
An On-Demand Coherent Single Electron Source
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F-91191 Gif-sur-Yvette, France
3Laboratoire de Photonique et Nanostructures, UPR20 CNRS

Route de Nozay, 91460 Marcoussis Cedex, France
∗ To whom correspondence should be addressed; E-mail: glattli@lpa.ens.fr.

We report on the electron analog of the single photon gun. On demand sin-

gle electron injection in a quantum conductor was obtained using a quantum

dot connected to the conductor via a tunnel barrier. Electron emission is trig-

gered by application of a potential step which compensates the dot charging

energy. Depending on the barrier transparency the quantum emission time

ranges from 0.1 to 10 nanoseconds. The single electron source should prove

useful for the implementation of quantum bits in ballistic conductors. Addi-

tionally periodic sequences of single electron emission and absorption generate

a quantized AC-current.

In quantum optics, a single photon source is an essential building block for the manipulation

of the smallest amount of information coded by a quantum state: a qubit (1,2). Combined with

beam-splitters, polarizers and projective measurements several photonic qubits can be manipu-

lated to process quantum information (3). The most celebrated case is the secured transmission
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of the information using quantum cryptography. Similarly,one expects that electrons propa-

gating ballistically in ultra-pure low dimensional conductors can realize quantum logic tasks

in perfect analogy with photons propagating in optical media (4–6). The analogy has a long

history (7) and has provided illuminating comparisons between the intensity of light and that

of electrical current, between photon noise and electricalshot noise (8, 9) and more recently

between photon and electron quantum entanglement (10–12). Interestingly, electrons being

Fermions, entanglement and offers new routes not possible with photons (12). Practically, elec-

tronic analogs of beam-splitters, Fabry-Pérot and Mach-Zehnder interferometers (13, 14) have

been realized in ballistic conductors providing the necessary quantum gate for an ’all linear’

electron optics quantum computation. Yet missing were the single electron source and the sin-

gle electron detector (15) suitable for coherent emission and projective measurements. The for-

mer initializes quantum states, while the latter reads the final states after electrons have passed

through the quantum gates.

Unlike the case of photons, realization of single electron sources is expected to be simpler

because of Fermi statistics and Coulomb interaction. For example, considering a voltage bi-

ased single mode conductor, a contact at energyeV above the energy of the other contact is

known to inject single electrons into the conductor at a regular rateeV/h, thereby leading to

quantization of the dc current in Quantum Point Contacts (16, 17). A second example is the

electron pump where a dc current is produced by sequential time-controlled transfer of single

electrons between metallic islands in series (18,19) or manipulation of tunnel barriers of quan-

tum dots (20,21). The cost in Coulomb charging energy to add or remove an electron ensures a

well defined electron number in each island or dot. These two sources are however not useful for

quantum information. In the first case, there is no time control of the electron injection. As only

statistical measurements are possible, the biased contactis suitable for demonstrating coherent

phenomena such as interferences or electron entanglement (10, 11) but not for manipulating
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quantum information. In the second example, time controlled injection can be realized, but the

energy of emitted electrons is expected to spread, at random, in an energy range much larger

than the tunneling rate (typically a fraction of the charging energy, depending on the pumping

conditions). The statistical distribution in energy will smear coherent effects required for ma-

nipulating the quantum information. Finally, a third approach has been theoretically proposed

in Refs. (23–25) considering voltages pulses applied to an ohmic contact. When the Faraday

flux e
∫ t

V (t′)dt′/h is an integer, an integer number of electrons is injected. Here noiseless in-

jection requires to have a special Lorenzian shape of the pulse and exact integer value otherwise

logarithmic divergenge of the charge fluctuations occurs. No experiment is available yet to test

these ideas.

We report on the realization of a time controlled single electron source suitable for coherent

manipulation of ballistic electronic qubits which emits the electrons into a well defined quan-

tum state. The injection scheme is different from those considered above. The source is made

of a quantum dot, realized in a 2D electron gas in GaAs semiconductors, and tunnel-coupled to

the conductor. By applying a sudden voltage step on a capacitively coupled gate, the charging

energy is compensated and the electron occupying the highest energy level of the dot is emitted.

The final state of the electron is a coherent wave-packet propagating away in the conductor. Its

energy width is given by the inverse tunneling time, as required for on-demand single parti-

cle source, and independent on temperature. Its mean energycan be adjusted above the Fermi

energy by tuning the voltage step amplitude. The circuit (Fig.1A), is realized in a 2D elec-

tron gas (2DEG) in a GaAsAl/GaAs heterojunction of nominal densityns = 1.7 × 1015 m−2

and mobilityµ = 260 V −1m2s−1. The dot is electrostatically coupled to a metallic top gate,

100nm above the 2DEG, whose ac voltage,Vexc, controls the dot potential at the subnanosecond

timescale. For all measurements, the electronic temperature is about 200 mK and a magnetic

field B ≈ 1.3 T is applied to the sample so as to work in the quantum Hall regime with no spin
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degeneracy. The QPC dc gate voltageVG is tuned to control the transmissionD of a single edge

state as well as the dc dot potential. As reported (22), this circuit constitutes the paradigm of a

quantum coherent RC circuit where coherence is seen to strongly affect the charge relaxation

dynamics. ¿From this study, the charging energy∆ + e2/C ≈ ∆ ≈ 2.5 K was extracted (26).

