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Deep neural networks with applications from computer vision and image processing to medical 
diagnosis1-5 are commonly implemented using clock-based processors6-14, where computation 
speed is generally limited by the clock frequency and the memory access time.  
Advances in photonic integrated circuits have enabled research in photonic computation15-17, 
where, despite offering excellent features such as fast linear computation, no integrated photonic 
deep network has been demonstrated to date due to the lack of scalable on-chip nonlinear 
functionality and the loss of photonic devices, making scalability to a large number of layers 
challenging. 
Here we report the first integrated end-to-end photonic deep neural network (PDNN) that performs 
instantaneous image classification through direct processing of optical waves. Images are formed 
on the input grating coupler array (pixels). Optical waves impinging on different pixels are coupled 
into nanophotonic waveguides and processed as the light propagates through layers of neurons 
on-chip. Each neuron generates an optical output from input optical signals, where linear 
computation is performed optically and the nonlinear activation function is realised opto-
electronically. The output of a laser coupled into the chip is uniformly distributed among all neurons 
within the network providing the same per-neuron supply light. Thus, all neurons have the same 
optical output range enabling scalability to a deep network with a large number of layers. The PDNN 
chip is used for 2- and 4-class classification of handwritten letters achieving accuracies of higher 
than 93.7% and 90.3%, respectively, with a computation time less than a single clock cycle of state-
of-the-art digital computation platforms. Direct clock-less processing of optical data eliminates 
photo-detection, analogue-to-digital conversion, and the requirement for a large memory module, 
enabling significantly faster and more energy-efficient neural networks for the next generations of 
deep learning systems. 

Artificial deep neural networks are employed in a growing number of applications such as pattern 
recognition1, natural language processing2, and medical diagnosis3-5. Inspired by the distributed data 

processing in the human brain, such networks are designed to process the input data using interconnected 

layers of neurons (nodes) which can be trained using a set of training data to learn a specific task. Once 

trained, the network can be used to perform the same task on a new set of data with high accuracies. Figure 

1a shows a general architecture of a deep neural network, where the input data is first arranged and then 

processed using the neurons of the first layer followed by the intermediate (hidden) layers. The classification 
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result appears at the output of the last layer, the output layer. Each neuron within the network generates 

an output by passing the weighted-sum of its inputs through a nonlinear activation function (Fig. 1b). 

Deep neural networks are usually implemented using digital clock-based platforms such as graphics 

processing units (GPUs)13,14 or application specific integrated circuits (ASICs)19,20. GPUs are highly 
reconfigurable processors that are capable of performing a large number of computations in parallel, yet, 

their computation time is mainly limited by the clock frequency (mostly less than 3 GHz for the state-of-the-

art GPUs) and the memory access time21. Implementation of deep networks using ASICs can provide one 

to two orders of magnitude improvement in terms of performance per unit energy consumption compared 

to GPUs22, however, they generally face similar challenges as GPUs, which become more significant for 

more complex networks with a large number of neuron layers. Furthermore, for digital implementation 

platforms, the input data often needs to be converted to the electrical domain, digitized, and processed. 

Often a large memory unit is required to store the data set, which limits the processing time and, in the case 
of image or video classification, may present privacy implications.  

Large bandwidth available at optical frequencies as well as low propagation loss of nanophotonic 

waveguides (serving as interconnects) make photonic integrated circuits a promising platform to implement 

fast and energy-efficient processing units15-18 that can augment the performance of conventional digital 

processors. Recently, photonic implementations of deep neural networks have been reported15-17, 23-30 that 

offer key features such as instantaneous linear operation and low-loss high bandwidth connectivity within 

the network. However, all demonstrations of neural networks to date have been limited to either bench-top 

setups28-30 or integration of parts of a deep learning network15-17,23-27 and due to the lack of scalable on-chip 
nonlinear functionality and uncompensated loss of cascaded photonic devices, no scalable fully integrated 

photonic deep learning system for data classification has been demonstrated. 

