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AN OBSTRUCTION TO THE EXISTENCE OF
CONSTANT SCALAR CURVATURE KÄHLER METRICS

Julius Ross & Richard Thomas

Abstract

We prove that polarised manifolds that admit a constant scalar
curvature Kähler (cscK) metric satisfy a condition we call slope
semistability. That is, we define the slope µ for a projective man-
ifold and for each of its subschemes, and show that if X is cscK
then µ(Z) ≤ µ(X) for all subschemes Z.

This gives many examples of manifolds with Kähler classes
which do not admit cscK metrics, such as del Pezzo surfaces and
projective bundles. If P(E) → B is a projective bundle which
admits a cscK metric in a rational Kähler class with sufficiently
small fibres, then E is a slope semistable bundle (and B is a slope
semistable polarised manifold). The same is true for all rational
Kähler classes if the base B is a curve.

We also show that the slope inequality holds automatically for
smooth curves, canonically polarised and Calabi-Yau manifolds,
and manifolds with c1(X) < 0 and L close to the canonical polar-
isation.

1. Introduction

An important problem in Kähler geometry is that of finding a con-
stant scalar curvature Kähler (cscK) metric in a given Kähler class on a
complex manifold X. For a curve this is provided by the uniformisation
theorem. For general X the class [ω] ∈ H2(X, R) admits a Kähler-
Einstein metric (which is therefore cscK) when c1(X) = 0 [Y1], or
when c1(X) < 0 and [ω] = −λ[c1(X)] [Au, Y1].

The first known obstructions to the existence of cscK metrics came
from the holomorphic automorphism group. The most famous is the
Calabi-Futaki invariant of the Kähler class. This is a character on the
Lie algebra aut(X) of the holomorphic automorphism group which must
vanish if the class admits a cscK metric [Fut].

Tian defined a finer obstruction called K-stability, arising from cer-
tain degenerations (or test configurations) of X [Ti2, Ti3]. Moreover it
is conjectured that K-polystability is a necessary and sufficient condi-
tion for the existence of cscK metrics; see Conjecture 2.8. One direction
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of this conjecture is now almost proved: it is known that cscK implies
K-semistability [Do5]. Thus test configurations can provide obstruc-
tions to cscK metrics. In particular those arising from a C×-action re-
cover the Calabi-Futaki obstruction, and these “product configurations”
are currently the only test configurations that have been systematically
studied.

In this paper we consider test configurations canonically associated
to subschemes of X, yielding a new obstruction to the existence of cscK
metrics. These configurations are more complicated than product con-
figurations; in particular the central fibre is non-normal. The motivation
is an analogy with stability for vector bundles; just as subsheaves can
destabilise a sheaf or bundle we show how subschemes can destabilise
X. In Section 3 we define, by analogy with vector bundles, a notion of
slope (semi)stability of a manifold and rational Kähler class. We prove
in Section 4 that this gives an obstruction to K-semistability, and hence
to cscK metrics.

Thus, K-semistability implies slope semistability. A partial converse
is given in Theorem 6.1 of [RT]; in particular the two are shown to be
equivalent for curves. In trying to form moduli of varieties in algebraic
geometry using Geometric Invariant Theory, other stability conditions
arise, for instance Chow stability. Different notions of slope are given
for these in [RT], and stability is shown to imply the relevant slope
stability (Proposition 4.33 and Theorem 7.2 of [RT]).

In Section 5.2 we show slope stability for the canonical class when
c1(X) < 0, and for arbitrary classes when c1(X) = 0 (as expected from
the existence of their Kähler-Einstein metrics). We also show slope
stability for classes close to the canonical class when c1(X) < 0, and
compare to some similar analytical results of [We]. Slope stability of
smooth curves is proved in 5.3, which by Corollary 6.7 of [RT] implies
K-stability. As far as we know this is the only direct, non-analytic proof
of K-stability of smooth curves.

We apply the slope formula to study unstable projective bundles in
Section 5.4, providing a converse to the results of Hong [Ho]. When the
base is a curve, the Narasimhan-Seshadri theorem gives a cscK metric
on the projectivisation of any polystable bundle (of arbitrary rank) in
any Kähler class, and we are able to give an almost complete converse
(there is a small discrepancy for bundles which are strictly semistable
but not polystable until the results of [Do2, Do5, Mab] are improved
to give K-polystability).

Other examples include unstable blow ups in Section 5.5 and unstable
rational manifolds in Section 5.6. In particular we give examples of
Kähler classes on surfaces with trivial automorphism group which do
not admit cscK metrics (5.32).
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One might hope that in the continuity method to find a cscK metric,
the multiplier ideal sheaf along which the C0-estimates required for
closedness fail [Na] defines a subscheme which slope destabilises the
variety. In particular, if one could show this for canonically polarised
manifolds then Theorem 4.2 combined with Nadel’s results would solve
the Kähler-Einstein problem for Fano manifolds.

Notation and Terminology. In this paper (X, L) will be a smooth
complex manifold of dimension n with a polarisation L (i.e. an ample
line bundle on X). Furthermore Z will denote an arbitrary subscheme
of X defined by an ideal sheaf IZ . When Z is smooth νZ = (IZ/I 2

Z)∗

will denote its normal bundle.
The blow up along Z is denoted by π : X̂ → X, with exceptional

divisor E. Note that π∗O(−jE) = I
j

Z for j ≫ 0. For convenience
we often suppress pullback maps and use the same letter to denote a

divisor and the associated line bundle. For example, on X̂ we denote
(π∗L ⊗ O(−E))⊗k by L⊗k(−kE). The intersection product of divisors
D1, . . . , Dn on X is denoted by

∫
X c1(D1). . . . c1(Dn), and this is abbre-

viated to D1.D2 . . . Dn in sections 5.1 and 5.2.
A Q -divisor is a formal sum of divisors with rational coefficients;

some multiple is therefore a divisor with an associated line bundle. A
Q -divisor is said to be ample if it can be written as a formal sum of
ample divisors with positive rational coefficients. We recall that a nef
line bundle (or divisor) is one whose intersection with every curve in
X is nonnegative, and this extends to Q -line bundles. By the Kleiman
criterion [Kl] these divisors are precisely those in the closure of the
ample cone. In notation like H0(L⊗k) we always tacitly restrict to
those k for which L⊗k is an honest line bundle.

Any finite-dimensional vector space V with a C×-action splits into
one-dimensional weight spaces V =

⊕
i Vi, where t ∈ C× acts on Vi by

twi . The integers wi are the weights of the action, and w(V ) =
∑

i wi is
the total weight of the action; i.e., the weight of the induced action on
the top exterior power ΛmaxV .

Acknowledgments. We would most like to thank Simon Donaldson,
who suggested looking at stability of projective bundles P(E) via the
degeneration mentioned in (5.14). As we discuss there, the deformation
to the normal cone collapses to this degeneration in one special case, and
it was this case that motivated our study of the normal cone; without
his invaluable suggestion we would never have looked at stability of va-
rieties. We also wish to thank Sébastien Boucksom, David Calderbank,
Joel Fine, Jun Li, Sean Paul, Gang Tian (both for useful comments, and
for inviting the first author to Princeton), Ben Weinkove and Xiao-Wei
Wang.
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2. Definition of K-stability

Tian [Ti2, Ti3] introduced a notion of K-stability using differential
geometry. Donaldson [Do3] gave an algebro-geometric definition that
allows arbitrarily singular central fibre and which we use here. The
relation between the two is studied in [PT].

There is a strong formal link between K-stability and stability notions
in Geometric Invariant Theory; in particular the test configurations de-
fined below are what one gets by applying a one parameter subgroup of
projective linear transformations to the Kodaira embedding of (X, L⊗k),
and what we call the Donaldson-Futaki invariant is the GIT weight of
the induced action on a certain line. We will not attempt to describe
this further but instead refer the interested reader to [Do3, RT].

Definition 2.1. Suppose that (X, L) is a polarised variety with
Hilbert polynomial P(k) := χ(L⊗k). A test configuration with gen-
eral fibre (X, L) consists of

1) A flat projective family of Q -polarised schemes (X ,L) → C.
2) An action of C× on (X ,L) covering the usual action of C× on C,

such that the fibre (Xt,L|Xt)) is isomorphic to (X, L) for one, and so
all, t ∈ C\{0}.

The flatness condition is that the fibres (Xt,Lt) all have the same
Hilbert polynomial P(k) ([Ha] Theorem III.9.9). We call a test con-
figuration a product configuration if X ∼= X × C, and a trivial
configuration if in addition C× acts only on the second factor. Since
0 ∈ C is fixed, we get an induced action on the central fibre (X0,L|X0

)
and hence on H0(X0,L

⊗k|X0
) for all k.

Definition 2.2. Suppose (X ,L) is a test configuration with gen-
eral fibre (X, L). Let w(k) be the weight of the induced action on

H0(X0,L|
⊗k
X0

), which by the equivariant Riemann-Roch formula is a
polynomial of degree n + 1 for k ≫ 0, so there is an expansion

w(k)

kP(k)
= f0 + f1k

−1 + O(k−2).

We define the Donaldson-Futaki invariant of a test configuration to
be F1 = −f1 (so this has the opposite sign to the definition in [Do3]).

Writing P(k) = a0k
n+a1k

n−1+O(kn−2) and w(k) = b0k
n+1+b1k

n+
O(kn−1), then

(2.3) F1 =
b0a1 − b1a0

a2
0

.

Definition 2.4.

• We say that (X, L) is algebraically K-stable (resp. algebr-
aically K-semistable) if for all non-trivial test configurations
with general fibre (X, L) we have F1 > 0 (resp. F1 ≥ 0).
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• We say that (X, L) is algebraically K-polystable if it is K-
semistable, and any test configuration with general fibre (X, L)
and F1 = 0 is a product configuration. That is, the only instability
arises from C×-actions on (X, L).

Remarks 2.5.

• The property of being K-(semi/poly)stable is preserved under re-
placing L by L⊗r, and so makes sense when L or L is an ample
Q -line bundle. The definition of a test configuration given here
differs from that in Definition 3.6 of [RT], but is the same after
twisting L by some power.

• When the central fibre (X0,L|X0
) is smooth, F1 is, up to a con-

stant, the usual Calabi-Futaki invariant, with respect to the class
c1(L), of the vector field induced by the S1-action [Do3].

• The Donaldson-Futaki invariant can be interpreted in terms of the
Mumford weight function in Geometric Invariant Theory [Do3]
(see also Theorem 3.9 of [RT]).

It is possible to strengthen the definition of K-stability. We define an
analytic test configuration with general fibre (X, L) exactly the same
way as we defined a test configuration, but allow L to be an ample R-
divisor. (By an ample R-divisor we mean a formal sum L =

∑m
i=1 αiDi

with each Di an ample divisor and αi a positive real; a C×-action on L
is a choice of C×-action on each line bundle O(Di) ).

For any test configuration the Donaldson-Futaki invariant can be cal-
culated using the equivariant Riemann-Roch theorem in terms of the
equivariant first Chern class of L with its C×-action. The resulting ex-
pression makes sense even if L is an ample R-divisor, and we take this
to be the definition of F1 in this case.

