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1. Introduction and statement of the theorem. Known general results on

the problem of finding the limiting behavior of the occupation time of a set

of states in a Markov process are of two types: when the set consists of one

state or is small in a suitable sense, limiting distributions for the occupation

time (properly normalized) are the Mittag-Leffler distributions, while in the

case of a process consisting of sums of independent, identically-distributed

random variables, limiting distributions of the fraction of the partial sums

which are positive must be the generalized arc-sine laws. (Recent work on

these problems is contained in [2; l], and [3].) In this paper processes (not

necessarily Markovian) will be considered having the property that the

states are divided into two classes which communicate through the occurrence

of a recurrent event (see [2]). More precisely, let X„(co) denote the state at

time re of a stochastic process whose state space, except for one special state

cr, is divided into two sets A and B. The assumptions are that occupation of

state a is a certain recurrent event (the initial condition is AT0 = cr), and that

if Xn-iEA and Xn+iEB or vice versa, then Xn=a. The main theorem de-

scribes the limiting behavior of the fraction of the time during which the

process occupies set A, and as in the cases mentioned above the limiting dis-

tributions must be members of a definite class of distributions, depending on

two parameters and of a new type.

Let Nn(o>) denote the occupation time up to time re of the set A, with the

convention that occupation of the state cr is counted or not according to

whether the last other state occupied was in A. We denote by F(x)= JZn-ifnX"

the generating function of the probabilities /„ that the recurrence time of

state cr is re. Now the main theorem can be stated:

Theorem 1. Let X„(a)) be the process described above. Then

(1.1) lim Pr (N„/n ^ I) = G(t)
n—*«

exists if and only if

(1.2) lim E(Nn/n) = a exists,
n—*°o
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and also

(1.3) lim   (1 - x)F'(x)/(l - F(x)) = 8 exists, 0 = 8 g 1.
z-»l-

7/ both these conditions hold, G(t)=Ga,s(t) is the distribution on [0, l] which,

provided a and 8^0 or 1, has the density

asinirS ts(l - t)^1 + tl~l(l - t)s

GaM) =-
■k       a2t2S + 2als(l - ty cos t8 + (1 - W

(1.4) \ 1 — a
where    a = -,

a

while in other cases

Go,s(t) = 1    and   GM = 0   for   0 < t < 1,

(1.5) (0   for    t < a
Ga,i(l) =  < and    Ga,o(t) = 1 ~ a   for    0 = I < 1.

(1    for    I = a

The class of processes to which Theorem 1 is applicable is quite extensive,

including all Markov chains in which one state separates the rest into two

sets; in particular, it applies to all random walks. It is interesting to observe

that this result is, like the theorem [3, Theorem 6.1 ] on sums of random vari-

ables, a generalization of the ordinary arc-sine law which holds for the coin-

tossing or simple random walk process; when both a and 5 are 1/2, as they

are for that case, (1.4) becomes the classical law. The intersection of the cases

covered by the two theories is the class of recurrent processes consisting of

sums of random variables which also are "continuous" at some point, and is

therefore (except that the random variables added may have positive prob-

ability of being 0) just the coin-tossing process. It is also worth noting that

the "ergodic" case, when the expected recurrence time for state cr is finite, is

not an interesting one: in this case 5 = 1 and the trivial distribution of (1.5)

holds. In the other cases when the recurrence time is not finite, the convention

used in the definition of Nn lor the occurrences of state cr is a technical con-

venience only and does not affect the limiting distributions obtained.

§2 is devoted to a theorem on slowly varying functions which is needed

as a lemma for the proof of Theorem 1; the theorem is a close relative of a

well-known one [4, Chapter V]. It is felt that this theorem is of independent

interest, however, as it relates two conditions which arise frequently in Tau-

berian arguments in probability. The proof given here is due to Professor

H. F. Bohnenblust, and is both conceptually simpler and more general than

the author's original proof. With the aid of this theorem, and upon reference

to [2], it appears that condition (1.3) is precisely the necessary and sufficient

condition that the occupation time of state a itself, suitably normalized, shall

possess a limiting distribution, for (1.3) can be rewritten as
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(1.6)     1 — F(x) = (1 — x)sLI-J,     where L(y) is slowly varying,
\i — x!

which is equivalent to condition (5.6) of [2].

