
An Obstacle-Based Rapidly-Exploring Random Tree
Samuel Rodrı́guez†
sor8786@cs.tamu.edu

Xinyu Tang†
xinyut@cs.tamu.edu

Jyh-Ming Lien†
neilien@cs.tamu.edu

Nancy M. Amato†
amato@cs.tamu.edu

Abstract— Tree-based path planners have been shown to be
well suited to solve various high dimensional motion planning
problems. Here we present a variant of the Rapidly-Exploring
Random Tree (RRT) path planning algorithm that is able to
explore narrow passages or difficult areas more effectively. We
show that both workspace obstacle information and C-space
information can be used when deciding which direction to grow.
The method includes many ways to grow the tree, some taking
into account the obstacles in the environment. This planner works
best in difficult areas when planning for free flying rigid or
articulated robots. Indeed, whereas the standard RRT can face
difficulties planning in a narrow passage, the tree based planner
presented here works best in these areas.

I. INTRODUCTION

Algorithmic motion planning studies the problem of finding
a sequence of feasible movements for a movable object (robot)
to maneuver among obstacles from a start configuration to
a desired goal configuration. Motion planning problems are
important and have many applications beyond robotics includ-
ing games, virtual surgery and CAD [4], [8], [16]. A motion
planning problem is usually given as a (geometric) description
of the world (called workspace), which normally consists of
a robot and a set of obstacles, e.g., the workspace shown in
Figure 4.

Many techniques have been developed to solve this problem.
Most of these methods translate the problem described in the
workspace into the configuration space (C-space) or the set of
all possible configurations of the robot. Paths are sequences
of consecutive points in C-free connecting start and goal
configurations. Unfortunately, it is believed that any complete
motion planner (one that will find a path if one exists or
report that none exists otherwise) will have exponential time
complexity with respect to the number of degrees of freedom
of the robot [21]. Due to this reason, attention has shifted to
randomized planning methods.

Probabilistic Roadmap Methods (PRMs) [13] are one of
the most popular types of sampling-based planners. PRMs
construct a roadmap by first randomly generating feasible
configurations and then connecting these configurations using
simple local planners. Finally, a solution can be extracted
by connecting both start and goal configurations to the re-
sulting roadmap. Tree-based planners, another common type
of sampling-based planner, explore the space from a root
configuration by adding more configurations to the existing
tree.

∗This research supported in part by NSF Grants EIA-0103742, ACR-
0081510, ACR-0113971, CCR-0113974, ACI-0326350, and by the DOE.
Rodriguez supported in part by a National Physical Sciences Consortium
Fellowship.

†Parasol Lab., CS Dept., Texas A&M University.

(a) (b)
Fig. 1. Differences when growing a tree: (a) basic expansion and (b) using
obstacle information.

Issues. A problem arises when there are difficult areas of the
configuration space to explore. There have been many attempts
to generate nodes in these difficult or interesting areas [1],
[7], [22] or to classify certain areas of the configuration space
as narrow or cluttered regions [17]. Some PRM-based planners
have been shown to be more effective at finding these areas.

There are still problems when trying to explore these
difficult areas once they have been identified. Tree-based
planners that explore in an unbiased manner, such as RRT,
have difficulty growing out of narrow passages. In narrow or
tight areas, we will show how tree-based planners can use
local information to more effectively explore these regions,
see Figure 1 for an example.

Our approach. We will show that some hints can be
obtained which can be helpful in growing the tree. These
hints can be obtained from tessellation of workspace obstacle
surfaces or approximate C-obstacle surfaces. We will show
that, with a tree based planner, using the shape of the ob-
stacle to steer the direction that the tree should grow can
be particularly useful when exploring difficult areas of the
configuration space. For instance, triangles representing the
obstacle surface(s), such as those shown in Figure 4, can
provide useful information. Also, we show that other ways to
expand a tree can help when using tree-based path planning
methods. The resulting planner is faster and consistently solves
problems in fewer iterations. In our results, we compare
the planners’ abilities to explore difficult regions (which is
different from testing their abilities to find these difficult
areas).