Definition 2.6. We say that (X, L) is analytically K-stable (resp.
analytically K-semistable) if for all non-trivial analytic test configu-
rations (X ,L) with general fibre (X, L) we have F1 > 0 (resp. F1 ≥ 0).
It is analytically K-polystable if it is analytically K-semistable and
any analytic test configuration with F1 = 0 is a product configuration.

Remark 2.7. As analytic K-semistability is equivalent to algebraic
K-semistability, we will drop the qualifier when dealing with K-semi-
stability.

2.1. Relationship to constant scalar curvature Kähler metrics.
The precise conjecture relating K-stability to the existence of cscK met-
rics is the following [Y2, Ti3, Do3]:

Conjecture 2.8 (Yau-Tian-Donaldson). Let (X, L) be a polarised
manifold. Then there exists a constant scalar curvature Kähler metric
in the class of c1(L) if and only if (X, L) is K-polystable.
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One direction of this conjecture, that existence of a cscK metric im-
plies stability, has almost been proved: in [Do5] it is shown that a cscK
metric implies K-semistability. Before that paper one had a slightly
weaker result by using balanced metrics: if aut(X) = 0 then the exis-
tence of a cscK metric implies that the Kodaira embedding of (X, L⊗r)
can be “balanced” for r ≫ 0 [Do2]. This implies it is asymptoti-
cally Chow stable [Zh, P, Wa], which in turn implies that (X, L) is
K-semistable (see for example Theorem 3.9 of [RT]). Mabuchi [Mab]
extended this proof to manifolds with non-discrete automorphism group
satisfying a certain stability condition.

Another path to stability is through the K-energy, also called the
Mabuchi functional. The existence of a cscK metric implies the K-
energy map is bounded from below [Do4, CT] (resp. proper in the
Kähler-Einstein Fano case when aut(X) = 0 [Ti3]); in turn this implies
K-semistability [PT] (resp. K-stability).

We remark that a recent example in [ACGT] suggests that algebraic
K-stability may not be enough to guarantee the existence of a cscK
metric, and that the stronger analytic definition of K-stability may be
required. (The authors wish to thank V. Apostolov and D. Calderbank
for discussions on this point). Moreover it may be that we have to allow
non-projective central fibres (see Section 4.4).

It is expected that the deep results mentioned above proving stability
are not optimal, and that K-polystability can be proved. However, the
fact that a cscK metric implies K-semistability is enough to give a new
obstruction in terms of the subschemes of X which we now describe.

3. Definition of slope stability

Fix a polarised manifold (X, L) and write the Hilbert polynomial as

P(k) = χ(L⊗k) = a0k
n + a1k

n−1 + O(kn−2).

Definition 3.1. The slope of (X, L) is

µ(X) = µ(X, L) =
a1

a0
.

By the Riemann-Roch theorem,

a0 =
1

n!

∫

X
c1(L)n, and a1 = −

1

2(n − 1)!

∫

X
c1(KX).c1(L)n−1,

so

µ(X) = −
n

∫
X c1(KX).c1(L)n−1

2
∫
X c1(L)n

.

For a subscheme Z of X let X̂ be the blow up of X along Z, with
exceptional divisor E.
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Definition 3.2. The Seshadri constant of Z is

ǫ(Z) = ǫ(Z, X, L)

= sup {c : L⊗k ⊗ I
ck
Z is globally generated for k ≫ 0}

= sup {c : L(−cE) is ample on X̂}

= max {c : L(−cE) is nef on X̂}.

We say the global sections of L ⊗ IZ saturate IZ if they generate

the line bundle L(−E) on X̂. This is weaker than (i.e., is implied by)
L ⊗ IZ being globally generated (see [RT] Section 2).

For fixed x ∈ Q define ai(x) by

(3.3) χ(L⊗k(−xkE)) = a0(x)kn+a1(x)kn−1+O(kn−2) k ≫ 0, xk ∈ N.

Since χ(L⊗k(−rE)) is a polynomial in k and r of total degree at most n,
ai(x) is a polynomial in x of degree at most n− i, and can be extended
to all of R. We have

(3.4) a0(x) =
1

n!

∫

bX
c1(L(−xE))n,

and, when Z is a codimension p submanifold, by the Riemann-Roch

formula on X̂,

(3.5) a1(x) = −
1

2(n − 1)!

∫

bX
c1(K bX

).c1(L(−xE))n−1,

where K bX
= KX((p − 1)E) is the canonical divisor of X̂.

The ai(x) can also be defined in terms of the ideal sheaf of Z. Fix j0

such that π∗(−jE) = I
j
Z for all j ≥ j0 (when Z is smooth we can take

j0 = 0). Then for xk ∈ N, x < ǫ(Z) and k ≫ 0 (in particular kx ≥ j0),

(3.6) h0(L⊗k⊗I
xk
Z ) = χ(L⊗k⊗I

xk
Z ) = a0(x)kn+a1(x)kn−1+O(kn−2).

Thus a0(0) = a0. When X and Z are smooth, taking j0 = 0 shows that
we also have a1(0) = a1. More generally this holds when X is normal
([RT] Remarks 4.21).

Definition 3.7. The slope of Z with respect to c is

µc(IZ) = µc(IZ , L) =

∫ c
0

(
a1(x) +

a′

0
(x)
2

)
dx

∫ c
0 a0(x)dx

.

Definition 3.8.

• We say that (X, L) is slope semistable with respect to Z if
µc(IZ) ≤ µ(X) for all c ∈ (0, ǫ(Z)].

• We say (X, L) is slope stable with respect to Z if µc(IZ , L) <
µ(X) for every c ∈ (0, ǫ(Z)), and for c = ǫ(Z) if ǫ(Z) is rational

and the global sections L⊗k ⊗ I
ǫ(Z)k

Z saturate I
ǫ(Z)k
Z for k ≫ 0.
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• We say (X, L) is slope polystable with respect to Z if it is
slope semistable, and if (Z, c) is any pair such that µc(IZ) =
µ(X), then c = ǫ(Z) ∈ Q and, on the deformation to the nor-
mal cone (Section 4.1) of Z, Lc = L(−cP ) is pulled back from a
product test configuration (X × C, L).

• Finally (X, L) is said to be slope (semi/poly)stable if it is so
with respect to all subschemes Z.

Remark 3.9. The definition above of slope semistability agrees with
that in [RT]. However, the definitions given here of slope (poly)stability
are slightly stronger as we require the relevant condition to hold even for
irrational c. Thus what we have defined as slope (poly)stability might
more properly be referred to as analytic slope (poly)stability, and is the
notion relevant to the analytic K-stability of Definition 2.6.

An example of a slope polystable variety is provided by Pn (whose
Fubini-Study metric is cscK). When c = ǫ(p), µc(Ip) = µ(Pn) and the
deformation to the normal cone (Section 4.1) of a point p ∈ Pn collapses
to Pn × C, with a non-trivial C×-action with Donaldson-Futaki invari-
ant 0. Generalisations of this example are provided by the projective
bundles of (5.14).

Remarks 3.10.

• We say that Z destabilises (resp. strictly destabilises) if (X, L)
is not slope stable (resp. slope semistable) with respect to Z.

• Slope (semi/poly)stability is preserved under twisting L, since
ǫ(Z, L⊗r) = rǫ(Z, L), µ(X, L) = rµ(X, L⊗r), and µc(IZ , L) =
rµrc(IZ , L⊗r).

• If 0 < x < ǫ(Z) then from the fact that L(−xE) is ample,

a0(x) =
1

n!

∫

bX
c1(L(−xE))n > 0,(3.11)

a′0(x) = −
1

n!

∫

bX
c1(L(−xE))n−1.E < 0.

In particular, for 0 < c ≤ ǫ(Z),
∫ c
0 a0(x)dx > 0 so µc(IZ) is finite.

• limc→0 µc(IZ) =
a1(0)+a′

0
(0)/2

a0
< a1(0)

a0
by (3.11). For X normal

this is a1

a0
= µ(X) (by Remarks 4.21 of [RT]), so (Z, c) does not

destabilise for small c > 0. Therefore, on defining µ(IZ) :=
max0≤x≤c µc(IZ), slope semistability is equivalent to µ(IZ) ≤
µ(X). This is how it was presented in the Abstract.

Remarks 3.12.

• In the slope inequality we may assume without loss of generality
that Z is not a thickening of any other subscheme. For if Z = mZ ′,
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m ≥ 1, then ǫ(Z) = 1
mǫ(Z ′) and, as a′0(x) < 0 (3.11),

µc/m(I m
Z′ ) = µc(IZ′) + (m − 1)

∫ c
0 a′0(x)dx

2
∫ c
0 a0(x)dx

< µc(IZ′).

• If Z strictly destabilises then so does one connected component
of Z, and smooth points do not destabilise a smooth X ([RT]
Theorem 4.29). Thus, for the strict inequality, we may assume
without loss of generality that Z is connected.

Definition 3.13. Let ãi(x) be defined by

χ(L⊗k⊗OxkZ) = χ(L⊗k/(L⊗k⊗I
xk

Z )) = ã0(x)kn+ã1(x)kn−1+O(kn−2),

so ãi(x) = ai − ai(x). The quotient slope of Z with respect to c is (in
slightly misleading notation)

µc(OZ) = µc(OZ , L)(3.14)

=

∫ c
0

(
ã1(x) +

ã′

0
(x)
2

)
dx

∫ c
0 ã0(x)dx

=

∫ c
0

(
a1(x) +

a′

0
(x)
2

)
dx − ca1

∫ c
0 a0(x)dx − ca0

,

which is finite for 0 < c ≤ ǫ(Z). Notice that

µc(IZ) < µ(X) ⇐⇒ µ(X) < µc(OZ) ⇐⇒ µc(IZ) < µc(OZ),

due to the implications

A

B
<

C

D
⇐⇒

C

D
<

C − A

D − B
⇐⇒

A

B
<

C − A

D − B

for 0 < B < D, on setting B =
∫ c
0 a0(x)dx and D = ca0 (so D − B =∫ c

0 ã0(x)dx > 0).

So slope stability can be phrased in terms of the quotient slope
µc(OZ).

Proposition 3.15. For fixed x ∈ Q>0, define αi(x) by

(3.16) χ(L⊗k ⊗ I
xk
Z /I

xk+1
Z ) = α1(x)kn−1 + α2(x)kn−2 + O(kn−3)

for k ≫ 0, xk ∈ N. (So if Z is smooth with normal bundle νZ then

χ(L⊗k|Z ⊗Sxkν∗
Z) = α1(x)kn−1 +α2(x)kn−2 +O(kn−3), k ≫ 0, xk ∈ N,

where Sr(·) denotes the r-th symmetric product.)
Then

µc(OZ) =

∫ c
0 (c − x)α2(x)dx + c

2α1(0)∫ c
0 (c − x)α1(x)dx

.
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Proof. Fix x > 0 and let x̄ = x + 1/k. Clearly

χ(L⊗k ⊗ I
xk
Z /I

xk+1
Z ) = χ(L⊗k ⊗ I

xk
Z ) − χ(L⊗k ⊗ I

xk+1
Z ).

