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Abstract— An Omnimagnet is an omnidirectional electro-
magnet comprised of a ferromagnetic core inside of three
orthogonal nested solenoids. It generates a magnetic dipole-field
with both a variable dipole-moment magnitude and orientation
with no moving parts. The design of an Omnimagnet, in which
each solenoid has the same dipole moment and minimizes the
differences between each of the solenoid’s fields, is provided and
optimized for strength by tailoring the size of the spherical core
used to amplify the solenoids’ field. This design is then analyzed
using FEA tools and shown to be dipole-like in nature. Various
magnetic control methods are then motivated by providing
the necessary equations relating the three applied currents to
applied field, torque, or force on an adjacent magnetic device.
Finally, the optimal design is constructed and its utility is
demonstrated by driving a helical capsule endoscope mockup
through a transparent lumen.

I. INTRODUCTION

Magnetic microscale and mesoscale devices (both tethered

and untethered) can be manipulated with an externally gen-

erated magnetic field, which applies a combination of force

and torque to the device without any mechanical connection.

Although a combination of permanent magnets and electro-

magnets can be used to produce the magnetic field required

for a manipulation task, some tasks seem better suited to

either permanent magnet or electromagnet systems. Because

they have more direct real-time control of the applied mag-

netic field, electromagnet systems have been used for multi-

degree-of-freedom levitation and position/orientation control

[1]–[4]. Permanent magnets, which require no electrical

power to generate a strong field, have been used for pulling

and rolling tasks in which the environment provides some

structure [5]–[8], as well as for quasistatic pointing tasks

of tethered devices such as magnetic catheters [9]. Because

both attractive and lateral forces can be generated between

a rotating dipole source and a sympathetically rotating mag-

netic device, a rotating dipole field could be more effective

for rolling/screwing propulsion than the rotating uniform

field generated by many electromagnet systems [10]. Finally,

it is challenging to scale many laboratory electromagnetic

systems that surround their workspace (e.g., Helmholtz coils)

to a size that would be required for medical applications,

whereas manipulation systems that utilize dipole fields can

be located adjacent to their workspace.

An omnidirectional electromagnet, formed by any set of

collocated electromagnets that have dipole moments span-

ning R
3, combines the real-time control of field strength
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Fig. 1. The assembled Omnimagnet forms a cube constructed of three
nested orthogonal solenoids surrounding a spherical core of ferromagnetic
material. Each square-cross-section solenoid has a different inner width W ,
winding thickness T , length L, and associated current density J .

associated with traditional electromagnets and the control of

dipole orientation associated with rotating permanent mag-

nets. In this paper, we introduce a class of omnidirectional

electromagnet that we call an Omnimagnet, comprised of a

ferromagnetic core surrounded by three orthogonal solenoids,

which is able to create a dipole-like field in any orienta-

tion. Specifically, we consider an Omnimagnet comprised

of a spherical core and square-cross-section solenoids (Fig.

1), but other design variations could be considered. An

Omnimagnet contains no moving parts, and when powered

down becomes inert, reducing the safety concerns associated

with permanent-magnet field sources. The concept of three

nested solenoids has been explored as a method of inductive

power coupling [11], but never as a dipole-like magnetic-

field source, and never with a spherical core.

The paper is structured as follows. First, the general design

problem for an Omnimagnet is presented. Next, the magnetic

fields generated by the three solenoids are described using

a multipole expansion of the magnetostatic equations, and

the contribution of the ferromagnetic core is quantified. The

optimization of a specific Omnimagnet follows, and the

design is described. The field generated by this design is then

compared to a dipole-field approximation, and the inverse

solution for determining the dipole moment, and thus the

currents, required to produce a desired static or rotating field,

torque, or force at a given location are provided. Finally,

the capability of the Omnimagnet for the control of capsule

endoscopes is then demonstrated, and future research plans

are discussed.
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II. OMNIMAGNET DESIGN AND OPTIMIZATION

The general concept of an Omnimagnet is broad, con-

sisting of three orthogonal nested solenoids surrounding a

ferromagnetic core; however, design choices must be made

to realize and optimize a physical Omnimagnet. First, we

chose the shape of the solenoids to be square-cross-sectional

sleeves to result in a dense packing (see Fig. 1). Next, we

chose the core to be a sphere because a spherical core has

three desirable properties:

• A sphere does not have a preferential magnetization

direction.

