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Abstract— This paper presents a novel robot swarming nav-
igation algorithm in order to find the odor sources in an
unknown environment, based on the ability of each swarm
member to sense the odor. Each robot in the swarm has a
cooperative localization system which uses wireless network as
a mean of measuring the distance from the other robots. In this
method, at least three robots act as stationary measurement
beacons while the other robots of the swarm navigate in the
environment towards the odor source. In the next step, the roles
of the robots will be switched and some other robots will act as
beacons. The experimental tests report a good result in finding
the odor source and also the accuracy of localization system1.

I. INTRODUCTION

Olfaction plays a significant role in the way of life of

most animals, being particularly important for finding food,

avoiding threats and coordinating behaviors in social ani-

mals. Although playing a major role in natural life, olfaction

has been a disregarded sense inside the robotics community

since only few groups have researched about its integration

relatively in mobile robots [1].

The possibility to measure the gas concentration with a

mobile robot enables a broad range of applications, ranging

from surveillance of environmental pollutants and the detec-

tion of hazardous gases, to self-produced odors for aiding

navigation [2], [3]. Odor localization is regarded as the base

of many applications using olfactory mechanisms [4]. So

far, the main problem studied in olfactory navigation has

been the tracking and localization of static odor sources

[4], [5]. In real situations, this problem can be broken into

three sub-problems: finding traces of the chemical of interest;

tracking the respective odor plume; and localizing the odor

source. Odor plume tracking has been the problem more

deeply studied using heuristic and bio-inspired algorithms,

odor tracking sometimes complemented by other sensing

modalities, like vision [5].

The mobile robot cooperation using olfaction is a less

studied field. Some reference works in this area are: the

collaborative spiral surge algorithm proposed by Hayes and

co-workers for finding odor sources with a group of robots

[6]; the cooperative area coverage using olfaction that was

addressed by [7] proposing an online complete coverage

algorithm based on the utilization of chemical markings

and a biologically-inspired algorithm for gas/odor source

localization in an indoor environment with no strong airflow
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by [8]. The problem of finding traces of odor plumes in

large search spaces has been addressed in [9] using a group

of mobile robots coordinated by a particle swarm-based

algorithm (PSO). [10] introduced a small group of robots and

a Kalman-based data assimilation techniques to estimate the

distribution of a transient odor field inside a laboratory. A

major drawback of their method was its centralized approach.

Swarm research and swarm robotics is a relatively new

field that has gained momentum since the pioneering work

by Reynolds [11] on simulation of a flock of birds in flight.

However olfaction has not been a well-developed field inside

the swarming robotics community since only relatively few

groups have researched its integration in mobile robots.

In the other hand, localization approach is a significant

issue for the navigational aspect of most robotic applications.

To the best of the authors’ knowledge, none of the mentioned

researchers above have addressed the problem of localization

in olfactory-based swarming. Without accurate positioning, a

mobile robot would wander away from its target workspace

and would fail to complete its planned task. There are many

situations where an external positioning system, such as GPS,

is unavailable to the robots. A team of robots can employ

cooperative localization to incorporate relative sensor mea-

surements into a Kalman filter framework that estimates the

pose of the robots [19]. Many of the cooperative localization

systems, using infrared, ultrasound and Wi-Fi, have been

developed for indoor localization after GPS but each of them

shows its merits and weaknesses at the same time. Infrared is

applicable only to open spaces because of its characteristics

of going straight. If the signal meets the obstacle, it easily

reflects itself, which causes a difficulty in interpreting signal

data. Using ultra-sound, it is easy to estimate the distance

in proportion to the velocity of 330 m/s. However it takes

long time to compute comparing to electronic signals’ high

speed. Wi-Fi ,known as wireless LAN, is hardly applicable

to frequent mobile devices. ZigBee is very cheap and less

power consuming wireless techniques comparing to other

types such as RFID, infrared and ultrasound [20].

Tully et. al. [19] presented a “leap-frog” method for a

team of three robots performing cooperative localization

during navigation. In that method two robots act as stationary

measurement beacons while the third moves in a path that

provides informative measurements. After completing the

move, the roles of each robot are switched and the path

is repeated. They demonstrated accurate localization using

this method in a coverage experiment in which three robots

successfully swept a 20 m × 30 m area. They claimed

that it is one of the largest successful GPS-denied coverage

experiments to that date.
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Fig. 1. A swarm of robots navigating toward the odor source while
measuring distance from each other in order to maintain cooperative
localization system.