Here we report the demonstration of the first integrated end-to-end photonic deep neural network that 

utilises computation-by-propagation to perform instantaneous image classification. Target images are 

formed on an array of grating couplers serving as input pixels of the PDNN chip. Optical waves impinging 

on different pixels are coupled into the corresponding nanophotonic waveguides and processed as the light 

propagates through neurons of different layers on the PDNN chip. All neurons within the network have the 
same optical output range enabling scalability to a deep network with a large number of layers. As a proof 

of concept, the PDNN chip was used for 2- and 4-class classification of handwritten letters achieving 

accuracies of higher than 93.7% and 90.3%, respectively, while the computation time is less than a single 

clock cycle of the state-of-the-art digital computation platforms. As a point of comparison, a conventional 

deep neural network classifier implemented in Python environment using Keras31 achieves 96% accuracy 

for the same data set. The implemented PDNN features direct clock-less processing of input images which 

eliminates the need for photo-detection, scaling and amplification, analogue-to-digital conversion, data 

alignment, and a large memory module enabling the realization of significantly faster and more energy-
efficient, yet privacy-aware neural networks for the next generations of deep learning systems. The PDNN 

chip was integrated within a footprint of 9.3 mm2.  
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The architecture of the implemented photonic deep neural network chip and the corresponding N-input 

photonic neuron are illustrated in Figs. 1c and 1d, respectively. The target image is formed on the input 5x6 

pixel array, which is divided into four overlapping 3x4-pixel sub-images (shown in dark blue, red, light blue, 

and light green in Fig. 1c). Input nanophotonic waveguides are arranged to route pixels of each sub-image 
to a 12-input neuron within the input layer forming a convolution layer6,7. Convolution layers are commonly 

used within a deep network in image/pattern recognition applications enabling lower number of connections 

and a more efficient feature extraction8-10. The outputs of the 1st layer are fully-connected to the three 

neurons of the 2nd layer. Similarly, the three outputs of the 2nd layer are fully-connected to the two neurons 

of the 3rd layer, generating two network outputs, Out1 and Out2.  

 

Fig. 1 | Conventional and photonic-electronic deep neural networks. a, Block diagram of a conventional deep neural network 

consisting of a data arrangement unit followed by the input layer, multiple hidden layers, and an output layer providing classification 

outputs. b, The structure of a conventional N-input neuron used in the network in a, where the linear weighted-sum of the inputs is 

passed through a nonlinear activation function to generate the neuron output. c, The architecture of the implemented PDNN chip, 

where the input image is formed on a 5x6-pixel array and is arranged into four overlapping sub-images. Each pixel of each sub-image 

is routed to one of the neurons of the 1st layer. The 2nd and 3rd layers are fully-connected to their previous layers. The network generates 

two outputs. d, The structure of an implemented N-input photonic neuron, where the weights of N optical input signals are adjusted 

using optical PIN attenuators and summed after photo-detection using parallel photodiodes. The photocurrent isum is converted to a 

voltage and amplified using a trans-impedance amplifier (TIA). The TIA output is then used to drive an optical micro-ring modulator 

realizing the rectified linear unit (ReLU) nonlinear activation function, where the neuron optical output is generated by modulating the 

supply light.  
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Fig 2 | Photonic-electronic neuron implementation. a, The schematic of the implemented on-chip photonic-electronic neuron with 

N optical inputs and one optical output, realized using different electro-optical devices.  b, The cross-section and microphotograph of 

the P-doped-intrinsic-N-doped (PIN) attenuator, which is realized by creating P++ and N++ regions on the two sides of a nanophotonic 

waveguide. c, The attenuation of the PIN attenuator as a function of the injected current. d, The microphotograph of a SiGe photodiode 

(PD) used after each PIN attenuator. e, The microphotograph of the micro-ring modulator used to realize the ReLU activation function. 

f, For the case that the micro-ring is aligned with the wavelength of the supply light, while the voltage across the PN junction (VM) is 

smaller than the turn-on voltage of the PN junction (VTH), the junction remains off. In this case, no carrier is injected into the junction 

and the micro-ring resonance remains unchanged, resulting in a low neuron output power. g, For the case that VM>VTH, the PN junction 

turns on injecting carriers into the junction. As a result, the waveguide refractive index changes, shifting the micro-ring resonance. In 

this case, the neuron output power increases as VM (corresponding to the weighted-sum of the neuron inputs) increases. h, The 

measured output power of the micro-ring modulator (normalized to the supply light power) as a function of the voltage across the 

micro-ring PN junction , VM. 