• When placed in a uniform field (similar to the field

in the center of a solenoid), a sphere produces a pure

point-dipole field [12].

• The average applied magnetic field within a sphere is

equal to the applied magnetic field at the center of the

sphere [12].

We chose that the dipole moment generated in each direction,

which consists of the contribution of both an individual

solenoid and the magnetization of the core due to that

solenoid, should be the same when an equal electrical current

density is applied through each solenoid. Other geometric

design choices (e.g., cylindrical solenoids or a cubic core) or

dipole-moment relationships (e.g., scaling the dipole moment

of each solenoid with its heat-transfer capability), could also

be pursued using the general framework for Omnimagnet

design outlined below. Finally, we constrain our design to

use a single wire gauge for all solenoids, which means that

“the same current density” is synonymous with “the same

current”; current and current density are related by the cross-

sectional area of the wire used. Throughout this paper, I will

be used to refer to currents in units{A} and J will be used to

refer to current density in units {A·m−2}. Because current

density is invariant to wire selection, the optimization for

shape is performed using J ; general discussion, however,

will use I , as it is the more natural parameter from a control

perspective. The final design of the Omnimagnet shown in

Fig. 1 requires ten total constraints (the length, width, and

thickness of each solenoid, and the radius of the core).

The magnetic field generated by the Omnimagnet can

be represented by the field contributed by the magnetized

spherical core superimposed with the field contributed by the

solenoids. Modeling the total field can be performed using

FEA tools with a resolution limited by the number of ele-

ments used. Alternatively, an analytical dipole approximation

can be used to model the field. The dipole approximation

provides a closed-form vector equation that can be used

to calculate the field generated at a point, or inverted to

determine the current necessary to create a particular field.

The closer the Omnimagnet is to generating a pure dipole

field, the better the algorithms based on this approximation

will perform. By correctly choosing the solenoids’ aspect

ratios, the dipole-approximation error can be minimized as

a part of the design optimization.

A. Solenoid Multipole Field Expansion

For positions outside of the Omnimagnet’s minimum-

bounding sphere (i.e., the smallest sphere that the Omnimag-

net can fit within), the solenoid fields can be represented by

a multipole expansion of a vector potential [12]:

B (p) = ∇×Ψ (p) (1)

where

Ψ (p) =
µ0

4π

∞
∑

n=0

1

‖p‖
n+1

∫

Vs

J (r) ‖r‖
n
Pn (p̂ · r̂) dV (2)

where µ0 = 4π × 10−7 T·m·A−1 is the magnetic perme-

ability of free space, p is the vector (with associated unit

vector p̂) from the center of the Omnimagnet to the point

of interest in units {m}, r is the vector (with associated

unit vector r̂) from the center of the Omnimagnet to the

point in the solenoid being integrated, J (r) is the current

density vector that points in the direction of the current

flow, Vs represents the solenoid’s volume, and Pn () are the

Legendre polynomials. Since the divergence of a magnetic

field through a closed surface must be zero, all of the even

terms (those corresponding to P0, P2, . . .) must be zero,

leaving only the odd terms. The first non-zero term in the

multipole expansion (corresponding to P1) is the dipole field,

which can be expressed in a coordinate-free form as:

B (p) =
µ0

4π ‖p‖
3

(

3p̂p̂T − I
)

m (3)

where I is a 3×3 identity matrix and m is the dipole moment

in units {A·m2}.

The dipole moment for a current density of any configu-

ration is [12]:

m =
1

2

∫

Vs

r× J (r) dV (4)

The dipole moment for a square-cross-section solenoid as

shown in Fig. 1 with uniform current density (i.e., the current

density does not vary along the thickness or length of the

solenoid) is:

m =
JL4

6

(

β3
2 − β3

1

)

l̂ (5)

where J is the magnitude of J, L is the axial length of the

solenoid (with associated axial unit vector l̂), and β1 = W/L
and β2 = (W + 2T ) /L respectively describe the inner-

width-to-length and outer-width-to-length aspect ratios.

The maximum dipole moment that any electromagnet

with a bounding cube of edge length L containing no

ferromagnetic material could generate in one direction can

be calculated by (5) with β1 = 0, β2 = 1, and is JL4/6.