By (3.6) and the Taylor expansion of ai(x) this equals, for k ≫ 0,

[a0(x) − a0(x̄)]kn + [a1(x) − a1(x̄)]kn−1 + · · ·

= −a′0(x)kn−1 −
a′′0(x)

2
kn−2 − a′1(x)kn−2 + O(kn−3).

(Note that this holds when n = 1 for then a′′0(x) = a′1(x) = 0.) Hence

(3.17) α1(x) = −a′0(x) and α2(x) = −a′1(x) −
a′′0(x)

2
.

Thus the denominator of the quotient slope of Z is
∫ c

0
ã0(x)dx =

∫ c

0

∫ x

0
α1(y)dydx =

∫ c

0
(c − x)α1(x)dx.

The calculation for the numerator is similar. q.e.d.

4. Slope stability as a necessary condition for K-stability

4.1. Deformation to the normal cone. Fix a subscheme Z of (X, L).
Let X be the deformation to the normal cone of Z, so X is the blow up
of X × C along Z × {0}, and denote the exceptional divisor by P . The

central fibre X0 is isomorphic to the blow up X̂ glued to P along E (see
Figure 1). When Z is a submanifold, E = P(νZ) and P is isomorphic to
the projective completion of the normal bundle of Z, i.e., P = P(νZ⊕C),
with a copy Z ′ := P(C) of Z as its zero section.

Xt

Z
′

E

Z × {t}

X0 = X̂ ∪E P

Figure 1. The deformation to the normal cone of Z.
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Consider the product action on (X×C, L) (where as usual we suppress
the pullback map on L), which acts trivially on (X, L) but scales C with
weight 1. This fixes Z × {0} and so induces an action on X and on P .

The induced action on the central fibre X0 = X̂ ∪E P is trivial on X̂,
and λ ∈ C× acts on P = P(νZ ⊕ C) as diag(1, λ).

We define a Q -line bundle on X by Lc = L(−cP ) for c ∈ Q.

Lemma 4.1. For rational c ∈ (0, ǫ(Z)), the line bundle Lc is ample.

Proof. Let p : X → X be the composition of the projections, and let
c = r/q. Choose q and r sufficiently large so that L⊗q and L⊗q(−rE)
are globally generated. Then away from Z ′ = P(C) ⊂ P , the line

bundle L⊗q
c = L⊗q(−rP ) is generated by p∗H0(L⊗q ⊗I r

Z), while on Z ′,

it is generated by trp∗H0(L⊗q). That is, L⊗q
c is globally generated for

all 0 < c < ǫ(Z) and so nef for c ∈ [0, ǫ(Z)]. Since Lc is ample for c
sufficiently small, the fact that the ample cone is convex and the interior
of the nef cone [Kl] implies that Lc is ample for rational 0 < c < ǫ(Z).

q.e.d.

4.2. Slope stability as an obstruction to K-stability. Slope sta-
bility with respect to Z is precisely K-stability restricted to test configu-
rations arising from the degeneration to the normal cone of Z. In ([RT]
Theorem 4.18) it is shown that K-semistability implies slope semistabil-
ity. Moreover, using the algebraic definitions of slope (polystability) in
[RT] it is also shown that K-(poly)stability implies slope (poly)stability.
Here we give a proof of the part of this result which is sufficient for our
examples and applications to cscK metrics.

Theorem 4.2. Suppose (X, L) is K-semistable. Then it is slope
semistable with respect to any smooth subscheme Z.

Proof. We need to show that µc(OZ) ≥ µ(X) for all 0 < c ≤ ǫ(Z).
By continuity of µ with respect to c it is sufficient to consider rational
c < ǫ(Z). So Lc is ample (4.1) and hence so is Lc|X0

.
By the definition of the blow up in IZ×{0} ⊂ OX×C (i.e. IZ + (t) ⊂

C[t] ⊗OX , where t is the coordinate on C), for k ≫ 0 and ck ∈ N,

H0(X ,L⊗k
c ) = H0(X , (L(−cE))⊗k)(4.3)

= H0(X × C, L⊗k ⊗ I
ck
Z×{0})

= H0(X × C, L⊗k ⊗ (IZ + (t))ck)

=

ck⊕

i=1

tck−iH0(X, L⊗k ⊗ I
i
Z) ⊕ tckC[t]H0(L⊗k).

Similarly, for k sufficiently large and j ≥ 1,

0 = Hj(X ,L⊗k
c ) =

ck⊕

i=1

tck−iHj(X, L⊗k ⊗ I
i
Z) ⊕ tckC[t]Hj(L⊗k),
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so that

(4.4) Hj(L⊗k ⊗ I
i
Z) = 0 for j ≥ 1, k ≫ 0, ck ∈ N, i = 0, . . . , ck.

Thus, for instance, H0(L⊗k ⊗ I i
Z)

/
H0(L⊗k ⊗ I

i+1
Z ) = H0

(
L⊗k ⊗(

I i
Z/I

i+1
Z

))
= H0(L⊗k|Z ⊗ Siν∗

Z). So from (4.3) we get the splitting,
for k ≫ 0,

H0(L⊗k
c |X0

)(4.5)

= H0(X ,L⊗k
c )

/
tH0(X ,L⊗k

c )

= H0(X, L⊗k ⊗ I
ck
Z ) ⊕

ck−1⊕

i=0

tck−iH0(L⊗k|Z ⊗ Siν∗
Z),

of the functions on X0 into those on X̂ and the polynomials on the
νZ-fibres of P . In particular h0(L⊗k

c |X0
) equals

h0(L⊗k ⊗ I
ck
Z ) +

ck−1∑

i=0

(
h0(L⊗k ⊗ I

i
Z) − h0(L⊗k ⊗ I

i+1
Z )

)

= h0(L⊗k) = P(k).

This proves flatness, so (X ,Lc) is a test configuration with general fibre
(X, L).

Now C× acts trivially on (X, L) and so also on ν∗
Z and L|Z , but

with weight −1 on t, so (4.5) is also the weight space decomposition of
H0(L⊗k

c |X0
) into the pieces of weight −(ck − i). Thus the total weight

of the action on H0(L⊗k
c |X0

) is

w(k) = −
ck−1∑

i=0

(ck − i)h0(L⊗k|Z ⊗ Siν∗
Z)

= −
ck−1∑

i=0

(ck − i)χ(L⊗k|Z ⊗ Siν∗
Z)

= −
ck−1∑

i=0

(ck − i)
(
α1(i/k)kn−1 + α2(i/k)kn−2 + O(kn−3)

)
,

using the fact that Hj(L⊗k ⊗ Siν∗
Z) = 0 for j > 0, k ≫ 0, ck ∈ N, i =

0, . . . , ck − 1 (by (4.4) and Siν∗
Z = I i

Z/I
i+1
Z ). Here the αi are as in

(3.16) and (3.17). The kn+1 and kn terms of w(k) can be calculated
using the trapezium rule (Lemma 4.7), giving w(k) = b0k

n+1 + b1k
n +
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O(kn−1), where

b0 = −

∫ c

0
(c − x)α1(x)dx =

∫ c

0
a0(x)dx − ca0,(4.6)

b1 = −

∫ c

0

(
(c − x)α2(x) +

α1(0)

2

)
dx

=

∫ c

0

(
a1(x) +

a′0(x)

2

)
dx − ca1,

where each line follows from integration by parts and (3.17).
As (X, L) is assumed to be K-semistable, the Donaldson-Futaki in-

variant F1 of the test configuration (X ,Lc) is nonnegative so

0 ≤ F1 =
1

a2
0

(b0a1 − b1a0) =
−b0

a0

(
b1

b0
−

a1

a0

)
=

−b0

a0
(µc(OZ) − µ(X)) ,

where the last equality uses (3.13) and (4.6). Using (3.17, 3.10), α1(x) =
−a′0(x) is positive for 0 < x < ǫ(Z). By equation (4.6) this shows that
b0 < 0, and hence µc(OZ) < µ(X) as required. q.e.d.

Lemma 4.7. Let f(x) be a polynomial. Then

ck−1∑

i=0

(ck − i)f(i/k) =

∫ c

0

(
k2(c − x)f(x) +

k

2
f(0)

)
dx + O(k0).

Proof. If f(x) = α is constant then both sides equal α
2 ck(ck + 1).

So by linearity we may assume f(x) = xm, m ≥ 1. Using
∑k

i=0 im =
1

m+1km+1 + 1
2km + O(km−1) we get

ck−1∑

i=0

(ck − i)f(i/k) = k−m
ck∑

i=0

(ck − i)im

=

∫ c

0
k2(c − x)xmdx + O(k0),

as required. q.e.d.

Although we will not use it, we indicate how this result extends to
K-stability.

Theorem 4.8. Suppose (X, L) is analytically K-stable. Then it is
slope stable with respect to any smooth subscheme.

Proof. Suppose that µc(OZ) = µ(X) for some 0 < c < ǫ(Z) (with
c possibly irrational). By convexity of the ample cone and (4.1) Lc

is ample and thus the degeneration to the normal cone (X ,Lc) is an
analytic test configuration. For rational d close to c we have from the
previous proof a test configuration (X ,Ld) with Futaki invariant

F1(d) =
−b0

a0
(µd(OZ) − µ(X)) .
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Thus the Futaki invariant of (X ,Lc) is

F1 = lim
d→c

F1(d) = lim
d→c

−b0

a0
(µd(OZ) − µ(X)) = 0

since limd→c µd(OZ) − µ(X) = µc(OZ) − µ(X) = 0. Thus (X, L) is not
analytically K-stable.

Now if c = ǫ(X) is rational and µc(OZ) = µ(X) then it is shown in
[RT] Theorem 4.18 that (X, L) is not algebraically K-stable, and thus
is not analytically K-stable either. q.e.d.

4.3. Toric test configurations. For toric varieties we can relate Don-
aldson’s weight computation [Do3] to ours by an application of Fubini’s
theorem; i.e. a change of order of integration. Let XP = (X, L) be
toric, defined by an integral polytope P ⊂ Rn such that kP ∩ Zn ∼=
H0(X, L⊗k). Let f : P → R be a strictly positive, rational, concave and
piecewise linear function. Then the polytope

Q = {(p, t) ∈ P × R : 0 ≤ t ≤ f(p)}

defines a toric variety with a Q -polarisation L, a C×-action and an
equivariant flat map to P1. Removing the fibre over {∞} ∈ P1 gives a
test configuration (X ,L) with general fibre (X, L) and C× acting on
the section (s, i) ∈ kQ ∩ Zn+1 ∼= H0(X ,L⊗k) with weight −i.

Let #(kQ) denote the number of lattice points in kQ. When f is
integral, Donaldson [Do3] shows that the weight of this degeneration is
wk = #(kP ) − #(kQ) = b0k

n+1 + b1k
n + O(kn−1) where

(4.9) b0 = −

∫

P
fdµ = − vol(Q), b1 = −

1

2

∫

∂P
fdσ.

Here dµ is the standard measure on Rn and dσ is defined by requiring
that on any face of P given by a primitive integral conormal vector
h : Rn → R, we have dσ ∧ dh = ±dµ.