The structure of a photonic neuron with N inputs (Ini) and one output is shown in Fig. 2a, where linear 

computation (i.e. weighted-sum of the input signals) is performed optically and the nonlinear activation 

function is realized opto-electronically. To calculate the weighted-sum of the neuron input signals, first, an 

array of 500-µm-long P-doped-intrinsic-N-doped (PIN) current controlled attenuators are used to 

individually adjust the optical power within each input nanophotonic waveguide of the neuron. The cross-

section of the PIN attenuator as well as its microphotograph are shown in Fig. 2b, where P-doped and N-

doped sections are placed on two sides of a silicon ridge waveguide. By forward biasing the PIN junction 
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and injecting carriers, the power of the optical wave (i.e. the signal weight) within each neuron input can be 

adjusted. The optical attenuation as a function of the injected current is shown in Fig. 2c. To add weight 

adjusted signals within each neuron, the output of attenuators are photo-detected using silicon-germanium 

(SiGe) photodiodes (PDs) and the resulting photocurrents are combined to generate the weighted-sum of 
the neuron inputs, isum. The microphotograph of the SiGe PD is shown in Fig. 2d.  

To generate the neuron output, the weighted-sum of the neuron inputs is passed through a nonlinear 

activation function. Here, the rectified linear unit (ReLU) function, offering fast convergence11,12, is used as 

the nonlinear activation function and is realized by utilizing the electro-optic nonlinear response of a PN 

junction micro-ring modulator (Fig. 2e)32.In Fig. 2a, the electrical current isum, representing the weighted-

sum of the neuron inputs, is amplified and converted to a voltage using a linear trans-impedance amplifier 

(TIA). The input voltage of the micro-ring modulator (driving the forward-biased PN junction), VM, is 

generated by adding a dc voltage, Vb, to the TIA output voltage, VTIA. The output of a laser coupled into the 
chip is uniformly distributed among all neurons within the network providing the same per-neuron supply 

light. The supply light routed to each neuron is coupled to the optical input of the micro-ring modulator. 

Consider the case that the resonance wavelength of the micro-ring modulator, lres, is initially aligned with 

the wavelength of the supply light, llaser. When the input voltage to the micro-ring modulator, VM, is smaller 

than the threshold voltage, VTH (corresponding to the turn-on voltage of the micro-ring PN junction), the PN 

junction remains off and no carrier is injected into the PN junction (Fig. 2f). As a result, the resonance 

wavelength of the micro-ring remains aligned with the wavelength of the supply light and the output power 

of the micro-ring modulator (i.e. the neuron optical output power, Pout) remains low as the supply light is 

filtered by the notch response of the micro-ring modulator. When the weighted-sum of the neuron inputs, 

isum, is large enough such that VM exceeds VTH, the PN junction turns on, changing the refractive index of 

the optical waveguide within the PN-junction as carriers are injected into the junction. As a result, the 
resonance wavelength of the micro-ring modulator shifts, increasing the neuron optical output power as 

shown in Fig 2g. The measured response of the micro-ring modulator configured as an electro-optic ReLU 

is shown in Fig. 2h, where POut/PS closely follows a rectified linear characteristic as a function of VM. Note 

that the ReLU threshold (VTH) can be adjusted by setting Vb.   

Photonic CNN image classifier chip  
Figure 3 shows the top level architecture of the implemented photonic classifier as well as the 

microphotographs of the main blocks. The image of the target object is formed on the 5x6 array of input 
grating couplers serving as the input pixel array. The coupled optical waves into the input pixels are routed 

to the neurons of the 1st layer of the network. The 30 signals received by the pixels of the input pixel array 

are split into four sets of overlapping 12-pixel sub-images, each routed to a single neuron of the 1st layer (I1 

to I4) using a photonic distribution network designed using nanophotonic waveguides, Y-junction splitters, 

and waveguide crossings (Fig. 3b).  To ensure uniform optical power distribution, the number of Y-junctions 

and crossings are balanced for all 48 optical paths that route the input pixel array to the 1st layer of the 

PDNN chip.  
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Fig. 3 | The implemented photonic classifier chip. a, The top-level block diagram of the PDNN chip. Two 5x6 arrays of grating 

couplers are used as b, the input pixel array and c, the calibration array. d, The 5x6 array of grating couplers showing the 

corresponding element pitch. The input pixel array (used for classification) generates 4 sets of 12 optical signals that are routed to the 

neurons of the 1st layer. The supply light is uniformly distributed among the neurons of the 2nd and 3rd layers and passes through 7 

micro-ring modulators to realize the ReLU nonlinear activation function. Seven off-chip TIAs are used to drive the on-chip modulators. 