The maximum theoretical dipole moment that could be

expected for any cubic omnidirectional electromagnet with

edge length L containing no ferromagnetic material is thus

1/3 of the unidirectional case: JL4/18; this quantity is

used throughout the paper to normalize the strength for

a nondimensional optimization, although constructing such

an idealized omnidirectional electromagnet would be very

challenging.
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We show in [13] that by varying the aspect ratios of

a rectangular permanent magnet, the dipole-field approx-

imation error can be minimized. The approach finds the

geometry that sets the next term in the multipole expansion,

the quadrupole term, to zero in the scalar potential of the

magnetic field. Using the same technique, but using the

vector potential instead of a scalar potential, the magnetic

field of each solenoid can be shaped to produce a dipole-

like field by removing the quadrupole contribution to the

multipole expansion. The quadrupole term for a square-cross-

section solenoid of uniform current density corresponds to

the P3 term in the expansion:

Bquad (p) =
µ0

4π

1

‖p‖
5

((

35
(

m̂Tp̂
)2

− 15
)

p̂p̂T

−
(

15
(

m̂Tp̂
)2

− 3
)

I

)

mquad

(6)

where mquad is the quadrupole moment, given by:

mquad =
3

40
L2

(

β2
1 +

β4
2 + β1β

3
2

β2
1 + β1β2 + β2

2

−
5

3

)

m. (7)

The values of β1 and β2 that set (7) to zero correspond to

geometries with minimal dipole-field approximation error.

By letting β1 = αβ2 in (7) and equating to zero, it can be

shown that the only meaningful solutions lie in the exclusive

range β2 = (1,
√

5/3), which corresponds to geometries

that are shorter than they are wide (L < W + 2T ). This

requirement will be used to further constrain and simplify

the optimization space.

B. Core Dipole-Field Contribution

Since the core is spherical and placed in the nearly

uniform field inside of the solenoid, it is assumed that it will

magnetize uniformly and contribute a pure dipole field (we

verified this assumption numerically post facto and found it

to be extremely accurate).

The dipole moment of a low-coercivity, low-remanence,

and high-permeability (χ ≫ 1) spherical core, when magne-

tized in its linear region, is

mc = MVc =

(

χ

1 + 1
3χ

B

µ0

)(

4π

3
R3

c

)

≈
4πR3

c

µ0
Bc (8)

where Rc is the radius of the core, M is the magnetization in

units {A·m−1}, the overbar represents a quantity averaged

over the core volume Vc, and Bc is the applied magnetic

field at the center of the core, which is a linear combination

of the field due to each solenoid. The field, calculated by the

Biot-Savart law, for each square-cross-section solenoid with

uniform current density J , length L, and axis l̂ is:

Bc =
2LJµ0

π

β2
∫

β1

atan

(

1
√

1 + 2ζ2

)

dζ l̂. (9)

C. Omnimagnet Optimization

By combining the dipole moments due to the magnetized

core and each of the solenoids, the total dipole moment of

the Omnimagnet m = mx +my +mz is thus:

m =
∑

i∈{x,y,z}

Ji

(

8LiR
3
c

βi,2
∫

βi,1

atan

(

1
√

1 + 2ζ2

)

dζ

+
L4
i

6

(

β3
i,2 − β3

i,1

)

)

l̂i = MI

(10)

where the indices x, y, and z correspond to the inner,

middle, and outer solenoids, respectively and without loss

of generality; and M is a linear transformation that maps the

three applied currents in I to the dipole moment m.

The optimal geometry for the Omnimagnet corresponds

to the geometric ratios that maximize the dipole moment

generated in each direction, have the same ratio of dipole

moment to maximum current density in each direction, and

have no quadruple moment. This is a constrained optimiza-

tion problem, and can be non-dimensionalized by dividing

all of the lengths by Lmax (the edge length of a minimum-

bounding cube) and the moments by mref = JmaxL
4
max/18

(the maximum no-ferromagnetic-material dipole moment in-

troduced earlier). The constraints can be simplified because

we know from (7) that the length of each solenoid must

be shorter than its outer width. Thus, the objective is to

maximize the dipole moment magnitude ‖m‖ subject to:

• Eq. (7) equals zero (i.e., the configuration has no

quadrupole moment).

• ‖mx‖/mref = ‖my‖/mref = ‖mz‖/mref.

• Wx = Rc (i.e., the core diameter is the same as the

inner solenoid’s inner width).