Any toric subvariety of X is defined by a face of P . Such a face is
an intersection of codimension 1 faces. Pick primitive integral conormal
vectors {fi}

m
i=0 to the faces, with their signs chosen so that fi ≥ 0 on

P . Then the ideal of the subvariety is generated by the monomials

{
p ∈ P ∩ Zn : fi(p) ≥ 1 for some i

}
=

{
p ∈ P ∩ Zn :

m∑

i=1

fi(p) ≥ 1

}
,

since fi(p) ≥ 0 for all p ∈ P . Therefore, more generally, the ideal of
any integrally closed toric subscheme Z (with multiplicities mi in the
direction of fi) is generated by the monomials

(4.10)

{
p ∈ P ∩ Zn :

m∑

i=1

fi(p)

mi
≥ 1

}
.

(We have lost nothing by passing to the integral closure of IZ ; this cor-
responds to taking the normalisation of the deformation to the normal
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cone of Z, and in testing K- or slope stability one need only consider nor-
mal test configurations (by Proposition 5.1 of [RT]) since their Futaki
invariants are smaller and so less stable.)

The deformation to the normal cone (X ,Lc) of this Z corresponds
to taking the positive, rational, concave, piecewise linear function f =
min

(
c,

∑m
i=1

fi

mi

)
in Donaldson’s construction (see Figure 2, which sho-

uld of course be compared to Figure 1). (This f is ≥ 0 but not every-
where > 0, so to get the right geometry we must add a positive constant
to it. Since the resulting Donaldson-Futaki invariant is independent of
the constant, we calculate without it.) Thus f : P → [0, c] and

(4.11) f−1[x, c] = Px :=

{
p ∈ P :

m∑

i=1

fi(p)

mi
≥ x

}
,

which from (4.10) is seen to have integral points in 1
kZn which form a

basis for H0(X, L⊗k ⊗ I xk
Z ). So comparing coefficients in h0(X, L⊗k ⊗

I xk
Z ) = #(kPx) = vol(Px)kn + 1

2 vol(∂Px)kn−1 + O(kn−2) yields

(4.12) vol(Px) = a0(x), vol(∂Px) = 2a1(x).

f = c f =
Pm

i=1

fi
mi

Q
Pc

P0

p

0

Z

π

P

c

Figure 2. Toric representation Q = graph(f) of the de-
formation to the normal cone of Z ⊂ XP .

To relate Donaldson’s weight formula (4.9) to ours (4.6) we change

the order of integration with respect to the two projections Q
p
→ P and

Q
π
→ R. That is, using (4.12),

(4.13)

∫

P
f =

∫

P
p∗1 =

∫

Q
1 =

∫ c

0
π∗1 =

∫ c

0
vol(Px)dx =

∫ c

0
a0(x)dx.
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Similarly we can compute the volume of ∂Q\(P0 ∪ Pc) (the “sides”
of Q) as

∫ c
0 (π|∂Q)∗1 =

∫ c
0 vol(∂Px)dx = 2

∫ c
0 a1(x)dx using (4.12). Now

vol(P0) = a0 and vol(Pc) = a0(c), so vol(∂Q) = 2
∫ c
0 a1(x)dx+a0+a0(c).

But this can be computed differently as the volume of the shaded area in
Figure 2, plus the volumes of the top and bottom. If f is integral (which
is always assumed in [Do3]) then the top and bottom are (piecewise)
integrally affine isomorphic by the projection p; equivalently they have
the same number of integral points and so the same volume a0. If f is
rational there are less points on the top face, so the result has larger
Futaki invariant, i.e. it is more stable. Alternatively we can multiply f
by an integer N to make it integral; this corresponds to taking the Nth
power of the C×-action and normalising the resulting test configuration.
Again, by Proposition 5.1 of [RT], this has Futaki invariant more stable
than (N times) the old Futaki invariant. So either way we may as well
assume, like Donaldson, that f is integral.

The area of the shaded region is computed by
∫
∂P f , so we have found

that

2

∫ c

0
a1(x)dx + a0 + a0(c) =

∫

∂P
f + 2a0,

and so

(4.14)
1

2

∫

∂P
f =

∫ c

0
a1(x)dx+

1

2
(a0(c)−a0) =

∫ c

0

(
a1(x) +

a′0(x)

2

)
dx.

(4.13) and (4.14) differ from −b0 and −b1 in (4.6) by ca0 and ca1 respec-
tively, which cancel in the Futaki invariant (2.3) (or can be removed by
adding c to f). So we recover Donaldson’s formulae in this case.

4.4. Extension to Kähler manifolds. The definition of K-(poly/
semi)stability given in (2.4) cannot be defined when the Kähler class
is not rational, but slope (poly/semi)stability can. The same issue
arises for bundles; GIT cannot construct moduli for bundles over non-
projective manifolds, but the slope criterion for stability generalises to
all Kähler manifolds and Uhlenbeck-Yau proved that it is equivalent to
the existence of a HYM connection in this generality.

To define slope stability we must define the slope of an analytic sub-

space Z of a Kähler manifold (X, ω). We work on the blow up π : X̂ → X
of X in Z, with exceptional divisor E. By the singular Hirzebruch-
Riemann-Roch formula for analytic spaces [Ful] we can define a Todd

homology class of X̂, and then define the polynomials ai(x) by the for-
mula ∫

Td ( bX)
exp(kπ∗ω − xke) = a0(x)kn + a1(x)kn−1 + O(kn−2).

Here e denotes any differential form Poincaré dual to E, and when X
is projective with ω = c1(L) this gives the same definition as (3.3). In
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particular a0(x) = 1
n!

∫
bX
(π∗ω − xe)n, while we can write a1(x) in terms

of any resolution of singularities p : X → X̂:

a1(x) =
1

2(n − 1)!

∫

X
((p ◦π)∗ω − xp∗e)n−1c1(X).

Take any c > 0 such that ω−ce has nonnegative volume on any analytic

subvariety of X̂ (if X̂ is smooth then this is the condition that ω − ce

be in the closure of the Kähler cone of X̂ [DP]). Then define the slope
of IZ , with respect to ω and c, as before:

µc(IZ) :=

∫ c
0

(
a1(x) +

a′

0
(x)
2

)
dx

∫ c
0 a0(x)dx

.

We say that X is slope semistable if µc(IZ) ≤ µ(X) for all proper
Z ⊂ X and c such that ω − ce has nonnegative volume on any analytic

subvariety of X̂. For slope stability we require that µc(IZ) < µ(X)
for all c such that ω − ce is the pullback of a Kähler form on a Kähler
variety. We define X to be slope polystable if it is slope semistable and
µc(IZ , ω) = µ(X) implies that ω−ce on the deformation to the normal
cone of Z is pulled back from a map to the product X × C.

Since the C×-action on the degeneration to the normal cone is trivial
on the central fibre except on the component P , one can use the local-
isation formula on P to calculate the Calabi-Futaki invariant in terms
of the resulting vector field. This gives an alternate, but fundamentally
equivalent, definition of slope for an analytic Z in a Kähler manifold.
Then one would expect that the usual argument that the derivative of
the Mabuchi functional is the Futaki invariant of the central fibre (de-
fined in terms of the vector field) should show that if X is not slope
polystable then the Mabuchi functional is not proper, and so the class
[ω] does not admit a cscK metric.

5. Examples

5.1. Slope of divisors and curves.

Theorem 5.1. Let (X, L) be a polarised manifold of dimension n ≥ 2
and suppose that Z is a smooth curve in X of genus g with normal
bundle νZ . Then

µc(OZ) =
n2(n2 − 1)(L.Z) − cn(n + 1)[(n − 2)c1(νZ) + 2(g − 1)]

2nc[(n + 1)(L.Z) − cc1(νZ)]
.

Proof. The Riemann-Roch theorem for curves yields

χ(L⊗k|Z ⊗ Sxkν∗
Z) = rankSxkνZ · (kL.Z −

xkc1(νZ)

n − 1
+ 1 − g)

= α1(x)kn−1 + α2(x)kn−2 + O(kn−3),
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since
c1(Siν∗

Z
)

rank SiνZ
= −i c1(νZ)

n−1 . Now rankSxkνZ =
(
xk+n−2

n−2

)
equals

1

(n − 2)!

(
xn−2kn−2 +

(n − 2)(n − 1)

2
xn−3kn−3 + O(kn−4)

)
.

(This makes sense even if n = 2 as in that case the kn−3 term vanishes.)
Thus

α1(x) =
xn−2

(n − 2)!

(
L.Z −

xc1(νZ)

n − 1

)
,

α2(x) =
xn−3

(n − 2)!

(
(n − 2)(n − 1)

2

(
L.Z −

xc1(νZ)

n − 1

)
+ x(1 − g)

)
.

Integration and rearranging (3.15) gives the formula for µc(OZ). q.e.d.

Theorem 5.2. Suppose that Z is a divisor in (X, L). Then

µc(OZ) =
n

(
Ln−1.Z −

∑n−1
j=1

(
n−1

j

) (−c)j

j+1 Ln−1−j .Zj .(KX(Z))
)

2
∑n

j=1

(
n
j

) (−c)j

j+1 Ln−j .Zj
.

Proof. As Z is a divisor, X̂ = X so (3.4, 3.5)

ã0(x) = a0 − a0(x) =
1

n!
(Ln − (L−xZ)n) = −

1

n!

n∑

j=1

(
n

j

)
Ln−j .(−xZ)j ,

and

ã1(x) +
ã′0(x)

2
=

1

2(n − 1)!

(
−KX .Ln−1 + (KX(Z)).(L − xZ)n−1

)

=
1

2(n − 1)!

n−1∑

j=1

(
n − 1

j

)
Ln−1−j .(−xZ)j .(KX(Z))

+
1

2(n − 1)!
Ln−1.Z.

Integrating these expressions gives the required formula. q.e.d.

The formulae (5.1) and (5.2) agree for curves in surfaces; the result
simplifies to the following.

Corollary 5.3. Let Z be a smooth curve in a smooth polarised surface
(X, L). Then

µ(X) = −
KX .L

L2
,

µc(OZ) =
3[2L.Z − c(KX .Z + Z2)]

2c(3L.Z − cZ2)
.

If Z is a smooth rational curve then

µc(OZ) =
3(L.Z + c)

c(3L.Z − cZ2)
.
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We use these formulae in Section 5.6 to give examples of unstable
rational surfaces.

5.2. Manifolds with nonpositive first Chern class. The existence
of Kähler-Einstein metrics when c1(X) ≤ 0 gives K-semistability in
these cases by the results of Donaldson [Do5]. We give a direct proof
that smooth subschemes Z ⊂ X do not destabilise; a more general proof
for arbitrary Z (and extended to varieties X with canonical singulari-
ties) is given in Theorem 8.4 of [RT].

Theorem 5.4. A polarised manifold (X, L) is slope stable with re-
spect to smooth subschemes if either

1) KX is numerically trivial, or
2) KX is ample and L is a multiple of KX .