An important part in this research is the measurement of

odor concentration by the robots. Authors have addressed

this issue in previous papers [21], [22] and [9].

In this research, an approach for efficient swarm navi-

gation algorithm using olfactory-based steering for terrain

surveying by spatial concentration of odor fields is presented

and the ability to estimate the location of odor source in

continuous odor fields from sparse data taken with a group

of mobile sensing robots is addressed. Using a cooperative

approach for positioning system, this method addresses the

problem of localization of the robots. In the flowing sections,

the suggested method for “localization and communication”,

“odor concentration measurement” approach and “decision

making” algorithm are demonstrated. Finally, experimental

results and conclusions are discussed.

II. PROBLEM STATEMENT

Consider a system of N mobile robots, moving in R2 that

are labeled as A1, A2, ..., AN . Each agent Ai(i ∈ {1, ..., N})
is able to communicate with the other robots in a short

distance range. An odor source is in the environment which

is emitting odor gas into the area. All the robots are equipped

with odor sensors for sensing the odor concentration. Robots

are limited in terms of memory capacity and there is no

central station for the system. The robots should act sep-

arately and independently from the others. There are no

global positioning systems, the odometry of the robots is not

reliable and robots do not have any accurate internal system

for localization. The problem is how the swarm of robots

can localize the odor source in the area (Fig. 1).

The approach should exploit particle swarm optimization

with multiple robots to find odor source in natural environ-

ment where the odor distribution may change over time.

III. PROPOSED METHOD

In the proposed plan, each robot determines its pose based

on a cooperative method that is described in the following

section and it also measures the concentration of odor in

that location using its sensor board that is described in this

paper. Having all this data, each robot in the swarm runs a

behavioral distributed algorithm and makes a decision. The

decision making algorithm is described in the last part of

this section.

A. Localization

Fusing the leap-frog method [19] and the signal strength

of a ZigBee network [20] as the measuring tool and also as

communication media for the robots in the swarm; a coop-

erative localization and communication system is developed.

In this method, during each period of time several robots

separately take actions and move for a short distance while

at least three other robots act as stationary measurement

beacons. In some conditions, the roles of robots are switched

and probably three other robots will act as beacons and the

rest of the swarm moves to the direction of estimated target.

Each robot is equipped with a ZigBee module for commu-

nication network, it is also used for measuring the distance of

the robot with the other robots. The communication modules

were configured to operate in broadcast mode and their

power levels were reduced to the minimum. These adjust-

ments allow us to exchange information directly between

robots and also to obtain a higher ratio between RF power

loss and distance. By using the Received Signal Strength

Indicator (RSSI) it is possible to estimate the distance

between a transmitter and a receiver. We used a classic

model of propagation loss based on the signal’s travelling

distance. The model is defined as [23]:

P (d) = Po(d0) + 10n log
( d

d0

)

+ N(0, σ) (1)

where P (d) is the “received power at distance d”, Po(d0) is

the “reference received power at distance d0”, n represents

the “path loss exponent” and N(0, σ) is “normal distribution

with zero mean and σ standard deviation”.

In this research we used the same model, obtained from

linear regression, but instead of distance we used the duty-

cycle of a PWM signal generated by the radio module. The

XBee modules generate a 15.6 kHz PWM signal with a

duty-cycle proportional to the received power.

The model that relates the duty-cycle with the distance was

obtained based on empirical results. The measurements were

obtained with two XBee modules (one emitter and one

receiver), exchanging a 64 byte data packet with 30 cm

increment between measurements, the measured raw data is

shown in Fig. 2. Analyzing the data shown in Fig. 2 and using

the Least Squares Fitting method to determine a second order

polynomial equation for representing the relation between

“distance of sender and receiver” and “measured PWM duty

cycle”,

Ton(d) = 57.3116 − 0.5876d − 0.3842d2 + N(0, σ) (2)

where Ton is “pulse duration (time of high signal) in each

period of received signal” and d is “distance in meters”.

Since the distance obtained from RSSI measurements is

affected by unknown errors, in order to have a better position

estimation, a particle providing position estimation based on

robots odometry and RSSI measurements was used.

J. Rodas et. al. [23] introduced an algorithm based on

particle filters for localization. They have used RSSI of
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Fig. 2. “Pulse duration” of the received
signal in different distances

Fig. 3. cooperative lo-
calization system; 3 robots
acting as beacon, one
robot moving

Fig. 4. Khepera III and KheNose with sensing modules

bluetooth communication to estimate the distance between

transmitter and receiver. In this project we used the same

method with some modifications for adapting it to ZigBee,

based on multiple robots and using equation (2) as our

propagation model.