The system generates two outputs that are used for up to 4-class classification. e, f, g The microphotographs of an individual neuron 

within 1st, 2nd, and 3rd layers showing the PIN attenuators and the parallel PDs placed after the attenuators, respectively. h, The 

microphotograph of the photonic chip implemented in the AMF 180 nm SOI process.  

A secondary identical 5x6 grating coupler array is also fabricated on the PDNN chip and used for the 

training of the PDNN chip and the image formation calibration, where the optical power received by each 

pixel is monitored using a photodetector (Fig. 3c). The microphotograph of the 5x6 pixel array is shown in 

Fig. 3d with an aperture size of about 140 µm by 150 µm. 

After the arrangement of the input pixels to overlapping sub-images used to perform convolution, the 

light is processed using 3 layers; the 1st layer (input layer), which consists of four 12-input neurons, is fully 
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connected to three 4-input neurons of the second (hidden) layer. The hidden layer is fully connected to the 

output layer. The 3rd layer (output layer) consists of two 3-input neurons. Single-mode nanophotonic 

waveguides with a loss of less than 0.2 dB/mm are used to connect neurons of different layers within the 

PDNN chip. The structures of the 1st (Ii), 2nd (Hi), and 3rd (Oi) layer neurons are shown in Figs. 3e, 3f and  
3g, respectively. Outputs of I1 to I4 and H1 to H3 are connected to micro-ring modulators R1 to R4 and R5 to 

R7, through TIAs followed by drivers, respectively. The output layer consists of two neurons and therefore, 

the classifier allows for two simultaneous outputs (Out1 and Out2) that can be used for up to 4-class 

classification. A laser is coupled into the PDNN chip to provide the supply light to individual neuron within 

all layers. Figure 3h shows the microphotograph of the photonic classifier chip implemented in the AMF 180 

nm silicon-on-insulator (SOI) process.  

Image classification demonstration 
The implemented PDNN chip was used to demonstrate 2- and 4-class classifications. First, in the training 
phase, the network was trained using a set of training images to determine the weight vectors for neurons 

of all layers. Then in the classification phase, a different set of testing images was classified using the 

trained PDNN chip. Note that while the implemented PDNN chip is designed to perform instantaneous end-

to-end image classification, the network is trained using the on-chip secondary pixel array, where the 

training images are formed, the pixel values are recorded and a simulation platform based on Keras31, an 

open-source neural network library written in Python, is used to find the weight vectors off-chip. The details 

of the training process are presented in the Methods section (and Extended Data Fig. 3).  

After the PDNN is trained, the resulting weight vectors are transferred back to the PDNN chip to perform 
real-time classification of target objects in the test set and quantify the classification accuracy. Figure 4a 

shows the schematic of the measurement setup used to demonstrate image classification. Two laser 

sources are used; laser 1 is used for image formation on the classification/calibration arrays, and laser 2 is 

used to provide supply light for neurons. The output power of laser 1, emitting at 1532 nm, is amplified 

using an erbium-doped fibre amplifier to approximately 63 mW and coupled to an optical collimator with a 

beam diameter of 870 µm. The collimated beam illuminates the object plane that consists of printed letters 

on a transparency film. The printed letters are attached to a custom fabricated Plexiglas holding frame 

which is mounted on a high precision XY positioning system with a resolution of better than 1 µm. The 

collimated beam passes through the object plane forming the image of the target object on the 5x6 

classification array.  
Laser 2 emits 2.5 mW at 1559.93 nm. Control loops are utilized to achieve and maintain correct 

alignment of the micro-ring modulators in presence of thermal and fabrication process variations resulting 

in the reliable realization of a rectified linear function. Once all the weights are set and the chip reaches 

thermal equilibrium, the alignment control loop is engaged to thermally tune the ring modulators such that 

all resonance wavelengths are aligned with the wavelength of laser 2. The details of the alignment algorithm 

are presented in the Methods section.  
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Fig. 4 | Image classification demonstration. a, Classification measurement setup. Laser 1 provides the light for image formation on 

the input pixel array (in the classification phase) or the calibration array (in the training phase) while laser 2 is used as the supply light. 

