
An Off-Chip Attack on Hardware Enclaves via the Memory Bus

Dayeol Lee
UC Berkeley

Dongha Jung
SK Hynix

Ian T. Fang
UC Berkeley

Chia-Che Tsai
Texas A&M University

Raluca Ada Popa
UC Berkeley

Abstract

This paper shows how an attacker can break the confiden-

tiality of a hardware enclave with MEMBUSTER, an off-chip

attack based on snooping the memory bus. An attacker with

physical access can observe an unencrypted address bus and

extract fine-grained memory access patterns of the victim.

MEMBUSTER is qualitatively different from prior on-chip

attacks to enclaves and is more difficult to thwart.

We highlight several challenges for MEMBUSTER. First,

DRAM requests are only visible on the memory bus at last-

level cache misses. Second, the attack needs to incur minimal

interference or overhead to the victim to prevent the detection

of the attack. Lastly, the attacker needs to reverse-engineer the

translation between virtual, physical, and DRAM addresses

to perform a robust attack. We introduce three techniques,

critical page whitelisting, cache squeezing, and oracle-based

fuzzy matching algorithm to increase cache misses for mem-

ory accesses that are useful for the attack, with no detectable

interference to the victim, and to convert memory accesses

to sensitive data. We demonstrate MEMBUSTER on an Intel

SGX CPU to leak confidential data from two applications:

Hunspell and Memcached. We show that a single uninter-

rupted run of the victim can leak most of the sensitive data

with high accuracy.

1 Introduction

Hardware enclaves [1–5] provide secure execution environ-

ments to protect sensitive code and data. A hardware en-

clave has a small trusted computing base (TCB) including the

trusted hardware and program and assumes a strong threat

model where even a privileged attacker (e.g., hypervisor, OS)

cannot break the confidentiality and integrity of the execu-

tion. In such a threat model, the attacker cannot physically

attack the internals of the processor package, but can attempt

to tamper with or observe the externals of the processor (e.g.,

Cold-Boot attacks [6]). As a result, hardware enclaves are

attractive for protecting privacy-sensitive workloads such as

database [7], big data [8–10], blockchains [11–15], and ma-

chine learning [16, 17].

AttackerVictim

MMU

Cache

DRAM

AttackerVictim

MMU

Cache

DRAM

Victim

MMU

Cache

DRAM

Cache Side Channel Controlled Channel Membuster

Attacker

DRAM

Interposer

Victim Machine Signal Analyzer

Figure 1: On-chip side channels compared to MEMBUSTER.

The cache side-channel attack leaks addresses through a

shared cache, whereas the controlled-channel attack uses ad-

versarial memory management. MEMBUSTER leaks addresses

directly through the off-chip memory bus. The photo shows

an example hardware setup for the attack.

Along with the proliferation of hardware enclaves, many

side-channel attacks against them have been discovered [18–

23]. Side-channel attacks leak sensitive information from

enclaves via architectural or microarchitectural states. For

instance, controlled-channel attacks [24] use the OS privilege

to trigger page faults for memory access on different pages,

to reconstruct secrets from page-granularity access patterns

inside the victim program. We categorize these attacks as on-

chip side-channel attacks, where the attacker uses adversarial

or shared on-chip components to reveal memory addresses

accessed by the victim (Figure 1).

An attacker who can physically access the machine can

perform an off-chip side-channel attack that directly observes

the memory addresses on the memory bus. The memory bus,

which consists of a data bus and an address bus, delivers mem-

ory requests from a CPU to an off-chip DRAM. Although

the CPU encrypts the data of an enclave, all the addresses

still leave the CPU unencrypted, allowing the attacker to infer

program secrets from the access patterns. Since off-the-shelf

DRAM interfaces do not support address bus encryption, no

existing hardware enclave can prevent physical attackers from

observing the memory address bus.

Several studies have hinted at the possibility of attacks

based on the memory address bus [25–27]. Costan et al. [26]

suggest the possibility of tapping the address bus, but ac-

knowledge that they are not aware of any successful example

of the attack. Maas et al. [25] suggest that an attacker who

can collect physical memory traces of a database server can

distinguish two different SQL queries operating on the same

dataset. However, to the best of our knowledge, no work has

shown how such a side channel can be exploited to break the

confidentiality of an enclave.

In this paper, we present MEMBUSTER, an off-chip side-

channel attack on the memory address bus. We show that

MEMBUSTER can be a substantial threat to hardware enclaves

because of its unique traits compared to the existing on-chip

attacks (§2.2). The need for off-chip access, despite being

a disadvantage, advantages the attacker as it makes MEM-

BUSTER much harder to mitigate with protected-access solu-

tions (Table 1). Recently, a wide range of tools [28–32] have

been developed for mitigating on-chip side-channel attacks

for enclaves with a reasonable overhead. These tools either

partition the resources (e.g., cache) to prevent an attacker from

learning information via shared resources or intercept actions

(e.g., page faults) to prevent an attacker from observing the

side channels. At their core, these solutions attempt to protect

the memory accesses from an attacker’s sight.

However, these protected-access solutions do not prevent

MEMBUSTER, which observes the memory addresses off-chip

and thus can bypass the protection of any on-chip solutions.

To prevent MEMBUSTER on the current hardware enclave

design, one must hide the accessed memory addresses, by

making the enclave execution oblivious to the secret data.

This requires either using oblivious algorithms [33] inside the

enclave or running the enclave atop an ORAM [34, 35]. Both

mechanisms bring significant performance overhead to the en-

clave. An alternative is to change the CPU and DRAM design

to encrypt the address bus, but implementing a decryption

module in DRAM can be expensive [36, 37].

We describe the challenges to perform a robust off-chip at-

tack as follows: (1) Address Translation. The attacker needs

to translate the DRAM requests into the physical addresses

by reverse-engineering the mapping and to further translate

them into virtual addresses of the victim enclave; (2) Lossy

Channel. The attacker only sees DRAM requests when cache

misses or write-back occurs. Since most modern CPUs have

a large last-level cache (LLC), a significant portion of mem-

ory accesses do not issue any DRAM requests. We show

why simple methods such as priming the cache does not incur

sufficient cache misses needed for the attack; (3) Unusual Be-

haviors in SGX. SGX has unique memory behaviors which

increase the difficulty of the attack. For example, we show that

common architectural features such as disabling the cache

do not work in SGX. We also find that paging in SGX hides

most of the memory accesses.

We first show how an attacker can translate the DRAM

requests, and can filter out irrelevant addresses to leave only

the critical addresses that are useful for the attack. Then, we

introduce two techniques, critical page whitelisting (§5.2) and

cache squeezing (§5.4.1), to increase useful cache misses by

thwarting page swaps and shrinking the effective cache for the

critical addresses. With more cache misses, the attacker can

observe more DRAM requests. These techniques do not cause

detectible interference to the victim, and can be combined

with cache priming to make more memory accesses visible

to the attacker. Our oracle-based fuzzy matching algorithm

(§6) can create an “oracle” of the secret-to-access-pattern

mapping, to identify the sensitive accesses from a sizable

memory bus trace. We then extract the sensitive data from

the noisy memory accesses by fuzzy-matching the accesses

against the oracle. We further show that hardware prefetching

can increase the efficiency of this algorithm in MEMBUSTER.

We demonstrate the attack by attaching Dual In-line Mem-

ory Module (DIMM) interposer to a production system with

an SGX-enabled Intel processor and a commodity DDR4

DRAM. We capture the memory bus signals to perform an

off-line analysis. We use two applications, Hunspell and Mem-

cached, to demonstrate the attack. Finally, we show the scala-

bility of our techniques by simulating the attack in modified

QEMU [38].

To summarize, the contributions of this paper are as fol-

lows:

• The setup of an off-chip side-channel attack on hard-

ware enclaves and identification of the challenges for

launching the attack robustly.

• Effective techniques for maximizing the side-channel

information with no detectible interference nor order-of-

magnitude performance overhead to the victim program.

• A fuzzy comparison algorithm for converting the address

trace collected on the memory bus to program secrets.

• Demonstration and experimentation of the attack on an

actual Intel SGX CPU. To our best knowledge, it is the

first work that shows the practicality of the attack.

The security implications of the off-chip side-channel at-

tacks can be pervasive because such a channel exists on almost

every secure processor with untrusted memory. We hope to

motivate further research by alarming the community about

the practicality and severity of such attacks.

2 Background and Related Work

In this section, we discuss the background, including hardware

enclaves, known on-chip side-channel attacks on SGX, and

the related defenses.

2.1 Intel SGX

We choose Intel SGX [39] as the primary attack target be-

cause Intel SGX has the most mature implementation and

the strongest threat model against untrusted DRAM. SGX is

Brasser et al. [20]

Schwarz et al. [21]

CacheZoom
[22]

FLUSH-based [23]

Controlled [24]

M
EM

BUSTER

Software-Only ✓ ✓ ✓ ✓ ✓ ✗

Protected-Access Fix [28–32] ✓ ✓ ✓ ✓ ✓ ✗

Root Adversary ✓ ✗ ✓ ✓ ✓ ✓

Noiseless ✗ ✗ ✗ ✓ ✓ ✓

Lossless ✗ ✗ ✗ ✓ ✓ ✗

Fine-Grained (64B vs. 4KB) ✓ ✓ ✓ ✗ ✗ ✓

No Interference (e.g., AEX) ✓ ✓ ✗ ✗ ✗ ✓

Low Overhead ✓ ✓ ✗ ✗ ✗ ✓

Table 1: This work (MEMBUSTER) compared to previous side-

channel attacks on SGX. The two boldface rows illustrate

what we perceive to be the most important distinctions. The

colored cell indicates the attacker has the advantage.

a set of instructions for supporting hardware enclaves intro-

duced in the Intel 6th generation processors. SGX assumes

that only the processor package is trusted; all the off-chip

hardware devices, including the DRAM and peripheral de-

vices, are considered potentially vulnerable or compromised.

The threat model of SGX also includes physical attacks such

as Cold-Boot Attacks [6], which can observe sensitive data

from residuals inside DRAM.

An Intel CPU with SGX contains a memory encryption en-

gine (MEE), which encrypts and authenticates the data stored

in a dedicated physical memory range called the enclave page

cache (EPC). The MEE encrypts data blocks and generates

authentication tags when sending the data outside the CPU

package to be stored inside the DRAM. To prevent roll-back

attacks, the MEE also stores a version tree of the protected

data blocks, with the top level of the tree stored inside the

CPU. For Intel SGX, EPC is a limited resource; the largest

EPC size currently available on an existing Intel CPU is 93.5

MB, out of 128 MB Processor’s Reserved Memory (PRM).

The physical pages in EPC, or EPC pages, are mapped to

virtual pages in enclave linear address ranges (ELRANGEs)

by the untrusted OS. If all concurrent enclaves require more

virtual memory than the EPC size, the OS needs to swap the

encrypted EPC pages into regular pages.

However, even with MEE, Intel SGX does not encrypt the

addresses on the memory bus. As previously discussed, chang-

ing the CPU to encrypt the addresses requires implementing

the encryption logic on DRAM, and thus requires new tech-

nologies such as Hybrid Memory Cube (HMC) [36, 37].

The unencrypted address bus opens up a universal threat

to hardware enclaves with external encrypted memory. Ko-

modo [40], ARM CryptoIsland [41], Sanctum [5], and Key-

stone [4] do not encrypt data for an external memory by de-

fault. AMD SEV [42] allows hypervisor-level memory en-

cryption, but also does not encrypt addresses.