II. RELATED WORK

Sampling-based algorithms have been widely used in solv-
ing motion planning problems. A randomized potential field
method, RPP [3], works very well when the C-space is rel-
atively uncluttered, but unfortunately there also exist simple
situations in which they are not successful [12]. There are also

Proceedings of the 2006 IEEE International Conference on Robotics and Automation
Orlando, Florida - May 2006

0-7803-9505-0/06/$20.00 ©2006 IEEE 895

other probabilistic methods such as the Probabilistic Roadmap
Methods (PRMs) mentioned above, which have been shown to
perform well in a number of practical situations, see, e.g., [13].

Tree-based planners. Other randomizied methods for path
planning incrementally construct trees that explore a connected
region of C-space. The Ariadne’s Clew algorithm [6] explores
the free space using “Explore” and “Search” algorithms to
build and connect landmarks. A tree-based path planner was
developed by LaValle and Kuffner in [14] and [15] that is
useful for exploring C-space. This path planning technique
is known as the Rapidly-Exploring Random Tree (RRT). A
similar tree-based planner, Expansive Space Tree (EST), was
developed by Hsu et. al in [11]. By only exploring the relevant
portion of configuration space needed for the query, it works
well for single query problems. Both ESTs and the RRT-
Connect method [14] have the ability to bias two trees toward
each other. As a variant of RRT, Dynamic Domain RRT [23]
selects the sampling region based on the visibility region of
the nodes in the tree for a better exploration.

The Sampling-based Roadmap of Trees (SRT) [19] algo-
rithm combines PRMs and sampling-based tree methods. It first
uses PRMs to sample random configurations as milestones and
then grows trees from each node.

Planners that tackle narrow passage problems. Many
methods have been proposed to generate nodes in difficult
areas, called narrow passages in C-space [10]. A number
of methods specifically targeted at this problem have been
proposed, e.g., [1], [7], [9], [10], [22].

Some methods are designed to find narrow passages. In
[5], narrow passages in the workspace are found and sampled
more densely. This method works well when the workspace is
similar to the configuration space. Morales et al. [17] propose
a method where certain types of areas of the configuration
space were identified, such as narrow or cluttered regions.

The methods mentioned above are effective in finding
interesting or difficult areas. These are often the areas that
need to be explored more in order to solve a given problem,
which usually include narrow or clutter areas. In a complete
framework, these difficult areas would be where we would
apply our Obstacle-Based Rapidly-Exploring Random Tree
(OBRRT).

Planners that use workspace hints. Some planners use the
known workspace information to help sample configurations.
In [1], [18], [7], nodes are added near the boundaries of the
obstacles in the workspace. Redon and Lin also propose a
local planning method in contact space [20]. In [5], narrow
passages in the workspace are identified and sampled more
densely.

III. PRELIMINARIES

In this section, we will define terms and notation that we
use in this paper.

Basic RRT. The basic RRT-expand algorithm presented
in [15] is shown in Algorithm 1. The tree grows from the
nearest neighbor in the tree, xnear, toward a configuration
that was randomly generated, xrand. The step length described
in [15] was to be some small distance but in [14] a greedy
approach was described such that larger steps can be taken. As

will be shown in Section VI, the basic tree-based expansion
can be improved.

Algorithm 1 Basic RRT expansion method.
Require: tree T and Iterations K

1: for i = 1 . . . K do
2: xrand = random configuration
3: xnear = nearest neighbor in tree T to xrand

4: xnew = extend xnear toward xrand for step length
5: if (xnew can connect to xnear along valid edge) then
6: T .AddVertex(xnew), T .AddEdge(xnew, xnear)
7: end if
8: end for
9: return T

(Basic RRT) (OBRRT)
Fig. 2. A comparison of Basic RRT and Obstacle-Based RRT (OBRRT)

Obstacle Vectors. In our planner, we use obstacle vectors
obtained from the obstacle. The vectors are used to assist in
selecting a direction for the tree to try and grow. Vectors
obtained from a 3-dimensional obstacle are taken from the
triangles (as that is how we model our environments) that
describe the obstacle. Given some triangle, a direction for the
tree to grow can be obtained from the vertices of the triangle.

