Unclassifi-d s
SECURITY CLASS ICATION OF THIS PAGE (When Data Entered) l [2 > 1
REPORT DOCUMENTATION PAGE ([ L4 oerieAP NS TRUCTIONS eu :
;;g'm—urm 2. GOVT ACCE NO.| 3. RECIPIENT'S CATALOG NUMBER
S k)
a4 )
1| h +TLE (and-Subtithe) - 5. TYPE OF REPORT & PERIOD COVERED
An Oceanic Mixed Layer Mode] Capable of Simulating
=N Jcycric Stateﬁ) et RE DI
N ‘j e —————— 6. PERFORMING ORG. REPORT NUMBER
s AUTHOBRA e e B. CONTRACT OR GRANT NUMBER(s)
/% Rorand . JGarwood, Ir NODO1472)iR70024
¢ 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT TASK
AREA & WORK UNIT NUMBERS
o Naval Postgraduate School
<C Monterey, CA 93940 NR083-275
11. CONTROLLING OFFICE NAME AND ADDRESS o o _RERORY DATE. .. . — " 4
Chief of Naval Research (:zféi 24 Septamser 1976/
Code 481 MBER OF PAGES

Arlington, VA 22217 14

14. MONITORING AGENCY N AME QDRESS(if different from Controlling Olfice) 15. SECURITY CLASS. (of this report)

// ) :;j ! Unclassified °
=3
_.___r{ 2 152, DECLASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)
Approved for public release; distribution unlimited

b

G

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, if different from Report) \'o 4

& o
18. SUPPLEMENTARY NOTES

1 Published in Journal of Physical Oceanography, Vol. 7, No. 3, 455-468.
/l!’,

19. KEY WORDS (Continue on raverse side if necessary and Identity by block numbu} i i
Mixed layer model L
Climatological cycles
Diurnal cycle
Turbulence plosure

Lol A new one-dimensional bulk model of the mixed layer of the upper ocean is presented. An entrainment _____
20. ABSTRACT  hypothesis dependent upon the relative distribution of turbulent energy between horizontal and vertical
components is offered as a plausible mechanism for governing both entrainment and layer retreat.

This model has two properties not previously demonstrated ",

M. The fraction of wind-generated turbulent kinetic energy partitioned to potential energy increase
by means of mixed layer deepening is dependent upon layer stability, *==/i/L, as measured by the ratio
of mixed layer depth /t to Obukhov length L. This results in ?: modulation of the mean entrainment rate

]

o TR
T — |
)
————————

DOC FLE copy

D Ho.

by the diurnal heating and cooling cycle.
i TH). Viscous dlmpatmn is enhanced for increased values of (Ro™f=/ f/ugy where f is the Coriolis parame-
ter and 1g1the friction \:locll) for the water. This enables a cyclical steady state to occur over an annual
! period by limiting maximum layer depth. :

1 A nondimensional framework used to prcunt the general solution also suggests a basis for model com-
{ parison and data analysis.
DD ,5%%, 1473 eoimion oF | NOV 6515 0BSOLETE
S/N 0102-014= 6601 |

—————— e ——————————
SECURITY CLASSIFICATION OF THIS PAGE (#hen Data Entered) f
W ‘/0 o 7

e — gy




Z @
Oeﬁ"g{"

THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE  LEGIBLY.



P T T T

-

Reprinted from JournaL oF PHyYsicAL OCEANOGRAPHY, Vol. 7, No. 3, May 1977

American M

eteorological
Printed in U. 5. A.

An Oceanic Mixed Layer Model Capable of Simulating Cyclic States

Roranp W. Garwoop, Jr.!
Department of Oceanography, Naval Postgraduate School, Monierey, Calif. 93940

(Manuscript received 24 September 1976, in revised form 14 January 1977)

| ACCFSS TN for

ABSTRACT NS B
A new one-dimensional bulk model of the mixed layer of the upper ocean is presented. An entrainment nbe Buff Se
hypothesis dependent upon the relative distribution of turbulent energy between horizontal and vertical NANNOUNSED

components is offered as a plausible mechanism for governing both entrainment and layer retreat.

This model has two properties not previously demonstrated: JESTTICATION

(i) The fraction of wind-generated turbulent kinetic energy partitioned to potential energy increase i e
by means of mixed layer deepening is dependent upon layer stability, H*=h/L, as measured by the ratio BY

of mixed layer depth & to Obukhov length L. This results in a modulation of the mean entrainment rate

by the diurnal heating and cooling cycle.

(ii) Viscous dissipation is enhanced for increased values of Ro™=/h//u,, where f is the Coriolis parame-
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ter and u, the friction velocity for the water. This enables a cyclical steady state to occur over an annual it b B O

period by limiting maximum layer depth. I
A nondimensional framework used to present the general solution also suggests a basis for model com-

parison and data analysis. f

1. Introduction

The ocean mixed layer treated here is that fully
turbulent region of the upper ocean that is bounded
above by the sea-air interface. The wind and intermit-
tent upward surface buoyancy flux through the surface
are the sources of mechanical energy for the generation
of this turbulence. Typically, the mixed layer is bounded
below by a dynamically stable watermass. The vertical
fluxes of heat, salt and momentum in the turbulent
boundary layer or mixed layer are essentially decoupled
from those of the underlying stable water column be-
cause the energy for this mixing comes from above.
Minimal vertical fluxes below the mixed layer, together
with high turbulence intensity within the layer, result
in an approximate vertical uniformity in mean velocity
and density. This ostensible homogeneity is the root of
the term ‘“‘slab,” which is often used to describe the
layer as depicted in Fig. 1. There is an appealing
practical aspect to the judicious use of the assumption
of vertical homogeneity in a bulk model such as this
because the problem of solving for the interior fluxes of
buoyancy and momentum is reduced to the need to
know only the surface and entrainment fluxes. However,
only small vertical gradients in these mean variables
may be associated with large turbulent fluxes. Therefore

! The author was supported during this research at the Uni-
versity of Washington, Seattle, by NOAA’s Environmental
Research Laboratories and by NOAA's GATE Office.

the slab assumption should not be as readily applied to
the turbulent kinetic energy budget.