2. A theorem on slowly varying functions.

Definition (Karamata). A real function of a real variable, say L(y), is

slowly varying if it is continuous, positive for large enough y, and satisfies

L(cy)
(2.1) lim-— = 1 for all c>0.

»-•«>   L(y)

Theorem 2. For .4>x>0, let f(x) be a positive function. If f'(x) exists for

small enough x and satisfies

xf'(x)
(2.2) lim - = a,

i-^o+   f(x)

then

(2.3) f(x) = xaL(l/x)

where L(y) is a slowly varying function. Conversely, if (2.3) holds for some num-

ber a, and iff'(x) exists and is monotone in a neighborhood ofO, then (2.2) holds.

Proof. Assume (2.2), and define L(y) by putting/(x) =xaZ(l/x). Then

log/(x) —a log x+log L(l/x) —a log x+g(x), say. We must show that L(y)

satisfies (2.1); this is equivalent to

(2.4) lim (g(cx) - g(x)) = 0 for all c > 0.
l->0

But

rcz f(t)
g(cx) - g(x) = log /(cx) - log/(x) - a log c =   I      —— dt - a log c.

J x     j(t)

Hence by (2.2),

/.cx   a
— dt — a log c = 0.

i      t

To prove the converse, suppose/'(x) is nondecreasing and that (2.3) holds.

(Exactly the same argument works also for /' nonincreasing.) By the mean

value theorem, we have for x<xi,

f(xi) - f(x)
f'(r{) =- for some x < ij < Xi.

Xi — x
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Choosing Xi = cx where c>l, and since/'(x) is nondecreasing, we can write

f(cx) — f(x)
f'(x) £/(,)=•"/     J\J =/'(cx),

x(c — 1)

or

*/'(*) ^ //(«)      A     1      ^       /'(c*)    1   f(cx)
- ^ I-1 I- S CX-•

f{x)       \f(x)        Jc-1 /(cx)    c   f(x)

Now by (2.3) and (2.1) we obtain upon letting x—>0+,

x/'(x) 1 xf'(x)
lim sup-= (ca — 1)-5S ca_1 lim inf- •

z-X)      f(x) c — 1 x->o     f(x)

But this holds for all c>l; letting c—>1 yields precisely (2.2).

In the case (as in the original form of the theorem) that/(x) = 1 —J0"e~txdG(t)

where G(t) is the distribution function of a positive random variable,

f"(x) = —fot2e~'xdG(x) <0 so that/'(x) is a decreasing function of x. Thus:

Corollary 2.1. Let <p(x)=foe~'xdG(t), where G(t) is monotone and is of

total variation one. Then the following are equivalent:

xqi'(x)
(A) lim -= — a,

z-*o+ 1 — <b(x)

(B) 1 - <f>(x) = x"l(— J

where L(y) is a slowly varying function.

Stating this in terms of generating functions yields

Corollary 2.2. Let P(x) = 53iT=i PnXn where pn^0 and 5Z»-i Pn = Y Then

the following are equivalent:

(1 - x)P'(x)
(A) lim   - = or,

x-,1-      1  - P(x)

(B) 1 - P(x) = (1 - x)-l(_L-)

where L(y) is slowly varying.

3. Proof of Theorem 1. The proof proceeds by operating with the double

generating function of the quantities pk,n = Fr (N„ = k), and is analogous in

its overall plan to Spitzer's proof of his Theorem 6.1 in [3]. First by Abelian

arguments we show that the generating functions of the moments of Nn have

the proper asymptotic behavior, and then Karamata's Tauberian theorem is

used to show the convergence of the moments. This yields the Stieltjes
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transform of the limiting distribution of Nn, which can be inverted explicitly

yielding (1.4) and (1.5).

