
AN ODP APPROACH 
TO THE DEVELOPMENT OF 

LARGE MIDDLEWARE SYSTEMS 

Peter F. Linington 

Computing Laboratory, 

University of Kent at Canterbury 
Kent CT2 7NF, UK 

pfl@ukc.ac.uk 

Abstract: Since the Reference Model for Open Distributed Processing was 

completed, work in ISO in this area has concentrated on the definition of a number of 
supporting standards to add detail to the basic framework. Taken together, these provide 

a powerful structure for the support of large federated systems and provide a basis for 

the enhancement of tools for the development and maintenance of large middleware 
systems. 

This paper describes the main features of the new work and speculates on how it can 

be applied to augment the tools used to design and manage such systems, and, by so 

doing, can increase their flexibility. 

Keywords: Distributed processing, ODP 

1 INTRODUCTION 

This paper reviews the problems of designing, implementing and managing large 

distributed systems, reports on the recent ODP work that are directed at different 

parts of the problem and suggests a direction which middleware developments may 

take to reduce the costs of providing large federated systems. 

Large distributed systems are often long-lived and span organizational boundaries. 

They need to evolve to meet changing requirements over a long period of time, and 

are typically supported by loosely coordinated management and maintenance teams 

with divided responsibilities and objectives. Thus the system is likely to fall into a 

number of distinct management domains and any coordinating authority will operate 

61 

L. Kutvonen et al. (eds.), Distributed Applications and Interoperable Systems II

© Springer Science+Business Media New York 1999



62 INVITED TALK 

on the basis of a fairly high level view which is imperfectly communicated to the 

individual domains. In other words, large distributed systems generally have a 

federated structure and so their development must pay particular attention to the 

problems of federation. 

The Reference Model for Open Distributed Processing (RM-ODP) was created 

within the International Standards Organization during the early 1990's in order 

provide a stable framework for a broad family of standards for middleware and other 

related technologies [1][2]. Recent work within ISO has concentrated on more 

detailed elaboration of key parts of the framework and standardization of critical 

components needed to ease the federation of independently developed systems. The 

focus for specification of the basic middleware technologies themselves has shifted 

into shorter term, industry-based consortia such as the Object Management Group, 

although there is continuing active liaison to ensure that a coherent technical solution 

results. A selection of the most important standards is published by both 

organizations, and others are related by cross-reference. 

The RM-ODP recognizes that the design and specification of any significant 

distributed system is a complex activity, bringing together the work of a wide range 

of experts. The activity can be divided into a number of areas of concern, and a 

designer considering one part of the problem does not necessarily have to be aware 

of the full detail being worked out in other areas. The different parts of the design do, 

however, need to be consistent, and detailed design at the component level must not 

defeat policies and objectives set out for the system as a whole. The RM-ODP 

supports the separation of concerns by introducing the idea of there being a number 

of viewpoints, each of which is specialized to support one aspect of the design 

process. The different viewpoints are inter-related by stating a series of 

correspondences between terms in each pair, and by establishing correspondences 

between the interpretations of the different languages in which the viewpoints are 

expressed. 

The underlying vision behind this model is one of an increasingly mechanized and 

integrated development environment. System building and system management tools 

will draw upon different parts of the various viewpoints, guaranteeing, for example, 

that modification of the system's configuration to extend its function does not 

conflict with an established system-wide security or accounting policy. A simple 

precursor of this kind of division of the system into related parts with differing 

scopes and lifetimes is already familiar in the division between interface definition 

languages and object implementation languages. Others current examples can be 

found in the separation of application design from middleware configuration and 

feature selection. 

Realizing this vision requires the components of the development environment to 

be designed so as to exploit information from a variety of sources, even if their use 

falls primarily into a particular viewpoint. Tools need to be able to play their part in 

validating the complete set of specifications, and in giving users meaningful 

feedback on errors and inconsistencies that may arise from interaction of the various 

specification elements. 