Earlier works of concern here are those dealing
explicitly with equations for the production, alteration
and destruction of turbulent kinetic energy within the
mixed layer. Kraus and Turner (1967) were the first
to heed the turbulent kinetic energy budget in the
prototype one-dimensional mixed layer model, utilizing
the approximately decoupled state of the equations for
the thermal and mechanical energies. By neglecting
the frictional generation of heat, the vertically inte-
grated heat equation provides a relationship for the
conservation of potential energy. However, viscous
dissipation cannot be neglected in the turbulent kinetic
energy budget. This last aspect has been recognized
only more recently. Dissipation has been assumed to be
a fixed fraction of wind stress production in the models
of Geisler and Kraus (1969), Miropol’skiy (1970),
Denman (1973) and Niiler (1975), all variations of the
Kraus-Turner model. The latest parameterizations of
dissipation, those by Elsberry et a/. (1976), Resnyanskiy
(1975) and Kim (1976), have been conceived with the
recognition of a need to augment dissipation in certain
instances.

These earlier theories that are based on the turbulent
energy equation demonstrate the importance of the
Obukhov length scale L [as first applied to the ocean
by Kitaigorodsky (1960)]. However, they have not
explained the significance of another length scale,
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Fi1G. 1. Idealized density and mean velocity profiles of the ocean mixed laver.
Region I is the fully-turbulent (Rf <Rf.) mixed layer of depth k. Region II is the
slightly stable (Rf=Ré~1), intermittently-turbulent entrainment zone of thickness
&. Region III is the stable (Ri>Ri.) underlying watermass having negligible
vertical fluxes in comparison to those of region I. Rf and Ri are the flux and gradient

Richardson numbers, respectively.

u,/ f, as proposed by Rossby and Montgomery (1935).
Specifically, the general applicability of these models is
limited by the following three problems:

1) Gill and Turner have demonstrated the inabil-
ity of the prototype model to predict cyclical steady
state on an annual basis. If the viscous dissipation of
turbulent energy is parameterized as a fixed fraction of
production, the fraction of wind-generated energy going
to entrainment mixing is constrained to be constant by
the integral relationship, regardless of the layer depth.
Testing such a model Camp (1976) shows that the
predicted aeepening during storms is much too rapid
and unchecked. An enhancement of dissipation is one
possible answer, but a physical explanation is required.
In a departure from the Kraus-Turner approach,
Pollard et al. (1973) used the total kinetic energy equa-
tion in a model which postulates a mean flow insta-
bility as the mechanism for deepening. Most recent
efforts, however, have involved modeling of the terms
of the turbulent part of the kinetic energy budget. It is
recognized here that the Pollard et al. model does predict
a possible cyclical steady state. However, their model
fails to consider the turbulence generated above the
entrainment zone as a source of energy for mixing
within the zone. A mean flow instability does not seem
to be the dominant mechanism for significant layer
deepening, and simulations using this model fall short
of predicting the observed amount of deepening.

2) The stable regime (H*>0) for the turbulent
boundary layer is not well understood, especially in the
limiting case of retreat, i.e., 3k /3 <0. Retreat occurs
when the vertical component of turbulence is insufficient
to transport heat, momentum and turbulence to an
earlier-established depth of mixing. Knowledge of the

distribution of turbulent energy between horizontal and
vertical components is therefore crucial in predicting
cessation of mixing, i.e., layer retreat. The earlier users
of an equation for the fotal turbulent energy have
neglected this distributional factor.

3) In most previous models, all buoyant production
of turbulent energy has been consigned to potential
energy increase, or r=1, where r is the ratio of down-
ward entrainment buoyancy flux to upward surface
buoyancy flux, —bw(—h)/bw(0). This could only be
possible if none of the convectively-produced turbulent
energy were dissipated. Numerous? measurements show
that r is much less than unity. This problem is not
solved by taking dissipation to be a fixed fraction of
shear production plus buoyant production (less buoyant
damping) because layer retreat will then be predicted
only if buoyant damping equals shear production,
making the value assigned to dissipation be equal to
zero. However, if there is turbulence available for
buoyancy flux, there must also be dissipation. Both
this apparent dilemma and the retreat problem are
part of a single larger problem: 6k /d! should not be
the direct consequence of an integral constraint on the
total turbulent energy equation.

In an attempt to resolve the above three problems,
this paper offers a new one-dimensional model of the
mixed layer in which several processes are parameter-
ized more explicitly than in previous models. First, the
fraction of wind-generated turbulent kinetic energy
available for mixing is dependent on the ratio of the
mixed layer depth to the Obukhov mixing length.

2 Stull (1975) lists experimental observations of r (his 4,), and
the median value is between 0.1 and 0.3.
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Second, viscous dissipation is dependent on a local
Rossby number. Third, separate vertical and horizontal
equations for turbulent kinetic energy are used, allowing
for a more explicit treatment of the mixing process.

Mean turbulent field modeling of the terms of these
component equations is necessary to put the model in
closed form. There is no particular precedent for doing
this in a bulk model, but Bradshaw (1972), Mellor and
Herring (1973) and Lumley and Khajeh-Nouri (1974)
provide a general background for the technique.

In the model to be presented here, conservation of
buoyancy is employed as a generalization of the
conservation of heat alone. The buoyancy equation is
generated from the heat and salt equations together
with an equation of state,

p=po[ 1 —a(f—8,)+8(3—s0)], (1)
and the definition for buoyancy,
b= g(po—5)/po. (2)

In (1) and (2) 6 is temperature, 3 salinity and 5 density,
while « and 8 are the expansion coefficients for heat and
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salt, respectively, and g is gravity. The tilde represents
the total instantaneous value and the subscript zero
denotes a representative but arbitrary value. The
generalization of using b rather than § will cast the
model equations in a form equally applicable to those
situations where evaporation and precipitation con-
tribute significantly to the surface buoyancy flux and
the structure of the evolving pycnocline. The buoyancy
equation also has a more obvious and direct role in the
mechanical energy budget, as shown in Fig. 2.