• Wy = Wx + 2Tx (the inner solenoid’s outer width is

the same size as the middle solenoid’s inner width).

• Wz = Wy + 2Ty (the middle solenoid’s outer width is

the same size as the outer solenoid’s inner width).

This optimization is performed using Rc as the free

parameter (Fig. 2). There is a maximum that occurs when

the core diameter is 60% of Lmax. Although the magnitude

of the dipole moment in each direction is the same for the

same applied current, the percentage of the dipole moment

attributed to the core or the windings are different for each

solenoid; the percentage of the dipole moment from the

(core/windings) is (41/59), (28/72), and (21/79) for the inner,

middle, and outer solenoids, respectively. Interestingly, this

configuration has dipole-moment magnitudes that are 93%

of what could be theoretically expected with no ferromag-

netic material and no voids (an unrealizable geometry), and

22% greater than the realizable geometry of three nested

solenoids with no ferromagnetic core (but with significantly

less power consumption and more heat-transfer surface area).

Solutions to the right of the maximum in Fig. 2 correspond to

geometries with more inert (non-current-energized) material

and will produce less heat and require less power than

the corresponding geometry left of the optimal point. The
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L/Lmax W/Lmax T/Lmax β1 β2

x 0.70 0.60 0.09 0.86 1.11

y 0.84 0.78 0.06 0.92 1.07

z 0.96 0.91 0.05 0.95 1.05

Fig. 2. The optimal geometry for a no-quadrupole Omnimagnet. The dipole
moments have been normalized by JL4

max/18 and have a maximum at
a core-diameter-to-outer-Omnimagnet-dimension ratio 2Rc/Lmax = 0.60.
The table provides the geometric ratios that describe the shape of the three
nested solenoids that correspond to this optimal configuration. All length
parameters are normalized by the outer Omnimagnet cubic length Lmax.

flatness of the maximum indicates that variations about the

optimal point will not substantially affect the performance

of the resulting Omnimagnet. Fortunately, the solenoids are

shorter than they are wide, which allows paths for conductors

and coolant to reach the middle and inner solenoids, making

the implementation of this design feasible.

An Omnimagnet was constructed using a 100 mm diameter

spherical Nickel-Iron (ASTM A753-08-K94840) core. The

core material was chosen because it has a high magnetic

permeability, a low magnetic remanence, and a low mag-

netic coercivity (i.e., it magnetizes easily but does not

remain magnetized when the magnetizing field is removed).

The solenoids were constructed using 16 AWG square self-

bonding copper wire from MWS Wire Industries Inc. The

optimization was repeated including a 1 mm spacing between

each of the components for assembly. The slightly modified

optimization did not change the shape of the coils substan-

tially but shifted the optimal core size to 57% of the edge

length of the minimum-bounding cube, which is Lmax =
176mm. The additional empty space also reduced the overall

strength of the design from 93% to 87% of mref. Because

of the quantization in lengths and widths inherent with any

winding, the constructed Omnimagnet has slight variations

in the dipole-moment strengths of each solenoid and has

successfully minimized, but not eliminated, the quadrupole

term (mquad ≈ 0.04m). The geometry constructed is shown

in Fig. 3, with the table providing the dimensions; the

dipole-moment per conductor-current is calculated to be

25.1, 25.8, and 26.3
(

A · m2
)

/A for the inner, middle, and

outer solenoids, respectively, which form the diagonal entries

of M. The field at the surface with 1 A applied is measured

to be 5.6, 4.7, and 3.6 mT for the inner, middle, and outer

solenoids, respectively; at 12 cm from the surface the field

is 0.6 mT for each.

Since each solenoid in the Omnimagnet has a different

geometry, the magnetic field produced by each solenoid

will not have exactly the same shape for positions close

to the Omnimagnet. To understand the subtle differences in

field shape, FEA simulations were performed using Ansoft

Frame and Core Inner Solenoid and Core

Middle and Inner Solenoid Omnimagnet

L (mm) W (mm) T (mm) β1 β2

x 120 103 16 0.86 1.11

y 149 137 11 0.92 1.07

z 170 160 8 0.95 1.05

Fig. 3. The assembled Omnimagnet used in the testing described in this
paper. The core used is 100mm which is 57% of Lmax = 176 mm. The
deviations from Fig. 2 are due to reoptimizing with 1mm air-gaps between
the components for assembly.
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Fig. 4. The field shape (top, dotted) and magnitude (top, solid and color
contour) and field error relative to the dipole approximation (bottom) are
shown. The distances are normalized by the radius of a minimum-bounding

sphere (
√
3Lmax/2). In the top row, the innermost contour line corresponds

to ‖B‖ = 64µ0 |m|, and each successively larger contour corresponds to
a halving in field magnitude, with the outermost contour corresponding to
|B| = 4µ0 |m|.