The RM-ODP defines five viewpoints. They are the enterprise, information, 

computational, engineering and technology viewpoints. The different areas of 

concern they address can be summarized as follows: 



AN ODP APPROACH TO THE DEVELOPMENT OF LARGE MIDDLEW ARE SYSTEMS 63 

1. The enterprise viewpoint is concerned with establishing the environment in 

which the system is to operate. It includes both those aspects of the 

organizational structure and objectives that need to be interpreted or referenced 

within the remainder of the specification and the system-wide policies which are 

intended to control the system's design and operation; 

2. The information viewpoint brings together the shared view of the meaning of 

and constraints on key information elements, and, in so doing, gives the basis for 
system-wide consistency. It is the information viewpoint that provides the 

common interpretation guaranteeing that a concept identified in a user interface 

and a concept referenced in a remote invocation of an interface operation are the 
same concept; 

3. The computational viewpoint is the main focus for functional design. The 

computational language defines an abstract object model - the virtual machine 

that interprets the computational design and thus has to be realized by any 

supporting middleware. The computational design identified interactions 
between objects at interfaces, and these interactions will need to be supported 

either by communication between systems or by locally optimized interactions, 

depending on the way the system's functions are to be distributed at any 

particular moment; 

4. The engineering viewpoint must define the interpreter for the computational 
model; it consists of a series of templates for the computational interactions, 

parameterized so as to support a range of different policies selected either for the 

enterprise, or on a finer scale. The RM-ODP supports this parameterization by 

defining a series of transparencies, representing requirements that particular 
common problems (such as a lack of migration transparency) need to be solved; 

5. The technology viewpoint returns to the specification of boundary conditions on 

the design, this time concentrating on the enumeration of standard technologies 
on which the design is to be based; it is primarily a catalogue of references to 

existing standards used by the system's designers. 

2 ENTERPRISE MODELLING 

The RM-ODP itself gives only rather general information about the form of the 

enterprise language. This is because it is intended to provide a general-purpose 
framework, applicable to very many different situations and organizational 

structures, and specific fixed constraints would, therefore, be likely to restrict its 

scope. Work is now in progress within ISO to create an additional, more detailed 

enterprise framework able to express the constraints applicable to systems used in a 

wide range of enterprise structures, and this work is making the enterprise language 

much more specific [3]. 

An enterprise specification is object based. It is structured by defining a number 
of communities, each of which is formed from enterprise objects to meet a stated 

objective, and which, taken together, capture the aims and purpose of the 

organizations to be supported by the system of interest. Communities have types, and 

the type is expressed in terms of community behaviour, giving the interactions of a 

number of roles. These roles are essentially the parameters of the community type 



64 INVITED TALK 

and are filled by suitable objects, each capable of satisfying the corresponding role 

requirements when a community is formed. Each object can fill a number of roles in 

one or more communities, and a number of roles can be filled by a single object. 

However, there may be constraints requiring that related roles in coupled 

communities be filled by the same object, or that particular roles in a single 
community be filled by different objects (for example, it may be stated that an 

auditor cannot be a financial decision maker within the same organization). 

Communities are configurations of objects, and, as such, they are themselves 

objects. It is thus possible to nest communities, with one community filling a role in 

some larger, enveloping community. Combination of communities is not restricted to 

this form of nesting, however. Two communities may overlap in arbitrary ways as a 
result of objects filling roles in more than one community. This allows communities 

to be used to specify complex behaviour in a constraint-oriented style, with each 

community expressing a different set of requirements on the system being specified 

(components of which will fill roles in many of the communities being defined). In 

this way, the enterprise specification places obligations on the system being 

specified [4]. 

The main problem with handling the essentially social structures being supported 

by large open IT systems is that real organizations seldom adhere strictly to their 
own rules. They are often found in inconsistent states, so that some level of 
optimization and compromise is needed in interpreting such rules to manage 

automated parts of the system. This is a very different situation from that normally 
found in managing, say, computational interactions. Computational binding within 

the middleware can be controlled by a strict set of rules for matching interface types, 

formulated to ensure interaction is successful when using servers with more facilities 
than currently needed, or when system evolution is in progress. When considering an 

object taking part in an enterprise community, however, a different approach is 

needed. One way is to place more emphasis on the negotiation process, so that an 
object can agree to restrict its own behaviour to that which is required when joining 
the community. This leads to a distinction between the objects maximal possible 

behaviour and its currently agreed behaviour, called its social behaviour in [5]. 