2. Entrainment
a. Conceptual model

A physically plausible and accurate model for
predicting the rate of deepening (or retreat) is de- :
pendent upon an understanding of the dynamics of the !
entrainment process. The assumption is that the tur-
bulence of the overlying mixed layer provides the
energy needed to destabilize and erode the underlying
stable water mass. Therefore the turbulent kinetic
energy budget is the basis for the entrainment

Uuby

net surface buoyancy flux
absorption of solar radiation

N i

PiE. = P.E {to}
| a |
rﬁf)’ B dz dt |
8 O

*
entrainment

interior buovancy flux
buoyancy Flux

4

N s et st L)
I VERTICAL {
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F16. 2. Mechanical energy budget for the ocean mixed layer. Asterisks indicate those
processes that must be parameterized to close the system of equations.
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hypothesis:

1 3( 40+ T
- —-[uw—-!—mr—]-l-bw
2 a 9

az

e o

where ¢ is viscous dissipation and ensemble mean and
fluctuating components are denoted by the upper and
lower cases respectively. For example, #=U(z)
+u(x,y,2,6), where U=. If the terms of (3) are known
throughout the boundary layer then the evolution of
the potential energy and density profile may be evalu-
ated by using the budget for mechanical energy.

In the conceptual model, the entrainment zone
(region II of Fig. 1) is a region which is intermittently
turbulent in comparison with the overlying region I.
Local turbulent intensity and the work rate by this
turbulence on the interface (z= —#) in the form of
—bw(—k) is dependent upon the rate of supply of
energy from above, — (3/dz)[w(E/2+4 p/po) J-s, where
E=u*+2+u*. Without this extra energy source, the
region will remain dynamically stable, with a flux
Richardson number

Rf=bw/ (wwdU [ 32+ mwdV [ 3z) @)

larger than the critical value for a return to laminar
flow.

b. The specific mechanism

Of Benjamin’s (1963) three basic types of instabilities,
two may be possible here. At the interface between the
mixed layer and the denser water beneath, a so-called
class A instability will arise if

aaz(%?)l, (8)

where k is the wavenumber of the interfacial disturbance
and Aii the total velocity change across the interface.
From Lamb (1932), the Kelvin-Helmholtz (K-H) in-
stability (Benjamin’s class C) requires a larger value

for A#:
24B\}
aez(=-)- "

However, the class A instability is dependent upon
energy dissipation in the lower fluid, and this is likely
to be small compared with inferred rates of convergence
of energy flux at the interface (9/8z)[w(E/2+ p/po) J-».
For geophysical flows of this type having large Reynolds
and Péclet numbers, the class C instability is therefore

most likely to be the dominant mechanism leading to
observed rates of entrainment.

The specific mechanism that is envisioned in the
destabilization of the interface and the resulting en-
trainment is a “local” K-H instability. The onset of
this instability and its exponential growth rate is
predicted by linear two-dimensional wave theory. As
individual wave packets achieve a significant amplitude,
the nonlinear three-dimensional effects of the turbulence
field are assumed to prevail and to advect parts of the
exposed cusps of denser water up into the mixed layer.
Therefore, it is only the initial stages of the instability
that are strictly of the K-H type, where the induced
suction at the crests of a perturbation wave on the
interface is large enough to overcome the restoring
buoyancy force. The shear needed to trigger such an
instability is provided by the local turbulent eddies.
The mean shear contributes to the instability but
usually cannot in itself generate a critical Richardson
number or directly influence the frequency and magni-
tude of the destabilizing events.

¢. Entrainment hypothesis derived

Since the presumption is that the convergence of flux
of turbulent energy at the interface is primarily respon-
sible for the entrainment buoyancy flux, the problem is
to estimate the time scale 7, required to transport some
of the available turbulent energy (E) to *he vicinity of
the entraining interface:

e

where the angle braces denote the vertical mean over
the mixed layer, i.e.,

0

(E(l))=h—_:-_; E(zt)ds. ®)

—h—8

The mixed layer depth 4 or a length scale proportional
to h is the distance over which turbulent energy must
be transported by the vertical component of turbulent
velocity w. Therefore 7, is taken to be proportional

to h divided by the rms vertical velocity scale, (w?)},
giving
7o=a1h@?), ©)

The width & of region II is assumed to adjust so as
to maintain stability :

SAB

Ré=Rf(—h—-b<s< ~h)=—o—
@vy+(@vy

=constant, (10)

where A denotes the drop in the mean variable across
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DEPTH AVERAGED RICHARDSON NUMBER. 15.8-26.2 METERS
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F1c. 3. From Halpern (1974) showing a storm on 20 August that deepened the mixed layer to about 24 m.

the interface. A too-sharp interface (§~0) would be
dynamically unstable for all wavenumbers (k<67)
with any finite mean velocity drop |AU;,|. The resultant
vertical mixing would increase § until (10) was satisfied.
On the other hand, interfacial instabilities and sub-
sequent mixing will sharpen (§— 0) the interface,
explaining the very sharp interfaces observed in grid-
stirred experiments where AU;~0, The combined effect
of these two tendencies is to maintain an equilibrium
value for 4 so that Ré remains constant. It is important
to realize here that the assumption that Ré is constant
does not constitute closure because the value of § is not
a known quantity. This concept of the interface
dynamics and the role of R$ follows closely the argu-
ment of Csanady (1974). The closure hypothesis of
Pollard et al., (1973), hAB/(AU*+ AV?)= constant, is
derived from (10) only by making the additional
assumption that A/é= constant. However, the entrain-
ment with shear by Moore and Long (1971) supports
(10) and indicates that h/8 is not constant. Halpern's
(1974) measurements of depth-averaged gradient
Richardson number versus time (Fig. 3) also lend
support to (10). As the vertical position of the interface
was modulated by tidal-frequency internal waves, the
position of the current meters may have passed into or
through the interface region, depending upon both the
average mixed-layer depth and the amplitude of the

internal wave. The storm on 20 August deepened the
layer sufficiently to influence the envelope for 15.8-
26.2 m but not for 26.2-46.2 m.