The target objects (dataset) are printed on a transparency film which is mounted on a custom fabricated frame. A high precision XY 

positioner is used for scanning through the dataset. A microcontroller is used to write the weights into the photonic chip and to 

implement micro-ring modulator alignment control loops. b, The dataset consisting of letters “p” and “d” for the 2-class classification 

measurements. The zoomed-in views show the letters before and after printing. c, Measured accuracy as a function of the number of 

iterations. In each iteration, a random set of measured data is used to find the thresholds to separate the classes showing the 

robustness of the classification algorithm (see Extended Data Fig. 3 for details of training and threshold calculations). d, The dataset 

consisting of letters “p”, “d”, “a”, and “t” for 4-class classification measurements and the zoomed-in views of the before and after print 

letters. e, Classification accuracy results for the 4-class measurements. 

After all micro-ring modulators are aligned, the system sequentially goes through the test images (all 

printed on the same transparency film) using the XY positioner, while the voltages of Out1 and Out2 are 
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continuously monitored. As each image is formed on the input pixel array, the result appears at the PDNN 

chip output almost instantaneously. The details of the control circuit are presented in the Methods section.  

After instantaneous classification, the optical output of the output layer, representing the estimated class 

of the target object, is photo-detected on chip. The photocurrents are then wire-bonded off-chip and 
converted to a voltage. A subset of the measured data (output voltage) is used to find optimal threshold 

values to separate different classes. These threshold values are then used on all images in the test set to 

label the output classes using a simple linear process. The classification accuracy was calculated by 

comparing the detected classes to the reference data labels. In order to demonstrate the robustness of this 

algorithm, this process is repeated for 200 iterations on randomly selected subset of samples using the 

cross-validation method33. Then, the average classification accuracy over 200 iterations is reported. The 

details of the classification accuracy calculations and the threshold determination is presented in the 

Methods section. 
Two measurements were conducted to demonstrate the functionality of the PDNN chip. First, in a 2-

class case, a dataset consisting of 216 letters, 108 “p” and 108 “d”, was generated and printed on a 

transparency film using a commercial laser printer. Figure 4b shows a picture of the dataset, where different 

forms of each letter are designed to increase the variety of the dataset. Note that the limited print resolution 

adds an extra level of random variations to the dataset, making the classification more challenging. This is 

shown in the zoomed-in view in Fig. 4b. Figure 4c shows the measured 2-class classification accuracy as 

a function of the number of iterations, where an average classification accuracy of 93.7% is achieved. 
In the second experiment, a dataset consisting of 432 letters of “p”, “d”, “a”, and “t”, 108 of each, was 

generated to demonstrate 4-class classification. Figure 4d illustrates the designed dataset and the 

corresponding printed version. The accuracy for 200 iterations is plotted in Fig. 4e, where an average 

accuracy of 90.3% is achieved. These results show that even with larger number of classes (i.e. letters) 

and in presence of printer induced variations and noise, the PDNN chip still achieves a high classification 

accuracy. As a point of comparison in terms of classification accuracy, we used a standard conventional 

neural network (CNN), implemented in Python environment using Keras31, to classify the same printed 4-

class dataset. The standard CNN architecture has been previously used for classification of MNIST34 
handwritten digits dataset to achieve accuracies of higher than 99%35 and is tailored to our 4-class dataset. 

This significantly larger network (with more than 190 neurons) compared to the reported PDNN chip, 

achieves a classification accuracy of about 96% for the printed 4-class (“p”, “d”, “a”, and “t”) dataset used 

in this work.  