Here the large top gate capacitance makes the Coulomb energye2/C unusually small and the

total charging energy identifies to the energy level spacing∆.

In Ref. (22), the linear response of the current to the ac top gate voltage was investigated

and the ac charge amplitude was much lower than the elementary chargee. Here, in order to

achieve single charge injection we have to apply a high amplitude excitation (Vexc ∼ ∆/e) and

go beyond the linear regime. When an electron is suddenly brought above the Fermi energy of

the lead, it is expected to escape the dot at a typical tunnel rateτ−1 = D∆/h, where∆/h is

the attempt frequency andD the transmission probability. This gives nanosecond timescales for

which single charge detection is still out of reach experimentally. To increase the signal to noise

ratio, a statistical average over many individual events isused by generating repetitive sequences

of single electron emission followed by single electron absorption (or hole emission). This is

realized by applying a periodic square wave voltage amplitude≈ ∆/e to the top gate. Fig.1B

shows typical temporal traces of the current averaged over few seconds for a repetition period

of T = 32 ns. The single electron events remarkably reconstruct the exponential current decay

of an RC circuit. When decreasing transmissionD from ≈ 0.03 to ≈ 0.002, the relaxation

time τ , extracted from the exponential decay, increases from0.9 ns to 10 ns. For the two

highest transmissions in Fig.1B,τ ≪ T /2, the current decays to zero and the mean transferred

charge per half period is constant. For the smallest transmission,τ ∼ T /2, the mean emitted

charge decreases as electrons have reduced probability to escape the dot. These time-domain

measurements are limited by the1 GHz bandwidth of the acquisition card and give access to

the few nanoseconds injection times corresponding to smalltransmissionsD . 0.03.
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In order to get a better understanding of the above results, we extend the harmonic linear

response theory of a quantum RC circuit (27–29) to calculate the non-linear response to a high

amplitude square excitation voltage (eVexc ≫ hf ). Calculation shows that the circuit still

behaves as an RC circuit with a current given by:

I(t) =
q

τ
e−t/τ for 0 ≤ τ ≤ T /2 (1)

q = e

∫
dǫN(ǫ)[f(ǫ − 2eVexc) − f(ǫ)] (2)

τ =
h

2

∫
dǫN(ǫ)2[f(ǫ − 2eVexc) − f(ǫ)]∫
dǫN(ǫ)[f(ǫ − 2eVexc) − f(ǫ)]

(3)

whereN(ǫ) is the dot density of states andf(ǫ) denotes the Fermi-Dirac distribution. The non-

linear capacitance and charge relaxation resistance can bedefined respectively bỹCq ≡ q/2Vexc

andR̃q ≡ τ/C̃q. For unit transmissionD = 1, electrons are fully delocalized,N(ǫ) is uniform

and the chargeq evolves linearly withVexc as expected. At the opposite, for low transmission,

N(ǫ) is sharply peaked on well resolved energy levels, andq exhibits a staircase dependence on

Vexc with steep steps whenever one electronic level is brought above the Fermi energy. Thus our

calculations establish the sketch of single electron injection depicted in Fig.1. For a dot energy

spectrum with constant level spacing∆, a remarkable situation occurs when2eVexc = ∆, as

q = e and C̃q = e2/∆ irrespective of the transmissionD and of the dc dot potential. As a

matter of fact, Eq.2 shows that, in these conditions,q is given by integratingN(ǫ) over exactly

one level spacing. ForD << 1, we recover the Landauer formula for the resistance,R̃q = h
De2

and the escape time is given byτ = h/D∆, as expected from a semiclassical approach. The

exponential current decay, the constant injection charge for τ ≪ T /2, as well as the decrease

of τ with transmissionD, account well for our experimental observations in Fig.1B.

For a more accurate experimental determination ofq andτ and to investigate subnanosecond

time scales, we consider in the following measurements of the current first harmonic,Iω , at
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higher frequenciesf = ω/2π = 1/T . As a matter of fact, following Eq.1, we have:

Iω =
2qf

1 − iωτ
(4)

so that the modulus|Iω| and the phaseφ (tan(φ) = ωτ ) allow for the determination ofq andτ .

Fig.2A shows|Iω| measured as a function of QPC gate voltageVG at f = 180 MHz for

increasing values of the excitation voltage2eVexc. The range ofVG maps the full transmission

excursionD = 0-1. The low excitation2eVexc = ∆/4 data nearly correspond to the linear

response reported in Ref. (22). The current exhibits strong oscillations reflecting the variation

with VG of the dot density of states at the Fermi energy. At larger excitation voltages, the current

peaks are broadened as expected from Eq.2 when2eVexc gets larger thankBT . For2eVexc = ∆,

the oscillations disappear completely and|Iω| = 2ef , down to a low transmission threshold

D ∼ 0.05. The oscillations reappear for larger excitations. The constant current|Iω| = 2ef is

the frequency-domain counterpart of the constant charge regime observed in the time-domain,

for the injection/absorption of a single electron per half period. The cut-off observed forD .