Although it would be possible to express all aspects of enterprise behaviour from 

first principles by using suitable behavioural constraints on community membership, 

the practical application of these ideas depends on the creation of libraries of rules 
which are closer to and can be recognized as representing common business 

constructs. Examples are likely to be sets of general rules for describing, for 

example, authorization and delegation structures. More specific rules might cover 

particular accounting or resource allocation schemes. 

How, then, are sets of rules and policies that are contain potential inconsistencies 
or conflicts to be interpreted? Guidance is still needed in particular circumstances on 

how an application should behave, or whether a particular middleware mechanism is 

to be included, and if so with what parameters or options. There needs to be some 

decision mechanism for resolving choices, even where there are contradictions. One 

possibility is to provide a system of priorities to select between opposing 

requirements, but this, on its own, is unsatisfactory for two reasons. First, a single 
system of priorities implies some degree of global view of the design, making 

federation more difficult to organize, and second the resulting behaviour is not 



AN ODP APPROACH TO THE DEVELOPMENT OF LARGE MIDDLEW ARE SYSTEMS 65 

modified by the presence of the lower priority rule, so that the behaviour changes 

discontinuously as the priorities are varied. 

An alternative approach is to express rules and policies in terms of a cost 

function [5], so that decisions are taken as a result of a notional optimization process. 

Strong rules correspond to sharply differentiated costs for the different courses of 

action, and weaker rules have smaller associated cost differentials. Each possible 

choice can be resolved by selecting the minimum cost path. This process depends on 

estimates of the expected behaviour of the environment in which the system is 

placed, and so is inherently adaptive. Various notions of obligation and prohibition 

can be modelled as changing the costs applied by the object accepting the 

responsibility. 

Once a target series of actions has been identified, different strengths of 

infrastructure mechanism can be selected, based on the perceived costs of departing 

from the desired behaviour. On one hand, pessimistic mechanisms can check each 

interaction and block departure from the agreed sequence. This may be appropriate 

where the costs of violation are high, and the countermeasures cheap and localized. 

On the other hand, optimistic mechanisms may rely on objects satisfying the 

obligations they have undertaken and fall back on later corrective or punitive actions 

if there are exceptions. This may be the best solution if little is at risk and the checks 

to be applied are themselves distributed and costly. 

These and other issues are the subject of active debate within the ODP 

community. The current working document for the Enterprise Viewpoint provides a 

basic set of definitions, augmented by specification structuring rules, 

correspondences with other viewpoints and a draft metamodel for the enterprise 

language. It is expected to be substantially complete before the end of 1999. 

One of the requirements for a useful enterprise modelling notation is that it should 

be accessible to a wide and relevant community. This mitigates against exotic 

notations in favour of notations which are already familiar in at least the system 

analysis community. With this in mind, the Unified Modelling Language (UML) is 

being investigated by members of the ISO group to see to what extent it can be used 

as a basis for specifications in the ODP enterprise viewpoint. It is able to express 

simple conceptual structures, such as the relation of roles to communities, but cannot 

express objectives or policies in any general way. One possible direction is to work 

with a structure defined in UML and decorate it with a companion enterprise policy 

language, which would have the same sort of relation to the UML core as the 

existing UML Object Constraint Language does. Attempts have already been made 

to handle Quality of Service-related policies in this way [6]. 

3 NAMING AND FEDERATION 

Probably the single most important step in federating independently originated 

systems is the establishment of rules for unifying the various namespaces on which 

the different systems depend. Because of the separate development histories of the 

different systems prior to federation, the interpretation and structure of their naming 

schemes may differ either in major ways, or in more subtle aspects of interpretation. 

Any use of a name which refers to something from across a federation boundary is 

likely to be problematic, because the rules in force when the object was first named 

and the rules applied where the name is being used will not, in general, be exactly 



66 INVITED TALK 

the same. Even if translation processes are agreed and put in place to handle gross 

differences, subtle variations are still likely to be present. 

name 

action 

context 

previous resolution steps 

in other contexts 

new action 
parse name 

new name 

following resolution steps 

in other contexts 

Figure 1. The name resolution process. 