Let ;p = Pr (Xn+iEA \ Xn = a). It is convenient to assume for the time

being that state cr can not repeat itself, so that

q = j _ p = Pr(Xn+1G 73 | Xn = o-).

We now define

fn^ = Pr (Xn = <r, X,^ o-, 0 < i < n I Xo = cr, Xi E A(B)),

Fj(x) = 2-fn x , j = 1, 2,
n=l

and also denote the "tails" by

.,  „.      ,0)        Si)    ,    .0) .     „ . .       v-> ,0'>  „       * — Fj(x)
(3.2)     tn    = fn+i + fn+2 + • • ■     and    Tj(x) = 2^ >n x" = —-,

n=o 1 — x

j = 1, 2.

Now by the fact that state cr is a recurrent event, the following difference

equation holds:

(3.3) pk,n   =   PzZfm   Pk-m.n-m +   9  zj/"»   Pk.n-m +   P>'n    Sk,n   +   qtn    8k,0.
m m

Taking double generating functions in (3.3) yields

P(x,y) = E Pk.nx"yk = [pFi(xy) + qFt(x)]P(x, y) + pTi(xy) + qT2(x)
k ,n

so that upon rearrangement

11 as ui      ^ pTi(xy) + gT2(x)
(3.4) 7>(x, y) = - •

p(l - xy)Ti(xy) + ?(1 - x)T2(x)

Now if Nn/n is to have a limiting distribution, it is necessary for the first

two moments to converge. Since P(x, y) = E„ E(yNn)xn, this implies that

dP(x, y) _ a
(3.5)    -— =Y,E(Nn)xn~-where    a =  lim E(NJn),

dy       y=i „ (1 — x)2 re-»

and also that

d2P(x, y)        _      2        „     2/3 ry /y.\n
(3.6) -—       = YlE(Nn-Nn)x-where 0= hm £   (-

dy2       „=i      „ (1-x)3 »-.»     L\ re / _

(Above and  throughout, /(x)~g(x)   means that lim*..!- f(x)/g(x) = 1.) To

apply these conditions, we can find the left hand sides of (3.5) and (3.6)
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directly from (3.4). A straightforward computation yields

pTi(x)
(3.7) lim-= a,

«-i- pTi(x) + qT2(x)

p(l - x)Tl(x)
(3.8) lim - = 7,    where    8 = 7(1 — cv) + a2.

x^i- pTi(x) + qT2(x)

Assume now that a and 8^0 or 1. (These cases, as will be checked later, lead

to degenerate distributions.) Then by means of (3.7), (3.8) may be re-

expressed as

(l-x)77(x)       y
(3.9) lim -= — =1 — 5    say, where 5 < 1.

z->i- Ti(x) a

We shall show that (3.7) and (3.9) are sufficient as well as necessary for (1.1)

to hold with a nondegenerate distribution function G(t).

Now (3.9) is the same as

(l-x)Fi'(x)
lim - = 5,

z-.i-     1 - T'i(x)

so that by Corollary 2.2 we have

(3.10) 1 - Fi(x) = (1 -xYl(j~J,

where L is slowly varying. Using (3.7) it also follows that

p   1-a /    1    \
(3.11) l-Fi(x)=JL -c(x)(l - x)57.(-),

q       a \1 — x/

where c(x)-^l as x—+1. From these two equations, using Corollary 2.2 and

the fact that F(x) =pFi(x)+qF2(x), the necessity of (1.3) may be seen.

With this much preparation, we can proceed to the description of the

generating functions of the moments of Nn. Observe (as in [3]) that

or-

(1 - x) £ £(exp (-X(l - x)Nn))x"

k

= (1-X)£*'{Z^(-A(1-X))*1
A L    „ k\ J

(3.12)
(i — x)k+l       kr k   "i

= E X*/t(«),    where   fk(x) =--— (-1)      £ E(Nn)x" \.
k kl L    n J

For |x| <1, this is an analytic function of x and X. We shall show that the

limit as x—>1 — exists and is an analytic function of X, say g(X) = £„ creX",
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and hence conclude that the limit of fk(x) is ck. To achieve this, we combine