With Fig. 1 in mind, Rf may be expressed in terms
of the bulk model properties by integrating the mean
buoyancy and momentum equations

B 3w ag

ks —;-}-EQ' (11)
ey (12a)
ol dz

av orw

_é:_=-fU__F;;’ (12b)

across the entrainment zone, from z= —h—§ to 3= —h.
If negligible amounts of momentum and buoyancy are
transported below the entrainment zone, and the
interface doesn’t change significantly, then this inte-
gration yields the so-called jump conditions for tur-
bulent fluxes at the bottom of the mixed layer:

s ah
—bw(—h)=4B—, (13)
ot
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b, oh
—vw(—k)=AV—. (14b)
at

Using (10) and the above jump conditions, one finds
that shear production is a fixed fraction of buoyant
damping in the entrainment zone:

—oU; Py
_“lw;(_h)= —(R&)""bw(~h), (15)

where (R3)~! becomes the constant of proportionality.
Notice that within the accuracy of (13) and (14), the
flux and gradient Richardson numbers are equivalent
(and equal to Ré) in the entrainment zone.

Tennekes (1973) assumed that dissipation is an in-
significant part of the turbulent kinetic energy budget
in the entrainment zone, implying that R must have a
value larger than unity. This zone may indeed maintain
a flux Richardson number larger than 1 and still sustain
active entrainment because shear production is not an
important local source of energy for mixing. Within an
active entrainment zone, the most significant source is
the convergence of flux of turbulent energy, —(d/92)
X[w(E/2+ p/po)]. Therefore the critical parameter
determining the rate of entrainment is not Rf but is
instead the ratio P of buoyancy flux to convergence of
energy flux, i.e.,

P=bw / ﬂ@} (16)

Then (7), (9) and (16) give an entrainment equation,

P(—h)=hbw(—~h)/ @) (E)=m, 17)

if P(—h) is the critical constant parameter, assigned
the value m,.

If dissipation in the entrainment zone is either
negligible or is a fixed fraction of the flux convergence,
ie.,

e(—h)=ax(E)/r., (18)

then (17) is also the consequence of (3), (7), (9), (15)
and (18) where m, reflects the combination of the
constants of proportionality :

(1—=a,)Ré
a(Ré—1)

Eq. (17) is similar to the form in Tennekes (1973), with
the primary difference being the use of (w?*)}(E) rather
than simply (E)). This feature should generalize the
applicability of the final mixed layer model, enabling
its use under a wide span of conditions, i.e., the diurnal

460 JOURNAL OF PHYSICAL OCEANOGRAPHY VoLuMg 7
— Oh and annual ranges of mixed layer stability for which
N sal s, (148) 1o ratio (u?)/(E) would be expected to vary signifi-

cantly. This approach to the entrainment problem is
very different theoretically from that of Mellor and
Durbin (1975). Although both theories employ mean-
turbulent-field modeling techniques in the turbulent
energy budget, Mellor and Durbin neglect the flux
convergence term altogether and rely upon a critical
gradient Richardson number at the interface coupled
with gradient diffusion below the interface. The deriva-
tion of (17), from Garwood (1976), is based upon the
assumption that the instability mechanism is dynamical
in nature, but the Mellor and Durbin parameterization
depends upon the viscous (v70) character of the inter-
face, as in Benjamin’s (1963) class A type instability.
Measurements of the flux convergence term at an
entraining interface are nonexistent but are needed to
settle this very fundamental difference.

Eq. (17) does not close the problem of predicting the
evolution of the density structure of the upper ocean,
given initial conditions, and surface boundary condi-
tions (wind stress and buoyancy flux), because two new

unknowns, (E) and (x?), have been introduced.

3. The bulk equations

Final closure is achieved with mean-turbulent-field
modeling of the vertically integrated equations for the
individual turbulent kinetic energy components, plus
the inclusion of the bulk buoyancy and momentum
equations.

With rectangular coordinate axes having x positive
to the east, y positive to the north and z positive up-
ward, the individual turbulent kinetic energy budgets
are given by

— H——+2mw
2 Po ox

—Quw—e/3, (19a)

164 93U a(w)er ou
2 ot dz oz

1  _3V dfuw\ pov  _
e -'WJ—-A(—)-I-— ——uv—e/3, (19b)
2 ot 9z dz\ 2 po 9y

10w . d/w wp\ pow  __
- —=hw— --+—)+—- —+Quw—e/3.  (19¢)
2 ol aS 2 Po Po as
In deriving these equations, horizontal homogeneity
was assumed, neglecting those terms containing mean
horizontal gradients. The sum of these three component
equations gives (3), the fotal turbulent kinetic energy
budget. Each of the component equations is usually in
a quasi-steady state because the dissipation time scale
is usually much smaller than the time scale of the
surface fluxes. A steady-state assumption will simplify
final solution, but it is not actually necessary to achieve
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closure. Notice that the redistribution terms associated
with rotation, Qauu,., and pressure interaction,

P dua

po %a

vanish in the summation. These terms therefore did not
appear and therefore played no role in the earlier
models in which the turbulent energy budget was not
separated into components, Vertical integration of (11)
and (12a,b) yields the bulk relationships for mean
buoyancy

a(B) ok agQo

h—+AB—A =
ot 3 pl

—bw(0), (20)

and mean momentum

aU) ok
h——+a£——A [hV ) —uw(0), (21a)

V) ok
h— +AV;~A——_{I¢(U) w(0).  (21b)
di

Three assumptions were employed in this integration:

(i) Vertical fluxes are negligible below the mixed
layer. Therefore,

buw(—h—8) =wuw(—h—8)=vw(—h—8)=0.