2.2 Comparison with Existing Attacks

In this section, we discuss how MEMBUSTER can be a sub-

stantial threat to hardware enclaves because of its unique traits.

We compare MEMBUSTER with various on-chip side-channel

attacks on SGX [20–24] in Table 1.

2.2.1 Side Channel Attacks on SGX

PRIME+PROBE. A shared cache hierarchy allows an adver-

sary to infer memory access patterns of the victim using

known techniques such as PRIME+PROBE [43, 44]. How-

ever, in PRIME+PROBE, the attacker usually cannot reliably

distinguish the victim’s accesses from noises of other pro-

cesses. The PRIME+PROBE channels are also lossy, as the

attacker may miss some of victim’s accesses while probing.

Brasser et al. [20] demonstrate PRIME+PROBE on Intel

SGX without interfering with the enclave, but the attack re-

quires running the victim program repeatedly to compensate

for its noise and signal loss. Schwarz et al. [21] show that

the attacker can alleviate the noise by identifying cache sets

that are critical to the attack. This technique can be applied to

applications that have data-dependent accesses in a small num-

ber of cache sets. CacheZoom [22] also uses PRIME+PROBE

but minimizes the noise by inducing Asynchronous Exits

(AEXs) every few memory accesses in the victim. This incurs

a significant overhead on enclaves, and also makes the attack

easily detectable [32].

Flush-based Side Channels. Other techniques such as

FLUSH+RELOAD [45] and FLUSH+FLUSH [46] use a shared

cache block between the attacker and the victim to create

a noiseless and lossless side channel. However, these tech-

niques cannot be directly applied to enclave memory, be-

cause an enclave does not share the memory with other pro-

cesses. However, these techniques can still be used to observe

the page table walk for enclave addresses [23]. Specifically,

the attacker can monitor the target page tables with a tight

FLUSH+RELOAD loop. As soon as the loop detects page

table activities, the attacker interrupts the victim and infers

page-granularity addresses. Similar to CacheZoom, this attack

incurs a significant AEX overhead and thus can be detected

by the victim.

Controlled Channels. Controlled-channel attacks [24] take

advantage of the adversarial memory management of the un-

trusted OS, to capture the access patterns of an SGX-protected

execution. Even though Intel SGX masks the lower 12 bits

of the page fault addresses to the untrusted OS, controlled-

channel attacks use sequences of virtual page numbers to

differentiate memory accesses within the same page. The con-

trolled channel is noiseless and lossless but can be detected

and mitigated as it incurs a page fault for each sequence of

accesses on the same page [28, 31].

2.2.2 Advantages of MEMBUSTER

As shown in Table 1, MEMBUSTER creates a noiseless side

channel by filtering out all of the non-victim memory accesses,

leaving only addresses that are useful for the attack. It can

observe memory accesses with cache line granularity. Also,

MEMBUSTER does not incur interference such as AEX or

page fault to the victim and needs not to incur an order-of-

magnitude overhead.

Several recent mechanisms, such as Varys [28], Hyper-

race [29], Cloak [30], T-SGX [31], or Déjà Vu [32], have

been proposed to prevent the attacker from observing mem-

ory access patterns in the victim. In general, PRIME+PROBE

can be mitigated by partitioning the cache to shield the vic-

tim from on-chip attackers. This does not defeat an off-chip

attacker who directly observes DRAM requests. T-SGX [31]

and Déjà Vu [32] have proposed to use the Intel Transactional

Synchronization Extensions (TSX) to prevent AEX or page

faults from an enclave. These techniques are based on thwart-

ing the interference (e.g., AEX, page faults) that causes the

side channels [22–24]. However, MEMBUSTER does not incur

such interference on enclaves, and thus cannot be thwarted

through similar approaches. To our best knowledge, there

is no reliable way to detect or mitigate MEMBUSTER using

existing on-chip measures.

2.2.3 Related Work

Other On-Chip Attacks. Other on-chip attacks worth men-

tioning are speculative-based execution side channels like

Foreshadow [18] or ZombieLoad [47], branch shadowing

side channels [48], denial-of-service attacks (e.g., Rowham-

mer [49, 50]), or rollback attacks [51, 52].

Other Off-Chip Side-Channel Attack. DRAM row

buffers can be exploited as side-channels between cores or

CPUs, as demonstrated in DRAMA [53]. DRAMA shows that

by observing the latency of reading or writing to DRAM, the

attacker can infer whether the victim has recently accessed the

data stored in the same row. DRAMA shows how a software-

only attacker can use DRAM row buffers as covert channels or

side channels. MEMBUSTER further explores how the attacker

can directly use the address bus as a side channel.

3 MEMBUSTER

In this section, we describe the basic attack model of MEM-

BUSTER. In further sections, we will refine and improve the

attack. At a high level, the attacker first sets up an environment

to collect the DRAM signals and waits until the victim exe-

cutes some code containing data-dependent memory accesses.

The attacker translates the collected signals into cache-line

granularity virtual addresses.

3.1 Threat Model

We assume the standard Intel SGX threat model in which noth-

ing but the CPU package and the victim program is trusted.

Everything else, including the OS or other applications, is

untrusted and can be controlled by the attacker. External hard-

ware devices are also untrusted, so the attacker can tap the

address bus to the external DRAM. For the advanced tech-

niques discussed in §5, the attacker may also use the root

privilege to install the modified SGX driver.

To tap the memory bus, the attacker needs to have physical

access to the machine where the victim is running. Such an as-

sumption eliminates the possibility of remote attacks through

Signal
Analyzer

DDR4

DIMM

Storage

AMPSignal
Repeater

PCIe
Controller

PCB

Board

DATA ADDR/CMD

Interposer

DIMM

Socket

Figure 2: Hardware setup for a memory bus side-channel

attack. DIMM interposer collects the bus signals and sends

them to the signal analyzer. The attacker can use the analyzed

signals to learn the memory access pattern of the victim.

either cloud environments or network connections. The candi-

dates who may perform MEMBUSTER could be two types. On

the server-side, these may include the employees of a cloud

provider, or IT administrators of an institution, who act as

insiders to leak sensitive information. On the client-side, end

users may want to attack the local hardware enclaves, which

protect proprietary data (e.g., licenses, digital properties, etc).

We assume that the attacker has enough budget and knowl-

edge to acquire and install the DIMM interposer for the attack

described in §3.2. This might be an obstacle for the general

public, but we claim that the cost is manageable if the attacker

has a strong motivation for obtaining the data.

Like in the controlled channel and cache side channels,

MEMBUSTER assumes that the adversary has knowledge

of the victim application, by either consulting the source

code or reverse-engineering the application. The adversary is

also aware of the runtime used by the victim application for

platform support, such as the SDK libraries, library OSes,

or shield systems. In our experiments, we use Graphene-

SGX [54] for platform support of the victim applications.

Address Space Layout Randomization (ASLR) in the library

OSes or the runtimes may complicate the extraction of secret

information but generally is insufficient to conceal the access

patterns completely [24]. ASLR offered by the host kernel is

irrelevant because a hostile host kernel can either control or

monitor the addresses where the victim enclaves are loaded.

3.2 Hardware Setup for the Attack

Figure 2 shows a detailed hardware setup for the MEM-

BUSTER attack. The hardware setup may vary on different

CPU models and vendors. The attacker installs an interposer

on the DIMM socket prior to system boot. The interposer

is a custom printed circuit board (PCB) that can be placed

between the DRAM and the socket. The interposer contains

a signal repeater chip which duplicates the command bus

signals and sends them to a signal analyzer. The analyzer

amplifies the signals and then outputs the signals to a storage

server through a PCIe interface.

In the rest of the section, we will highlight the key require-

ments in successfully performing the attack.

Sampling Rate. The sampling rate of the interposer needs to

be equal or higher than the clock rate of the DIMM in order

to capture all the memory requests. A standard DDR4 clock

rate ranges from 800 to 1600 MHz, while a DIMM typically

supports between 1066 (DDR4-2133) and 1333 (DDR4-2666)

MHz. To match with the sampling rate, the attacker can lower

the DIMM clock rate if it is configurable in the BIOS.

Recording Bandwidth. The sampling rate also determines

the recording bandwidth. For example, DDR4-2400 (1200

MHz) has a 32-bit address and a 64-bit data bus, thus the

recording bandwidth for the address bus is 1200 Mbps×32

bits = 4.47 GiB/s. For reference, the data bus of a DDR has

a 2× transfer rate, as well as a 2× transfer size. Hence, the

bandwidth for logging all the data on DDR4-2400 will be

17.88 GiB/s.

Acquisition Time Window. The acquisition time window

(i.e., the maximum duration for collecting the memory com-

mands) determines the maximum length of execution that the

attacker can observe. The acquisition time window equals

the acquisition depth (i.e., the analyzer’s maximum capacity

of processing a series of contiguous sample) divided by the

recording bandwidth of the interposer. For example, with 64

GiB acquisition depth, the analyzer can process and log the

commands from DDR4-2400 up to ∼ 14 seconds.

We surveyed several vendors which offer DIMM analyz-

ers [55–57] for purchase or rental. Among them, the maxi-

mum sampling rate can reach 1200-1600 MHz, and the ac-

quisition depth typically ranges between 4-60 GiB. One of

the devices [55] can extend the acquisition time window to

> 1 hour by attaching 16 TB SSD and streaming the com-

pressed log via PCIe at 4.8 GiB/s. Another device [57] does

not disclose the memory depth but specifies that it can cap-

ture up to 1G (109) samples. The cost of the analyzer varies

depending on the sampling rate and the acquisition depth. At

the time of writing, Kibra 480 [56] (1200 MHz, 4 GiB) costs

$6,500 per month, MA4100 [57] (1600 MHz, 1G-samples)

costs $8,000 per month, and JLA320A [55] (1600 MHz, 64

GiB) costs $170,000 for purchase.

3.3 Interpreting DRAM Commands

Once the attacker has finished setting up the environment, she

can collect the DRAM signals at any point in time, and ana-

lyze the trace off-line. As the first step, the attacker interprets

the DRAM commands collected from the interposer.

A modern DRAM contains multiple banks that are sepa-

rated into bank groups. Within each bank, data (often of the

same size as the cache lines) are located by rows and columns.

Each bank has a row buffer (i.e., a sense amplifier) for tem-

porarily holding the data of a specific row when the CPU

needs to read or write in the row. Because only one row can

be accessed in a bank at a time, the CPU needs to reload the

row buffer when accessing a data block in another row.

The log collected from the DRAM interposer typically

consists of the following commands:

• ACTIVATE(Rank,Bank,BankGroup,Row): Activating a

specific row in the row buffer for a certain rank, bank,

and bank group.

• PRECHARGE(Rank,Bank,BackGroup): Precharging and

deactivating the row buffer for a certain rank, bank, and

bank group.

• READ(Rank,Bank,BankGroup,Col): Reading a data

block at a specific column in the row buffer.

• WRITE(Rank,Bank,BankGroup,Col): Writing a data

block at a specific column in the row buffer.

Other commands such as PDX (Power Down Start), PDE

(Power Down End), and AUTO (Auto-recharge) are irrelevant

to the attack and thus omitted from the logs.

Based on the DRAM commands, we can construct the rank,

bank, row, and column of each trace, by simply tracing the

activated row within each bank. Note that the final traces are

also time-stamped by the clock counter of the analyzer. The

result of the translation is a sequence of logs containing the

timestamp, access type (read or write), rank, bank, row, and

column in the DRAM.

3.4 Reverse-engineering DRAM Addressing

A physical address in the CPU does not linearly map to a

DRAM address consisting of rank, bank, row, and column.