(3.10) and (3.11) with (3.4) to obtain

(1 - x) X) £(e*P (~X(1 - x)Nn))xn = (1 - x)P(x, exp [-X(l - x)])

(3.13) (1 - x<r<i-*»)«-iL(--1-—-\ + ]—^c(x)(l - xy-^l-^-)
\1 — xe~(1~x,V a M — x/

(1 - xe-u-^yLl-) + -^c(x)(l - x)sl(-^—\
\1 -*«-<»"*»/ a VI- x)

Using the slowly varying property of L(u) and the fact that 1—xe_X(1_l)

~(1 — x)(l+X), taking limits in (3.13) yields

1 -a
(1 + x)5-1 +-

(3.14) g(\) =--^—
1 — a

(i + \y +-
a

which is analytic at X = 0, justifying the expression as E„ c„Xn. Therefore

limI.i_/ifc(x)=c:t, or

(3.15) (1 - x) Z E(Nkn)xn~ (-l)*c4*l(l - xj~*.
n

Karamata's Tauberian theorem (see, for instance, [4, Chapter V]) may be

applied to this set of asymptotic expressions since Nn (and therefore E(N%))

are nondecreasing with re, and the conclusion is

(3.16) lim E[(Nn/n)k] exists,  =(-l)*c*.
n—* oo

But each N„/n is a random variable taking only values between 0 and 1, and

it has just been shown that each moment converges to a limit as re—>c°.

Therefore the ( —l)*c*'s must form the moment sequence for a distribution

to which the distribution of Nn/n converges.

We have just seen (at least when a and S^O or 1) that ( — l)hck is the

&'th moment of G(t), so that

/«i /• i /»i   dG(l)
tkdG(l)xk=\    J^(-tx)kdG(l) =        ——-,

o J a     k J o     1 -v tx

which on putting w = l/x becomes

1 -a
(u+ 1)8~H-m8-1

r •  dG(l) a
(3.17) I     —±L = (l/u)g(l/u) =-

J o    t + u 1 — a
(u+l)s + — «s

a
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If the integral in (3.17) is extended from 0 to oo instead of 0 to 1, the expres-

sion becomes the Stieltjes transform of G(t), which may be inverted (see

[4, Chapter VIII]) yielding the density (1.4) for O^x^l and 0 elsewhere(2).

Most of the hard work is now done. We have shown the necessity (for

(1.1)) of (1.2) and (1.3), and the sufficiency of (1.2) and (3.9). However, (1.2)

implies (3.7), and this, together with (1.3), Corollary 2.2, and the relation

F = pFiArqFi imply (3.9), so that the conditions of the theorem are also suffi-

cient. Next we observe that the assumption (used in writing (3.3)) that state

a does not repeat itself is superfluous. For, if 5^1, (1.3) implies that the

expected value of the recurrence time for state a is infinite, and therefore the

fraction of the time, up to time n, during which the process is in state a

approaches 0 with probability one. Therefore the altered process obtained

by deleting all repetitions of the state a has the same limiting behavior for

Nn/n as does the original process, and the result we have derived may be

applied to it. (Similarly, when the mean recurrence time for a is infinite, the

convention for state a used in the definition of Nn could be dropped and Nn

simply defined as the occupation time of set A.)

Finally, we must examine the previously excluded extreme cases. If ck = 1

and (1.3) holds for some 5, the argument leading to (3.14) is valid, and then

(3.16) states that all moments converge to 1, so that Nn/n^>l in probability.

If a = 0, by the same method we can see that the relative occupation time of

set B approaches 1, so that in this case Nn/n—*0 in probability. If now

a^O or 1 and 5 = 1, as when the recurrence time of state a is finite, (3.14)

again holds and implies that the moments of Nn/n converge to the successive

powers of a, so that the limiting distribution has mass 1 at a. Finally, if

a 5^0 or 1 and 5 = 0, all the limiting moments are a, so that G(t) in this case

has mass a at t = l, and mass I—a at t = 0. This proves (1.5) and completes

the proof of the theorem.
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