Proof. In both cases, KX ∼ αL is numerically equivalent to a non-
negative multiple α ≥ 0 of the polarisation. So µ(X) = a1/a0 =
−nKX .Ln−1/2Ln = −nα/2. If Z ⊂ X is a codimension p submanifold,
the canonical divisor of the blow up is K bX

= KX((p − 1)E). Letting
Lx := L(−xE),

−µ(X)a0(x) + a1(x) =
α

2(n − 1)!
Ln

x −
1

2(n − 1)!
K bX

.Ln−1
x

= −
1

2(n − 1)!
(αx + p − 1)Ln−1

x .E ≤ 0,

since Lx is nef for x ∈ (0, ǫ(Z)). As a′0(x) < 0 (3.11), integration gives

−µ(X)

∫ c

0
a0(x)dx +

∫ c

0
a1(x) +

a′0(x)

2
dx < 0 for c ∈ (0, ǫ(Z)].

Rearranging this gives slope stability, µc(IZ) < µ(X). q.e.d.

With more work these results can be extended to show that when
KX is nef and Kn

X > 0, then X is slope stable for L sufficiently close to

KX . More precisely, using additive notation (aL + bK := L⊗a ⊗ K⊗b)
for line bundles,

Theorem 5.5. Fix a polarised manifold (X, L) with KX nef and
Kn

X > 0. Then (X, L) is slope stable with respect to smooth subschemes
if

1) 2µ(X, L)L + nKX is nef, or
2) −2µ(X, L)L − nKX is nef.

Moreover, for any divisor G there is a δ0 > 0 such that if 0 ≤ δ < δ0

and L = KX(δG) is ample then (X, L) is slope stable with respect to
smooth subschemes.
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Remark 5.6. Suppose KX is ample. Then there exists an open set
around −[c1(X)] of classes which admit cscK metrics [LeBS], so one
has slope-semistability for these classes.

It is shown in [We] that if

−2µ(X, L)L − (n − 1)KX

is ample then the Mabuchi functional associated to the class c1(L) is
bounded from below, confirming the second result of Theorem 5.5.

Proof. Fix a Z and suppose 0 < x < c ≤ ǫ(Z). Let

f(x) = 2n!(n − 1)![a0a1(x) − a1a0(x)].

We will show that
∫ c
0 f(x)dx ≤ 0 for all smooth subschemes Z and all

0 < c ≤ ǫ(Z), which implies µc(IZ) < µ(X, L) since a′0(x) < 0. For the
third part we will show this holds as long as δ < δ0 where δ0 will be
chosen independently of Z and c.

For x ∈ (0, ǫ(Z)), Lx := L(−xE) is nef, so as K bX
− KX = (p − 1)E

is effective,

f(x) = −(Ln)Ln−1
x .K bX

+ (KX .Ln−1)Ln
x

≤ −(Ln)Ln−1
x .KX + (KX .Ln−1)Ln

x

= Ln−1
x .(B − x(KX .Ln−1)E),

where

B := (KX .Ln−1)L − (Ln)KX

= (KX .Ln−1)(L − KX) − ((L − KX).Ln−1)KX

= δ(KX .Ln−1)G − δ(G.Ln−1)KX .

Notice that B.Ln−1 = 0. Now, if −B = Ln

n (2µ(X, L)L + nKX) is nef
then, as Lx is nef, f(x) ≤ 0, which proves (1). When n = 1 (so X is
a smooth curve), B is numerically trivial so f(x) ≤ 0 and we are done.
So we suppose that n ≥ 2.

As B = O(δ) we certainly have f(x) ≤ 0 for δ sufficiently small for
any fixed value of x. However, since such a choice of δ is not uniform in
x, we integrate:

(5.7)

∫ c

0
f(x)dx = I1 − (KX .Ln−1)I2,

where I1 =
∫ c
0 Ln−1

x .Bdx and I2 =
∫ c
0 xLn−1

x .Edx. Then

Ln−1
x .B = Ln−1.B + (Lx − L).

n−2∑

j=0

Lj .Ln−2−j
x .B

= −x
n−2∑

j=0

Lj .Ln−2−j
x .E.B, as Ln−1.B = 0.
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We claim that for any a and b,

n−2∑

j=0

∫ c

0
xaj(a − xb)n−2−jdx =

c2

n

n−2∑

j=0

(j + 1)aj(a − cb)n−2−j ,

which can be shown by comparing the coefficient of cn−j on both sides
for j = 0, . . . , n − 2 and using the identity

i∑

j=0

(j + 1)

(
n − 2 − j

i − j

)
=

n

n − i

i∑

j=0

(
n − 2 − j

i − j

)
for i = 0, . . . , n − 2.

Hence

(5.8) I1 =

∫ c

0
Ln−1

x .Bdx ≤ c2
n−2∑

j=0

Lj .Ln−2−j
c .E.B.

Similarly, as
∫ c

0
x(a − xb)n−1dx =

c2

n(n + 1)

n−1∑

j=0

(n − j)aj(a − cb)n−1−j ,

(5.9) I2 =

∫ c

0
xLn−1

x .Edx ≥
c2

n(n + 1)

n−2∑

j=0

Lj+1.Ln−2−j
c .E.

Putting (5.7), (5.8), (5.9) together
∫ c

0
f(x)dx ≤ I1 − (KX .Ln−1)I2

≤ −c2

(
B +

(KX .Ln−1)

n(n + 1)
L

)
.
n−2∑

j=0

Lj .Ln−2−j
c .E.

Recall that L and Lc are nef classes. So it is now sufficient to prove

that B + (KX .Ln−1)
n(n+1) L is also nef. But

B +
(KX .Ln−1)

n(n + 1)
L =

Ln

n

(
−2µ(X, L)L − nKX −

2µ(X, L)

n(n + 1)
L

)
.

As µ(X, L) ≤ 0, this is nef when −2µ(X, L)L − nKX is, proving (2).
To prove the third part we must show that

∫ c
0 f(x) ≤ 0 uniformly with

respect to δ. Notice that the statement of the theorem is unchanged if
we scale G by some positive number. So without loss of generality we
suppose that KX(G) is ample. Now

B +
(KX .Ln−1)

n(n + 1)
L =

(KX .Ln−1)

2n(n + 1)
(L + (2n(n + 1) + 1)δG)

+

(
(KX .Ln−1)

2n(n + 1)
− δ(G.Ln−1)

)
KX .
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For positive δ sufficiently small the line bundle

L + (2n(n + 1) + 1)δG = KX + (2n(n + 1) + 2)δG

is ample, for it lies on the line between KX (which is nef) and KX(G)
(which is ample). Moreover

(KX .Ln−1)

2n(n + 1)
− δ(G.Ln−1) =

Kn
X

2n(n + 1)
+ O(δ)

is positive for δ sufficiently small, since Kn
X > 0. Hence B + (KX .Ln−1)

n(n+1) L

is nef for δ sufficiently small, and the proof is complete. q.e.d.

5.3. Slope stability of smooth curves. Since smooth curves always
have cscK metrics, they should be stable. We give a direct proof that
they are slope (poly)stable:

Theorem 5.10. Any smooth polarised curve (Σ, L) of genus g is
slope stable if g ≥ 1 and strictly slope polystable if g = 0.

Proof. Any nonempty subscheme Z is a divisor of degree d > 0, so

χ(L⊗k ⊗ I
xk
Z ) = k deg L − xdk + 1 − g

which shows that ã0(x) = xd and ã1(x) = 0. Thus µc(OZ) = cd
c2d

= 1
c >

0 ≥ 1−g
deg L = µ(X) for g ≥ 1, proving slope stability.

For g = 0, c may take values up to and including ǫ(Z) = deg L/d,

since L⊗d⊗I
deg L
Z = OP1(d deg L−d deg L) = OP1 is globally generated.

Thus µc(OZ) ≥ d
deg L ≥ 1

deg L = µ(X) with equality (strict semistability)

only for d = 1, i.e. Z a single point, and c = ǫ(Z). Since the deformation
to the normal cone of a single point on P1 blows down to P1×C (with a
nontrivial C×-action) from which the relevant line bundle Lǫ pulls back,
we find P1 is in fact slope polystable. q.e.d.

Remark 5.11. In Corollary 6.7 of [RT] it is shown that, for smooth
curves, slope (semi/poly)stability is equivalent to K-(semi/poly)stabil-
ity. Thus smooth curves are algebraically K-stable for g ≥ 1 and alge-
braically K-polystable if g = 0.

5.4. Projective bundles. Fix a polarised manifold (B,OB(1)) of di-
mension b, and let E be a vector bundle on B with r +1 := rankE ≥ 2.
We show that the stability of P(E) is related to slope stability of the
bundle E (as defined in 5.4.1) and slope stability of the base B. Let
n = dim P(E) = b + r and

Lm = OP(E)(1) ⊗OB(m),

which is ample for m sufficiently large.



AN OBSTRUCTION TO THE EXISTENCE OF CSCK METRICS 451

Theorem 5.12. If (P(E), Lm) is slope semistable for all m ≫ 0
then E is a slope semistable vector bundle and (B,OB(1)) is a slope
semistable manifold. Moreover, there is an m0 which depends only on
E and (B,OB(1)) such that if (P(E), Lm) is slope semistable for some
m ≥ m0 then E is a slope semistable vector bundle.

Thus if E is a strictly slope unstable bundle or if (B,OB(1)) is a
strictly slope unstable manifold, then P(E) does not admit a cscK metric
in [c1(Lm)] for m ≫ 0.

For bundles (of any rank) over curves, we get stronger results.

Theorem 5.13. Suppose B is a smooth curve of genus g ≥ 1 and
that Lm is ample. If (P(E), Lm) is slope (semi/poly)stable then E is
slope (semi/poly)stable.

If E is polystable then P(E) has a cscK metric in every Kähler class.
Conversely if E is strictly unstable then P(E) does not admit a cscK
metric in any rational Kähler class. Finally, if E is not polystable then
P(E) is not algebraically K-polystable.

The proofs appear after a calculation of the relevant slopes and Se-
shadri constants. It is well known that if E is polystable and B is a
curve then P(E) admits a cscK metric in every Kähler class [BdB]. So
Theorem 5.13 gives an almost complete converse. If, as expected, a cscK
metric implies algebraic K-polystability then Theorem 5.13 would be a
full converse. Moreover it would imply that slope polystability is equiv-
alent to algebraic K-polystability for projective bundles over curves of
genus g ≥ 1.

There is also a partial converse to Theorem 5.12. Suppose that E is
slope stable, and B is a manifold with aut(B) = 0 and a cscK metric in
c1(OB(1)). Then there exists a cscK metric on P(E) in c1(Lm) for m
sufficiently large [Ho].

In the rankE = 2, dimB = 1 case, it is known that if a ruled surface
P(E) has a cscK metric in any class then E is a polystable bundle. This
is proved by [BdB] in the scalar-flat case, by [LeB] in the case that
g ≥ 2, −

∫
X c1(KX).c1(L) < 0, and [AT] in general.

The stability of ruled surfaces has also been studied by Morrison
[Mo]. If E is unstable then P(E) is Chow unstable with respect to
what he calls “good” polarisations (in particular (P(E), L⊗k

m ) is Chow
unstable for k ≫ 0). By [Do2] this implies that P(E) does not have a
cscK metric in any class. Morrison also shows that if E is stable then
for suitable m, (P(E), Lm) is Chow stable, and he conjectures that this
holds for (P(E), L⊗k

m ) with k ≫ 0. Since there exists a cscK metric in
c1(Lm), this conjecture follows from [Do2] when g ≥ 2 and E is simple.