A triangle in three dimensions is described by three vertices,
a, b, and c, in the three dimensional space. The directions
obtained from the triangle can be chosen randomly from any
of the following six directions: ±(a−b),±(a−c), and ±(b−c),
as shown in Figure 3.

Perturbing each component of the obstacle vector by some
small value, δ, can be useful when deciding on the direction.
In this way, as the orientation of the robot changes near the
obstacle surface, the robot does not immediately collide with
the obstacle.

Fig. 3. Possible obstacle vectors obtained from a triangle before perturbing.

IV. A TREE-BASED PLANNER TAKING OBSTACLE HINTS

Although a Rapidly-Exploring Random Tree does a good
job of exploring many areas, there are many modifications
that can be made to improve how the method explores narrow
or difficult areas of C-space. Current tree-based planners
explore difficult areas in the same way that free areas are
explored. By only growing the tree toward configurations that
are randomly generated, the probability of finding a path out

2

896

of the difficult area is greatly reduced. We will show that
using the modifications presented here will result in a method
that performs much better than the standard RRT-expansion
algorithm, especially in difficult areas of the environment.

A. Purpose

The most important modifications that can be made are
how the tree decides to grow. In the standard algorithm, the
configuration chosen to grow towards is completely random.
Although this is a useful way to explore an area, it should
not be the only way to grow the tree in difficult areas and
could result in very little expansion in these areas. A number
of ways to grow the tree will be described which will result
in a tree that explores difficult or narrow areas faster and in
fewer iterations than in the standard way.

B. Algorithm

Growing a tree when possibly taking obstacle hints can
be seen as a four step process: 1) Choose a (source) node
to grow from, xnear, 2) Choose a growth method, Gi, 3)
Generate target configuration x′

rand, and 4) Extend from
source configuration xnear toward target configuration x′

rand.
Although in Step 1, there could be many ways to choose

nodes as possible nodes for expansion, we choose nodes in the
same way a node is chosen in [15], in which a configuration
is generated at random and the nearest neighbor in the tree
is found. This will be the node that will be expanded. Step 2
and 3, on choosing the way to grow and generating the target
configuration will be discussed in Section V and Step 4 will
be discussed in Section V-B.

The whole algorithm can be seen in Algorithm 2. The
important modifications to the algorithm are in line 5 where
the target node is generated and in lines 6–9 where xnear is
extended toward x′

rand taking the greedy approach described
later.

Algorithm 2 Obstacle-Based RRT expansion method.
Require: tree T and Iterations K

1: for i = 1 . . . K do
2: xrand = random configuration
3: xnear = nearest neighbor in tree T to xrand

4: Gi = Select a Growth Method
5: x′

rand = GenerateTargetNode(xnear , xrand, Gi)
6: xnew = extend(greedy) xnear toward x′

rand

7: if (xnew can connect to xnear along valid edge) then
8: T .AddVertex(xnew), T .AddEdge(xnew, xnear)
9: end if

10: end for
11: return T

V. POSSIBLE WAYS TO EXPAND

In this section, we consider how the tree can be expanded.
The description of the obstacle can be useful when deciding
which direction to grow. Nine possible ways to expand a tree
have been identified, although there are other ways that can be
used. In this section we will describe how x′

rand is generated
and how the tree can be expanded by each growth method.

A. Growth Methods

In this section, we describe various growth methods. In each
growth method, the orientations used in the ways to grow
are either the same as the source configuration or random
orientations. Random orientations are useful when complex
movements of the robot are required to move through narrow
or difficult areas. Fixed orientations are most useful when a
sliding motion of the robot is needed to move through a narrow
or difficult area or when only simple translation is needed.