Instead, the memory controller translates the address to maxi-

mize DRAM bank utilization and minimize the latency. The

translation logic heavily depends on the CPU and DRAM

models, and Intel does not disclose any information. Thus,

the attacker needs to reverse-engineer the internal translation

rule for the specific set of hardware. This has been also done

by a previous study [53].

We use the traces collected from the DRAM interposer to

reverse-engineer the addressing algorithm of an Intel CPU.

For attacking the enclaves, we only need a part of the ad-

dressing algorithm that affects the range of the enclave page

cache (EPC). We write a program running inside an enclave,

which probes the DRAM addresses translated from the EPC

addresses. The probing program allocates a heap space larger

than the EPC size (93.5MB). For every cache line in the range,

the program generates cache misses by repeatedly flushing

the cache line and fetching it into the cache. By accessing

each cache line multiple times, we can differentiate the traces

caused by probing from other memory accesses in the back-

ground and minimize the effect of re-ordering by the CPU’s

memory controller. The techniques in §3.5 are also needed for

translating the probed virtual addresses to physical addresses.

Using the DRAM traces generated by probing cache lines

inside the EPC, we can create a direct mapping between the

physical addresses and DRAM addresses (ranks, banks, bank

groups, rows, and columns). We further deduce the addressing

function of the target CPU (i5-8400), by observing the chang-

ing bits in the physical addresses when DRAM addresses

change. We conclude that the addressing function on i5-8400

is as shown in Figure 3. Other CPU models may implement a

different addressing function, and reverse-engineering should

BG[0]

BG[1]

BA[1]

ROW[15:0] COL[9:3]

15 14 13 7 616171819

BA[0]

32 … …PA

Figure 3: The reverse engineered addressing function of the

i5-8400 CPU. The function translate a physical address (PA)

to the Bank Group (BG), Bank Address (BA), Row (ROW) and

Column (COL) within the DRAM.

be done for each CPU model beforehand.

3.5 Translating PA to VA

In order to extract the actual memory access pattern of

the victim, we need to further translate the physical ad-

dresses into more meaningful virtual addresses. In general, a

root-privileged attacker has multiple ways of obtaining the

physical-to-virtual mappings: either by parsing the proc file

/proc/[PID]/pagemap (assuming Linux as the OS), or using

a modified driver. However, paging in an enclave is controlled

by the SGX driver, and the vanilla driver forbids poking the

physical-to-virtual mappings through the proc file system.

Nevertheless, the attack can still modify the SGX driver to

retrieve the mappings, and this is what we do.

Hence, we print the virtual-to-physical mappings in the

dmesg log and ship the log together with the memory traces.

During our offline analysis, we use the dmesg log as an input

to the attack script. The dmesg log also contains system tim-

ings of paging, and can be further calibrated to the timestamps

of the collected traces. Because paging in an enclave needs

to copy the whole pages in and out of the EPC a sequential

access pattern of a whole or partial page will appear in the

memory traces. After calibration, we successfully translate

all the physical addresses to virtual addresses.

4 Attack Examples

We show how MEMBUSTER exploits two example applica-

tions: (1) spell checking of a confidential document using

Hunspell, and (2) email indexing cache using Memcached.

4.1 Hunspell

Hunspell is an open-source spell checker library widely

used by LibreOffice, Chrome, Firefox and so on [58]. The

controlled-channel attack [24] has shown that Hunspell is

exploitable by page-granularity access patterns, which moti-

vated us to use it as the first target of MEMBUSTER. We make

the same assumptions as described in [24]; the attacker tries

to infer the contents of a confidential document owned by a

victim while Hunspell is spell-checking. The attacker knows

the language of the document, and therefore can also obtain

the same dictionary, which is publicly available.

The side-channel attacks on Hunspell are based on observ-

ing the access patterns for searching words in a hash table

1 // add a word to the hash table

2 int HashMgr::add_word(const std::string& word) {

3 struct hentry* hp = (void*) malloc(sizeof(struct

hentry) + word->size());

4 struct hentry* dp = tableptr[i]; // Populate hp

5 while (dp->next != NULL) {

6 if (strcmp(hp->word, dp->word) == 0) {

7 free(hp); return 0;

8 }

9 dp = dp->next;

10 }

11 dp->next = hp;

12 return 0;

13 }

14 // lookup a word in the hash table

15 struct hentry* HashMgr::lookup(const char* word) {

16 struct hentry* dp;

17 if (tableptr) {

18 dp = tableptr[hash(word)];

19 for (; dp != NULL; dp = dp->next) {

20 if (strcmp(word, dp->word) == 0) return dp;

21 }

22 }

23 return NULL;

24 }

Figure 4: The Hunspell code which leaks access patterns with

controlled-channel attacks and MEMBUSTER.

tableptr[0]

tableptr[1]

bookkeeping6a60f0 congestion6f68f0 ...
cask6c8cc0

1. Unmasked addresses:

tableptr[0-511]

tableptr[0-511]

bookkeeping6a6000 congestion6f6000 ...
cask6c8000

2. Page fault addresses (controlled-channel attacks):

tableptr[0-7]

tableptr[0-7]

bookkeeping6a60c0 congestion6f68c0 ...
cask6c8cc0

3. Cache miss addresses (MEMBUSTER):

Figure 5: Observerable address patterns in Hunspell by dif-

ferent attacks. Controlled-channel attacks only see page-fault

addresses without the lower 12 bits, whereas MEMBUSTER

can see LLC-miss addresses without the lower 6 bits.

created from the dictionary. A simplified version of the vulner-

able code is shown in Figure 4. The Hunspell execution starts

with reading the dictionary file and inserting the words into

the hash table by calling HashMap::add_word(). For each

word from the dictionary, HashMap::add_word() allocates

a hentry node and inserts it to the end of the linked list in the

corresponding hash bucket. Then, Hunspell reads the words

for spell-checking and calls HashMap::lookup() to search

the words in the hash table. Both HashMap::add_word() and

HashMap::lookup() leak the hash bucket of the word cur-

rently being inserted or searched, and all the hentry nodes

before the word is found in the linked list.

The controlled-channel attack leaks different access pat-

terns from those that we observe on our memory bus attack,

as the example shown in Figure 5. Controlled-channel attacks

leak access patterns through page fault addresses, which are

masked by SGX in the lower 12 bits. However, for applica-

tions like Hunspell, controlled-channel attacks can use se-

quences of page fault addresses to infer more fine-grained ac-

cess patterns within a page. For example, although the nodes

for bookkeeping and booklet are on the same page, the

controlled-channel attacks can differentiate the accesses by

the page addresses accessed before reading the nodes.

On the other hand, our memory bus channel can leak the

addresses of each cache line being read from and written

back to DRAMs, making the attacks more fine-grained than

controlled-channel attacks. The attacks can differentiate the

access patterns based on the addresses of each node accessed

during lookups, instead of inferring through the address se-

quences. The granularity of memory bus attacks makes it

possible to extract sensitive information even if the access

patterns are partially lost due to caching.

4.2 Memcached

Memcached [59] is an in-memory key-value database, which

is generally used to speed up various server applications by

caching the database. Memcached is used in various services

such as Facebook [60] and YouTube [61]. In this example, we

assume that Memcached runs in an SGX enclave, as part of a

larger secure system (e.g., secure mail server).

We consider the scenario discussed by Zhang et al. [62],

where a mail server indexes the keywords in each of the emails

and the attacker can inject an arbitrary email to the victim’s

inbox by simply sending an email to the victim. As shown

in Figure 6, we assume that the index data is stored in Mem-

cached running in an SGX enclave. Since the attacker owns

the machine, she can also perform MEMBUSTER by observ-

ing the memory bus. The attacker’s goal is to use his abilities

to reveal the victim’s secret emails A, B, and C.

Memcached does not have any data-dependent control flow,

but the attacker can use the memory bus side channel to infer

the query sent to Memcached. Memcached stores all keys in

a single hash table primary_hashtable defined in assoc.c

using the Murmur3 hash of a key as an index. Each entry of

the hash table is linearly indexed by the Murmur3 hash of

the key. Thus Memcached will access an address within the

hash table whenever it searches for a key. By observing the

address, the attacker can infer the hash of the key.

Memcached dynamically allocates the hash table at the

beginning of the application. The attacker can easily find out

the address of the hash table by sending a malicious email

to make Memcached access the hash table. For example in

Figure 6, the attacker sends an email D which contains a word

"Investment". Memcached accesses the entry, and the attacker

observes the address. Since the attacker already knows the

hash value of the key, she can easily find out the address of

the hash table.

Next, the attacker keeps observing the memory accesses

within the hash table. Once the attacker figures out the hash

Mail Server

Index DB

Memcached

A B C

Thanks: A B

Dear: B C

Investment: B D

D

Search

Indexing

Update

Send
Email

MEMBUSTER

Attacker
Victim

Send/Recv.
Emails

A’ B’ C’

Figure 6: An example attack scenario where a mail server

uses Memcached as an index database. A, B, C and D are the

emails.

table address, she can reveal the hash values of the query, by

observing the virtual addresses accessed by Memcached. To

match the hash values with words, the attacker pre-computes

some natural words and creates a hash-to-word mapping.

Even though hashes can conflict, we show that the attacker

can recover most of the words by just picking a most-common

word based on the statistics.

5 Increasing Critical Cache Misses

As previously discussed, the basic attack model of MEM-

BUSTER can observe memory transactions with cache-line

granularity when the memory transactions cause cache misses

in the last-level cache (LLC). Such an attack model is weak-

ened in a modern processor with a large LLC ranging from

4 MB to 64 MB, causing only a small fraction of memory

transactions to be observable on the DRAM bus.

In this section, we introduce techniques to increase cache

misses of the target enclaves. In a realistic scenario, an at-

tacker only cares about increasing the cache misses within

the virtual address range which leaks the side-channel infor-

mation. Take the attack on Hunspell for example, the attacker

only needs to observe the access on the nodes which store

the dictionary words. We called a memory address as critical

if the address is useful for the attack. Our goal is to increase

the cache misses on critical addresses, to improve the success

rate of the MEMBUSTER attack.

5.1 Can We Disable Caching?

A simple solution to increase cache misses is to disable

caching in the processor. On x86, entire cacheability can

be disabled by enabling the CD bit and disabling the NW bit

in the control register CR0 ([63], Section 11.5.3). Some archi-

tectures allow disabling caching for a specific address range,

primarily for serving uncacheable DMA requests or memory-

mapped I/Os. For instance, on x86, users can use the Memory

Type Range Register (MTRR) to change the cacheability of a

physical memory range. Newer Intel processors also support

page attribute table (PAT) to manage page cacheability with

the attribute field in page table entries.

However, besides disabling the entire cacheability, nei-

ther MTRR or PAT can overwrite the cacheability of SGX’s

processor-reserved memory (PRM) [39]. The cacheabil-

ity of PRM is specifically controlled by a special reg-

ister called Processor-Reserved Memory Range Register

(PRMRR), which can be only written by BIOS during boot-

ing. Since there is no proprietary BIOS that allows the user

to modify PRMRR, the attacker effectively has no way to

change the cacheability of the encrypted memory. However,

since the BIOS is untrusted in the threat model of SGX, in

theory, one can reverse-engineer the existing BIOS or build a

custom BIOS to overwrite PRMRR. We do not choose this

route because disabling cacheability will incur significant

slowdown, making the attack easy to detect by the victim.

5.2 Critical Page Whitelisting

We observed that after paging (swapping), memory access

in the swapped pages becomes unobservable to the attacker.