Remark 5.14. Suppose that E → B has a subbundle F . Let X

be the degeneration to the normal cone of P(F ) ⊂ (P(E), Lm) with
c = ǫ(P(F )) = 1. Then Lc is only semi-ample but not ample, and
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contracts a component of the central fibre X0 (test configurations with
semi-ample polarisation are studied in Proposition 5.1 of [RT]). This
contraction is a test configuration which is the projectivisation of the
degeneration of bundles taking the extension

0 → F → E → G → 0, defined by e ∈ Ext1(G, F ),

to the direct sum F ⊕ G (via the family of extensions λe, λ ∈ C). If
e = 0 (i.e. E = F⊕G to begin with) then we get a product degeneration.
We show below that if F and E have the same slope then the Futaki
invariant is 0 (on curves, and to the two top orders in m for general B).
So we recover the usual notion of polystability for bundles.

5.4.1. Slope stability of vector bundles. For brevity write µ(B) =
µ(B,OB(1)). For any coherent sheaf E on B it is convenient to define

µE =
deg E

aB
0 (b − 1)! rankE

+ µ(B),

where χ(OB(k)) = aB
0 kb + aB

1 kb−1 + O(kb−2). Note that this differs
from the usual definition of slope for a sheaf. However, for any coherent
subsheaf F ,

µE − µF =
1

aB
0 (b − 1)!

(
deg E

rankE
−

deg F

rankF

)
.

Thus E is a slope stable (resp. semistable) vector bundle if and only if
µF < µE (resp. µF ≤ µE) for all coherent subsheaves F < E. And E
is polystable if and only if it is a direct sum E = ⊕Fi of slope stable
sheaves, with µFi

= µE for all i.

Lemma 5.15. Let E and F be torsion free coherent sheaves on B.
Then

1) χ(E ⊗OB(m)) = aB
0 rankE(mb + µEmb−1) + O(mb−2), where the

O(mb−2) is understood to be zero when b = dim B = 1,
2) µ

SkE∗
= (1 + k)µ(B) − kµE,

3) µE⊗F = µE + µF − µ(B),
4) if F < E and E/F is also torsion free then

(rankE)µE = (rankF )µF + (rank(E/F ))µE/F .

Proof. From the definition of µE and the Riemann-Roch theorem,

χ(E ⊗OB(m)) =

∫

B
ch(OB(m))ch(E)TdB

=

∫

B
emc1(OB(1))(rankE + c1(E) + · · · )TdB

= aB
0 rankE(mb + µEmb−1) + O(mb−2).
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Now as E is torsion free, we can calculate the degrees of E and SkE∗

by restricting to the set where E is locally free, since its complement
has codimension ≥ 2. We compute µ

SkE∗
to be

deg SkE∗

aB
0 (b − 1)! rankSkE

+ µ(B) = −k
deg E

aB
0 (b − 1)! rankE

+ µ(B)

= (1 + k)µ(B) − kµE ,

where the second equality follows from the splitting principle. Also,

µE⊗F =
rankF deg E + rankE deg F

aB
0 (b − 1)! rankE rankF

+ µ(B) = µE + µF − µ(B).

Finally, if F < E then comparing the mb−1 terms in χ(E ⊗OB(m)) =
χ(F ⊗OB(m)) + χ((E/F )⊗OB(m)) gives (rankE)µE = (rankF )µF +
(rank(E/F ))µE/F . q.e.d.

5.4.2. Seshadri constants of projective subbundles. For the rest
of this section let Z = P(F ), so the Seshadri constant ǫ(P(F ), Lm) is
defined as in (3.2).

Lemma 5.16. For E be a vector bundle over a curve B, degBE∗ =
deg P(E)OP(E)(1).

Proof. Let ω denote c1(OP(E)(1)) on P(E). The general Grothendieck

formula
∑r+1

i=0 ωr+1−ici(E) = 0 reduces over a curve to −c1(E)ωr =
ωr+1, whose left hand side is −degB E. q.e.d.

Proposition 5.17. There is an m0 (depending only on E and the
pair (B,OB(1)) such that for any m ≥ m0 and any saturated subsheaf
F of the bundle E (i.e. E/F is torsion free) with µF ≥ µE we have
ǫ = ǫ(P(F ), Lm) = 1.

Suppose that B is a curve, F < E is saturated, E/F is semistable
and µF ≥ µE. Then for any m such that Lm is ample, ǫ(P(F ), Lm) = 1

and the global sections of L⊗k
m ⊗ I k

P(F ) generate I k
P(F ) for k ≫ 0.

Proof. Since P(Fp) ⊂ P(Ep) is a linear subspace for any p ∈ B, and
Lm|P(Ep) = OP(Ep)(1), it follows that ǫ ≤ 1. To show ǫ is at least 1 it is
sufficient to show that Lm ⊗ IP(F ) is generated by global sections.

Let G = E/F . As the set of quotients G of E with µG ≤ µE is
bounded ([HL] Lemma 1.7.9) there is an m0 (depending only on E and
(B,OB(1))) such that for all m ≥ m0, G∗(m) is globally generated and
has no higher cohomology and Lm is ample.

Working on P(E), OP(E)(−1) is a subbundle of (the pullback of) E
giving a canonical element u ∈ Hom(OP(E)(−1), G) obtained by com-
position with the projection from E to G. Thinking of u as a section of
G ⊗OP(E)(1), its zero set is precisely P(F ).

Now turn to P = P(H0(Lm)∗) = P(H0(E∗(m))∗) and let m ≥ m0.
The exact sequence 0 → H0(G∗(m)) → H0(E∗(m)) → H0(F ∗(m)) → 0
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yields a canonical section v of H0(G∗(m))∗ ⊗ OP(1) whose zero set is
P(H0(F ∗(m))∗).

Since G∗(m) is globally generated, G(−m) injects into H0(G∗(m))∗.
Tensoring with Lm shows that G⊗OP(E)(1) injects into H0(G∗(m))∗ ⊗
Lm, and u maps to v. Thus P(F ) is the intersection of P(E) with the
subspace P(H0(F ∗(m))∗) of P. Hence Lm⊗IP(F ) is generated by global
sections, so ǫ = 1 as claimed.

Now suppose that B is a curve, m is chosen so that Lm is ample,
µF ≥ µE , F is destabilising and saturated, and G = E/F is semistable.
Since F is saturated, G is torsion free, so both are locally free since B
is a curve. Then µE ≥ µG, so

deg(G∗ ⊗OB(m)) ≥ deg(E∗ ⊗OB(m)) = deg Lm > 0,

by Lemma 5.16. Thus G∗ ⊗ OB(m) is a semistable bundle of positive
degree on a curve B, so it is ample, i.e. OP(G)(1) ⊗ OB(m) is ample
([La] 6.4.11). So for k ≫ 0, OP(G)(k) ⊗ OB(km) is globally generated

and thus so is its pushdown SkG∗ ⊗OB(km).
Now π∗(L

⊗k
m ⊗ I k

P(F )) = SkG∗ ⊗ OB(mk)
(

< SkE∗ ⊗ OB(mk)
)

generates I k
P(F ) on each fibre, so the global sections of L⊗k

m ⊗ I k
P(F )

generate I k
P(F ) as claimed. From the definition of the Seshadri constant

we again get that ǫ = 1. q.e.d.

5.4.3. Slope of projective bundles. In calculating the quantities
µ(P(E), Lm) and µ(OP(F ), Lm) it is convenient to make the change of
variables

(5.18) m̃ = m +
1

b
(µ(B) − µE).

(The reader may prefer to assume that deg E = 0, in which case m̃ = m.)
We write µ(Pr) := µ(Pr,OPr(1)) = r(r + 1)/2.

Lemma 5.19. Let χ(P(E), L⊗k
m ) = a0k

n + a1k
n−1 + O(kn−2). Then

a0 and a1 are polynomials in m. In fact if m̃ is defined as in (5.18)
then

a0 =
aB

0

r!
m̃b + O(m̃b−2), and

a1 =
aB

0

r!

(
µ(Pr)m̃b + µ(B)m̃b−1

)
+ O(m̃b−2),

where if dim B = 1 we interpret O(m̃b−2) as being zero. Moreover the
O(m̃b−2) terms depend only on (B,OB(1)) and the Chern classes of E.
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Proof. Let π : P(E) → B be the projection. As Lm is relatively ample,
for k ≫ 0,

χ(L⊗k
m ) = χ(π∗(L

⊗k
m ))

= χ(SkE∗ ⊗OB(mk))

= aB
0 rankSkE ·

(
mbkb + µSkE∗m

b−1kb−1
)

+ O(mb−2)

= aB
0 rankSkE ·

(
mbkb + [(1 + k)µ(B) − kµE ]mb−1kb−1

)

+O(mb−2),

where in the last line we have used (5.15 (2)) and the O(mb−2) term is
zero if b = 1. Now the rank term is

rankSkE =

(
r + k

k

)
=

1

r!

[
kr + µ(Pr)kr−1 + O(kr−2)

]
.

Expanding and taking the kn and kn−1 terms gives

a0 =
aB

0

r!

(
mb + [µ(B) − µE ]mb−1

)
+ O(mb−2),

a1 =
aB

0

r!

(
µ(Pr)mb + µ(Pr)[µ(B) − µE ]mb−1 + µ(B)mb−1

)

+O(mb−2),

and the change of variables from m to m̃ gives the expressions in the
statement of the lemma. As the Chern character of SkE depends only
on k and the Chern classes of E ([Ha] Appendix A3) we see that
the O(mb−2) terms (and hence the O(m̃b−2) terms) depend only on
(B,OB(1)) and the Chern classes of E. q.e.d.

Lemma 5.20. Let F be a saturated coherent subsheaf of E. Define
αi(x) for P(F ) ⊂ P(E) as in Proposition 3.15, and let m̃ be defined as
in (5.18). Then,

∫ 1

0
(1 − x)α1(x)dx

=
aB

0 (s + 1)

(r + 1)!

[
m̃b +

1

r + 2
(µE − µF )m̃b−1

]
+ O(m̃b−2),

∫ 1

0

(
(1 − x)α2(x) +

α1(0)

2

)
dx

=
aB

0 (s + 1)

2(r + 1)!

(
2µ(Pr)m̃b + [2µ(B) + (r + 1)(µE − µF )] m̃b−1

)

+ O(m̃b−2),

where O(m̃b−2) is understood to be zero if dimB = 1. Both expres-
sions are polynomials in m̃, and the O(m̃b−2) terms depend only on
(B,OB(1)) and the Chern classes of E and F .
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Proof. Let F have rank s + 1 and G = E/F have rank t + 1, so

(5.21) s + t + 2 = r + 1.

Since F is saturated, G is torsion free, as is F since it sits inside a
locally free sheaf E. Thus E, F and G are locally free on an open set
U whose complement has codimension at least 2, on which their first
Chern classes (and those of their symmetric powers) can be calculated.
Since G is locally free on U , F →֒ E has constant rank so P(F |U ) sits
inside P(E|U ) as a smooth submanifold with normal bundle

ν = νP(F |U ) = π∗G ⊗OP(F )(1),

where, by abuse of notation, we let π = π|P(F ). As the complement of
V = P(E|U ) also has codimension at least 2, we can calculate α1(x) and
α2(x) on V . Then for 0 < x < 1,

π∗(L
⊗k
m ⊗ Sxkν∗) = SxkG∗ ⊗ S(1−x)kF ∗ ⊗OB(mk).