G0: Basic Extension. This is the standard way of expanding
a tree toward a random configuration. In this growth method,
x′

rand is set to xrand.
G1: Random position, Same orientation. In this way of

growing, x′
rand is obtained by setting the the translational

degrees of freedom to a random position and keeping the
orientational degrees of freedom from xnear. Hence, this
method only uses translation.

G2: Random obstacle vector, Random orientation. In
this growth method, x′

rand = xnear +
−−→
OV . In this case

−−→
OV

is a random obstacle vector from all of the triangles in the
environment. The orientational degrees of freedom of x′

rand

are set randomly.
G3: Random obstacle vector, Same orientation. The

target configuration, x′
rand, is obtained as in G2 except the

orientational degrees of freedom are set up for translation only.
In this way the orientation of x′

rand is the same as xnear.
G4: Rotation followed by Extension. In this way of

growing the source configuration is first rotated to align with
the target configuration until it is aligned or there is collision. It
is then extended toward the target configuration until collision
or the target configuration, xrand, is reached. This can be seen
as growing with a modified rotate-at-s local planner where s
= 0 [2]. Growing toward x′

rand can be seen as extending from
xnear to xrand1, where xrand1 is only a change in orientation
followed by a transition from xrand1 to xrand.

G5: Trace obstacle, Random Orientation. In this way
of growing, the first colliding triangle is found after growing
by G0. An obstacle vector is obtained from the first de-
tected obstacle triangle that caused the collision. The source
configuration is extended in that direction with a randomly
generated orientation. This is useful when growing in areas
where difficult movements are needed.

G6: Trace obstacle, Same Orientation. This way of
growing is the same as G5 but the orientation from xnear

is used rather than a random orientation. This is useful when
a sliding motion is needed.

G7: Trace C-space obstacle. In this growth method, we try
to find a vector parallel to a C-Space obstacle boundary. It is
not feasible to compute the actual C-Space boundary, so here
we approximate it. We first shoot a small number of rays (our
current results use two) within a gaussian distance d, of each
other, then find their collision configurations xcol1 and xcol2.
The C-obstacle vector is calculated as the vector connecting
the colliding configurations:

−−−→
COV = xcol2−xcol1. In this way

x′
rand = xnear +

−−−→
COV .

G8: Medial Axis Push. Same as in G5 but after the target
configuration has been pushed in the obstacle direction, it is

3

897

then pushed toward the medial axis of the configuration space.
In this way xnear is extended toward x′

rand which is near the
medial axis.

The random obstacle vectors in G2 and G3 are randomly
chosen from all of the triangles describing the obstacles in the
environment. The random obstacle vectors used in G5, G6, and
G8 are obtained from the triangle that last caused collision.
C-obstacle vectors are obtained directly from two colliding
configurations approximating the tangent of the C-obstacles.

B. Greedy Modification

In [15], the step length that the tree would grow towards
the random configuration is small. An important improvement
would be to make this a greedy algorithm such that it would
take as big a step length as possible, as long as it is less
than some maximum step length specified. Also, instead of
getting as close to the obstacle as possible, some distance can
be specified such that the final configuration will have some
space between itself and the obstacle. In this way, if that node
is chosen as a source configuration for the tree to grow from,
it will be easier to extend that node.

VI. EXPERIMENTAL SETUP AND RESULTS

In this section, we compare our Obstacle-Based RRT

(OBRRT) to the Basic RRT and Greedy RRT expansion meth-
ods. OBRRT is tested using two variations OBRRTtuned and
OBRRTavg. Using OBRRTtuned, parameters are specified to be
well suited for exploring each environment. OBRRTavg assigns
the same weight for each growth method. The basic and greedy
RRT will differ in maximum possible step size. The basic
RRT will have a small step size as described in [15]. The
greedy RRT will take as large a step size as possible leaving
some space between the robot configuration and the obstacle
as described in Section V-B. OBRRT will utilize the various
modifications described. The code is compiled under gcc 3.3.
All tests are on an AMD Athlon XP 2800+ processor with
768 MB of RAM.

