
dynamics. These are of great importance when considering
observer/synchronization problems in a practical setting.
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