AN OCCUPANCY PROBLEM

K. S. KHATTAB AND A. M. KHIDR

Abstract

Under a certain restriction, n numbered balls are distributed into m urns. A match occurs if the ball numbered i lies in the urn with the number i. The number of matches and its asymptotic probability distribution are found.

1. Introduction. Let the n numbered balls be distributed into m numbered equal urns under the restriction (R); if the ball numbered i lies in the urn numbered j, then no ball with a number higher than i is permitted to lie in an urn with a smaller number than $j, 1 \leqq i \leqq n, 1 \leqq j \leqq m$.

It is clear that the number of distributions $A(n, m)$ of n balls into the m urns under the restriction (R) is equal to the number of increasing words formed of n letters out of m distrinct letters and thus (see [3, p. 10]), $A(n, m)=\left({ }_{n}^{n+m-1}\right)$. We say a match has occurred in the j th urn if the ball numbered j lies in the urn with number $j, 1 \leqq j \leqq \min (n, m)$. Let $W(n, m, r)$ be the number of distributions in which there are exactly r matches $0 \leqq r \leqq \min (n, m)$. We will prove the following theorems.

Theorem 1.
(a) For $n \neq m, W(n, m, r)=W(n-1, m, r)+W(n, m-1, r)$,
(b) For $n=m, W(n, n, r)=W(n-1, n, r-1)+W(n, n-1, r)$,
(c) For $r \neq 0, W(n, m, r)=W(m, n, r)$

It is found that the value of $W(n, m, r)$ which satisfies Theorem 1 is given by Theorem 2,

Theorem 2.

$$
W(n, m, r)=\left\{\begin{array}{cl}
\binom{n+m-1}{m-r} \frac{n-m+2 r}{n+r} & m \leqq n \\
\binom{n+m-1}{n-r} \frac{m-n+2 r}{m+r} & m>n
\end{array}\right.
$$

As an application in probability theory we obtain the following result.

Theorem 3. Let $W=W(n, m, r) /\left({ }_{n}^{n+m-1}\right)$ and $Z=W / \sqrt{n}$, then $\lim P(Z>z)=e^{-\alpha z-z^{2}}$, where the limit on n and m are such that α $=\lim _{n, m \rightarrow \infty}(n-m) / \sqrt{n}$.

Similar problems were solved in [1] and [2] leading to theorems corresponding to theorems $1,2,3$.
2. Proof of Theorem 1. (a) If the nth ball is placed into the m th urn then we have to distribute the $n-1$ remaining balls into the m urns under the rstriction (R) to give r matches, the number of these possibilities equals $W(n-1, m, r)$.

If on the other hand the nth ball is not in the m th urn, then the n balls are to be distributed under (R), into the $m-1$ urns to get r matches, the number of these possibilities equals $W(n, m-1, r)$, hence.

$$
\begin{equation*}
W(n, m, t)=W(n-1, m, r)+W(n, m-1, r) \tag{2.1}
\end{equation*}
$$

(b) The first summand is as in the last summand in part (a), the second summand has a different shape, since if the $(n-1)$-st ball is in the nth urn this gives a match; therefore the $n-1$ remaining balls have to be distributed into the n urns (including the nth urn) under (R) to get $r-1$ matches.
(c) We prove, $W(n, m, r)=W(m, n, r), r \neq 0$, by double induction on m, n. Assume that i) $W(n-1, m, r)=W(m, n-1, r)$ and ii) $W(n$, $m-1, r)=W(m-1, n, r)$.

Adding corresponding summands in (i) and (ii) and by (a) of theorem 1, we get

$$
\begin{equation*}
W(n, m, r)=W(m, n, r), \quad r \neq 0 \tag{2.2}
\end{equation*}
$$

The following tables give the number of cases in which there are exactly r matches for certain r.