ODP takes as its starting point the recognition that all naming is context relative. 

Even if efforts are made to establish global naming authorities and unambiguous 

naming processes, there will still be variations of interpretation to be coped with. 

There will be different assumptions about the implicit properties of the things named, 

and the process of creating federations between systems with different technological 

bases will gradually erode uniformity. The ODP Naming Framework [7] 

acknowledges this process and makes mechanisms for coping with it explicit by 

associating a context with any action which involves naming. 

When an action is performed which interprets a name, the name is processed in 

the appropriate context, qualified as necessary by the nature of the action being 

performed. This analysis may result in identification of the resources necessary to 

complete the action, but it will, in general, result in the identification of a further 

action to be performed. This will lead to the transfer of a modified or translated name 

into another context where the activity can be continued (see figure 1). 

Distributed systems depend on the ability to transfer names in order to extend 

existing configurations and publish the availability of new services. When this 

transfer crosses the boundary between domains, there may be a need to transform the 

name being transferred so that it is still possible to interpret it in the receiving 

context. There are several ways identified in the standard of dividing the 

responsibility for this transformation between domains, but they all depend on some 

part of the system being aware that a name is being transferred. The introduction of 



AN ODP APPROACH TO THE DEVELOPMENT OF LARGE MIDDLEW ARE SYSTEMS 67 

ubiquitous middleware is important here, as it implies that there is awareness at a 

suitable place in the system structure that names are being transferred. This is a 

consequence of the awareness within the system of interface types and, in particular, 

of the parameter types to be marshalled and unmarshalled, and suitable naming

related actions can be associated with this process. 

Naming systems are particularly difficult to manage when they result from the 

integration of the individually developed naming schemes of separate organizations 

which have decided to cooperate or to merge some aspects of their activities. This is 

the essence of the federation problem. The naming framework provides a number of 

mechanisms for organizing the federation process. They are based on the creation of 

specific naming structures to localize the management of the federation process and 

decouple it from the normal evolution of the naming systems within the 

organizations. There are three main techniques: 

1. creating an export context for the names of objects or services within your 

organization which are to be accessed from outside. The export context 

decouples internal and external names and can be used to control external 

visibility if name resolution requests are only accepted in the export context; 

2. the two or more parties to a federation agreement creating a shared context in 

which each of their export contexts are named, thus providing a level of 

uniformity when exchanging names within the federation by ensuring that there 

is at least one context shared between the partners; 

3. any organization may create an import context which maps names accessed via 

the federation context into convenient local forms, decoupling local usage from 

variations resulting from changes in the federation agreements. 

The creation of a federation depends on the parties involved agreeing various 

obligations and responsibilities - essentially an enterprise specification. This 

includes the purpose of the federation, the communication mechanisms to be used, 

the form and content of the federation context and the names for suitable export 

contexts that the members undertake to support. 

Once the necessary federation agreements have been put in place, and technical 

measures taken to support them, there remains the need to maintain the necessary 

information and to publish links to it. Part of this is a matter of supporting the 

naming process, but something more is needed to ensure consistent interpretation of 

the agreements. This semantic support is provided by the Type Repository. 

4 TYPE REPOSITORY AND THE SHARING OF KNOWLEDGE 

The common understanding of types is the basis for any form of communication 

and so the ability to organise such information is one of the essential planks for the 

support of system development. One of the first things to be done when establishing 

federation between systems is to establish correspondences between types. 

Types are used in many aspects of system configuration. They are used to express 

requirements when trading, to check compatibility during binding, and to confirm 

consistency of implementation during compilation and component integration. The 

dependencies of system components on types are complex, and there are many 

different type systems which interrelate and overlap in a variety different ways. The 

approach taken in ISO [8] is, therefore, to provide a general mechanism for 



68 INVITED TALK 

describing the model that represents each type system, and to allow families of 

related type definitions to be described by higher-level models, or meta-models. In 

this way, support for a range of different techniques and notations can be provided, 

and there is a basis for relating the expressions of a single underlying type in a 

variety of languages. 