Such a phenomenon is common for SGX since SGX has to

rely on the OS to swap pages in and out of the EPC. Both

swap-in and swap-out causes the page to be loaded into the

cache hierarchy (LLC, L2, and L1-D caches), because the

SGX instructions for swap-in and swap-out, i.e., eldu and

ewb, require re-encrypting the page from/to a regular physical

page [39]. After the instructions, the cache lines stay in the

cache hierarchy until being evicted by other memory access.

Currently, an Intel CPU with SGX only has up to 93.5MB in

the EPC, making paging the primary obstacle to observing

critical transactions on the memory bus.

On the other hand, paging also complicates the virtual-

to-physical address translation, as the mappings can change

midst execution. We observe certain patterns in the memory

bus log to identify the paging events. However, these patterns

can also become unobservable if the page is recently swapped

and most of the cache lines are still in the LLC.

Therefore, to eliminate the side effect of paging, we pin

the EPC pages for the critical address range, by modifying

the SGX driver. We start by identifying the critical address

range of each target program. Take the Hunspell program

for example. The critical memory transactions come from

accessing the dictionary nodes, which are allocated through

malloc(). For simplicity, we disable Address Space Layout

Randomization (ASLR) inside the enclave (controlled by the

library OS [54]), although we confirmed that ASLR can be de-

feated by identifying contiguous memory access pattern in the

traces. Next, we calculate the number of EPC pages needed

for pinning the critical pages. For a Hunspell execution using

an en_US dictionary, the total malloc() range is 5,604 KB.

Finally, we need to give the critical address range as an input

to the modified SGX driver. When the driver allocates an EPC

page, it checks if the virtual address is in the critical address

range and use an in-kernel flag to indicate if the page has to

be pinned. The driver will never swap out a pinned page.

5.3 Priming the Cache

We explore ways to actively contaminate the caches by ac-

cessing contentious addresses. This technique is called cache

priming, which is used in the PRIME+PROBE attack [44]. Pre-

vious work has established priming techniques for either same-

core or cross-core scenarios. Some priming techniques are

restricted by CPU models, especially since many recent CPU

models have employed designs or features that raise the bar

for cache-based side-channel attacks. However, recent studies

also show that, even with these defenses, attackers continue to

find attack surfaces within the CPU micro-architectures, such

as priming the cache directory in a non-inclusive cache [64].

We focus on cross-core priming since same-core priming

requires interrupting the enclaves using AEX or page faults.

The usage of cache priming in MEMBUSTER is distinctly dif-

ferent from existing cache-based side-channel attacks since

MEMBUSTER does not require resetting the state of the cache

or synchronizing with the victim. The goal of cache prim-

ing in MEMBUSTER is to simply evict the critical addresses

from the cache to increase the cache misses. Also, with cache

squeezing, we only have to prime the cache sets dedicated to

the critical addresses. These differences make it easy to apply

multiple priming attacks simultaneously, as long as they all

eventually contribute to increasing cache misses.

Cross-Core Cache Priming We run multiple priming pro-

cesses on other cores to evict the critical cache lines from the

LLC. These processes will repeatedly access the cache sets

that are shared with the critical addresses of the victim. The

attacker will start by identifying the critical addresses and the

cache sets to prime. Then, the attacker starts the priming pro-

cesses before the victim enclave, to actively evict the cache

lines during execution. Take the Hunspell attack for example.

Since its critical addresses are spread over all cache sets, the

attacker needs to repeatedly prime all cache sets. No syn-

chronization is required between the attack processes and the

victim. We do not prime the L1 and L2 caches across cores,

but cross-core priming on private caches is demonstrated on

Intel CPUs [64].

A potential hurdle for cross-core priming is to obtain suf-

ficient memory bandwidth to evict the critical cache lines.

Based on our experiments, a priming process that sequentially

accesses the LLC has around 100–200MB/s memory band-

width. Priming a 9MB LLC with 2,048 sets requires about 100

milliseconds, which is too slow to evict the critical cache lines

before the lines are accessed by the victim again. For instance,

Hunspell accesses a word every 2 thousand DRAM cycles

(< 1 microseconds), and Memcached accesses a word every 5

million DRAM cycles (< 2.5 milliseconds). We will discuss,

however, how an attacker can evict all the critical cache lines

within a few milliseconds by pinpointing the priming process

to target only 64–128 sets (See §5.4.2).

Page-Fault Cache Priming Potentially, an attacker can

prime the LLC, L2, and L2-D caches on the same core with

the victim, by interrupting the victim periodically. To do so,

the attacker can take a similar approach to the Controlled-

Channel Attack: The attacker identifies two code pages con-

taining code around the critical memory accesses, and then

alternatively protects the pages to trigger page faults. To in-

crease cache misses, the attacker needs not to prime the cache

pinned

pinned

Virtual Pages EPC Pages LLC Sets

Critical
Pages

conflict

group

OS Pages

(2) Cross-Core Priming(1) Cache Squeezing

Figure 7: Techniques used to increase the cache miss rate

with minimal performance overhead.

at every page fault, but rather can prime at a low frequency.

However, such a page-fault priming technique still causes a

lot of interference and overhead to the victim, making it easy

to detect [22] or to mitigate [31,32]. For example, priming the

cache on every 10-20 page faults incurs about 3× overhead

to the victim. In addition, known countermeasures, such as

T-SGX [31], can effectively prevent page faults using transac-

tional instructions. Therefore, we do not use this technique.

5.4 Shrinking the Effective Cache Size

As previously discussed, cache priming alone cannot create

sufficient memory access bandwidth for evicting the critical

cache lines in time. Therefore, we introduce a novel tech-

nique called cache squeezing, which shrinks the effective

cache size to incur more cache misses for a specific address

range. We show that the technique can be combined with non-

intrusive techniques like cross-core cache priming to make

MEMBUSTER a more powerful side channel.

5.4.1 Cache Squeezing

As the name suggests, cache squeezing can shrink the effec-

tive cache size for a given set of critical pages. By squeezing

the cache that an enclave can use, the attacker can incur both

conflict misses and capacity misses on LLC, therefore becom-

ing able to observe more cache misses on the bus.

In modern processors, the L2 cache and LLC are physically-

indexed. The lowest 6 bits of the physical address are omitted,

given that each cache line is 64 bytes. The next s lower bits

are taken as the set index. Each set then consists of W ways

to store multiple cache lines of the same set index. For an

enclave, an OS-level attacker can control the physical pages

that are mapped to the enclave’s virtual pages. This allows

the attacker to manipulate the physical frame number (PFN)

of each virtual address of the enclave, and subsequently, the

higher s− (12−6) = s−6 bits of the set index.

Figure 7(1) shows how cache squeezing works in combina-

tion with page pinning. The attacker first defines the critical

addresses of the victim, then maps these pages to EPC pages

that share the minimum amount of cache sets. This tech-

nique requires cache pinning so that these pages will never

be swapped out from the EPC. Since the OS only controls

the higher s−6 bits of the set indices, the smallest group of

physical pages that will evict each other share exactly 26 = 64

sets. We called such a group of physical pages a conflict group.

Since the maximum size of EPC is 93.5 MB, the entire cache

can be partitioned to 2s−6 conflict groups where each conflict

group can accommodate 93.5 MB/4 KB/2s−6 EPC pages. In

our experiment, s = 11 (2048 sets) and W = 12, so each con-

flict group can accommodate at most 748 pages (2,992 KB).

The critical address range of Hunspell, for example, is the

whole malloc() space, which is 5,604 KB and thus requires

two conflict groups. Finally, the attacker gives the critical

address range to a modified SGX driver, which will only map

physical pages from the selected conflict groups to any critical

virtual address.

Using cache squeezing to increase cache misses has many

benefits. First of all, it does not require interrupting the victim

enclaves, nor does it need to incur more memory accesses

in the background. All memory accesses used to push cache

lines out of the L2 cache and LLC are legitimate accesses

from the victim enclaves. Therefore, cache partitioning can-

not defeat cache squeezing because there is no cross-context

cache sharing. In fact, way-partitioning features such as Intel

CAT [65] can be exploited to further shrink the effective cache

sizes in combination with cache squeezing.

5.4.2 Cross-Core Priming with Cache Squeezing

As we mentioned in § 5.3, cross-core cache priming may not

have sufficient bandwidth to evict the critical cache lines in

time. However, we found that cache squeezing makes the

priming more effective by shrinking the effective cache size.

Instead of priming all the cache sets, the attacker now only

has to prime the sets of the targeted conflict groups containing

the critical addresses (Figure 7(2)). Each group of 64 cache

sets contains W ×4KB, allowing the priming process to evict

the part of cache within a millisecond. The priming process

can run in parallel and does not affect the victim execution

except causing cache contention.

5.4.3 Limitation

Although cache squeezing can increase the cache misses

among critical addresses, it could be less effective if the victim

has only a few critical addresses or a small memory footprint.

If the critical addresses can only fill a small part of a conflict

group (W × 4 KB), the victim enclave may not be able to

cause enough cache misses to benefit the attacker. For exam-

ple, Memcached only has 2 MB (500 pages) of the critical

address range. To fill all of the 748 pages, we identify the

top 248 frequently-accessed pages (in addition to the critical

addresses) through simulation, and assign these extra pages

to the same conflict group.

Note that the LLC of a modern CPU usually has a cache

slice feature that distributes the addresses across multiple

cache banks using an undocumented, model-specific map-

ping function. Reverse-engineering the slicing function of the

target CPU is useful for further reducing the effective cache

space for an enclave if the enclave has a smaller memory

footprint. Reverse-engineering of slicing functions is already

explored by prior papers [64], so we will not discuss this

technique in this paper.

ksgxswapd

sgx_add_page_worker

free_list

load_list

⑥ Victim selection:
is it a critical page?

conflict_list

EPC ELRANGE

Critical
Pages

kmap_atomic()
__eadd()
...

__ewb()
kunmap_atomic()
sgx_free_page()

No Yes

② Page allocation:
is it a critical page?

No

Yes

① ③

④

⑤
⑦
⑧

Figure 8: Implementation of critical page whitelisting and

cache squeezing in a modified SGX driver. To ensure no

swapping in the sensitive memory range, EPC pages are set

aside in a separate queue. The attackers can further select the

EPC pages based on set indexes or other logistics.

One can detect the cache squeezing by testing if critical

addresses are mapped in an adversarial way. Since the en-

clave is not aware of physical address mappings by itself, it

needs to experimentally detect such mapping by accessing

the addresses and measure latency. However, we claim that it

is challenging because (1) the victim needs to know the criti-

cal address range to detect the mapping, and (2) the enclave

cannot tell if the mapping was accidental or intentional.

5.4.4 Implementation

We use a modified SGX driver to implement both critical

page whitelisting and cache squeezing as shown in Figure 8.

The driver accepts parameters to specify a sensitive range

within the victim application, and calculates how many con-

flict groups are required for the attack. 1© When the driver

initializes, it inserts conflicting EPC pages to a separate queue

(i.e., conflict_list). 2© When adding enclave pages, the

driver checks if the virtual page number is in the critical ad-

dress range. 3© The driver maps the critical pages to pages

popped from conflict_list. 4© All of the mapped pages

are added to the list of loaded pages (load_list). 5© When

the driver needs to evict an EPC page, it searches the victim

from the list of loaded pages. 6© If the selected page is a

critical page, it searches again. 7© Only non-critical pages are

evicted and the enclave continues to run. Other enclaves are

not affected by the modification and can function normal with

marginal overheads.