The environments tested are the s-tunnel environment
(medium, long and large robot), flange environment (scale
0.90, 0.95 and 1.0), OBRRT-tunnel environment with an articu-
lated robot and the maze environment, also with an articulated
robot. Each method, OBRRT, Greedy RRT, and Basic RRT are
tested 10 times for each environment and the results shown
represent the average of all the test runs.

The results reported will include the average number of
iterations, collision detection calls (CDs), nodes required, and
time needed to grow the tree such that the query was satisfied.
It is important to note the time and number of iterations
required as this gives an idea as to how long each method
can be expected to grow out of the difficult regions.

A. Selecting a Tree Root

All environments are tested from an initial predefined root
configuration in the environment. At each test iteration, a tree
is expanded from the same initial configuration for a given
number of iterations. The number of iterations is increased
until the query is satisfied. Although we predefine this root or
start configuration for testing purposes, any node or connected

Fig. 4. In this workspace, both obstacle and robot are represented as
triangulated meshes. For this environment, the curved tube-like object (the
robot) should fit in the gap in the obstacle (largest hole).

component could be used in a general framework from where
to start expanding.

B. Flange Environment

TABLE I

RESULTS FOR FLANGE SCALE(0.90, 0.95 AND 1.0) ENVIRONMENT.

flange, scale 0.90
Method Time Nodes Iterations CDs
OBRRTtuned 37.64 226.6 1750 12122.2
OBRRTavg 65.94 227.7 2660 62759.3
Greedy RRT 73.66 109.4 4440 22499.8
Basic RRT 67.56 91.4 4160 19457.9
flange, scale 0.95
Method Time Nodes Iterations CDs
OBRRTtuned 143.19 479.8 3220 28019.7
OBRRTavg 278.52 589.2 5050 103177.3
Greedy RRT 328.79 109.2 13260 48262.9
Basic RRT 406.56 118.4 15250 50571.8
flange, scale 1.0
Method Time Nodes Iterations CDs
OBRRTtuned 227.06 1011 6100 362768.0

In the flange environment, the curved tube shown in Figure 4
should slide out of the gap in the obstacle. The scaled
environments have been scaled down from the original version
by a factor of 0.90 and 0.95. The results for this environment
are shown in Table I. The initial configuration that these trees
expand from is a configuration where the flange is already in
the obstacle. The tree grows until it can find a path where the
two objects were separated, as shown in Figure 4.

In both of the tests, flange scale 0.9 and 0.95, OBRRTtuned

is able to solve the query much faster and in fewer iterations
and collision detection calls than the other methods tested. For
the flange, scale 0.95, OBRRTtuned is able to solve the problem
close to twice as fast as any of the other methods. OBRRTavg is
also able to solve these environments in fewer iterations and
somewhat faster than Basic and Greedy RRT. In both cases
OBRRT is on average faster at solving the queries than Basic or
Greedy RRT. The number of nodes needed by both versions of
OBRRT are more than the Basic and Greedy RRT but this could
be because the space is searched near the obstacle surface
resulting in some expansion that is only incremental.

To show the effectiveness of OBRRT, we were able to solve
the original flange environment (scale 1.0) nearly as fast as
OBRRT was able to solve the version scaled 0.95. Basic and

4

898

Greedy RRT were unable to find a solution given 100,000
iterations.

C. S-Tunnel Environment

In the s-tunnel environment, a configuration is placed in
the middle of the passage as the root configuration. The goal
configurations for the query are on opposite sides of the
environment. In this way, the tree will grow until the tree
exits both ends of the tunnel.

medium

long

large

Fig. 5. s-tunnel environment. This environment has a curved tunnel
through which the robot should pass through. The robots, medium,
long and large, are displayed from top to bottom.