(ii) The mixed layer is sufficiently homogeneous so
that
AB=~(B)—B(—h—3),

AU=(U)—U(—h—3),
AV =(V)—V(—h—3).

(ili) Horizontal homogeneity is assumed for all mean
variables. The approximation of local horizontal
homogeneity with regard to the mean turbulence fields
is usually an accurate assumption because of the short
time scale for the turbulence. On the other hand, it is
recognized that the mean buoyancy and momentum
fields are not one-dimensional for all time and space
scales. However, such advective effects shall be
neglected here in order to emphasize some new aspects
which are fundamental to the one-dimensional model.

4. Closure hypotheses

Mean turbulent field modeling of the terms of
(19a-¢), integrated across the mixed layer, will close
the problem. That is, there will be five equations for
the five unknowns

h, (B), ©)=(U)+iV), @), (uwi4e).

In addition, there will be empirical constants to be
specified.

a. Viscous dissipation

For fully turbulent geophysical flows having large
Reynolds numbers, viscous dissipation of the turbulence
occurs primarily in the small eddies which are locally
isotropic. As explained by Tennekes and Lumley (1972),
an estimate of dissipation is made by taking the rate at
which the largest eddies supply energy to the smaller
eddies (equal to the rate of dissipation) to be propor-
tional to the reciprocal of the time scale of the largest
eddies. The net rate of dissipation,?

D= f edo= / -—ds, (22)
S 6‘.1?, dx;

and the vertical mean of turbulent energy, (E), are
accordingly used to define a dissipation time scale,

Te™ <E}:"r<e>a or

(,)..;Q (23)

Te
1) DISSIPATION IN SHALLOW MIXED LAYERS, Ro>3>1

If the time scale of these largest eddies is proportional
to the mixed layer depth divided by the rms turbulent
velocity, i.e.,

ni=h(E), (24)

then an integral model for dissipation in the mixed
layer, independent of viscosity and the small scales, is

f r— (25)
—h—3

where m, is a constant of proportionality. For those
situations where the turbulent velocity scale (E) is
proportional to the surface friction velocity u,, Eq. (25)
is equivalent to the parameterization used by
Miropol’skiy (1970) and Denman (1973). Such is the

case only for neutral, bw(0)=0, mixed layers.

2) A LIMITING DISSIPATION TIME SCALE FOR DEEPER
(Ro~1) MIXED LAYERS

In deeper boundary layers, planetary rotation turns
the mean shear direction with depth and thus influences
the geometrical aspects of the integral scale. This
introduces a second integral time scale

re= -1, (26)

the inverse of the coriolis parameter.

It is becoming increasingly clear from such studies
as Arya and Wyngaard (1975) and Sundararajan (1975)
that this rotational time scale plays an important role
in the internal structure of the convective planetary

* This D is equivalent to the D*/po of Kraus and Turner (1967),
where D* is the total rate of dissipation per unit area.
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boundary layer or mixed layer. The concern here is more
with the bulk properties of the region and less with the
details within the mixed layer, but it is suggested that
this time scale has an important role in the overall
turbulent energy budget. The mean shear profile and
the turbulent energy budget are inseparable because
of the link through local shear production.

Rather than to simply replace the convective scale
71 by the rotational scale rs, it is assumed that

(r 7= (r1)7 4 (). @27)

This is the simplest combination of the two scales that
retains the asymptotic characteristic of r,— 7, as
kf— 0. This gives

D= f ds=m(ENtmfKE)  (28)
—A—8

£ D=my(BW 14+ R0 2 (282)
"ﬂl.( ) o i (E)‘)’
where
Rom— (29)
hf

is a Rossby number for the turbulent boundary layer.

b. Redistribution of turbulent energy

The vertical integral of the pressure redistribution
term,

0 p a“-
R.= =g (30)
—h—3 Po O%q

is an important source or sink term for the individual
turbulent kinetic energy budgets, even though
Ri+Rot Rs=0.

Following the early lead of Rotta (1951), and in
agreement with the dominant term of the rational
closure technique of Lumley and Khajeh-Nouri (1974),
the bulk formulation is

Ra=mo EP((E)—3(ua?)). (31)

In addition to dimensional consistency, the concept
leading to (31) is that of a “return to isotropy.” In
other words, the pressure-strain rate interaction tends
to restore equal distribution of energy among the three
components. This interaction is expected to be some-
what dependent upon stability, but this is assumed to
be a higher order effect and is neglected here. The
rotational redistribution terms Q.uu, are also assumed
to be of a higher order and are neglected at this point.
Their inclusion would, however, create the intriguing
possibility of entrainment rate being susceptible to
wind direction.

¢. Shear production
The vertical integral of shear production reduces to

—aU _aV
= f (uw—+vw—)dz==u,.’6£/ (0), (32)
-

03 0z

where 3U(z) is the magnitude of the mean velocity
associated with mean shear, i.e.,

83U (a)=[U+ V2 —(U%)—(V*)]\. (33)

In this instance, the inhomogeneity of the mean velocity
field cannot be neglected. An additional source/sink

[os A DpeA2D) )]

Po

The surface term reflects a source attributable to break-
ing surface waves, and it might be modeled as being
proportional to u,? for a fully developed wave field. The
term at z= —k—3 accounts for a possible loss due to
downward-radiating internal wave energy. Stull (1975)
found that this may be significant in a rapidly deepening
unstable atmospheric boundary layer. The term will be
neglected here.