Our change to the SGX driver contains only 290 lines. The

SGX driver uses the fault operation in vm_operations_struct

to handle EPC paging. We use a customized fault function,

which checks the faulting virtual addresses of the enclave

and then applies different paging strategies to critical and

non-critical addresses. We hard-code the range of critical

addresses for each application and thus require switching the

drivers for a different target. Potentially, the driver can export

an API to the attackers for specifying the critical addresses.

Our driver also only supports one single victim enclave at a

time. However, we can extend the driver to target multiple

enclaves simultaneously as long as the total memory usage

can fit into the EPC (required for pinning).

6 Extracting Sensitive Access Patterns

OS techniques including critical page whitelisting, cache

squeezing, and cross-core priming effectively increase the

cache misses on the cache misses on critical addresses. How-

ever, the traces collected from the memory bus are still full of

noise and contain no marker for splitting the critical memory

accesses into iterations. Unlike controlled-channel attacks,

MEMBUSTER cannot rely on repeated code addresses (e.g.,

from a loop) to mark and then split the critical accesses be-

cause these code addresses tend to be accessed too frequently

to be evicted by our techniques. Therefore, the attacker needs

to deeply analyze the memory traces offline to distill the sen-

sitive information.

To extract the sensitive access patterns, we identify four

techniques for filtering the critical memory addresses and

matching with a known oracle for the target application: (1)

offline simulation; (2) searching the beginning of sensitive

accesses; (3) fuzzy pattern matching, and (4) exploiting cache

prefetching. We use the two examples to explain how to

analyze memory bus traces.

6.1 Offline Simulation

Side-channel attacks often require attackers to have some

knowledge about the behaviors of the victim. For example, the

controlled-channel attack on Hunspell requires the attacker to

extract the virtual page addresses of the linked list nodes of

each dictionary word, during an online training phase while

attacking the victim. However, MEMBUSTER cannot perform

online training with the victim as the analysis of the memory

traces is performed offline. Instead, the attacker needs to gen-

erate an oracle of the victim behavior, using offline simulation

of the target application.

We observe that, for each application, we can use a deter-

ministic oracle, given that users have adopted some publicly

available data (e.g., the en_US dictionary). For example, dur-

ing the simulation, we run a modified Hunspell in an enclave,

which prints out the indexes and the addresses of linked list

nodes visited for each word. Then, we reuse the output as

an oracle, to be used in analyzing any traces based on the

same ⁀en_US dictionary. We assume that there are only a finite

amount of English dictionaries in the world.

As discussed earlier, ASLR in the enclaves does not in-

validate an oracle, since ASLR can be easily defeated by

observing the specific patterns related to binary loading. The

addresses in the oracle can simply be shifted by a certain

offset to be usable again.

6.2 Searching Sensitive Accesses

Finding the first sensitive access is critical for deciding where

to start matching access patterns. Note that not all accesses to

the critical addresses are sensitive. For Hunspell, allocating

nodes for each word emits a long sequence of monotonically

increasing virtual addresses that can be used to identify the

sensitive addresses. We match the virtual addresses to the

oracle, to find the longest increasing subsequence (LIS) of

addresses as accessed in the dictionary order. After finding the

LIS, the next critical access is the beginning of the sensitive

addresses.

6.3 Fuzzy Pattern Matching

In MEMBUSTER, we observe that a part of memory addresses

in a sensitive access pattern is likely to be missing due to

caching. Even with cache squeezing and cross-core priming,

it is almost impossible to force page misses on every critical

memory access. Therefore, to analyze lossy traces, we use

fuzzy pattern matching to flexibly match the traces with only

parts of access patterns. As long as at least one or a few

accesses of a pattern cause LLC misses, we can identify the

pattern as a possible result for recovery.

In fuzzy pattern matching, one address may be parsed as

different access patterns of the victim for two reasons. First,

within a data structure such as a linked list or a tree, the same

address (an inner node) may be accessed while traversing

or searching other nodes. Second, a cache line may contain

multiple nodes and thus can be accessed when visiting one

of the nodes. For either of the reasons, a single memory trace

may be accounted for multiple possible access patterns in the

oracle.

We use a simple strategy to select the best interpretation for

a set of memory traces. We assign a score to each possibility

based on how complete the traces have matched with an access

pattern in the oracle. For the addresses of a tree or a linked list,

we assign lower scores to the root and the first few nodes and

assign higher scores to nodes that are closer to leaves or the

end of the list. By collecting the top-ranking interpretations of

the memory traces, an attacker can generate a list of the most

probable options of the target secret. Potentially, a grammar

checker or any semantic-based heuristic can help to validate or

to rank the recovery results. We leave the exercise of applying

more context-aware heuristics for future work.

6.4 Exploiting Cache Prefetching

Finally, we observe that the cache prefetching features of

CPUs can help increase the accuracy of the attack. For ex-

ample, a recent Intel CPU includes Next-line Prefetcher and

128-byte Spatial Prefetcher. The Next-line Prefetcher, belong-

ing to the L2 cache, will preload the cache line next to the

one that is currently accessed. The 128-bit Spatial Prefetcher,

which also belongs to the L2 cache, prefetches the pairing

cache line that completes the accessed cache line to a 128-

byte aligned chunk into the LLC. Both prefetchers increase

the number of memory accesses relevant to the secret data.

Therefore, we expand the range of pattern matching based

on our knowledge of cache prefetching, including extending

the addresses representing each secret by 64 bytes, both back-

ward and forward. As a result, even if the CPU has cached a

line, the prefetched lines may still cause cache misses and be

observed on the memory bus.

CPU

Model Intel i5-8400 (Coffee lake)

LLC Size 9 MB

LLC # Slice 6 Slices

LLC # Associativity 12-way set associative

LLC # Sets 2048

Memory

DIMM Type DDR4-2400 UDIMM (Non-ECC)

Capacity 8 GB

Channel/Rank/Bank/Row 1/1/16/65536

Page Size 8 KB (1 KB/package)

Max Bus Frequency 1200 MHz

Table 2: Hardware specification for the experiment

Other cache prefetchers such as Stream Prefetcher can

monitor an ascending or descending sequence of addresses

from the L1 or L2 cache and can prefetch up to 20 cache lines

ahead of the loaded address. Such a prefetcher generally will

not improve the accuracy of the pattern matching. However,

these prefetchers can cause space pressure to caches, making

cache squeezing more effective.

7 Evaluation

In this section we present the evaluation results of the MEM-

BUSTER attack, based on the two vulnerable applications

described in §4. The evaluation mainly answers the following

questions regarding the MEMBUSTER attacks:

• How accurate can MEMBUSTER extract the secrets from

applications that are vulnerable to such an attack?

• How do the attack techniques of MEMBUSTER impact

the attack accuracy?

• How much slowdown (or interference) the various tech-

niques will incur on the applications?

• What is the limitation of MEMBUSTER?

• How sensitive are the attack results of MEMBUSTER to

the last-level cache (LLC) size of the target CPU?

We evaluate the MEMBUSTER attack in various settings:

(1) the basic attack without any techniques (None); (2) the op-

timized attack with cache squeezing (SQ); (3) the optimized

attack with cache squeezing combined with cross-core cache

priming (SQ+PR).

7.1 Experiment Setup

In this section, we describe the experimental setup of the

MEMBUSTER attack. We use both physical and simulated

experiments to evaluate the effectiveness of MEMBUSTER.

7.1.1 Physical Experiment

Hardware Setup. The hardware setup we used for the exper-

iment is shown in Table 2. We use a machine equipped with

an Intel SGX CPU. In the machine, we connect the DIMM to

a signal analyzer via a DIMM interposer. We configure BIOS

to slightly increase the DRAM supply voltage to offset the

voltage drop caused by the interposer. The bus frequency is

set to 1066 MHz, so the bandwidth of the analyzer is 3.97

GiB/s. With a 64 GiB acquisition depth, we can log the mem-

ory bus for up to ∼ 16 seconds. All of our experiments have

finished in a few seconds, and thus the acquisition depth is

sufficient for logging all the memory requests. To achieve

a wider time window, the attacker can choose an analyzer

which can filter the requests by addresses [57], or which has

a higher acquisition depth [55].

Victim Setup. The victim machine is running Ubuntu 16.04

and Linux kernel 4.4. To execute the victim applications in-

side enclaves, we use Graphene-SGX [54] to run unmodified

binaries with SGX. The victim may also choose other frame-

works [66] or port the applications with the SDK [67], but the

choices of the frameworks do not eliminate the patterns since

they do not change the program logic of the victim.

Sample Size. We collaborate with SK Hynix to use its propri-

etary analyzer for the experiments. Due to the limited access

to the device, we run the attack only once for each setting.

However, we were able to successfully perform the attack

despite the small sample size because the results match well

with our expectations learned from the simulation.

7.1.2 Microarchitectural Simulation

We also implemented a software simulator to simulate the

attack prior to an actual attack because the hardware setup

requires costly devices. We use the simulator for exploring

the attack and getting preliminary results. The results are

then cross-validated with the results from the actual hardware

setup, to verify the functional correctness of the simulation.

The attacker can also use the same strategy to save the ex-

penses for renting the devices. We modify QEMU [38], a

machine emulator, to trace all the physical memory accesses

of the guest. To capture cache misses, we make QEMU emits

all the memory requests to a cache simulator we integrated

from Spike [68]. The cache simulation does not implement

any cycle-accurate hardware model as well as cache slicing

and pseudo-LRU replacement. However, the simulation was

sufficiently faithful for developing the attack scripts to analyze

the real memory traces.

7.1.3 Enclave Simulation

We also simulate an enclave environment without memory

encryption, using a modified Graphene-SGX library OS and a

dummy SGX driver. We consider simulating Intel’s Memory

Encryption Engine (MEE) unnecessary because MEE does

not affect the memory addresses accessed within the EPC.

MEE generates additional access patterns for the integrity tree

or EPC metadata, both of which are stored in the Processor

Reserved Memory outside the EPC. Our attack does not rely

on any access pattern outside the EPC.

The modified Graphene-SGX library OS and the dummy

SGX driver primarily simulate the transition in and out of the

enclave and the paging of enclave memory, to generate similar

memory access patterns as observed on the memory bus. For

simulating enclave entry and exit, we modify the user-tier

SGX instructions, EENTER and EEXIT, in the Graphene-SGX

runtime, to directly jump to addresses that are originally given

as the enclave entry. We also simulate the AEX.

Technique Attack Accuracy Normalized Exec. Time

None 34.1% 1.00×

SQ 82.1% 0.92×

Table 3: MEMBUSTER results for attacking Memcached on

an SGX machine

For simulating EPC paging, we modified the SGX driver to

replace the system-tier SGX instructions, including the ELDU

and EWB instructions, which swap and re-encrypt pages in and

out of the EPC. We simply replace these two instructions

with memory copy without encryption. We compare the mem-

ory traces from the real enclaves and from the simulation to

confirm that the results are identical.

7.1.4 Applications: Hunspell

We run Hunspell v1.6.2 to evaluate the effectiveness of the

MEMBUSTER attack. We use a standard en_US dictionary [69]

with two document samples: a random non-repetitive docu-

ment with 10,000 words (Random), and a natural-language

document “Wizard of Oz” with 39,342 words (Wizard). For

simplicity, we normalize the samples based on en_US dictio-

nary, by converting non-existing words in the samples to the

closet words in the dictionary. MEMBUSTER does not recover

words that are reported as misspelt by Hunspell. In addition,

we disabled affix detection in Hunspell.

We use the pattern matching algorithm described in §6 to

recover the target document from the DRAM traces collected

from the Hunspell program running inside the enclave. We

also enable the hardware prefetching by configuring the BIOS.