The recursive use of meta-object definitions offers great expressive power, and 

there are few practical problems that require more than two or three levels of 

modelling to capture their type definitions. 

The type repository provides a powerful link between activities taking part at 

different stages in the system's lifecycle. It acts as a common store for type 

information used to express requirements, outline designs, management constraints, 

policies and implementation details. It can also store the refinement relationships that 

link types in an abstract system view with more specific types used in a variety of 

implementations. 

The packaging of the repository as a collection of objects accessible using the 

standard middleware also blurs the distinction between design time and run time. 

System components within the infrastructure can access type information deposited 

when the system was built, facilitating the provision of flexible channel components 

such as interceptors which convert from one data representation to another and 

simplifying interoperation between different implementation domains. Replacing a 

basic interface repository with a more general type repository simplifies the 

provision for dynamic invocation and makes possible the selection of marshalling 

and representation options at binding time. Techniques of this sort can simplify 

system evolution and the deployment of new services. 

The ISO work on the definition of the Type Repository is now being based on the 

OMG definition of the Meta-Object Facility. The ISO standard defines the context 

for the work and the way in which it relates to the RM-ODP framework, but 

references the OMG document for the definition of the computational interfaces 

involved. 

5 BUILDING CONFIGURATIONS AND BINDING OBJECTS 

The RM-ODP introduces, as part of its computational language, the notion of 

binding. It goes on to qualify binding as being either implicit or explicit, and either 

compound or primitive. The first distinction deals with the visibility of the binding 

process in the computational virtual machine. The second centres on whether or not 

the binding that is produced is a first-class object which can participate in the 

behaviour of the system, interacting with other objects, so that it can be dynamically 

modified and controlled [9]. 

The new standard on Interface References and Binding [10] extends this model by 

giving a framework for the engineering support of the binding process. It introduces 

the concept of a binding factory, which is responsible for collecting the necessary 

resources and constructing the binding object requested. This factory negotiates with 

the infrastructure components in the systems which are supporting each of the 

objects to be bound, and performs checks to see that the interface types are 

compatible [11]. It then constructs a suitable channel between the endpoints, taking 

account of any quality of service constraints on the binding, by using the primitive 

bind operations of the technologies concerned. Finally, having checked that the 



AN ODP APPROACH TO THE DEVELOPMENT OF LARGE MIDDLEW ARE SYSTEMS 69 

binding object is correctly initialized, the factory returns a reference to the binding's 

control interface to its client. 

bind 

~ 
~ 
reference 

\ 
\ 

\ 
\ 
\ 

\ 
\ 

Figure 2. The binding process. 

The factory is responsible for supporting policies concerned with achieving type 

compatibility and dealing with federation and the crossing of various kinds of 

domain boundary. This process may involve the allocation or creation of suitable 

interceptors along the communication paths; it can lead to a hierarchical process of 

channel creation. The establishment of path segments between interceptors is 

delegated to subsidiary factories, under the control of policies and sub-goals 

established by the top-level binder (see figure 2). 

The need to manage the binding and to control resources does not stop when the 

binding is created. If the objects bound are mobile or persistent, there may be a need 

for significant reconstruction of the channels supporting the binding from time to 

time during its lifetime, particularly when objects migrate from one domain to 

another. 

Perhaps the single most important requirement for an architecture to be 

considered open is that is should support a measure of transparency in its handling of 

names and references. If a system is to be federated with others of different ages and 

different supporting technologies, there will be a need for some adaptation measures 

at the boundary, such as protocol conversion or additional authorization procedures. 

These will often be performed by interceptors on the channel between systems in the 

two federated domains and will need to be set up when a binding across the 

federation boundary is created. This requires that suitable information about the 

nature of the required binding on both sides of the boundary should be provided with 

an address or reference presented with the binding request. 

The operation of an interceptor will generally require information about the state 

of the dialogue to be provided by the initiator of an interaction. The initiator will 



70 INVITED TALK 

expect to provide information on its own state, but the interceptor must use 

addressing information to obtain some handle on the state in the other domain. Since 

this information may be quite bulky, an address or reference may include a pointer to 

its definition, rather than the information itself, but it still needs to be accessible at 

the time the binding is made. 