Localization algorithm: As previously stated, the local-

ization system uses RSSI to estimate the distance from the

source. It is possible to use static robots acting as stationary

beacons while the moving robots are the receiver. Using a

very simple geometric calculation each robot is able to find

out its location based on the position of the beacons (Fig.

3).

B. Odor concentration measurement

KheNose is an olfactory system composed of six trans-

ducer interface modules: an eCO, three thermal anemome-

ters, and two eNostrils [24]. The eCO and the anemometers

are single channel IEEE1451.4 compliant boards and the

eNostrils are double channel boards. All the functions re-

lated with the transducers, namely signal conditioning, data

acquisition and processing and calibration management are

performed by the kheNose board. The Khenose was designed

and implemented by the authors specially to be used in

Khepera III robots, however for this project we used it even

in the other robots that were involved in the experiments

(Fig. 4).

C. Decision making method

A swarm of robots are spread in the environment, each one

has a sensor and is able to send and receive data to others;

this means that a mobile sensor network is established. By

analyzing the concentration of odor in the environment,

the odor source location can be estimated. However, there

is no central unit to decide where the swarm should go,

therefore each robot has to analyze the date itself and take

an action. The action that each particle in the swarm takes

will affect the behavior of all the other particles and it must

be somehow in order to taking a step toward solving the

problem (finding the odor source). It means that the decision

making is distributed among the robots and thus each robot

should independently decide and take an action in order to

approach the odor source.

Each robot has a status record including its position

and also the olfactory environmental data acquired from its

sensors. Due to localization method, using ZigBee wireless

network, each agent is able to request for the status record

of the other agents. Since our localization method is a kind

of leap-frog approach, at least three of the robots must act as

stationary beacons every time. After a short time the role of

the robots should be switched and three other robots must act

as beacons. The lack of a central station makes it difficult in

terms of implementation. Fig. 5 shows the state flow diagram

of a robot’s behavior in the swarm. There are four states

that a robot can take in this method; “Scatter”, “Aggregate”,

“Beacon” and “Odor source localization”. All the robots start

initially in the “Beacon” state, they change their status to the

other states according to the conditions described below.
1) “Scatter”: In this phase, the robots spread and scatter

in the environment while trying to maintain cohesion. Each

robot actually tries to get far from the neighbors but always

takes into account being in the range of the swarm’s beacons.

This simply is implemented by a potential field algorithm

where each robot considers the other robots as repulsive

forces and tries to minimize the summation of these repulsive

vectors by moving in the environment.

In this state, robots communicate with each other by

sending and receiving their pose and olfactory data. If three

of the robots proclaim a high degree of concentration of the

odor in their location (greater than a threshold), the agents

change their state to “Beacon” state (transition (2) showed

in the diagram, Fig. 5), making it possible to go to the

“Aggregate” state in the next decision.
2) “Beacon”: A Robot in this state acts as a stationary

beacon providing localization system by broadcasting ping

messages to the other robots. All the robots are allowed to

move except only three of them (beacons); the ones which

have the top three highest concentration of the odor in

the environment. Therefore, every robot should receive and

analyze the data of the other robots and see if its value is one

of the top three values. In this case, the robot must stop and

act as a beacon (transitions (2), (4) and (6) in the diagram);

otherwise it is free to move, either in “Scatter”, “Aggregate”

or “Odor source localization” states (algorithm 1, lines 22 to

32).

4960



Fig. 5. State diagram of proposed algorithm

Fig. 6. 6 snapshots of simulation screen; every time 3 robots are stop and
the others are moving on.

While the robot is moving, it should always take into

account the distance with the beacons. If the robot is getting

far from the stationary beacons, it has to stop and give the

turn to another robot to move. This method assures that

always the robots which are in the lower concentration of

odor will try to improve their behavior in the swarm (see the

simulation screen shots shown in Fig. 6). If all the robots

announce a very low odor concentration (it means that they

have lost the plume track) all of them go to “Scatter” state

(transitions (1)), otherwise the robot goes to “aggregate” state

when it is not one of the top three robots in terms of odor

concentration anymore (transition (3)).