To verify the result, we select an interpretation of the DRAM

traces that is closet to the target document, from a set of

highest-ranking results generated from our algorithm.

7.1.5 Application: Memcached

We run Memcached v1.5.12 as another target of the MEM-

BUSTER attack. In this attack, the “secrets” are the data being

looked up in the Memcached cache. We used the Enron email

dataset [70] as a realistic workload for Memcached. First, we

compute the 4-byte hash of each word that appears in emails

in the “sent mail” directory of each user. In total, there are

about 7000 unique word entries in the dataset, which include

articles and propositions. During the training phase, assuming

the attacker is monitoring a Memcached server, the attacker

can determine both the hash table address and the hash value

of each word using the traces of a few queries. Then, during

the attack phase, the attacker monitors the memory bus traffic

of an enclave-protected Memcached server receiving caching

requests from an trusted email server. The email server parses

emails from a test data set that contains randomly selected

emails with around 1000 words in total. As the Memcached

server processes the caching requests from the email server,

the attacker can extract the words in the emails using the

MEMBUSTER attack.

Random Wizard Wizard
(w/o NLTK)

0
20
40
60
80

100

Re
co

ve
ry

 (%
)

None SQ SQ+PR

Random Wizard0.8

1.0

1.2

1.4

No
rm

al
ize

d
Ex

ec
ut

io
n

Ti
m

e

None SQ SQ+PR

Figure 9: Hunspell document recovery rate (left) and nor-

malized execution time (right) on two documents: Random

document (Random) and Wizard of Oz (Wizard). The compar-

ison is between without any techniques (None); with cache

squeezing (SQ); and with cache squeezing and cross-core

priming (SQ+PR). For Wizard of Oz, we also show the recov-

ery rate of uncommon words only (w/o NLTK).

7.2 Effectiveness of the Attack

7.2.1 Data Recovery Accuracy

Figure 9 (left) and Table 3 show the accuracy of MEMBUSTER

for recovering the victim’s data. We measure the accuracy

based on the number of words recovered from the collected

traces, compared to the number of words in the original sam-

ples. The recovery rate is higher in a non-repetitive (Random)

or high-interval access pattern (Memcached) than in a repet-

itive access pattern (Wizard). Even without any techniques

(None), Memcached and Random show 34% and 44% recov-

ery rates, respectively. With cache squeezing, we recover 96%

of the random document and 82% of the Memcached query.

However, for Wizard of Oz, None or SQ can only achieve

up to 21% recovery rate. The main reason is that the doc-

ument contains many repetitive words, including common

words such as “you” and “the” and uncommon words such as

“Oz” and “scarecrow”. The memory accesses for these words

are likely to be cached in the LLC cache without emitting

any DRAM requests. On average, each unique word in Wiz-

ard of Oz repeats 15.5 times. We found that without cache

squeezing and cross-core priming, the attack recovers about

0.3 occurrences of each word on average. Even with cache

squeezing, the attack only recovers about 2.6 occurrences.

Since cache squeezing shrinks the effective cache size for

the critical addresses, cross-core priming becomes more ef-

ficient by only priming the sets of the critical addresses. We

show that combining cache squeezing and cross-core priming

(SQ+PR) achieves 85% recovery accuracy on Wizard of Oz.

Furthermore, the attacker is most likely to need only the

uncommon words to be recovered. To exclude common words,

we use stopwords from the NLTK dataset [71] which includes

179 common words (e.g., "the"). Excluding these words,

MEMBUSTER can recover Wizard of Oz up to 95% (Figure 9

Wizard w/o NLTK).

7.2.2 Overhead and Interference

We show that MEMBUSTER does not incur an orders-of-

magnitude overhead that can be distinguishable by the victim.

4
(0.5MB)

8
(1MB)

16
(2MB)

32
(4MB)

64
(8MB)

128
(16MB)

256
(32MB)

of Ways (LLC Size)

0
20
40
60
80

100

Re
co

ve
ry

 (%
)

Hunspell (Random) None PR SQ SQ+PR

4
(0.5MB)

8
(1MB)

16
(2MB)

32
(4MB)

64
(8MB)

128
(16MB)

256
(32MB)

of Ways (LLC Size)

0
20
40
60
80

100

Re
co

ve
ry

 (%
)

Memcached None PR SQ SQ+PR

Figure 10: Simulation results of the attack on Hunspell (top)

and Memcached (bottom).

Figure 9 (right) shows the normalized execution time with

different attack techniques with respect to the baseline. In

general, both cache squeezing and cross-core priming have a

low performance impact on the victim program, since these

techniques do not interrupt the victim program. For Hunspell,

cache squeezing causes up to 21% overhead to the victim,

and up to 36% if combined with cross-core priming. The

overheads are mainly caused by the increase of cache misses

inside the victim program.

Table 3 also shows the end-to-end execution time of Mem-

cached for processing the whole test set. Similar to Hunspell,

the basic attack incurs no overhead on Memcached. Interest-

ingly, cache squeezing reduces the execution time by 8% for

Memcached. We observe that, on a physical machine, critical

page whitelisting consistently reduces the average LLC miss

rate (2.9% vs. 3.6%) as well as the page fault rate. Because the

physical pages of Memcached’s hash table are pinned inside

the enclave, and thus never get swapped out from the EPC.

Thereby, within the hash table, there is no expensive paging

and context switching cost that generally plagues enclave

execution.

7.2.3 Scalability on # of Ways

We simulated the attack on our simulation environment to

show the scalability of MEMBUSTER. We fixed the number

of sets s = 2048 that most Intel CPUs choose to have. Since

we did not simulate the LLC slices, we increased the size of

the cache by increasing the number of ways, W . To clarify,

increasing the number of ways does not reflect the actual

behavior of LLC with multiple slices. Even if the LLC has

multiple slices, each cache line will compete with W other

cache lines. Thus, increasing W makes the attack much harder,

by reducing the chance of eviction of critical addresses. Note

that a typical W value is between 4 and 16.

As shown in Figure 10, cache squeezing makes cross-core

SQ+PR
SQ

None

Ra
nd

om

Useful Traces per Word Recovery (%)

0 1 2 3 4 5 6
SQ+PR

SQ
None

W
iza

rd

0 20 40 60 80 100

w/ prefetching w/o prefetching

Figure 11: The number of useful traces per word and the

document recovery rate for each experiment. We compare the

cases with or without the hardware prefetcher.

priming much more effective in general by reducing the ef-

fective cache size. Cache squeezing was more scalable on

Hunspell than Memcached, because Hunspell has a larger

critical address range. With W = 64, MEMBUSTER recovered

up to 83% of the random document in Hunspell and 88% of

the emails in Memcached when both cache squeezing and

cross-core priming have been used. Even assuming an unre-

alistic number of ways W = 256, which results in 32 MB of

LLC, the attack accuracy was 77% and 40% respectively.

7.3 Per-Application Detailed Analysis

7.3.1 Hunspell: Advantage of Cache Prefetching

We also show the advantage of exploiting cache prefetching

for MEMBUSTER. For Hunspell, the attacker recovers each

word based on multiple memory accesses. If the attacker ob-

serves more traces relevant to each word, recovering the word

becomes easier. Hence, if the attacker knows the presence of

cache prefetchers in advance, she can use the information to

correlate the prefetched addresses with each word (§6).

As shown in Figure 11, cache prefetching increases the av-

erage number of useful traces per word. Including prefetched

addresses increases the recovery rate especially when there

are very few useful traces (None and SQ). Although the im-

provement is marginal in our experiment, the attacker can

potentially use the additional memory requests made by the

cache prefetchers to extract more information from the victim.

7.3.2 Memcached: Advantage of Fine-Grained Ad-

dresses

To show the advantage of observing fine-grained addresses,

we simulated the controlled-channel attack on Memcached

example. We first obtained the entire memory trace from

Memcached without simulating the cache. We then masked

the lower 12-bits of all addresses assuming each page is 4 KB.

With this post-processing, we were able to simulate the mem-

ory trace that the controlled-channel attacker will observe.

We also reconstruct the attacker’s hash table such that each

page-granularity address maps to multiple entries in the hash

table. If the attacker sees an address, she simply chooses the

most common word among the possible entries.

The simulated controlled-channel attack achieves only 29%

accuracy, and the recovered document was uninterpretable as

it only contained common words such as “the” and “of”. This

shows that MEMBUSTER leverages fine-grained addresses by

providing more side-channel information than coarse-grained

addresses.

8 Discussion

In this section, we discuss the limitations, generalization, im-

plications, and mitigations of the MEMBUSTER attack.

Limitations. MEMBUSTER leaks only memory access pat-

terns at LLC misses. Thus, MEMBUSTER cannot observe

repeated accesses to the same address within a short period.

For instance, the former RSA implementation of GnuPG [72]

is known to leak a private key through code addresses in the

ElGamal algorithm [45]. This type of attack relies on data-

dependent branches, as the attacker detects different code

paths executed inside the victim to infer the secret. However,

these vulnerabilities are difficult to exploit by MEMBUSTER,

due to these code addresses being frequently executed and

thus cached in the CPU. Even cache priming techniques can-

not efficiently evict the code addresses in time to help the

attacker retrieve the secret with high accuracy but keep the

performance impact low.

In general, MEMBUSTER is more suitable for leaking data-

dependent memory loads over a large heap or array. For in-

stance, both the attacks on Hunspell and Memcached rely on

the access patterns within a large hash table and/or linked-list

objects. If the victim program only has data-dependent mem-

ory access patterns within a small region, or if the memory

access is not evenly distributed, the accuracy of MEMBUSTER

is likely to worsen. Besides, if the application only leaks a

secret through stores that are dependent on the secret, MEM-

BUSTER may not observe the memory requests immediately.

The reason is that the CPU tends to delay write-back of dirty

data until the cache lines are evicted, making the timing of the

memory requests appearing on the memory bus unpredictable.

We leave the exploration of such scenario for future work.

Timing Information. Although not explored in this paper,

an attacker may exploit the timing information to attack the

victim. The DRAM analyzer logs a precise timestamp for

each memory request based on counting its clock cycles. Po-

tentially, an attacker can measure the time difference between

two memory traces, to infer the execution time of operation

in the victim as a way of timing attacks. We leave the demon-

stration of these attacks for future work.

Traffic Analysis. Potentially, the memory bus traffic

recorded by the DRAM analyzer can be used for traffic anal-

ysis if the victim is vulnerable to this type of attacks. For

instance, the attacker may analyze either the density or the

volume of requests on a specific address to infer the activity or

secret of the application. A complete mitigation of the attack

should eliminate the timing information and has a constant

traffic flow on the memory bus [36].

Multiple DIMMs or Multi-Socket. Our current attack

does not explore the possibility of having multiple DIMMs

or multiple CPU sockets (currently not supported by SGX).

However, potentially, the attacker can attach multiple DIMM

interposers, and then correlate the DRAM traces using times-

tamps or common patterns.

Memory Controllers. A memory controller arbitrates all

transactions to main memory such that it maximizes the

throughput while minimizing latencies. One of the key fea-

tures that may make MEMBUSTER more challenging is trans-

action scheduling where the arbiter reorders the transaction

requests to maximize the performance. In other words, the

order of the memory transactions observed by the attacker

may differ from the actual order of memory accesses.

We observe that the arbitration of the memory controller

does not stop an enclave from leaking sensitive access pat-

terns. First, even if transactions are reordered, the critical

addresses will still eventually appear on the memory bus.

Also, the memory controller only reorders transactions within

a very small time window (e.g., tens of bus cycles), which

is not enough to obfuscate the critical memory accesses that

occur at least every hundreds of instructions.