To meet these requirements, ODP provides appropriate mechanisms. The step-by

step resolution of names has already been described. For interface references, the 

standard on binding provides another mechanism. These references are normally 

interpreted directly by the binder. However, an alternative format is defined which 

gives the identity of some supporting object, together with a transparent body of 

information to be passed to that object; it can then generate a suitable reference with 

which to construct the binding. Adding this additional indirection allows, depending 

on the nature of the supporting object accessed, the construction of various 

mechanisms for the dynamic creation of interceptors, performance of additional 

routing measures, firewall management and many other things. The form of interface 

reference defined for ODP is closely related to that used by OMG, but additional 

data tags are reserved for the transparent information to support federation, 

increasing the ability to deal with legacy systems and simplifying the integration of 

future generations of middleware. 

One other important piece of technical work within ISO should also be mentioned 

as underpinning the binding process. This is the standard defining Protocol Support 

for Computational Interactions [12], which provides a vital link between the ODP 

architecture and the OMG CORBA definitions. It defines how the interactions in the 

abstract computational viewpoint of ODP are mapped directly onto the interoperable 

protocols (GlOP) which underpin CORBA, and so defines the basis for interworking 

between parts of ODP systems. The standard is written in terms of a general 

interworking framework, and so can be extended in future to define interworking not 

only for CORBA, but also between a variety of related mechanisms, as long as they 

are all able to support the same basic computational model. 

6 FUTURE DIRECTIONS FOR TOOL BUILDING 

Traditionally, there has been a fairly clear separation between design, system 

implementation and runtime operation and management. Design tools used to 

develop high-level object designs may have included code generation facilities for 

the creation of implementation skeletons, but the designs were stored in a format 

specific to each tool. They were not available for use in later stages of the 

implementation process, and quite separate from the runtime environment. 

Significant benefits can be achieved by strengthening the linkages in the tool 

chain, so that automatic generation and checking processes can be steered by higher 

level information. One example of this developed at Kent is the use of a variety of 

information to construct performance models for new applications early in the design 

cycle. This project, called Permabase, was carried out jointly with British Telecom, 

and took UML designs, together with configuration information on the target 

platforms on which the application was to be run, and made performance predictions 

for a variety of expected workloads [13]. The system successfully predicted 

performance if the designs were reasonably complete, but would need access to other 

sources of information derived from the orgaization's policies and prior experience 



AN ODP APPROACH TO THE DEVELOPMENT OF LARGE MIDDLEW ARE SYSTEMS 71 

to make predictions really early in thelifecycle, when designers have articulated only 

a hazy view of the behaviour required. This illustrates the general need to have 

access to as wide a variety of information as possible in order to improve the 

performance of individual tools. 

Another example of the use of high level information is in the implementation of 

security policies. Policies may be stated in organizational terms, categorizing 

information and use by, for example, organizational roles or departmental functions. 

The interpretation of these policies by information providers requires them to be 

given appropriate information about their users which needs to be supported by the 

middleware if it is to play a significant role in authentication. Combination of 

security policy and organizational information would allow much finer-grain 

checking of specific network paths than would be possible with manual 

configuration, making internal hierarchies of fine-grain fire walls practical. 

To achieve a higher level of integration, there needs to be a change 'of emphasis, 

so that the design and configuration information for a system is seen as a resource in 

its own right, which has many users, including, but not limited to, the tools which 

traditionally manipulate it. Tools need to be modified in three ways: 

1. they need to be repository-based, so that the information they manipulate can be 

held in open formats and accessed concurrently by a wider range of components; 

2. they need to be able to respond to events signalled by the repository, so that they 

can take account of changes as they occur, allowing multiple tools to 

communicate via the information they share. This is particularly important when 

inconsistencies between different views are detected, or if, for some other 

reason, there is a need to highlight to the user contributing elements in views 

managed by different tools. In the performance tool mentioned above, for 

example, one would wish to highlight performance-critical components directly 

in the existing user interface to the designer's view; 

3. they need to respond to requests from other tools to perform their checking and 

validation actions, to avoid duplication of function in different tools. Thus if a 

resource control tool attempted to modify a configuration, it might request an 

enterprise description tool to check a wider range of policies, flagging, for 

example, that the proposed change should be rejected as conflicting with, say, a 

resilience policy. 