If 3U(0) is proportional to u,, then (32) may be
combined with (34) to give net “wind-generated” rate
of production*:

U _aV a wp wE
G[ [ +v—F— —+ )}iz
A 9z 9z dz\py 2
(AU)™+(AV)* 3k

=may +———— —.  (35)
2 ot

The last term of (35) coraes from integrating the shear
production across the entraining interface (Niiler,
1975).
d. Summary of modeled equations

A final set of equations has been generated:
The extrainment buoyancy flux, from (17) is

Ty
_5(__*):‘(»»') <E>. (36)

The budget for the horizontal components of turbulent
kinetic energy comes from (35a), (31), (28) and the

¢ This G is equivalent to Kraus and Turner’s G*/p, plus the
term added by Niiler.
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sum of (19a) and (19b) vertically integrated, giving

12,9 . bu(—k)|aC)?
- 248

e 2m,
-m«E)—w»w»—%(w»%ﬁ)(sx 7

The budget for the vertical component of turbulent
kinetic energy comes from (31), (28) and the vertical
integral of (19c), giving

2y 2
%a_‘(,,(,,.»,.W(_;,)—;w.m,«m-s(w*»(&)*
__?((E)H.:l fh)(E). (38)

The mean buoyancy and complex mean momentum
equations are

P2 -0+, )
at e

qC) — — .
b_‘jl_-m(—h)—m(o)*ﬂ'(c)&- @y

The jump conditions relate the entrainment fluxes to
the mean momentum and mean buoyancy and the

rate of deepening,

o ah
~cw(—k)=AC—, (14)

a

i ok
~bu(~H=aB_. (13)

The values of ww(0), mw(0), bw(0) and the radiation
absorption (z) are assumed to be given time-dependent
variables from which are determined

4= 100 (0)+im0(0) (39

- ag ° 2 "
i il e e . (40
b= ~o0) = _...( = 'Q«m)«n (40)

Also assumed to be given are the mean buoyancy and
momentum just below the mixed layer: B(—h—38)
and C(—k—3). Therefore

AB=(B)~B(~h—38)
AC=(C)~C(~h—8) |

5. General behavior of the equations

a. Nondimensional form of the turbulent energy and
enirainment equations

Using the given flux scales u, and b,, new dimension-
less variables are defined :

by
=t 1)
2mau? ,
hAB oh —hbw(—h)
Pr= = x (42)
2mau,’ ot 2man,®
N (E
EL=(1) (—} (43)
Ma/ Uy
. 1 i ;
E;a=(1) Lk (44)
m3. “*2

The mixed layer stability parameter H* is the ratio of
the effective buoyancy flux (from surface heating and
net precipitation minus evaporation) to wind-stress
production. It is proportional to /L where L is the
Obukhov length. Both L and H* may be negative
should there be a positive surface buoyancy flux due
to surface cooling and/or a net evaporation minus
precipitation. A value of zero for H* (L —) repre-
sents a neutral mixed layer. The interface stability
parameter P* is a dimensionless measure of the entrain-
ment rate. The parameters Ej, and Ej, are measures of
the total turbulent kinetic energy and the vertical
component of turbulent kinetic energy respectively.
The values of P* and E_, will depend upon the values
of H* and Ro™! that are determined by the prescribed
values of #,? and w,b, together with the current value
of h.

Invoking the quasi-steady-state assumption for the
turbulent energy budget, the entrainment and turbulent
energy equations (36), (37) and (38), become

Pr=dpEu(Es), (45)
P
0= 1+El'_:-'?s (EL—3Ezs) (Bt

—3EL(Ed+ps Ro™), (46)
0=—H*~P*+ p,(E—3Ess) (Bt
—3EL(Ed+p1 Ro™), (47)

where
Ri*=hAB/|AC |2,
pr=mi/my, (48a)
par=ma/my, (48b)
pa=ms/m. (48c)
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F1c. 4. Dimensionless entrainment buoyancy flux P* versus
layer stability H* for the case of Ro>>1. The dashed line is the
“‘calibrated” solution to the Kraus-Turner prototype model.

b. Determination of the constants

Observations of changes in the vertical structure of
the upper ocean together with simultaneous measure-
ments of the surface fluxes will eventually be used to
determine the validity of the closure hypotheses and to
establish values for the required constants. However,
approximate values will be estimated here so that solu-
tions to the equations may be computed for a pre-
liminary evaluation of the model.

The ratio ma/m, is equivalent to 18/, /A, where /A is
the redistribution to dissipation length scale ratio of
Mellor and Herring (1973). From boundary layer data,
they find /,/A=0.05+0.01. Hence ps is of order 1 and
will be taken to be equal to 1 in this analysis,

pa=1. (49)

The ratio ms/my= p; may be determined by consider-
ing the asymptotic case of pure convection, f*——x,
Ri*= = and Ro= » . Then (45), (46) and (47) reduce to

2r tEja\"}
1= —1 , 50
p=— E,) (50)
Ess/Ei=(3ps+2)/ (9p2). (51)

Eqs. (49), (50) and (51) combine to make p; solely
dependent upon r:

pr=18r/[5(1—1)].

If, again for the sake of a preliminary solution, p, is also
taken to be unity,

=1, (52)
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this corresponds to r=35,/23, which is within the ex-
pected range of 0.2:0.1. P* may now be solved as a
function of A* and Ri*. Fig. 4 shows P*(H*) for
Ri*=2 and for Ri*= . There is an obvious increase
in rate of entrainment P* with decreasing layer sta-
bility H*. The important point is that the non-zero
curvature, ¢*°P*/dH*, means that the percentage of
turbulent energy going to entrainment changes with H*.

In the retreat mode (P*=0), H* is at its maximum
value (0.4 in the case of p;=p,=1). The value of P*
goes to zero as the ratio of vertical to horizontal tur-
bulent energy (illustrated in Fig. 5) vanishes. It is not
expected that Ej, need be identically zero in the event
of retreat, but the large value of |dP* dH*| in the
vicinity of Hj,. minimizes the importance of this
detail. Total turbulent energy E, is still substantial
at H*=H;,, so dissipation remains significant in the
retreat mode. In the event of retreat, the mized layer
depth h=h, is no longer determined by (43), but
by H*=H’ ., or

2man,?
" Ssuend (53)
Ughy

Fig. 4 also indicates that entrainment shear produc-
tion has only a small effect on entrainment rate if
Ri*2 2. This effect will only be important during a
fraction of one inertial period following a strong increase
in wind stress, especially after a period of strong surface
heating and minimal mixed layer depth. In such a case,
a mean flow instability as suggested by Pollard et al.
(1973) is consistent with the prediction from (10) that
the ratio 8// adjusts to keep Ré constant. That is, this
instability could take place as 8 approaches k in value.