3) “Aggregate”: In this state, it is desired for the robot

to navigate to the direction of the odor source. Having the

measured data of different places of an environment, extrap-

olation algorithms (like Kriging) can approximate where the

odor source is. But the agents are limited in memory capacity

and processing capability, therefore they can not run heavy

algorithms for analyzing the data. In the other hand, if each

agent in the swarm takes a small step towards the source, all

the swarm will coverage to the source location.

In this method, each robot randomly chooses one of the

three robots which have highest concentration of the odor in

the swarm and considers a virtual vector to that direction as

its orientation for this movement.

The robot has to stop (change to “Beacon” state) in three

cases; first if the robot is getting far from at least three

stationary beacons so that the signal strength reaches to a

specific low threshold, second if the concentration of odor

in the surrounding area is less than a specific threshold and

the third if its odor concentration has reached to a point that

this robot is one of the top three in the swarm. In these three

instances the robot stops to be a temporary beacon for the

others (algorithm 1, lines 17 to 21). In some conditions it will

have the chance to make a decision and move on (transitions

(1), (3) and (5)).

4) “Odor source localization”: A robot has been facing

to a very high odor concentration before coming to this

state. In this state, each robot separately takes several short

movements and estimates the position of the odor source by

a kind of spiral movements. A robot in the plume moves

straight upwind until it looses the plume for a specific

distance. It then should try to reacquire the plume by moving

along an Archimedean spiral with a specific gap size until it

reacquires the plume [25].

The authors have addressed the problem of localizing

multiple odour sources scattered across a search area by

proposing an online searching method based on evolutionary

techniques [3]. For finding another odor source, the robots

go back to the “Beacon” state (transition (6) in the state flow

diagram Fig. 5) making it possible to go to the “Scatter” or

“Aggregate” state in the next decision.

Flocking: Algorithm 1 presents the proposed behavioral

based algorithm for a single robot in the swarm. In the

lower layer of this system, each robot implements obstacle

avoidance during its navigation. The robots should maintain

a specific distance from each other, therefore they must avoid

crowding neighbors, this is called “separation behavior” in

flocking modeling. “Alignment” and “cohesion” are the other

two behaviors for a robot in a flock. Potential field technique

is used to ensure these behaviors in each robot. Our potential

field algorithm also guarantees “separation” (short range

repulsion) and “cohesion” (long range attraction) behaviors.

IV. EXPERIMENTS

The method has been simulated and then tested in the real

world. For optimizing the exploration algorithm and measur-

ing its performance, we used the Player/Stage simulator [26].

In the real world, there are a lot of constraints that do not let

us test the proposed method very easily. It is not effortless

to work with a lot of different robots with different scales,

in the other hand we currently do not have enough hardware

resources to test the method in a large scale in the real world.

For these reasons, the system is developed and evaluated in

the simulation before the real world experiments.

Two Khepera III1 robots and two Erratic Robots2 were

used for testing the algorithm. The robots were equipped

with several infra-red and sonar sensors. These sensors are

used for obstacle avoidance and navigation in potential

field subsystem. Robots are equipped by ZigBee modules

providing communication and also localization. The radio

1produced by K-Team SA, Switzerland
2produced by Videre Design LLC, California, USA
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Fig. 7. The real world experiments, 2 Erratic and 2 Khepera robots
localizing the odor source that in the bottom-right corner of the picture.
The colored lines show the footprint of the robots.

modules used for localization were the Maxstream XBee

802.15.4 RF. These modules use the IEEE 802.15.4 network-

ing protocol and provide wireless end-point connectivity with

high-throughput and low latency in a range of up to 30m

indoor and 90m outdoor in line of sight. All the robots are

equipped with KheNose boards for gas source detection.

Variant testing plans were tested, having different start

positions for the robots. One of the experimental setups is

depicted in Fig. 7. It has an area of 3 m × 4 m and there exist

a pipe connected to a gas source that is releasing ethanol in

the environment. There is a fan in the corner that generates

air flow in the system.

Fig. 7 shows four robots exploring area and finding an odor

source. The footprints show the paths taken by the robots. As

it is shown, the robots have converged to the odor source. The

localization algorithm does not allow all the robots moving

at the same time, since they are only four, only one of them

moves at a time and the others act as beacons.