Note, however, that this does not require a monolithic software development 

environment. What is proposed is a federation of tools and repositories in the style 

discussed above for distributed systems in general. In order to achieve the necessary 

management flexibility, it would be necessary for the different tool domains to retain 

significant independence. Indeed, one of the weaknesses of current repository 

designs is the lack of a sufficiently powerful federated versioning model to support 

the overlapping requirements and activities found in large systems. 

Consider, for example, the problems faced by two organizations with an existing 

federation agreement when they identify a need to add additional audit information 

to their interactions. Suppose that, for local reasons, one organization needs to make 

corresponding internal changes urgently, but the other does not. Revisions are made 

to the shared information model to give a single definition of the new information, 

and these new items are referenced in the federation agreement. It may be that, at this 

stage, some interactions with an existing policy on privacy are detected and need to 



72 INVITED TALK 

be resolved. The first organization then starts development and corresponding types, 

such as the new IDL definitions, appear in its type repository and begin to be used 

internally. 

If a binding is now requested for this interface on a path between the two 

organizations, the binding factory may detect the need for an interceptor at the 

domain boundary. This interceptor will be instantiated dynamically, and will be 

configured using type repository information so as to convert between new and old 

style interactions, and add information from a suitable policy on defaults where 

necessary. The creation of the interceptor will commit resources and this may feed 

back as a need for action seen in some capacity-planning tool. 

While this thread of activity is going on, other developments will also be under 

way. They will each need to pass through a number of approval steps before 

becoming operational, and so support for separate testing and operational versions of 

components and their specifications will be needed. However, the point at which 

plans become visible will vary from tool to tool. It would be desirable, for example, 

for the capacity-planning tool to have some visibility of the changed resource 

requirements of the application before the changes come into operation, but an 

operational binding factory should clearly not normally take any note of 

development versions. Whether parallel development activities should depend on 

each other's predicted products will need to be decided on a case by case basis. 

A new application development is likely to start, at least, with a phase of top

down activity. An enterprise model will be constructed early, identifying some 

policies from known requirements and inheriting others from established norms for 

the organization. The enterprise model will contain enough detail to express key use

cases and may be able to generate, in skeleton form, some parts of the computational 

design. As the design proceeds, periodic checks will be made to see that policies are 

not violated (although the design may pass through inconsistent states as a result of 

restructuring during development). More importantly, checks made during testing 

should help to detect unintended violation of policy that could occur while correcting 

errors. Finally, the policies can be applied to select options and assist in 

configuration when the application is deployed. Middleware transparencies and 

Quality of Service targets can be derived in part from the enterprise policies, together 

with analysis of the application dependencies and infrastructure configuration. 

What of changes in policy when a system is already operational? One requirement 

is to be able to assess the consequences of changes in policy on the application. 

Some changes may be directly applicable to the running system, via communication 

of the changes to appropriate management objects. A sufficiently flexible 

middleware or network management system could respond directly to a change in 

policy, but should only do so in response to a specific performative act, allowing 

assessment of policy change without immediate consequences. Other changes might 

alter the way that processes such as binding are performed, and would take effect 

progressively as new activities start. Yet others might require development, 

modifying parts of the design to implement the policy. Using the tools to check the 

scope of changes required to implement the proposed policy could provide important 

information on the economics of the proposed change. 

If a decision is made to implement the change, a plan for the evolution of the 

system will be needed, and this, too may be simplified by the bringing together of 



AN ODP APPROACH TO THE DEVELOPMENT OF LARGE MIDDLEW ARE SYSTEMS 73 

information from different tools and management domains to identify short, feasible 

transition sequences. 

How, then, do the current ODP activities fit into this vision of tool integration? 