The one remaining constant needed to complete the
shallow-layer model is m;. This may be determined

_______________ 555
A
A
w
X
1
v
2
" i n i i A
-6 -4 -2 0 4

*
H

Fic. 5. Ratio of vertical turbulent kinetic energy to total
turbulent kinetic emergy for Ri*>1 and Ro3>»1. The unstable
limit (H*—— =) is 0.555.
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from the Kato and Phillips (1969) laboratory results,
oh
1!335—(5‘: =0)=2.5u,", (54)
13

together with P*(H*=0) from Fig. 4,

hAB ok
P*(H*=0)= —(by =0)=0.165,
mlu*a ai

giving
ms=1.25/P*(H*=0)=17.6. (35)

A check on this value comes from (32). Egs. (32) and
(35), with Ri*>2, give

ma=38U(0)/uy. (56)

Therefore, a value of m;=7.6 is quite reasonable.

c. General solution—including dissipation enhancement

The general solution to P* is largely a function of
only two variables, H* and Ro™ if Ri*2 2. This solu-
tion, from Garwood (1976), is given in Fig. 6. It is the
result of the simultaneous solutions of (45), (46) and
(47). The earlier solution (Fig. 4) is represented by the
limiting case, P*(Ro"'=0). In examining Fig. 6,
Z*= p;Ro™! may be regarded as the nondimensional
mixed-layer depth and H* may be considered a measure
of stability. Two new features appear in the general
solution. First, the rate of entrainment decreases with
increased Z*. Second, in the retreat mode (P*=0),
Hy,,, is not a constant but is a function of layer depth,
rotation and wind stress. In particular, a neutral steady
state, P*=0 for H*=0, is predicted for a sufficiently
large value of Z*. However, starting with h<u,/f,
neutral steady state would be approached only after a
relatively long time. This is not likely to be achieved in

Fic. 6. General solution to the entrainment and turbulent
kinetic energy equations (45), (46) and (47), if Ri*>»1 and
pr=py=1.
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Fi1c. 7. Mixed layer depth versus time for two hyvpothetical cases
having constant wind stress and an initial lincar <11 1

case with a diurnal heating cvele exhibit
longer term rate of deepening, as predicted b

geophysical flows, except perhaps Ly the ctmosphen
boundary layer during the polar winter oz
Arya, 1974),

6. Specific differences in comparison to earlier
models
a. Nonlinearity in P*(H*) in deepening mived liver

This nonlinearity is present with or without rotation.
Therefore it is sufficient to examine the <1 pler cas

with Ro>>1 (Fig. 4) to demonstrate this effect. If /1% 1-
perturbed by a fluctuating surface huovan v tluy such
as that associated with the diurnal-period heating

cycle, then the mean P* over a complete cycle will be
leds than P* for the mean H*, ie.,

P*(H*) < P*(H*). (57)

Fig. 7 demonstrates the consequence of this phe
nomenon over the course of a few days. This non-
linearity will result in the modulation of the long-term
trend by shorter period fluctuations in stability,
particularly those of the diurnal cycle.

b. Cyclical steady state

For the sake of studying the relative response of the
mixed layer, all cycles will be assumed to be repetitive
(in steady state). A sinusoidal surface buoyancy flux®
and a constant wind stress are used to drive the model,
ie, |cw(0)|=u2=constant and —bw(0)= |ub,|
Xexp(—iwt). In other words, in this hypothetical case,
bw(0) is assumed to have no mean components. The
period 2w/w is not specified, but the results will be
particularly relevant to the annual heating/cooling
cycle. The diurnal cycle is not as likely to be in a steady
state, but the result will also approximate that response.

* The effective surface buoyancy flux is, for the sake of con-
venience, assumed here to include the solar radiation component
(as if all shortwave radiation were absorbed at the immediate
surface).

. e,y
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Fi1c. 8. The cyclical response of /(f) and the corresponding
closed loop in the (Z*, !i‘) plane due to an imposed periodic
surface buoyancy flux —bw(0).

Cyclical steady state is depicted by Fig. 8. This
shows the locus of coordinates (Z* H*) as the effective
surface buoyancy flux progresses through a heating
[5w(0)<0] and then a cooling [5w(9)>0] phase. The
initial [0] and final [4] points coincide at the point for
the neutral steady state. On an annual basis, this would
also correspond to the vernal equinox. Between [0]
and [1] the buoyancy flux is directed downward
(H*>0) and is increasing, causing the mixed layer to
retreat to its minimum depth at [1]. Between [1] and
[2] there is active entrainment, 8k/d¢>0, but the rate
of deepening is very slow because of continued down-
ward surface buoyancy flux. In spite of this downward
surface heat flux, the sea surface temperature will begin
to drop as soon as entrainment heat flux becomes
dominant, i.e., —fw(—h)>—6w(0). This will occur
prior to the autumnal equinox [2]. Because of the large
seasonal buoyancy gradient created during the summer
when the heat added through the surface was not
mixed deeply, h does not increase rapidly until after
the surface heat flux maximum at [3]. Of course,
autumn storms (with greatly increased u,' and en-
hanced evaporation) could more quickly overcome this
buoyancy gradient and accelerate the rate of deepening.
Any particular oceanic region has neither a constant
wind stress nor a perfectly sinusoidal buoyancy flux.
Any mean (over one year) buoyancy flux can only be
accounted for by including advection, which has not
been done here. However, the purpose here has been to
show that a one-dimensional mixed layer model can
explain the observed cyclical steady state. The inclusion
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of advection and more realistic surface forcing would
alter to some extent the shape and relative position of
the predicted closed locus in the (Z*,H*) plane.