Generalization. Intel SGX is not the only platform affected

by MEMBUSTER. Other existing platforms of hardware en-

claves [4, 5, 40, 41] also do not encrypt the addresses on the

memory bus. Thus, these platforms are also vulnerable to

MEMBUSTER as long as the CPU stores encrypted data in

external memory (e.g., DRAM). The attacker can also use

the same techniques such as cache squeezing to induce cache

misses on other platforms. For example, Komodo [40] allows

the OS to affect the virtual address mapping, which enables

the attacker to use cache squeezing. Keystone [4] measures

the initial virtual address mapping for attestation, thus cache

squeezing cannot be applied. However, it provides cache par-

titioning which can reduce the effective cache size of the

enclave.

Implications and Disclosure. Potentially, MEMBUSTER

can be used in two scenarios: (1) a malicious user attack-

ing an end device to retrieve secret data from a local enclave;

(2) a malicious cloud provider or employee attacking a cloud

machine to retrieve secret data from the tenants. The existence

of MEMBUSTER shows the importance of physical security to

enclaves just on par with software security. Ideally, in a secure

cloud, one may want to separate the person who has physical

access to the machine from the person who has administrative

privileges. This may be achieved by a secure boot system that

prevents people who have physical access from overwriting

system privileges.

We have disclosed the details of this attack to Intel, who

has acknowledged its validity.

Mitigations. There are several ways to mitigate MEM-

BUSTER, but they are generally expensive. Oblivious RAM

(ORAM) [34, 73] can make the applications execute in an

oblivious manner so that the attacker cannot infer secret

data based on the memory access pattern. The high perfor-

mance overhead of ORAM makes it less attractive for appli-

cations that have strong performance requirements. Alterna-

tively, we can also encrypt the address bus as proposed by

InvisiMem [36] and ObfusMem [37]. However, adding such

a feature to commodity DRAM would be very expensive;

take the cost of techniques such as Hybrid Memory Cube

(HMC) [74] for an example. In-package memory such as high

bandwidth memory (HBM) may relieve the needs for protec-

tion against untrusted DRAM [75], but remains an expensive

alternative for production.

9 Conclusion

In this paper, we introduced MEMBUSTER, which is a non-

interference, fine-grained, stealthy physical side-channel at-

tack on hardware enclaves based on snooping the address

lines of the memory bus off-chip. The key idea is to exploit

OS privileges to induce cache misses with minimal perfor-

mance overhead. We also demystify the physical bus-based

side channel by reverse-engineering the internals of several

hardware components. We then develop an algorithm that

can retrieve application secrets from memory bus traces. We

demonstrated the attack on an actual SGX machine; the attack

achieved similar accuracy with much lower overhead than pre-

vious attacks such as controlled-channel attacks. We believe

the attack technique is prevalent beyond Intel SGX and can

apply to other secure processors or enclave platforms, which

do not protect memory buses.

Acknowledgments

We thank our shepherd, Daniel Genkin, and the anonymous

reviewers for their insightful comments. We thank Krste

Asanović and Martin Maas for sharing their ideas. Jeongseok

Son from UC Berkeley also contributed to the early stage of

the project. We also thank SK Hynix, especially Dongha Jung,

Taeksang Song, and Yongtak Song for providing the facility

for DRAM signal analysis, collecting physical experiment

data, and explaining the technical details of DRAM. This

work was supported in part by NSF grants CNS-1228839,

CNS-1405641, CNS-1700512, NSF CISE Expeditions Award

CCF-1730628, as well as gifts from the Sloan Foundation, Al-

ibaba, Amazon Web Services, Ant Financial, ARM, Capital

One, Ericsson, Facebook, Google, Intel, Microsoft, Scotia-

bank, Splunk, and VMware.

References

[1] Intel Software Guard Extensions. https:

//software.intel.com/sgx. Last accessed: De-

cember 2, 2019.

[2] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Car-

los V. Rozas, Hisham Shafi, Vedvyas Shanbhogue, and

Uday R. Savagaonkar. Innovative Instructions and Soft-

ware Model for Isolated Execution. In HASP, 2013.

https://software.intel.com/sgx
https://software.intel.com/sgx

[3] David Lie, Chandramohan A Thekkath, and Mark

Horowitz. Implementing an Untrusted Operating Sys-

tem on Trusted Hardware. ACM SIGOPS Operating

Systems Review, 37(5):178–192, 2003.

[4] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Dawn

Song, and Krste Asanović. Keystone: A framework

for architecting tees. arXiv preprint arXiv:1907.10119,

2019.

[5] Victor Costan, Ilia A Lebedev, and Srinivas Devadas.

Sanctum: Minimal Hardware Extensions for Strong Soft-

ware Isolation. In USENIX Security, 2016.

[6] J Alex Halderman, Seth D Schoen, Nadia Heninger,

William Clarkson, William Paul, Joseph A Calandrino,

Ariel J Feldman, Jacob Appelbaum, and Edward W Fel-

ten. Lest we remember: cold-boot attacks on encryption

keys. Communications of the ACM, 2009.

[7] Christian Priebe, Kapil Vaswani, and Manuel Costa. En-

claveDB - A Secure Database using SGX. In IEEE S&P,

2018.

[8] Felix Schuster, Manuel Costa, Cedric Fournet, Christos

Gkantsidis, Marcus Peinado, Gloria Mainar-Ruiz, and

Mark Russinovich. VC3: Trustworthy Data Analytics

in the Cloud. In IEEE S&P, 2015.

[9] Tien Tuan Anh Dinh, Prateek Saxena, Ee-Chien Chang,

Beng Chin Ooi, and Chunwang Zhang. M2R: En-

abling Stronger Privacy in MapReduce Computation.

In USENIX Security, 2015.

[10] Stefan Brenner, Colin Wulf, David Goltzsche, Nico We-

ichbrodt, Matthias Lorenz, Christof Fetzer, Peter Piet-

zuch, and Rüdiger Kapitza. SecureKeeper: Confidential

ZooKeeper Using Intel SGX. In Middleware, 2016.

[11] Joshua Lind, Oded Naor, Ittay Eyal, Florian Kelbert,

Emin Gün Sirer, and Peter Pietzuch. Teechain: A Se-

cure Payment Network with Asynchronous Blockchain

Access. In SOSP, 2019.

[12] Mitar Milutinovic, Warren He, Howard Wu, and Maxin-

der Kanwal. Proof of Luck: An Efficient Blockchain

Consensus Protocol. In SysTEX, 2016.

[13] Fan Zhang, Ethan Cecchetti, Kyle Croman, Ari Juels,

and Elaine Shi. Town crier: An authenticated data feed

for smart contracts. In CCS, 2016.

[14] R. Cheng, F. Zhang, J. Kos, W. He, N. Hynes, N. John-

son, A. Juels, A. Miller, and D. Song. Ekiden: A Plat-

form for Confidentiality-Preserving, Trustworthy, and

Performant Smart Contracts. In EuroS&P, 2019.

[15] Iddo Bentov, Yan Ji, Fan Zhang, Yunqi Li, Xueyuan

Zhao, Lorenz Breidenbach, Philip Daian, and Ari Juels.

Tesseract: Real-Time Cryptocurrency Exchange using

Trusted Hardware. In CCS, 2017.

[16] Olga Ohrimenko, Felix Schuster, Cedric Fournet, Aastha

Mehta, Sebastian Nowozin, Kapil Vaswani, and Manuel

Costa. Oblivious multi-party machine learning on

trusted processors. In USENIX Security, 2016.

[17] Shruti Tople, Karan Grover, Shweta Shinde, Ranjita

Bhagwan, and Ramachandran Ramjee. Privado: Practi-

cal and Secure DNN Inference. ArXiv, 2018.

[18] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel

Genkin, Baris Kasikci, Frank Piessens, Mark Silberstein,

Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.

Foreshadow: Extracting the Keys to the Intel SGX King-

dom with Transient Out-of-order Execution. In USENIX

Security, 2018.

[19] Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian

Zhang, XiaoFeng Wang, Vincent Bindschaedler, Haixu

Tang, and Carl A. Gunter. Leaky Cauldron on the Dark

Land: Understanding Memory Side-Channel Hazards in

SGX. In CCS, 2017.

[20] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko,

Kari Kostiainen, Srdjan Capkun, and Ahmad-Reza

Sadeghi. Software Grand Exposure: SGX Cache At-

tacks Are Practical. In WOOT, 2017.

[21] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clé-

mentine Maurice, and Stefan Mangard. Malware Guard

Extension: Using SGX to Conceal Cache Attacks. In

DIMVA, 2017.

[22] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisen-

barth. CacheZoom: How SGX Amplifies the Power of

Cache Attacks. In CHES, pages 69–90. Springer, 2017.

[23] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank

Piessens, and Raoul Strackx. Telling Your Secrets With-

out Page Faults: Stealthy Page Table-based Attacks on

Enclaved Execution. In USENIX Security, 2017.

[24] Yuanzhong Xu, Weidong Cui, and Marcus Peinado.

Controlled-Channel Attacks: Deterministic Side Chan-

nels for Untrusted Operating Systems. In S&P, 2015.

[25] Martin Maas, Eric Love, Emil Stefanov, Mohit Tiwari,

Elaine Shi, Krste Asanovic, John Kubiatowicz, and

Dawn Song. PHANTOM: Practical Oblivious Com-

putation in a Secure Processor. In CCS, 2013.

[26] Victor Costan and Srinivas Devadas. Intel SGX Ex-

plained. Cryptology ePrint Archive, Report 2016/086,

2016. http://eprint.iacr.org/2016/086.

http://eprint.iacr.org/2016/086

[27] Andrew Huang. Keeping Secrets in Hardware: The

Microsoft XboxTM Case Study. In CHES, 2003.

[28] Oleksii Oleksenko, Bohdan Trach, Robert Krahn, Andre

Martin, Christof Fetzer, and Mark Silberstein. Varys:

Protecting sgx enclaves from practical side-channel at-

tacks. In USENIX ATC, 2018.

[29] Guoxing Chen, Wenhao Wang, Tianyu Chen, Sanchuan

Chen, Yinqian Zhang, XiaoFeng Wang, Ten-Hwang Lai,

and Dongdai Lin. Racing in Hyperspace: Closing Hyper-

Threading Side Channels on SGX with Contrived Data

Races. In S&P, 2018.

[30] Daniel Gruss, Julian Lettner, Felix Schuster, Olya Ohri-

menko, Istvan Haller, and Manuel Costa. Strong and Ef-

ficient Cache Side-Channel Protection using Hardware

Transactional Memory. In USENIX Security, 2017.

[31] Ming-Wei Shih, Sangho Lee, Taesoo Kim, and Marcus

Peinado. T-SGX: Eradicating Controlled-Channel At-

tacks Against Enclave Programs. In NDSS, 2017.

[32] Sanchuan Chen, Xiaokuan Zhang, Michael K. Reiter,

and Yinqian Zhang. Detecting Privileged Side-Channel

Attacks in Shielded Execution with DéJà Vu. In Asi-

aCCS, 2017.

[33] Xiao Shaun Wang, Kartik Nayak, Chang Liu, T.-H. Hu-

bert Chan, Elaine Shi, Emil Stefanov, and Yan Huang.

Oblivious Data Structures. In CCS, 2014.

[34] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher

Fletcher, Ling Ren, Xiangyao Yu, and Srinivas Devadas.

Path ORAM: An Extremely Simple Oblivious RAM

Protocol. In CCS, 2013.