Air flow and sensing uncertainty are the two main causes

to have different results in similar tests. A parameter for

evaluation of the method is the total mission time. The

mission time for the environment shown in Fig. 7, using

four robots, was 922 seconds. The result is the average of

five similar tests. Different tests with constant conditions

had similar results with about 8 variance. In all the tests

the maximum speed of the robots were kept constant. The

difference between the internal position value of each robot

(coming from the cooperative localization system) and the

real location of the robot (measured manually) after the

mission was less than 10 centimeters. These results proves

the functionality of the whole proposed method.

In order to have a better knowledge about the performance

of this method, Player/Stage was used as the simulator.

Since there is no tool for simulating an odor source in

the Player/Stage, we measured the odor concentration in a

real testing environment by setting up a sensor network and

acquiring its data. This data was saved in a file as a dataset of

odor distribution of a real environment. This file was used in

Player/Stage as the distribution of the odor in the simulation

world. Therefore, there is no air flow in the simulation but

at least the method can bed tested in a pseudo-realistic way.

In simulation, the environment shown in Fig. 6 has been

Algorithm 1: Whole behavioral based algorithm

Mode = Beacon;1

while Oj ≤ High Threshold do2

switch Mode do3

case Scatter4

Localize To Beacons()5

Get chemical data(Oi)i=1toN6

Move Scatter()7

if Oj ∈ TopThree(Oi)i=1toN then8

Mode = Beacon ;9

if (at least 3 robots are proclaiming high odor sensing)10

then

Mode = Beacon11

case Aggregate12

Localize To Beacons()13

Get chemical data(Oi)i=1toN14

Bk=Choose one Randomly from(TopThree(Oi))i=1toN15

Orientation = Calculate Direction Towards(Bk)16

Navigate(Orientation);

if
(

distance(Oj ,beacons) <S Threshold , or17

Oj <Low Threshold , or18

Oj ∈ TopThree(Oi)i=1toN

)

then19

Mode = Beacon20

case Beacon21

Stop;22

Get chemical data(Oi)i=1toN23

Broadcast(ping messages providing localization24

system);
if (Oj > High Threshold) then25

Mode = Source Localization;26

if (there are 3 stopped robots with higher odor27

concentration) then

if (less than 3 robots are proclaiming high odor28

sensing) then

Mode = Scatter;29

else30

Mode = Aggregate;31

case Source Localization32

A series of spiral movements in order to localize the33

odor source;
if Oj ∈ TopThree(Oi)i=1toN then34

Mode = Beacon ;35

End of algorithm36

// j = index of the current robot in the swarm

// N = number of robots in the swarm

// Oj = concentration of odor in the robot j

// S Threshold = ZigBee Network range

// High Threshold = a threshold for the region

around odor source

// Low Threshold = a threshold for a region that

has no evidence of odor.

Fig. 8. The results of simulation in Player/Stage using different number
of robots with variant noise distortion. Area dimension = 30m × 24m,
maximum speed of the robots = 0.2 m/s
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tested with 5, 8 and 12 robots. A good way for proving

the functionality and fault tolerance of the method is adding

noise to the odor data and testing the system. The algorithm

was tested with adding 0, 10 and 16 percent noise (based

on experimental data) to the odor data and with different

numbers of robots in the swarm. The results are shown in

Fig. 8. The graph shows the average of five times tests for

each dataset. The variance was about 6, 9 and 10 percent (for

0, 10 and 16 percent odor noise in the environment). This

chart shows that a bigger swarm has a better result even in

a noisy environment.

V. CONCLUSIONS AND FUTURE WORKS

This paper presented an olfactory based navigation algo-

rithm for a swarm of robots in order to find an odor source

in the environment. This algorithm is designed based on

the ability of smelling, communicating with other robots

and avoiding the obstacles for each robot. In this method,

at least three of the robots of the swarm act as temporary

beacons to guarantee the accuracy of positioning system of

all the robots. The beacons exchange their roles with mobile

robots in certain defined conditions in the algorithm. The

cooperative localization system in each robot uses RSSI of

ZigBee messages to measure the distance of the robot from

the beacons and then profits from a particle filter to estimate

its real current position. The algorithm was first simulated

in the Player/Stage with a group of 5, 8 and 12 robots.

Then it was physical tested in a testing setup with four real

robots. Reliability of the method against noise in the odor

measuring (sensory uncertainty) has been evaluated and the

results showed that the method is fully functional with a

good performance.

We intend to test the method with more robots in multiple

real environments. The particles in the swarm do not use any

past record in their processing (because it was supposed to

be a memory less state flow algorithm), but taking some past

data into account for each robot (especially in the aggregation

mode) will increase the performance of the method.
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