Furthermore, for 0 < x ≪ 1 the higher cohomology of both L⊗k
m ⊗I xk

P(F )

and L⊗k
m ⊗ I

xk+1
P(F ) vanish for k ≫ 0 and hence the same is true for

L⊗k
m ⊗ I xk

P(F )/I
xk+1
P(F ) , so

(5.22)

χ(SxkG∗ ⊗S(1−x)kF ∗ ⊗OB(mk)) = α1(x)kn−1 + α2(x)kn−2 + O(kn−3).

Now let R = rankS(1−x)kF · rankSxkG, which equals

1

s!t!

[
(1 − x)sks +

s(s + 1)

2
(1 − x)s−1ks−1 + · · ·

]

·

[
xtkt +

t(t + 1)

2
xt−1kt−1 + · · ·

]

=
1

s!t!

(
(1 − x)sxtkr−1 + δ(x)kr−2 + O(kr−3)

)
,

where 2δ(x) = s(s + 1)(1 − x)s−1xt + t(t + 1)(1 − x)sxt−1. Notice that
this holds even if s or t are zero, for then the ks−1 or kt−1 terms vanish.
Much calculation with Lemma 5.15 computes

χ(SxkG∗ ⊗ S(1−x)kF ∗ ⊗OB(mk))

= aB
0 R

(
mbkb + [(1 + k)µ(B) − kxµG − k(1 − x)µF ]mb−1kb−1

)

+ O(mb−2)

= aB
0 R((mb + µ(B)mb−1)kb + µ(B)mb−1kb−1)

− aB
0 R(xµG + (1 − x)µF )mb−1kb + O(mb−2).
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Now mb + µ(B)mb−1 = m̃b + µEm̃b−1 + O(m̃b−2), and

γ(x) := µE − (xµG + (1 − x)µF )

= µE −
x

t + 1
((r + 1)µE − (s + 1)µF ) − (1 − x)µF

= (µE − µF )

(
1 −

x(r + 1)

t + 1

)
,

where the last line uses (5.21). Thus χ(SxkG∗ ⊗ S(1−x)kF ∗ ⊗OB(mk))
is

aB
0 R(m̃bkb + γ(x)m̃b−1kb + µ(B)m̃b−1kb−1) + O(m̃b−2).

Now α1(x) and α2(x) (5.22) are polynomials in x and extend uniquely
from 0 < x ≪ 1 to all of R, and the above shows that

α1(x) =
aB

0

s!t!
(1 − x)sxt(m̃b + γ(x)m̃b−1) + O(m̃b−2), and

α2(x) =
aB

0

s!t!
δ(x)(m̃b + γ(x)m̃b−1) +

aB
0

s!t!
µ(B)(1 − x)sxtm̃b−1

+O(m̃b−2).

To calculate the required integrals of the αi(x) one has to consider
four cases, depending on whether s or t vanish. In all four cases, re-

peated applications of the identity
∫ 1
0 (1 − x)sxtdx = s!t!

(s+t+1)! give the

formula in the statement of the Lemma. These expressions depend only
on (B,OB(1)) and the Chern characters of the symmetric powers of E
and F , and thus only on (B,OB(1)) and the Chern classes of E and F
by ([Ha] Appendix A3). q.e.d.

Proposition 5.23. Let F be a saturated coherent subsheaf of E
and suppose that ǫ(P(F ), Lm) = 1. Then µ1(OP(F ), Lm) − µ(P(E), Lm)
equals

C
(
(µE − µF )

[
(r + 1)m̃2b−1 − µ(B)m̃2b−2

]
+ O(m̃2b−3)

)
,

where C = C(m̃) is positive. Here the O(m̃2b−3) term is understood to
be zero if B is a curve. Moreover the O(m̃2b−3) terms depend only on
(B,OB(1)) and the Chern classes of F and E.

Proof. Using the expressions in Lemmas 5.19 and 5.20 gives

a0

∫ 1

0

(
(1 − x)α2(x) +

α1(0)

2

)
dx − a1

∫ 1

0
(1 − x)α1(x)dx

=
(aB

0 )2(s + 1)

(r + 2)!r!
(µE − µF )[(r + 1)m̃2b−1 − µ(B)m̃2b−2] + O(m̃2b−3).

Thus µ1(OP(F ), Lm) − µ(P(E), Lm) equals

C(m̃)
(
(µE − µF )[(r + 1)m̃2b−1 − µ(B)m̃2b−2] + O(m̃2b−3)

)
,
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where

C(m̃) =
(aB

0 )2(s + 1)

(r + 2)!r!a0

∫ 1
0 (1 − x)α1(x)dx

,

which is positive. As the O(m̃b−2) terms of a0 and a1, as well as α1(x)
and α2(x), depend only on (B,OB(1)) and the Chern classes of F and
E so does the O(m̃2b−3) term above. q.e.d.

Proof of Theorem 5.13. If E is not slope stable (resp. strictly unstable)
then there is a maximally destabilising subsheaf of E∗ which is saturated
and so locally free. Call its dual G and let F be the kernel of E → G →
0. Then F < E is saturated and locally free, G is semistable, and µF ≥
µE (resp. µF > µE). Therefore by Proposition 5.17 ǫ(P(F ), Lm) = 1

and the global sections of Lk
m ⊗ I k

P(F ) saturate I k
P(F ) for k ≫ 0.

As deg Lm = aB
0 (r + 1)m̃ > 0 (Lemma 5.16) we have m̃ > 0. And as

g ≥ 1, µ(B) ≤ 0, so (r + 1)m̃ − µ(B) > 0. From Proposition 5.23,

µ1(OP(F ), Lm) − µ(P(E), Lm) = C(µE − µF )[(r + 1)m̃ − µ(B)],

where C > 0. Thus if E is not slope (semi)stable then P(E) is not slope
(semi)stable.

Finally suppose that E is not polystable. Then there is a subbundle
F with either µF > µE , which we have already dealt with, or µF = µE
and F is not a direct summand. The degeneration to the normal cone
of P(F ) with c = ǫ = 1 gives a test configuration with zero Futaki
invariant whose central fibre is P(F ⊕ E/F ) (5.14). This cannot be a
product configuration since the central fibre is not isomorphic to P(E).
So (P(E), Lm) is not slope polystable. q.e.d.

We could similarly now prove the first part of Theorem 5.12, but
to prove all of it we first calculate the slope and Seshadri constant of
P(E|B′).

Lemma 5.24. Let C and D be torsion free sheaves on B and suppose
that µC = µ(B). Then

χ(C ⊗ D ⊗OB(mk)) = rankC · χ(D ⊗OB(mk)) + O(mb−2).

Proof. By Lemma 5.15 (3) the hypotheses imply that µC⊗D = µD.
Now apply Lemma 5.15 (1) twice. q.e.d.

Proposition 5.25. Let B′ be a subscheme of B. Then for m ≫ 0,
ǫ(P(E|B′), Lm) ≥ mǫ(B′,OB(1)) + O(m0), and

µcm(IP(E|B′ ), Lm) − µ(P(E), Lm)

=
1

m
[µc(IB′ ,OB(1)) − µ(B)] + O(m−2).
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Proof. Pick an integer u so that E∗(u) is globally generated; then so
is Sk(E∗(u)) = SkE∗ ⊗OB(ku) for all k. We first show that

ǫ(P(E|B′), Lm) ≥ (m − u)ǫ(B′,OB(1)) = mǫ(B′) + O(m0).

By the definition of the Seshadri constant, if c < (m − u)ǫ(B′,OB(1))
then OB((m − u)k) ⊗ I ck

B′ is globally generated for k sufficiently large.
Hence for k ≫ 0 the sheaf

π∗(L
⊗k
m ⊗ I

ck
P(E|B′ )) = OB(mk) ⊗ SkE∗ ⊗ I

ck
B′

= OB(mk − uk) ⊗ Sk(E∗(u)) ⊗ I
ck
B′

is also globally generated, and thus so is L⊗k
m ⊗I ck

P(E|B′ )
, because L⊗k

m is

globally generated along the fibres. This implies that c≤ǫ(P(E|B′), Lm),
so (m − u)ǫ(B′,OB(1)) ≤ ǫ(P(E|B′), Lm).

Now we calculate the slope of P(E|B′). Since we are interested in
m ≫ 0, we may twist E by some power of OB(1) to assume, without
loss of generality, that µE = µ(B) (i.e. deg E = 0). This power may
not be integral, but that does not affect the purely numerical argument
below; we just have to allow rational m. Let

χ
P(E)(L

⊗k
m ⊗ I

xk
P(E|B′ )) = a0(x)kn + a1(x)kn−1 + O(kn−2), and

χB(OB(k) ⊗ I
xk
B′ ) = b0(x)kn + b1(x)kn−1 + O(kn−2).

Fix x < ǫ(P(E|B′), Lm) and suppose k ≫ 0. Then

π∗(L
⊗k
m ⊗ I

xk
P(E|B′ )) = I

xk
B′ ⊗OB(mk) ⊗ SkE∗,

with the higher pushdowns zero. From Lemma 5.15 (2), we have that
µ

SkE
= µ(B) for all k, so Lemma 5.24 yields

χ(L⊗k
m ⊗ I

xk
P(E|B′ )) = χ(I xk

B′ ⊗OB(mk) ⊗ SkE∗)

= rankSkE · χ(I xk
B′ ⊗OB(mk)) + O(mb−2)

= rankSkE · (b0(x/m)mbkb + b1(x/m)mb−1kb−1)

+ O(mb−2).

Now

rankSkE =

(
r + k

r

)
=

1

r!

(
kr + µ(Pr)kr−1 + · · ·

)
,

where µ(Pr) = µ(Pr,OPr(1)) = r(r + 1)/2. Thus

a0(x) =
1

r!
b0(x/m)mb + O(mb−2), and

a1(x) =
1

r!

[
µ(Pr)b0(x/m)mb + b1(x/m)mb−1

]
+ O(mb−2).



460 J. ROSS & R.P. THOMAS

Hence

µmc(IP(E|B′ ), Lm)

=

∫ mc
0

(
a1(x) + a0(x)′

2

)
dx

∫ mc
0 a0(x)dx

=

∫ c
0

(
a1(mx) +

a′

0
(mx)
2

)
dx

∫ c
0 a0(mx)dx

=

∫ c
0

(
µ(Pr)mbb0(x) + mb−1(b1(x) + b0(x)′

2 )
)

dx + O(mb−2)
∫ c
0 mbb0(x)dx + O(mb−2)

= µ(Pr) +
1

m
µc(IB′ ,OB(1)) + O(m−2).

On the other hand, by assuming deg E = 0 we have m̃ = m so from
Lemma (5.19),

µ(P(E), Lm) =
a1

a0
= µ(Pr) +

1

m
µ(B) + O(m−2).

Thus

µmc(IP(E|B′ ), Lm)−µ(P(E), Lm) =
1

m
[µ(IB′ ,OB(1))−µ(B)]+O(m−2),

as required. q.e.d.