Urns

$r=1$	1	2	3	4	$r=2$	1	2	3	4	$r=3$	1	2	3	4
1	1	1	1	1		0	0	0	0		0	0	0	0
2	1	2	3	4		0	1	1	1		0	0	0	0
3	1	3	5	9			1	4	5		0	0	1	1
4	1	4	9	14		0	1	5	14		0	0	1	6

3. Proof of Theorem 2. By double induction on $m, n, m \leqq n$, assume,

$$
\begin{aligned}
W(n-1, n, r) & =\binom{n+m-2}{m-r} \frac{n-m+2 r-1}{n+r-1} \\
W(n, m-1, r) & =\binom{n+m-2}{m-r-1} \frac{n-m+2 r+1}{n+r}
\end{aligned}
$$

By a simple calculation and (a) of Theorem 1, we get

$$
\begin{equation*}
W(n-1, m, r)+W(n, m-1, r)=\binom{n+m-1}{n-r} \frac{n-m+2 r}{n+r}=W(n, m, r) \tag{3.1}
\end{equation*}
$$

For $n<m$ the result is obtained by interchanging n by m and using (c) of Theorem 1. The case $n=m$ can be proved similarly.
4. Proof of Theorem 3. In what follows θ denotes on unspecified bounded function which may be different from one line to another, such that $0<\theta<1$, over the range of argument specified. Using $\operatorname{Ln}(1-Z)=$ $Z+(1 / 2) Z^{2}+\theta(Z) Z^{3}$, then

$$
\begin{align*}
P(W>k) & =\binom{n+m-1}{m-k} /\binom{n+m-1}{n} \\
& =\left(\frac{m}{n}\right)^{k-1} \frac{\left(1-\frac{1}{m}\right)\left(1-\frac{2}{m}\right) \cdots\left(1-\frac{k-1}{m}\right)}{\left(1+\frac{1}{n}\right)\left(1+\frac{2}{n}\right) \cdots\left(1+\frac{k-1}{n}\right)}, \quad m \leqq n \tag{4.1}
\end{align*}
$$

Hence,

$$
\begin{align*}
\ln P(W>k) & =\ln \left(\frac{m}{n}\right)^{k-1}+\sum_{i=1}^{k-1} \ln \left(1-\frac{i}{m}\right)-\sum_{j=1}^{k-1} \ln \left(1+\frac{j}{n}\right) \\
& =\ln \left(\frac{m}{n}\right)^{k-1}-\left(\frac{1}{m}+\frac{1}{n}\right) \frac{k(k+1)}{2} \tag{4.2}\\
& -\frac{1}{2}\left(\frac{1}{m^{2}}-\frac{1}{n^{2}}\right) \frac{k(k+1)(2 k+1)}{6} \\
& -\theta(k) \frac{1}{3}\left(\frac{1}{m^{3}}+\frac{1}{n^{3}}\right) \frac{k^{2}(k+1)^{2}}{4}
\end{align*}
$$

Replace k by \sqrt{n}, z and m by $n-\alpha \sqrt{n}$ such that $\alpha \rightarrow 0$ as $n \rightarrow m$, and taking the limit as $n, m \rightarrow \infty$ all terms in $P(W>k)$ tend to 0 except the first and the second term, hence

$$
\begin{align*}
\lim _{n \rightarrow \infty} P(Z>z) & \simeq \lim _{n \rightarrow \infty}\left(1-\frac{\alpha}{n}\right)^{\sqrt{n} z} e^{-\left(\frac{2 n-\alpha \sqrt{n}}{n(n-\alpha \sqrt{n}}\right) \frac{\sqrt{n} z(\sqrt{n} z-1)}{2}} \tag{4.3}\\
& \simeq e^{\left(-z^{2}+\alpha z\right)}
\end{align*}
$$

The case $n<m$ gives the same result where $\alpha \rightarrow 0$ as $m \rightarrow n$.

References

1. A.M. Khidr, Indian J. Pure Applled. Math. 12 (12) (1981), 1402-1407.
2. L. Takas, On the comparision of a theoretical and an empirical distribution function, J. Applled. Prob. 8 (1971), 321-330.
3. I. Tomescu, and S. Rudeanu, Introduction to Combinatorics, Colletts, England, 1975.

Department of Mathematics, Faculty of Science Aswan, Egypt.