The relative importance of the rotational and surface
buoyancy flux scales needs to be examined. The magni-
tude of the mixed layer response is found to be a
function of the ratio of the rotational length scale (u,/f)
to the buoyancy flux scale (1,2/b,), i.e.,

I teby|

Jus®
Fig. 9 shows the cycle of A(f), nondimensionalized on
u,/ f as a function of B*,

For large B*, which is typical of the annual cycle in
temperate oceanic regions, the shallow mixed layer
depth at wf=w/2 is attributable to the strong influence
of the buoyant damping corresponding to a small
positive Obukhov length scale. A more realistic, non-
constant #, would influence the time for the occurrence
of this minimum layer depth. In addition to the change
in the range of # with 3*, there is an effect upon the
shape of the function k(¢). For the case of weak heating
and cooling, the variation in k is almost in phase with
bw(0). In the (Z*, H*) plane, the locus of the cycle is
small and elongated. For increasingly larger B*, the
heat and therefore buoyancy is stored during the
“summer” at an increasingly shallower depth (in com-
parison to Amax~,/f). This creates a hysteresis effect
by retarding the subsequent rate of deepening. This
phase lag in the heat storage naturally has important
implications for the interaction with the atmosphere for
all surface flux time scales, from one day to periods of
climatological importance.

(58)

PHASE (wt)
sl " 27
00—39 7 o —
E
 osf i .
g
=
\'l: !
1567 Y

Fi1c. 9. Cyclical steady-state response to a sinusoidal surface
buoyancy flux and a constant wind stress. Mixed layer depth is
nondimensionalized on w,/f and B*= |usbs |/ (fus?) is a measure
of the strength of the annual heating/cooling cycle.
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7. A theoretical framework for model comparison
and testing

Fig. 6, in which the solution for entrainment rate is
depicted as a function of stability (H*) and a second
parameter Z* (=psRo! in the present formulation),
poses a framework for model intercomparison. Fig. 10
shows illustrations of the P* surface as predicted by
three representative models.

Fig. 10a is that for the Kraus-Turner (KT) type of
model. This is representative of all models (including
those of Miropol’skiy, Denman and Niiler) for which
shear production G is parameterized as being propor-
tional to #,?, and net dissipation D is a fixed fraction
of G, giving

Pyr=c1—c:H*. (59)

In this case there is no dissipation enhancement with
increased layer depth or rotation, as measured by the
second variable Z*.

Fig. 10b is for the Elsberry et al. (EFT) model in
which De1—exp(—Z2¥*). As in the KT model, P* de-
pends linearly upon H*, but the rate of deepening is
checked with increased Z*=h/Z:

Pigr=crexp(—2Z*) —c,H*. (60)

This dissipation enhancement, however, is still in-
sufficient to predict a cyclic steady state because the
locus of P*=0 fails to cross the H*=0 line.

Fig. 10c is for the model of Kim (1976) having a
constant background dissipation € in addition to the
fixed fraction of shear production, giving

Py=c1—cZ*—c,H*, (61)

Notice that (61) predicts a possible steady state, both
neutral and cyclical, because the P*=0 locus crosses
the H*=0 line at Z*=c/c;. Kim’s background dissipa-
tion is nmot necessarily as strong at that of EFT for
small Z*, but this parameterization denotes a stronger
net dissipation with increasingly larger values of Z*.

If the dissipation enhancement effects of EFT, Kim
and Garwood are assumed to be physically equivalent
and Z*=p;Ro™!, then Elsberry’s Z and Kim’s ¢, are
both related to planetary rotation, i.e.,

Zxu/f, (62)
o fud. (63)

Resnyanskiy (1975) also suggests that this second
length scale Z should be proportional to u,/f. It is an
interesting development to find that present-day
workers are returning to the rotational length scale
originally proposed by Rossby and Montgomery (1935).

The framework P*(Z*, H*) is also applicable to data
analysis. An empirical determination of the P* surface
as a function of Z* and H* is needed to test and further
improve the one-dimensional model. Actually accom-
plishing such an empirical fit is difficult because it

b e —-'-'u.

Li]

/
z

Fic. 10. Solutions to the entrainment function P* in the
(H*, Z*) plane for the models of (a) Kraus and Turner (1967),
(b) Elsberry ef al. (1976) and (c) Kim (1976). Compare these
with Fig. 6.

requires identifying the true depth of the turbulent
boundary layer. This may only occasionally coincide
with the apparent 4(#) because the diurnal variation in
stability will give rise to a diurnal retreat and deepening
cycle, not easily discernable in temperature profiles.
Nevertheless, this information is needed to adequately
test a model. Any particular mixed layer model may be
calibrated to predict the apparent k(f) at a suitable
site as long as the variations in H* and Z* are small,
but such a model may be of little use under widely
varying conditions.

8. Conclusions

This new model for the ocean mixed layer suggests
answers to the questions raised earlier concerning the
general applicability of bulk models based upon the
turbulent energy budget:

1)Planetary rotation is assumed to influence the
dissipation time scale for the turbulence. This enhances
dissipation for deeper mixed layers and enables a
cyclical steady state on an annual basis.

2) The rate of entrainment (P*) for the stable
regime, H*>0, is not accurately reflected by a linear
extrapolation of the H*< 0 situations. This is particu-

R IT TN T R T,
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larly important in modeling the oceanic boundary
layer. Unlike the atmospheric boundary layer case,
most of the solar radiation does not penetrate the layer.
Therefore downward turbulent heat flux in the oceanic
boundary layer is as important as the upward flux
during the course of both the diurnal and annual cycles.
The nonlinearity of P*(H*), which is greatest for H*>0
results in a modulation of the long-term trend of A(¢)
by the diurnal component of surface heat flux.

3) In this model, buoyant production is somewhat
more efficient than shear production as a source of
energy for vertical mixing because of its unique effect
on the vertical component of the turbulent velocity.
However, this efficiency is much less than the 1009,
denoted by the prototype model.

Finally, a framework, P*(Z*, H*) has been suggested
for model comparison. This is also a potential basis for
data analysis and experiment design. While the models
do have didactic value, knowledge of P*(Z*, H*) from
observations alone would be sufficient for the prediction
of layer deepening and retreat.
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