Proof of Theorem 5.12. By Proposition 5.17 there is an m0 such that
for all m ≥ m0, ǫ(P(F ), Lm) = 1 for all saturated coherent subsheaves
F < E with µF ≥ µE .

As the family of destabilising subsheaves of F of E is bounded, the
set {ci(F ) ∈ H2i(B) : F < E, µF ≥ µE , 0 ≤ i ≤ n} is finite. Thus

we can bound the O(m̃2b−3) terms in Proposition 5.23 independently
of F . Furthermore there is a δ > 0 (again independent of F ) such
that µF > µE implies µF ≥ µE + δ. Hence for all saturated coherent
subsheaves F < E with µF ≥ µE and m ≥ m0,

µ1(OP(F ), Lm) − µ(P(E), Lm)(5.26)

= C
(
(r + 1)(µE − µF )m̃2b−1 + O(m̃2b−2)

)

≤ −C(r + 1)
(
δm2b−1 + O(m2b−2)

)
,

where C = C(m̃) > 0 is independent of F .
Now suppose that E is not slope semistable. Then there exists a

coherent F < E with µF > µE . Replace F by its saturation (i.e. the
kernel of E → (E/F )/torsion), which has slope ≥ µF > µE . Making
m0 larger if necessary we have that µ1(OP(F ), Lm) < µ(P(E), Lm) for
m ≥ m0 by (5.26), so (P(E), Lm) is not slope semistable.
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Similarly, if (B,OB(1)) is not slope semistable then there is a B′

and c with c < ǫ(B) and µc(IB) > µ(B). Therefore, for m ≫ 0,
c + O(m0)/m < ǫ(B), so by Proposition 5.25, mc < ǫ(P(E|B′), Lm) and
µcm(IP(E|B′ ), Lm) > µ(P(E), Lm). Thus P(E|B′) strictly destabilises

(P(E), Lm) for m ≫ 0. q.e.d.

5.5. Unstable blow ups. Fix Z ⊂ X. If we form the blow up π : X̂ →
X of X along Z, with exceptional divisor E, then since for k ≫ 0

H0
X(L⊗k ⊗ I

xk
Z ) ∼= H0

bX
(π∗L⊗k ⊗ I

xk
E ),

there is a strong link between Z ⊂ X and E ⊂ X̂. Morally, Z desta-

bilises (X, L) if and only if E destabilises (X̂, π∗L), but the latter line
bundle is only semi-ample. However, Ld := π∗L(−dE) is ample for
0 < d < ǫ(Z), and with respect to this polarisation the Seshadri con-
stants are related by ǫ(E) = ǫ(Z) − d. For k ≫ 0,

H0
bX
(L⊗k

d ⊗ I
xk
E ) ∼= H0

X(L⊗k ⊗ I
(x+d)k

Z ),

so for d < c ≤ ǫ(Z),

µc−d(IE , Ld) =

∫ c
d

(
a1(x) +

a′

0
(x)
2

)
dx

∫ c
d a0(x)dx

.

As d → 0, µc−d(IE) → µc(IZ) and µ(X̂) → µ(X) as expected.
This can be applied in the following way. Suppose that a singular

point strictly destabilises a variety X, and that its blow up is smooth.
More generally, fix an ideal sheaf IZ ⊂ OX whose blow up is smooth
(this exists by resolution of singularities) and suppose that IZ strictly

destabilises (X, L). Then for small d, (X̂, Ld) is also strictly unstable,
and so has no cscK metric. This gives an easy way of producing smooth
polarised varieties without cscK metrics.

5.6. Unstable rational manifolds.

Example 5.27. P2 blown up at 1 point. Any polarisation on
π : X → P2 is a multiple of L = Lq = OP2(1) − qE for q ∈ (0, 1) ∩ Q.
We claim that the exceptional curve E destabilises (X, L) for any such
q. Let Z = E. Then L(−cZ) = OP2(1)

(
− (q + c)E

)
is nef for c < 1− q,

hence ǫ = ǫ(Z, L) = 1 − q. By (5.3)

µ(X, L) =
3 − q

1 − q2
, and

µǫ(OZ) =
3

(1 − q)(2q + 1)
.

Since
(3 − q)(1 − q)(2q + 1) − 3(1 − q2) = 2q(1 − q)2 > 0,
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we have µǫ(OZ) < µ(X, L) for all 0 < q < 1.
In fact this example is covered by Section 5.4, since X is a projective

bundle X ∼= P(OP1 ⊕OP1(1)) (with E the projectivisation of the desta-
bilising subbundle OP1(1)). It is significant that E destabilises X for
all q, since a priori X is unstable for all polarisations because of the
non-reductivity of Aut(X).

To find destabilising examples it is convenient to allow L to tend to
a divisor that is not necessarily ample.

By analogy with (3.4, 3.5) we use the Riemann-Roch formula on X̂
to define the slope with respect to any divisor F by

aF
0 (x) =

1

n!

∫

bX
c1(F (−xE))n,

aF
1 (x) = −

1

2(n − 1)!

∫

bX
c1(K bX

).c1(F (−xE))n−1,

and (3.14)

µ(X, F ) = −
n

∫
X c1(KX).c1(F )n−1

2
∫
X c1(F )n

,

µc(OZ , F ) =

∫ c
0

(
ãF

1 (x) +
ãF
0

′(x)
2

)
dx

∫ c
0 ãF

0 (x)dx
,

where ãF
i (x) = aF

i (0) − aF
i (x). Note that since F is not assumed to be

ample, these could be infinite.

Proposition 5.28. Let F be a nef divisor on X. Suppose that there

is a c > 0 such that F (−cE) is nef on X̂, and
∫

X
c1(F )n

∫ c

0

(
ãF

1 (x) +
ãF

0
′(x)

2

)
dx

is strictly less than

−
n

∫
X c1(KX).c1(F )n−1

2

∫ c

0
ãF

0 (x)dx.

(In particular this holds if
∫
X c1(F )n > 0 and

µc(OZ , F ) < µ(X, F ) < ∞.)

Then Z strictly destabilises (X, L) for L sufficiently close to F . More
precisely: if G is an ample divisor and L = F (δG), then there is a δ0 > 0
such that Z strictly destabilises (X, L) for all 0 < δ < δ0.

Proof. Since L(−cE) = F (−cE + δG) is nef we have ǫ(Z, L) ≥ c.
Notice that

∫
X c1(L)n

∫ c
0 ãL

0 (x)dx[µ(OZ , L) − µ(X, L)] equals
∫

X
c1(L)n

∫ c

0

(
ãL

1 (x) +
ãL

0
′(x)

2

)
dx+

n
∫
X c1(KX).c1(L)n−1

2

∫ c

0
ãL

0 (x)dx.
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As δ tends to zero this tends to
∫

X
c1(F )n

∫ c

0

(
ãF

1 (x) +
ãF ′

0 (x)

2

)
dx

+
n

∫
X c1(KX).c1(F )n−1

2

∫ c

0
ãF

0 (x)dx,

which is assumed to be strictly negative. Since L is ample, and c ≤
ǫ(Z, L),

∫
X c1(L)n

∫ c
0 ãL

0 (x)dx > 0. Thus µc(OZ , L) < µ(X, L) for δ
sufficiently small. q.e.d.

Corollary 5.29. Unstable blow ups. Suppose that (X, L) is desta-
bilised by Z, and let Y be the blow up of X along a centre disjoint from
Z. Then for polarisations making the exceptional set small, Y is desta-
bilised by the proper transform of Z.

Example 5.30. P2 blown up at m distinct points. Let X
be P2 blown up at m ≥ 1 distinct points, with exceptional divisors
{Ei}

m
i=1. Then applying the above to Example 5.27 shows that X is

slope unstable with respect to suitable polarisations: those of the form
OP2(1)

(
−

∑m
i=1 qiEi

)
with 0 < qi ≪ q1 < 1 for i ≥ 2.

Remark 5.31. It is important to note that these polarisations are
far from the anticanonical polarisation. For generic configurations of
points K∗

X is ample if m ≤ 8, and this polarisation does admit a cscK
(in fact Kähler-Einstein) metric, unless m = 1 or m = 2 [Ti1].

Remark 5.32 (The folklore conjecture). The case of P2 blown up at
≥ 4 points gives smooth polarised del Pezzo surfaces with aut(X) = 0
but no cscK metric in certain classes. This is in contrast to the case of
the anticanonical polarisation for which Tian [Ti1] proved the “folklore
conjecture”, that smooth Fano surfaces have a Kähler-Einstein metric
if and only if their holomorphic automorphism group is reductive, and
disproves the conjecture for manifolds of dimension n ≥ 3. There are
also examples of ruled surfaces [BdB] which show the folklore conjecture
for cscK metrics on surfaces does not hold.

Remark 5.33 (Unstable elliptic surface). If X is P2 blown up at 9
points which are the intersection of two cubics, then X is slope unstable
with respect to suitable polarisations. Thus we have a polarised elliptic
surface (“half a K3 surface”) which is not K-semistable and does not
admit a cscK metric.

Example 5.34 (−2 curves). We now give an example of a destabil-
ising −2-curve on a del Pezzo surface. Blow P2 up at a point, and let
X be its blow up at a point on the exceptional divisor. Thus X con-
tains a −2 curve E1 and an exceptional −1-curve E2. Thus E2

1 = −2,
E2

2 = −1 and E1.E2 = 1. Notice that OP2(1)
(
− 1

2E1 − E2

)
is nef (X
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is toric, and the line bundle’s degree on each invariant curve is nonneg-
ative, so the toric Kleiman criterion applies). Also, OP2(1) is nef, as is
OP2(1)

(
−E1 −E2

)
since it is the pullback of a nef bundle on P2 blown

up at one point. By convexity of the ample cone, OP2(1)
(
− qE1 − rE2

)

is ample for 1 ≥ r ≥ q ≥ r/2 ≥ 0.
Set L = OP2(1)

(
− 1

2E1 − rE2

)
, which is ample for 1 > r > 1/2,

and let Z = E1 be the exceptional −2-curve in X. From the above,
cr = r − 1

2 ≤ ǫ(Z, L). Then L.Z = 1 − r → 0 as r → 1, so (5.3)

µ(X, L) =
OP2(3)

(
− E1 − 2E2

)
.L

L2
=

6 − 2r

1 + 2r − 2r2
→ 4 as r → 1,

µcr(OZ , L) =
3(L.Z + cr)

cr(L.Z + 2cr)
→ 3 as r → 1.

Thus for r close to 1, µcr(OZ) < µ(X, L) so Z strictly destabilises (X, L).
Further blowing up X in some points disjoint from the −2-curve and
taking a polarisation in which the new exceptional divisors are small,
this also gives examples with no automorphism group.

Example 5.35 (Pn blown up at points). The exceptional divisor E
strictly destabilises Pn blown up at a point with respect to all polarisa-
tions. This is an application of Theorem 5.1; we omit the gory details.

Therefore the blow up of Pn at m ≥ 1 distinct points (or a point
and some disjoint subvarieties) is unstable with respect to polarisations
which make one component of the exceptional set large, and the other
m − 1 small.
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