[35] Pratyush Mishra, Rishabh Poddar, Jerry Chen, Alessan-

dro Chiesa, and Raluca Ada Popa. Oblix: An efficient

oblivious search index. In S&P, 2018.

[36] Shaizeen Aga and Satish Narayanasamy. InvisiMem:

Smart Memory Defenses for Memory Bus Side Channel.

In ISCA, 2017.

[37] Amro Awad, Yipeng Wang, Deborah Shands, and Yan

Solihin. ObfusMem: A Low-Overhead Access Obfusca-

tion for Trusted Memories. In ISCA, 2017.

[38] QEMU: the FAST! processor emulator. https://

www.qemu.org/. Last accessed: December 2, 2019.

[39] Intel Software Guard Extensions Programming

Reference. https://software.intel.com/sites/

default/files/managed/48/88/329298-002.pdf.

Last accessed: December 2, 2019.

[40] Andrew Ferraiuolo, Andrew Baumann, Chris Haw-

blitzel, and Bryan Parno. Komodo: Using verification

to disentangle secure-enclave hardware from software.

In SOSP, 2017.

[41] ARM Security IP CryptoIsland Family. https:

//www.arm.com/products/silicon-ip-security/

cryptoisland. Last accessed: December 2, 2019.

[42] AMD Secure Encrypted Virtualization. https:

//developer.amd.com/amd-secure-memory-

encryption-sme-amd-secure-encrypted-

virtualization-sev/. Last accessed: Decem-

ber 2, 2019.

[43] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache

Attacks and Countermeasures: The Case of AES. In

CT-RSA, 2006.

[44] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and

Ruby B. Lee. Last-Level Cache Side-Channel Attacks

Are Practical. In S&P, 2015.

[45] Yuval Yarom and Katrina Falkner. FLUSH+RELOAD:

A High Resolution, Low Noise, L3 Cache Side-channel

Attack. In USENIX Security, 2014.

[46] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and

Stefan Mangard. Flush+Flush: A Fast and Stealthy

Cache Attack. In DIMVA, 2016.

[47] Michael Schwarz, Moritz Lipp, Daniel Moghimi,

Jo Van Bulck, Julian Stecklina, Thomas Prescher, and

Daniel Gruss. ZombieLoad: Cross-Privilege-Boundary

Data Sampling. In CCS, 2019.

[48] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim,

Hyesoon Kim, and Marcus Peinado. Inferring Fine-

grained Control Flow Inside SGX Enclaves with Branch

Shadowing. In USENIX Security, 2017.

[49] Yeongjin Jang, Jaehyuk Lee, Sangho Lee, and Taesoo

Kim. SGX-Bomb: Locking Down the Processor via

Rowhammer Attack. In SysTEX, 2017.

[50] Victor van der Veen, Yanick Fratantonio, Martina Lin-

dorfer, Daniel Gruss, Clementine Maurice, Giovanni Vi-

gna, Herbert Bos, Kaveh Razavi, and Cristiano Giuffrida.

Drammer: Deterministic Rowhammer Attacks on Mo-

bile Platforms. In CCS, 2016.

[51] Marcus Brandenburger, Christian Cachin, Matthias

Lorenz, and Rüdiger Kapitza. Rollback and Forking

Detection for Trusted Execution Environments using

Lightweight Collective Memory. In DSN, 2017.

[52] Sinisa Matetic, Mansoor Ahmed, Kari Kostiainen, Aritra

Dhar, David Sommer, Arthur Gervais, Ari Juels, and

https://www.qemu.org/
https://www.qemu.org/
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://www.arm.com/products/silicon-ip-security/cryptoisland
https://www.arm.com/products/silicon-ip-security/cryptoisland
https://www.arm.com/products/silicon-ip-security/cryptoisland
https://developer.amd.com/amd-secure-memory-encryption-sme-amd-secure-encrypted-virtualization-sev/
https://developer.amd.com/amd-secure-memory-encryption-sme-amd-secure-encrypted-virtualization-sev/
https://developer.amd.com/amd-secure-memory-encryption-sme-amd-secure-encrypted-virtualization-sev/
https://developer.amd.com/amd-secure-memory-encryption-sme-amd-secure-encrypted-virtualization-sev/

Srdjan Capkun. ROTE: Rollback Protection for Trusted

Execution. In USENIX Security, 2017.

[53] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael

Schwarz, and Stefan Mangard. DRAMA: Exploiting

Dram Addressing for Cross-CPU Attacks. In USENIX

Security, 2016.

[54] Chia-che Tsai, Donald E. Porter, and Mona Vij.

Graphene-SGX: A Practical Library OS for Unmodi-

fied Applications on SGX. In ATC, 2017.

[55] JKI Inc. JLA320A. https://www.jkic.co.kr/ddr4-

protocol-analyzer. Last accessed: December 2,

2019.

[56] Kibra 480 Analyzer. http://

cdn.teledynelecroy.com/files/pdf/

lecroy_kibra480_datasheet.pdf. Last accessed:

December 2, 2019.

[57] Nexus Technology MA4100. https://

www.nexustechnology.com/products/memory-

analyzers/ma4100-series-memory-analyzer/.

Last accessed: December 2, 2019.

[58] Hunspell. http://hunspell.github.io/. Last ac-

cessed: December 2, 2019.

[59] Brad Fitzpatrick. Distributed caching with memcached.

Linux journal, 2004(124):5, 2004.

[60] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc

Kwiatkowski, Herman Lee, Harry C. Li, Ryan McElroy,

Mike Paleczny, Daniel Peek, Paul Saab, David Stafford,

Tony Tung, and Venkateshwaran Venkataramani. Scal-

ing Memcache at Facebook. In NSDI, 2013.

[61] James Langston. Enhancing the Scalability of

Memcached. https://software.intel.com/en-

us/articles/enhancing-the-scalability-of-

memcached. Last accessed: December 2, 2019.

[62] Yupeng Zhang, Jonathan Katz, and Charalampos Papa-

manthou. All Your Queries Are Belong to Us: The

Power of File-Injection Attacks on Searchable Encryp-

tion. In USENIX Security, 2016.

[63] Intel 64 and IA-32 Architectures Software Developer’s

Manual Volume 3A: System Programming Guide,

Part 1. https://www.intel.com/content/dam/www/

public/us/en/documents/manuals/64-ia-32-

architectures-software-developer-vol-3a-

part-1-manual.pdf. Last accessed: December 2,

2019.

[64] Mengjia Yan, Read Sprabery, Bhargava Gopireddy,

Christopher Fletcher, Roy Campbell, and Josep Torrellas.

Attack Directories, Not Caches: Side Channel Attacks

in a Non-Inclusive World. In S&P, 2019.

[65] Khang T Nguyen. Introduction to Cache Allocation

Technology in the Intel R© Xeon R© Processor E5 v4

Family. https://software.intel.com/en-us/

articles/introduction-to-cache-allocation-

technology, Febuary 2016.

[66] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas

Knauth, Andre Martin, Christian Priebe, Joshua Lind,

Divya Muthukumaran, Daniel O’Keeffe, Mark L. Still-

well, David Goltzsche, Dave Eyers, Rüdiger Kapitza,

Peter Pietzuch, and Christof Fetzer. SCONE: Secure

Linux Containers with Intel SGX. In OSDI, 2016.

[67] Software Guard Extenstion (SGX) SDK for Linux.

https://github.com/intel/linux-sgx. Last ac-

cessed: December 2, 2019.

[68] RISC-V ISA Simulator. https://riscv.org/

software-tools/risc-v-isa-simulator/. Last

accessed: December 2, 2019.

[69] Spell Checker Oriented Word Lists. http://

wordlist.aspell.net/. Last accessed: December 2,

2019.

[70] Enron Email Dataset. https://www.cs.cmu.edu/~./

enron/. Last accessed: December 2, 2019.

[71] NLTK data 3.4.5 documentation. https://

www.nltk.org/data.html. Last accessed: December

2, 2019.

[72] GNU Privacy Guard. http://www.gnupg.org. Last

accessed: December 2, 2019.

[73] Sajin Sasy, Sergey Gorbunov, and Christopher W.

Fletcher. ZeroTrace : Oblivious Memory Primitives

from Intel SGX. In NDSS, 2017.

[74] J Thomas Pawlowski. Hybrid Memory Cube (HMC).

In 2011 IEEE Hot Chips 23 Symposium (HCS), 2011.

[75] Oliver Kömmerling and Markus G Kuhn. Design Prin-

ciples for Tamper-Resistant Smartcard Processors. In

Smartcard, 1999.

https://www.jkic.co.kr/ddr4-protocol-analyzer
https://www.jkic.co.kr/ddr4-protocol-analyzer
http://cdn.teledynelecroy.com/files/pdf/lecroy_kibra480_datasheet.pdf
http://cdn.teledynelecroy.com/files/pdf/lecroy_kibra480_datasheet.pdf
http://cdn.teledynelecroy.com/files/pdf/lecroy_kibra480_datasheet.pdf
https://www.nexustechnology.com/products/memory-analyzers/ma4100-series-memory-analyzer/
https://www.nexustechnology.com/products/memory-analyzers/ma4100-series-memory-analyzer/
https://www.nexustechnology.com/products/memory-analyzers/ma4100-series-memory-analyzer/
http://hunspell.github.io/
https://software.intel.com/en-us/articles/enhancing-the-scalability-of-memcached
https://software.intel.com/en-us/articles/enhancing-the-scalability-of-memcached
https://software.intel.com/en-us/articles/enhancing-the-scalability-of-memcached
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3a-part-1-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3a-part-1-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3a-part-1-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3a-part-1-manual.pdf
https://software.intel.com/en-us/articles/introduction-to-cache-allocation-technology
https://software.intel.com/en-us/articles/introduction-to-cache-allocation-technology
https://software.intel.com/en-us/articles/introduction-to-cache-allocation-technology
https://github.com/intel/linux-sgx
https://riscv.org/software-tools/risc-v-isa-simulator/
https://riscv.org/software-tools/risc-v-isa-simulator/
http://wordlist.aspell.net/
http://wordlist.aspell.net/
https://www.cs.cmu.edu/~./enron/
https://www.cs.cmu.edu/~./enron/
https://www.nltk.org/data.html
https://www.nltk.org/data.html
http://www.gnupg.org

	Introduction
	Background and Related Work
	Intel SGX
	Comparison with Existing Attacks
	Side Channel Attacks on SGX
	Advantages of Membuster
	Related Work

	Membuster
	Threat Model
	Hardware Setup for the Attack
	Interpreting DRAM Commands
	Reverse-engineering DRAM Addressing
	Translating PA to VA

	Attack Examples
	Hunspell
	Memcached

	Increasing Critical Cache Misses
	Can We Disable Caching?
	Critical Page Whitelisting
	Priming the Cache
	Shrinking the Effective Cache Size
	Cache Squeezing
	Cross-Core Priming with Cache Squeezing
	Limitation
	Implementation

	Extracting Sensitive Access Patterns
	Offline Simulation
	Searching Sensitive Accesses
	Fuzzy Pattern Matching
	Exploiting Cache Prefetching

	Evaluation
	Experiment Setup
	Physical Experiment
	Microarchitectural Simulation
	Enclave Simulation
	Applications: Hunspell
	Application: Memcached

	Effectiveness of the Attack
	Data Recovery Accuracy
	Overhead and Interference
	Scalability on # of Ways

	Per-Application Detailed Analysis
	Hunspell: Advantage of Cache Prefetching
	Memcached: Advantage of Fine-Grained Addresses

	Discussion
	Conclusion