Maxwell 14.0. Since the core is magnetized in the linear

region and the solenoids are orthogonal, solenoid-solenoid

magnetic coupling is negligible, so in these simulations only

one of the solenoids is energized at a time. The results of

the simulation (field strength, field shape, and percent error

from the point-dipole approximation) for each solenoid are

shown in Fig. 4. As the outermost solenoid is the largest,

it is responsible for the majority of the field deviations

close to the Omnimagnet. The field in each direction rapidly

reduces to a pure dipole field with distance; the deviations

are comparable to non-spherical permanent magnets [13].
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III. MANIPULATION WITH AN OMNIMAGNET

A. Applying Field, Torque, or Force

Fundamentally, the Omnimagnet is a magnetic field source

with three control inputs (the current applied to each

solenoid), which can be used to generate a desired magnetic

field at a location in space, or control the torque or force on a

magnetic object. Since the magnetic field generated is closely

represented by a dipole field, at each location in space it will

produce both a field and spatial derivatives in the field. With

only a single Omnimagnet with three degrees of freedom,

it is not possible to independently control field, torque, and

force simultaneously. Moreover, it will be shown that it is

not possible to fully control force in all configurations.

To determine the dipole moment m required by the

Omnimagnet to produce a desired field B at some point p,

the vector dipole equation (3) must be inverted; Mahoney et

al. showed the inverse always exists of the form [8]:

m =
2π

µ0
‖p‖3

(

3p̂p̂T − 2I
)

B (11)

Combining with (10), the currents required are thus:

I =
2π

µ0
‖p‖3M−1

(

3p̂p̂T − 2I
)

B (12)

If the tool’s dipole moment mt is known in addition to its

position, it is possible to command torque or force directly,

rather than simply setting a field value. The torque acting on

the tool is

τ = mt ×B (13)

where × denotes a vector cross product. Although there is

not a unique solution for the magnetic field to create a desired

torque τdes, one simple method, which minimizes the field

applied, is to command the field to be perpendicular to the

tool:

B =
1

‖mt‖2
(τdes ×mt) (14)

This method has also been shown to minimize the attractive

force between the two dipoles [14].

To apply a controlled force for pushing and pulling tasks,

the spatial gradient of the dipole-dipole potential energy must

be controlled:

F =
3µ0

4π‖p‖4
F(mt, p̂)m (15)

and

F(mt, p̂) =





mT
t

(

x̂p̂T + p̂x̂T −
(

5p̂p̂T − I
)

p̂Tx̂
)

mT
t

(

ŷp̂T + p̂ŷT −
(

5p̂p̂T − I
)

p̂Tŷ
)

mT
t

(

ẑp̂T + p̂ẑT −
(

5p̂p̂T − I
)

p̂Tẑ
)



 (16)

where x̂, ŷ, and ẑ are the cartesian x, y, and z unit vectors,

respectively. Since F is a 3 × 3 matrix, this inversion can

be efficiently computed when the inverse exists. Since the

orientation of the field, and therefore the torque applied, is

not controlled, the resulting solution, when it exists, will

likely be locally unstable. Consequently, force control with

a single Omnimagnet is not feasible in practice.

B. Propulsion of a Helical Capsule Endoscope Mockup

At steady-state, the torque applied by a magnetic field on

a magnetic tool will tend to align the tool with the field. This

can be used to reduce the control problem from controlling

torque directly, and thus requiring both tool orientation and

position, to controlling field directly, and thus requiring only

tool position. Controlling the propulsion of a ball or helical

screw with this approach has been explored using a rotating

permanent magnet [8]. However, when a permanent magnet

is used to create a rotating field, both the magnitude and

rotation rate of the field vary elliptically at the tool location;

thus, the rotational speed of the permanent magnet needs

to be constantly updated in order to produce a constant

tool rotation rate [8]. Since the Omnimagnet can produce

a desired field at a specific point in space, it is possible

to create a rotating field with angular velocity ω without

the elliptical modulation associated with rotating permanent

magnets. This can be accomplished by updating the desired

B in (12) as

B(k + 1) = eS(ω∆t)B(k) (17)

where ∆t is the time step of the control system, S(·) is the

skew-symmetric matrix packing of a given angle-axis vector,

and the matrix exponential creates a rotation matrix [15].