Discussion 
In general, the classification speed of the proposed PDNN chip is mainly limited by the bandwidths of the 

micro-ring modulators, the SiGe photodiode, and the TIA, since the processing is performed as the waves 

propagate within the chip. Using commercial SOI fabrication processes, the overall bandwidth of tens of 
gigahertz can be achieved for these blocks. Since the propagation delays for these blocks are inversely 

proportional to their bandwidths, sub-100 picosecond processing speed can be achieved for each neuron 
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layer. The ring modulator and the SiGe photodiodes that are used on the implemented PDDN chip both 

have 3-dB bandwidth of larger than 30 GHz18. As a result, the implemented PDNN chip is capable of 

performing end-to-end classification within a single clock cycle of a state-of-the-art GPU with a clock 

frequency of 3 GHz36.  
The implemented PDNN chip can be scaled to a classifier with a larger number of pixels in order to 

instantaneously classify higher resolution images and much more complex patterns. The complexity of 

routing overlapping sub-images to the neurons of the input layer (to perform convolution), which is an 

important scaling challenge, can be addressed either by using a fabrication process with multiple photonic 

routing layers37 allowing for more complex photonic routing, and/or through tiling, where multiple pixel 

arrays are placed next to each other.  

In summary, we have demonstrated the first end-to-end photonic deep neural network classifier chip 

that performs instantaneous image classification through computation by propagation of optical waves, 
eliminating the need for an image sensor, digitization, and large memory modules. Benefiting from the large 

bandwidth and low propagation loss offered by integrated photonic platforms, the implemented chip enables 

realization of neural networks that are significantly faster and consume less power compared to the 

conventional all-electrical solutions. Low energy consumption and ultra-low computation time offered by 

our photonic classifier chip can revolutionize applications such as event-driven and salient object 

detection38,39 both as a standalone classifier or in conjunction with electronic processors utilizing the 

instantaneous classification of the PDNN chip as well as the re-configurability and flexibility of electronic 

processors. 
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Methods 

Image formation uniformity and path loss  
Using the calibration array we can verify the image formation quality. One important consideration is the 

uniformity of the image. To check that, we uniformly illuminate the chip, with no obstruction, while measuring 

the photocurrent of individual pixels in the calibration array. In this case, the measured non-uniformity is 

less than 5%, which is low enough for the classification system to extract the features properly.  

The same measurement can be used to estimate the path loss from the optical collimator to the power 
coupled into the chip by each pixel (grating coupler). In the case that the power coupled to the collimator is 

about 63 mW, the measured photocurrent of each photodiode is about 3 µA. The responsivity of the 

photodiode is about 0.8 A/W. Therefore the power coupled into the waveguide connected to each grating 

coupler is estimated to be 4 µW. This result in a total path loss of about 42 dB. This loss is mainly due to 3 

factors; (1) the overlap between the input pixel array aperture area and the beam spot, which can be written 

as 

, 

(2) aperture fill factor (i.e. the area of each grating coupler relative to the aperture area) 

 , 

and (3) the grating coupler measured loss of about 5 dB. Note that the transmission coefficient of the 

transparency film is almost one. 

Micro-ring modulator alignment algorithm 
In the implemented PDNN chip, 7 micro-ring modulators are used to implement and approximate the neural 

ReLU nonlinear activation function; four micro-ring modulators at the output of the 1st layer and three micro-

ring modulators at the output of the 2nd layer. As discussed earlier, a supply light is coupled into the optical 

input of each micro-ring modulator. Since the wavelength of the supply light is the same for all micro-rings, 
the resonance wavelengths of all micro-ring modulators must be aligned to ensure reliable and repeatable 

realization of ReLU functions for all neurons. In practice, the resonance wavelength of micro-ring resonators 

may vary due to the fabrication process variations and temperature change. Therefore, in addition to a 

careful design and layout of the micro-rings, control loops were implemented to compensate for any 

misalignments between the resonance wavelength of micro-ring modulators and the wavelength of the 

supply light. Each micro-ring modulator can be tuned using an N-doped heater section (serving as a thermal 

phase shifter) with a measured resistance of about 1.9 kW. Extended Data Fig. 1a illustrates the algorithm 

used to perform the micro-ring alignment. First, the supply light is switched on and all weights are set; 

properly setting the weights is of particular importance as biasing the PIN attenuators (to adjust the weights 

within neurons) may increase the temperature of the chip. Therefore, micro-ring alignment process should 

be performed while the weights are set and the chip has reached thermal equilibrium. In this case, the 
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control loop sequentially adjusts the heater voltages to minimize the difference between the sum of the 

outputs of the neurons of the 2nd and 3rd layers (i.e. H1 to H3, O1, and O2), VSUM, and a reference voltage, 

VREF. In addition, the algorithm ensures that the heater voltages do not exceed the maximum allowable 

value, Vmax. At the end of each iteration (i.e. after the adjusting the voltage of all heaters), if VSUM becomes 
smaller than VREF, then VREF is set to VSUM and the next iteration starts. Once all rings are aligned, the 

optimal heater biasing voltages are recorded and used during the classification process. 