TABLE II

RESULTS FOR S-TUNNEL (MEDIUM,LONG,LARGE) ENVIRONMENT.

s-tunnel, medium robot, Difficulty: easy
Method Time Nodes Iterations CDs
OBRRTtuned 0.83 190.9 197 18618.2
OBRRTavg 1.44 213.6 235.2 31823.3
Greedy RRT 15.35 541.4 3780 71685.5
Basic RRT 15.34 518.1 3390 66681.7
s-tunnel, long robot, Difficulty: medium
Method Time Nodes Iterations CDs
OBRRTtuned 2.81 589.1 699.3 29739.2
OBRRTavg 7.65 773.4 979.9 113796.2
Greedy RRT 212.58 1311.70 11322 190210.0
Basic RRT 824.76 1963.7 13022 283595.8
s-tunnel, large robot, Difficulty: hard
Method Time Nodes Iterations CDs
OBRRTtuned 1.01 117.6 331 6769.4
OBRRTavg 2.05 215.5 287.2 37231.5
Greedy RRT 699.60 2740.6 40513 468453.9
Basic RRT 2162.04 3582.5 51500 615989.5

The s-tunnel environment was tested with three different
robots. The three robots can be seen in Figure 5. The medium
sized robot is the easiest when exploring the narrow passage.
The long and large robot are more difficult to plan for.
In planning for the long robot, when the tunnel changes
directions, the robot has to rotate and make a complicated
series of moves to get out of the tunnel. The large robot has
only a minimal amount of space to move in the tunnel making
this a difficult problem for most planners. For the large robot,
the robot has to slide through the narrow passage.

The results for these environment for each type of robot can
be seen in Table II. With each type of robot, OBRRT is able to
easily find a path out of the passage and performs much better
than the other methods in each feature. Exploring this passage
is difficult for Greedy or Basic RRT since exploring the passage

can only be done in very specific directions. These directions
are easily obtained using OBRRT. In each case OBRRTtuned

outperforms OBRRTavg, although only slightly.
For each robot type, OBRRT is able to find a path much

quicker and with far fewer collision detection calls than the
other two methods. In fact for the large robot, Basic RRT

requires many more collision detection calls and takes much
longer than either OBRRT or Greedy RRT. Since both the
Greedy RRT and OBRRT leave some space between the new
robot configuration generated and the obstacle, expanding
could be somewhat easier. A similar result is seen for each
version of the robot used showing the difficulty both Basic
and Greedy RRT can have when searching a narrow or difficult
area.

D. OBRRT-tunnel Environment

A 3-link, 8 DOF, articulated robot is placed at a configura-
tion inside the first “R” in the OBRRT-tunnel environment. The
goal configruations are at either end of the tunnel, as shown
in Figure 6. The tree is expanded until it can connect to each
of the goal configurations and so, has to find a path through
the letters.

As shown in Table III, OBRRTtuned is able to explore this
environment more effectively than OBRRTavg. This can be seen
in each of the features: time, nodes, iterations and collision
detection calls. It should be noted that neither Basic or Greedy
RRT were able to expand out of the letters tunnel given up to
50,000 iterations.

Fig. 6. OBRRT-tunnel environment with an articulated robot.

TABLE III

RESULTS FOR OBRRT-TUNNEL ENVIRONMENT.

Letters, articulated robot, 3 links, 8 DOF
Method Time Nodes Iterations CDs
OBRRTtuned 2730 6225 10500 4488508
OBRRTavg 6442 7501 13000 8749241

E. Maze Environment

In this environment a 4-link articulated robot is placed inside
the maze. Goal configurations are placed on both ends of the
maze as shown in Figure 7. The tree is expanded until it can
connect to each of the goal configurations.