Thus, the same steady-state rotating control approachs can be

performed by an Omnimagnet using (12) and (17) in which,

unlike permanent magnets, both the desired field magnitude

and orientation are specified. The minimum required field

magnitude ‖B‖ is determined by (14) where ‖τdes‖ is given

by the viscous drag torque on the tool as a function of ‖ω‖.

In general, the larger the ‖B‖ chosen, the more robust the

control will be to errors in modeling the viscous drag, but

the greater the required Omnimagnet drive currents.

A rotating magnetic field was used to propel a threaded

dummy capsule endoscope down a transparent lumen, which

was offset by 12 cm from the surface of the Omnimagnet,

as shown in Fig. 5. Although the trajectory of the capsule is

simple (a line), the translating rotational field necessary to

drive the capsule uses all three degrees of freedom available

to the Omnimagnet (see multimedia attachment). The desired

magnetic field with ‖B‖=3 mT was updated using (17)

for a rotational rate of 2 Hz. The position of the capsule

was tracked using a stereo-vision system, although other

localization methods, such as the magnetic localization of

[16], could be used in the future. This position was used

in conjunction with (12) to calculate the currents necessary

to produce the desired field at the location of the capsule.

The necessary currents were controlled by a DC voltage

signal sent from a Sensory S626 controller card to Advanced

Motion Control AMC16A8 current drives at an update rate

of 100 Hz.

IV. DISCUSSION

The Omnimagnet prototype developed in this paper uses

no form of cooling. However, for Omnimagnets to be truly

effective, they will need to be cooled. Future work will

consider immersive fluid cooling and forced-convection fluid

818



Fig. 5. Propulsion of a helical capsule at 1 cm·s−1 through a lumen
located 12 cm from the surface of the Omnimagnet, which is applying
a rotating magnetic field at the location of the helical capsule. (top)
Numerical simulation of required solenoid currents. (bottom) Experimental
demonstration.

cooling, which will enable higher currents, and therefore

higher fields, to be generated. An Omnimagnet’s dipole

strength also increases with size, but this must be balanced

against competing factors (e.g., size, weight., cost).

By combining multiple Omnimagnets together, it will be

possible to create more sophisticated magnetic manipulation

systems. For example, the Octomag system uses eight sta-

tionary electromagnets to generate 3-DOF force and 2-DOF

torque on magnetic devices [3]. A system consisting of three

Omnimagnets is essentially nine stationary electromagnets,

meaning that a similar level of control as the Octomag seems

conceivable. The commercial Stereotaxis Niobe system uses

two large orientation-controlled permanent magnets to steer

magnetic catheters. A system consisting of two Omnimagnets

has the ability to recreate the same type of magnetic control.

Additionally, the spherical cores of Omnimagnets makes

their use in multi-Omnimagnet systems extremely promising;

because the average magnetization of a spherical core can

be solved using only knowledge of the applied field at the

center of the sphere, it will be possible to solve for the

combined field of multiple Omnimagnets analytically, rather

than relying on in situ system calibration.

V. CONCLUSIONS

The design and optimization of an Omnimagnet was

provided. The realized version of the design has an optimal

core-radius to outer-length ratio of 0.6 and can achieve

field strengths that are 87% of the unrealizable theoretical

reference. The design was further optimized to create a

dipole-like field with the error relative to the dipole-model

falling to below 5% within 1.5 minimum-bounding-sphere

radii from the center. Manipulation with the Omnimagnet

was then demonstrated by actuating a helical capsule down

a lumen. Not only can the Omnimagnet create a rotating

dipole field like a permanent magnet, but it can also control

the field strength like a standard electromagnet. This enables

new control methodologies to be explored. Moreover, the

spherical core will allow the combined field of multiple

Omnimagnets to be solved analytically. Future work will

include characterizing the differences between permanent-

magnet actuation and Omnimagnet actuation of rotating

tools, and exploring multiple-Omnimagnet manipulation.
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