To verify the performance of the ring alignment control loop, first the laser that illuminates the 5x6 input 

pixel array is turned off (Extended Data Fig. 1b). In this case, the outputs of the neurons of the 1st layer (Ii) 

are zero. Since micro-rings are properly aligned, the outputs of the neurons of the 2nd and 3rd layers (the 

corresponding the ReLU function output) remain low. Then, the input laser is turned on, uniformly 

illuminating the 5x6 input pixel array. In this case, I1 to I4 increase, shifting the resonance wavelengths of 

the micro-ring modulators, which results in a large change in the outputs of the neurons of the 2nd layer, H1 
to H3. Similarly, the output of the neurons of the 3rd layer, O1 and O2, will change. The output voltages of 

neurons of different layers before and after uniform illumination of the input pixel array are shown in 

Extended Data Figs. 1b and 1c. 

Electronic control circuitry 

Extended Data Fig. 2 shows the block diagram of the electronic system used to control and drive the 

photonic components of the classifier chip. The circuit consists of a microcontroller utilized to generate the 

data and clock signals for the serial digital-to-analogue converter (DAC) array to set the weights, thermally 

align the micro-ring modulators and adjust the threshold voltage of each ReLU block. A serial interface is 
used to write the data into the serial DAC array. There are 66 PIN attenuators on chip to set the weights 

corresponding to the neurons (4x12 in the 1st layer, 3x4 in the 2nd layer, and 2x3 in the 3rd layer), seven 

heaters were used for thermal tuning of the micro-rings, and seven bias voltages (Vb) to adjust the threshold 

of the ReLU blocks.  

PDNN chip training process  
Prior to performing the image classification on the test set, the PDNN chip was trained to find the optimal 

weight vectors. First, the image of each letter in the training set was formed on the on-chip secondary 
(calibration) pixel array and the corresponding pixel values were recorded.  Then, to find the optimal weight 

vectors, the recorded pixel values for each image of the training set were fed into a digital neural network 

implemented in Python using Keras31. The architecture of this digital neural network is identical to that of 

the PDNN chip with ReLU nonlinear activation function. The training and weight optimization were 

performed using the stochastic gradient descent algorithm9.  

While the PDNN chip with two outputs can be used in a conventional way to classify a 2-class data set, a 

simple additional step enables the implemented PDNN chip to perform classification of datasets with a 

larger number of classes. In this case, a simple linear combination of two outputs of the 3rd layer, Vout = 
Out1 – Out2, can be formed and compared with one or a set of threshold values to determine the class of 

each input image. Therefore, the training process also includes the calculation of the threshold values 
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required to optimally separate different classes. In this work, one and three threshold values were used for 

the 2- and 4-class cases, respectively.  

During the training phase, for the algorithm to find optimal threshold values, a subset of the data is used. 

As shown in Extended Data Fig. 3a, as the measured data values are fed to the algorithm, the threshold 
values are constantly updated and move closer to the optimal values resulting in higher classification 

accuracies. The optimum weight vectors were translated to the corresponding input voltages of the PIN 

attenuator array using a look-up table (containing the amount of attenuation as a function of the attenuator 

input voltage). A microcontroller followed by an array of digital-to-analogue converters were used to write 

the optimum weight vectors into the PDNN chip. During the classification phase, the threshold values 

calculated during the training process were used.  