From Table IV, it is clear that OBRRTtuned is able to explore
this environment more effectively than the other methods
tested. This is can been seen in that it is more than twice as
fast as any other method and requires fewer nodes, iterations
and collision detection calls. OBRRTtuned is shown to be more
reliable in that is can quickly grow out of these difficult set of

5

899

tunnels to reach the goal configurations. Although OBRRTavg

is slower than the other methods, it consistently solves the
problem with fewer iterations than Basic and Greedy RRT.

Fig. 7. Maze environment with an 4-link articulated robot.

TABLE IV

RESULTS FOR MAZE ENVIRONMENT.

Maze, articulated robot, 4-links, 9 DOF
Method Time Nodes Iterations CDs
OBRRTtuned 295 2428 7800 355705
OBRRTavg 1089 4452 10400 1708887
Greedy RRT 710 3232 25000 936264
Basic RRT 965 4458 25950 1351933

VII. DISCUSSION

Using a variety of ways to grow a tree can be very beneficial
when exploring difficult or narrow areas. Some of the ways
proposed to grow the tree involve taking into account the
description of the obstacle(s) in the workspace. The ways to
grow that take into account the description of the obstacle are
some of the most useful ways to grow that are proposed.

From the results, it is clear that OBRRTtuned performs better
than the basic and greedy RRT algorithms which in most cases
is also true for OBRRTavg. This can be seen in the time to
make the tree, number of collision detection calls and iterations
required to make the tree. We have had success solving the
alpha puzzle and flange environment, both of scale 1.0, using
OBRRTtuned although OBRRTavg has been less successful for
these problems.

There is an issue when assigning weights for each growth
method for OBRRTtuned. We have performed some preliminary
work on being able to adapt the weights assigned because
some growth methods may consistently perform better than
others in certain areas. We want to be able to use this
information to automatically tune the weight each method has
of being selected.

VIII. CONCLUSIONS

Using obstacle hints for directions to grow a tree for path
planning can be beneficial, especially when exploring difficult
areas. This is clear from the environments that require difficult
movements of the robot or a sliding motion. There are also
many other ways of growing a tree that should be considered.
Using the Obstacle-Based RRT described here along with a
strong node generation method, that can find difficult areas of
C-space, could result in a path planning technique that solves
motion planning problems quickly and efficiently.

REFERENCES

[1] N. M. Amato, O. B. Bayazit, L. K. Dale, C. V. Jones, and D. Vallejo.
OBPRM: An obstacle-based PRM for 3D workspaces. In Robotics: The
Algorithmic Perspective, pages 155–168, Natick, MA, 1998. A.K. Peters.
Proceedings of the Third Workshop on the Algorithmic Foundations of
Robotics (WAFR), Houston, TX, 1998.

[2] N. M. Amato, O. B. Bayazit, L. K. Dale, C. V. Jones, and D. Vallejo.
Choosing good distance metrics and local planners for probabilistic
roadmap methods. IEEE Trans. Robot. Automat., 16(4):442–447, August
2000. Preliminary version appeared in ICRA 1998, pp. 630–637.

[3] J. Barraquand and J. C. Latombe. Robot motion planning: A distributed
representation approach. Int. J. Robot. Res., 10(6):628–649, 1991.

[4] O. B. Bayazit, G. Song, and N. M. Amato. Enhancing randomized
motion planners: Exploring with haptic hints. In Proc. IEEE Int. Conf.
Robot. Autom. (ICRA), pages 529–536, 2000.

[5] J. Berg and M. Overmars. Using workspace information as a guid to
non-uniform sampling in probabilistic roadmap planners. In Proc. IEEE
Int. Conf. Robot. Autom. (ICRA), pages 453–460, 2004.

[6] P. Bessiere, J. M. Ahuactzin, E. G. Talbi, and E. Mazer. The Ariadne’s
clew algorithm: Global planning with local methods. In Proc. IEEE Int.
Conf. Intel. Rob. Syst. (IROS), volume 2, pages 1373–1380, 1993.