They provide guidance for organizing the process and some of the key components 

needed to bring it about. Firstly, the whole idea of federating a wide range of tools is 

only really plausible if there is a ubiquitous middle ware to enable open 

communication between the components. Given this base, we can expect: 

1. the enterprise language work to provide a framework for capturing information 

on organizational structures and policies to constrain and guide all aspects of the 

system's IifecycIe; 

2. the naming framework to be used to identify the different contexts and actions to 

be taken when changing context; 

3. the type repository to provide one of the key integrating mechanisms by 

allowing the sharing of a wide range of specification information between many 

kinds of tools and runtime components; 

4. the binding model and the transparent mechanisms provided within interface 

references to give late binding and flexibility in resource optimization and the 

dynamic interpretation of policies. 

7 CONCLUSIONS 

The recent work on ODP standards provides a powerful set of additional models and 

frameworks to support the creation of large distributed systems. They give the 

opportunity for information specified in a number of viewpoints to be combined by 

suitable tools to increase the level of automation in system implementation, 

configuration and management. 

Use of repository technology to link the various steps in the tool chain with the 

run-time checking and interpretation of policies within the middleware itself should 

lead to more robust and flexible systems, capable of evolving to meet the changing 

requirements of large scale, federated distributed systems. 

8 ACKNOWLEDGEMENT 

The ideas in this paper are derived in large part from discussions in the ISO ODP 

group and the author acknowledges the contribution that these stimulating 

discussions have made. However, the responsibility for interpretations and 

predictions of likely future directions remains with the author. 

References 

[1] ISOllEe IS 10746-2, Open Distributed Processing Reference Model - Part 2: 

Foundations, January 1995. 

[2] ISOllEe IS 10746-3, Open Distributed Processing Reference Model - Part 3: 

Architecture, January 1995. 

[3] ISOllEe WD 15414, Open Distributed Processing - Enterprise Viewpoint, January 1999. 



74 INVITED TALK 

[4] TYNDALE-BISCOE S. AND WOOD B., Machine responsibility - How to deal with it, Proc. 

1st International Workshop on Enterprise Distributed Object Computing (EDOC'97), 

Gold Coast, Australia, October 1997. 

[5] LINING TON P., MILOSEVIC Z. AND RAYMOND K., Policies in Communities: Extending the 

ODP Enterprise Viewpoint, Proc. 2nd International Workshop on Enterprise Distributed 

Object Computing (EDOC'98), San Diego, USA, November 1998. 

[6] AAGEDAL J. AND MILOSEVIC Z., Enterprise Modelling and QoS for Command and Control 

Systems, Proc. 2nd International Workshop on Enterprise Distributed Object Computing 

(EDOC'98), San Diego, USA, November 1998. 

[7] ISOIIEC DIS 14771, Open Distributed Processing - Naming Framework, July 1998. 

[8] ISOIIEC FCD 14769, Open Distributed Processing - Type Repository Function. January 

1999 

[9] BLAIR G. AND STEFANI J-B., Open Distributed Processing and Multimedia, Addison 

Wesley, 1998. 

[10] ISOIIEC FDIS 14753, Open Distributed Processing - Interface References and Binding, 

September 1998. 

[11] KUTVONEN L., Sovereign Systems and Dynamic Federations, Proc. 2nd International 

Working Conference on Distributed Applications and Interoperable Systems (DAIS99), 

Helsinki, Finland 1999. 

[12] ISOIIEC DIS 14752, Open Distributed Processing - Protocol Supportfor Computational 

Interactions, January 1999. 

[13] WATERS A. G., LININGTON P., AKEHURST D. AND SYMES A., Communications software 

performance prediction. 13th UK Workshop on Performance Engineering of Computer 

and Telecommunication Systems. Ilkley, West Yorkshire, July 1997. BCS Performance 

Engineering Specialist Group. 

Biography 

Peter Linington is Professor of Computer Communication at the University of Kent at 

Canterbury in the UK. His research interests include distributed processing architectures, 

multimedia systems, and the monitoring and performance of broadband networks. He has been 

involved in standardization since 1978, and has worked on ODP since the activity started in 

ISO. Before moving to Kent he was head of the UK's Joint Network Team, responsible for the 

development of the JANET network. 