Extended Data Figs. 3b and 3c show the classification accuracy as a function of the number of measured 

data used to determine the threshold values in the training phase. As shown, the accuracy increases and 
converges to its maximum value as more data is fed into the algorithm and more accurate threshold values 

are calculated. The calculated threshold values depend on the sequence of the input data. Therefore, to 

ensure the robustness of the threshold calculation algorithm, this process is repeated multiple times. The 

error bars in Extended Data Figs. 3b and 3c correspond to the variation in accuracy as a function of the 

number of input data points. Based on these graphs, 25% of the 2-class dataset and 50% of the 4-class 

dataset were used to calculate the corresponding threshold values. The remaining data in both cases was 

used in the classification phase and the resulting accuracies are shown in Figs. 4c and 4d, respectively.  

Chip fabrication  
The photonic chip was fabricated in the AMF 180 nm SOI process with a 2 µm thick buried oxide. Single-

mode 220 nm thick and 500 nm wide nanophotonic waveguides with a loss of less than 2 dB/cm were used 

for photonic routing. The grating couplers used in the input pixel array as well as in the calibration array 

have a measured coupling efficiency of about 30% while the grating coupler used for coupling the supply 

light has a measured coupling efficiency of about 40%. The measured excess loss of the Y-junctions and 
the loss of waveguide crossings used in the distribution network (following the input pixel array) are about 

0.5 dB and less than 0.1 dB, respectively. The photodiodes have a measured responsivity of about 0.8 A/W 

and a 3-dB bandwidth greater than 30 GHz. The ring modulators have a 3-dB bandwidth of more than 30 

GHz.  

Data availability  
The data that support the plots and other findings within this paper are available from the corresponding 

author upon reasonable request. 
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Extended Data Fig. 1 | Micro-ring alignment algorithm and characterization. a, The implemented algorithm flowchart for micro-

ring alignment. The cost function to be minimized is VSUM, which is the sum of the outputs of the 2nd and 3rd layers (i.e. Hi and Oi). All 

micro-rings are thermally tuned in order to find the optimal heater voltages that correspond to the same resonance wavelengths for 

all 7 rings. b, In case of no input illumination, the output of the neurons of the 1st layer (Ii) are zero. If micro-rings are properly aligned, 

the outputs of the neurons of the 2nd and 3rd layers remain low. c, In the case that the optical input is uniformly illuminating the input 

pixel array, if all rings are aligned, I1 to I4 will increase, shifting the resonance wavelengths of the micro-ring modulators, which results 

in a large change in the outputs of the neurons of the 2nd and 3rd layers.  
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Extended Data Fig. 2 | Electronic control circuit block diagram. a, The microcontroller sends the clock and data signals to the 

serial digital-to-analogue converters (DACs) while the outputs of the DACs are connected to their corresponding drivers to drive the 

on-chip photonic devices (PIN attenuators, ring PN junctions and micro-ring thermal phase shifters). 

  



 18 

 
Extended Data Fig. 3 | PDNN chip training and threshold calculations. a, The implemented algorithm to find and update the 

threshold values to properly separate N different classes. A linear combination of the network output, in this case, the differential 

output defined as Vout = Out1 – Out2, is measured and compared with different threshold levels. The threshold values (THj) are updated 

one by one as measured network differential output values (Vout,i) are sequentially passed into the algorithm. The classification 

accuracy is calculated and plotted as the threshold values are updated. The classification accuracy as a function of input measured 

data stream is plotted in b, for the 2-class and c, for the 4-class cases, respectively. The error bars show the variations in the 

classification accuracy for specific number of data points used for calculating the threshold values. In this case, the horizontal axis in 

b and c represents the number of data points that were randomly selected from all data points and used to determine the threshold. 

This threshold is then used to classify all data points and the classification accuracy is calculated. This process was repeated 20 times 

for each selected number of data points and the resulting range of accuracies are shown with error bars. 
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Extended Data Table 1| List of equipment and devices 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

Equipment Model 

Laser 1 HP 8168F 

Laser 2 Agilent 81682B 

XY positioner and controller Thorlabs NRT150 and BSC103 

Driver op-amp Texas Instruments TLV3544 

Digital to analogue converter (DAC) Analog Devices AD8802 

Microcontroller ATMEL ATSAM3X8E 

Optical collimator  Thorlabs CFC-5C 

Polarization controller  Thorlabs FPC-31 

Erbium-doped fibre amplifier (EDFA) Optilab EDFA-I24-B 

DC power supply Agilent E3646A 