[7] V. Boor, M. H. Overmars, and A. F. van der Stappen. The Gaussian
sampling strategy for probabilistic roadmap planners. In Proc. IEEE Int.
Conf. Robot. Autom. (ICRA), volume 2, pages 1018–1023, 1999.

[8] H. Chang and T. Y. Li. Assembly maintainability study with motion
planning. In Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pages 1012–
1019, 1995.

[9] D. Hsu, T. Jiang, J. Reif, and Z. Sun. Bridge test for sampling narrow
passages with proabilistic roadmap planners. In Proc. IEEE Int. Conf.
Robot. Autom. (ICRA), pages 4420–4426, 2003.

[10] D. Hsu, L. E. Kavraki, J.-C. Latombe, R. Motwani, and S. Sorkin. On
finding narrow passages with probabilistic roadmap planners. In Proc.
Int. Workshop on Algorithmic Foundations of Robotics (WAFR), pages
141–153, 1998.

[11] D. Hsu, J.-C. Latombe, and R. Motwani. Path planning in expansive
configuration spaces. In Proc. IEEE Int. Conf. Robot. Autom. (ICRA),
pages 2719–2726, 1997.

[12] L. Kavraki and J. C. Latombe. Randomized preprocessing of config-
uration space for fast path planning. In Proc. IEEE Int. Conf. Robot.
Autom. (ICRA), pages 2138–2145, 1994.

[13] L. E. Kavraki, P. Svestka, J. C. Latombe, and M. H. Overmars. Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces. IEEE Trans. Robot. Automat., 12(4):566–580, August 1996.

[14] J. J. Kuffner and S. M. LaValle. RRT-Connect: An Efficient Approach
to Single-Query Path Planning. In Proc. IEEE Int. Conf. Robot. Autom.
(ICRA), pages 995–1001, 2000.

[15] S. M. LaValle and J. J. Kuffner. Rapidly-Exploring Random Trees:
Progress and Prospects. In Proc. Int. Workshop on Algorithmic Foun-
dations of Robotics (WAFR), pages SA45–SA59, 2000.

[16] J.-M. Lien, O. B. Bayazit, R.-T. Sowell, S. Rodriguez, and N. M. Amato.
Shepherding behaviors. In Proc. IEEE Int. Conf. Robot. Autom. (ICRA),
pages 4159–4164, April 2004.

[17] M. Morales, L. Tapia, R. Pearce, S. Rodriguez, and N. M. Amato. A
machine learning approach for feature-sensitive motion planning. In
Proc. Int. Workshop on Algorithmic Foundations of Robotics (WAFR),
pages 316–376, Utrecht/Zeist, The Netherlands, July 2004.

[18] M. Overmars and P. Svestka. A probabilistic learning approach to motion
planning. In Proc. Int. Workshop on Algorithmic Foundations of Robotics
(WAFR), pages 19–37, 1994.

[19] E. Plaku, K. E. Bekris, B. Y. Chen, A. M. Ladd, and L. E. Kavraki.
Sampling-based roadmap of trees for parallel motion planning. IEEE
Trans. Robot. Automat., 2005.

[20] S. Redon and M. C. Lin. Practical local planning in the contact space.
In Proc. IEEE Int. Conf. Robot. Autom. (ICRA), April 2005.

[21] J. H. Reif. Complexity of the mover’s problem and generalizations.
In Proc. IEEE Symp. Foundations of Computer Science (FOCS), pages
421–427, San Juan, Puerto Rico, October 1979.

[22] S. A. Wilmarth, N. M. Amato, and P. F. Stiller. MAPRM: A probabilistic
roadmap planner with sampling on the medial axis of the free space.
In Proc. IEEE Int. Conf. Robot. Autom. (ICRA), volume 2, pages 1024–
1031, 1999.

[23] A. Yershova, L. Jaillet, T. Simeon, and S. M. Lavalle. C-space
subdivision and integration in feature-sensitive motion planning. In Proc.
IEEE Int. Conf. Robot. Autom. (ICRA), pages 3867–3872, April 2005.

6

900