0.02 corresponds to the limitωτ & 1 where the escape timeτ exceedsT /2. The constant̃Cq

regime obtained for2eVexc = ∆ can be viewed on a striking manner in a Nyquist representation

of Fig.2b. The corresponding diagram is the half-circle characteristic of an RC circuit with

a constant capacitancee2/∆ and transmission dependent resistance. By contrast the curves

obtained for larger or smaller excitations exhibit strong capacitance oscillations.

Fig.2C represents the phaseφ = arctan(ωτ) of the current as a function ofVG for different

excitation voltages.φ shows a quasi monotonicπ/2 sweep in increasing transmission. The

absence of significant oscillations proves thatτ is nearly insensitive to the dot potential. As

seen in the figure,τ is also independent ofVexc. In Fig.3, we have gathered the values ofτ(VG)

obtained from 1GHz bandwidth time-domain measurements at 31.25 MHz repetition rate and

from frequency-domain measurements at 180 and 515 MHz. The whole measurements probe a
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very broad transmission range (D = 0.002 − 0.2) corresponding to escape times varying from

10 ns to 100 ps. In the overlapping range, the different independent determinations coincide

within error bars, agreeing quantitatively with the prediction τ = h/D∆ also represented in

Fig.3, where the dependenceD(VG) is deduced from the linear regime (22).

We now discuss the conditions for single electron injectionleading to a good quantization of

the ac current as a figure of merit of single charge injection.Fig.4A represents|Iω| as function

of Vexc for typical values of the dc dot potential at fixed transmissionsD ≈ 0.2 andD ≈ 0.9.

TransmissionD ≈ 0.2 is low enough for the electronic states to be well resolved, as sketched

in the inset of Fig.4A (left), but still large for the escape time to be shorter thanT /2. When

the Fermi energy lies exactly in the middle of a density of states valley, we observe a well

pronounced|Iω| = 2ef current plateau centered on2eVexc = ∆. Whereas the current plateau

resolution is noise limited to better than1% (for a 10 seconds acquisition time), the plateau value

is determined with an uncertainty of5% due to systematic calibration error. We note that at this

working point the plateau is robust upon variation of the parameters. By contrast, if the Fermi

energy lies on a peak, there is still a current plateau but itsvalue is arbitrary and very sensitive

to parameter variations. These two working points illustrate the importance of having a well

defined charge in the dot prior to injection. In the first case the charge is well defined and suit-

able for charge injection. In the second case the equilibrium dot charge fluctuates. In particular,

when the energy level is exactly resonant with the Fermi energy, its mean occupation at equilib-

rium is1/2 and the measured value of the plateau is1/2 × 2ef = ef (see Fig.4A (left)). Thus,

this working point is not suitable for a single electron source. Upon increasing transmission,

even for a suitable working point, the dot charge quantization can be lost because of quantum

fluctuations. First, the width of the ac current plateaus reduces and finally nearly vanishes for

D ≈ 0.9. Note that for different transmissions, all curves cross at|Iω| = 2ef for 2eVexc = ∆ re-

flecting the constant value of̃Cq discussed above. Finally, domains of good charge quantization
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are best shown on the two-dimensional color plot of Fig.4.B-upper where the modulus of the

current is represented in color scale. The vertical axis stands for the excitation voltageVexc and

the horizontal axis for the gate voltageVG. The white diamonds correspond to large domains

of constant current|Iω| = 2ef suitable for single electron injection. At high transmissions the

diamonds are blurred by dot charge fluctuations as discussedpreviously. On the opposite, for

small transmissions, even when the dot charge quantizationis good, current quantization is lost

because of long escape timeωτ >> 1, and the current goes to zero. At180MHz, optimal

working conditions are obtained forD ≈ 0.2. Experimental results of Fig.4 are compared with

our theoretical model (Eqs.2 and 3) without any adjustable parameter (solid lines in Fig.4a and

lower plot in Fig.4b)1. The agreement between measurements and theoretical predictions is

excellent which shows that our single electron source lendsitself to quantitative modeling.

The availability of a coherent source of single electrons emitted on demand from a single

energy level on nanosecond time scale opens the way for a new generation of experiments never

possible before. Synchronization of similar sources couldbe used in the future to probe electron

anti-bunching, electron entanglement in multi-lead conductors or to generate electronic flying

qubits in ballistic conductors.
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Figure 1: Single charge injection. A) Schematic of single charge injection. Starting from an
antiresonant situation where the Fermi energy lies betweentwo energy levels of the dot (step 1),
the dot potential is increased by∆ bringing one occupied level above the Fermi energy (step 2).
One electron then escapes the dot on the mean timeτ = h

D∆
. The dot potential is then brought

back to its initial value (step 3) where one electron can enter it, leaving a hole in the Fermi
sea. Inset: The quantum RC circuit : one edge channel is transmitted inside the submicrometer
dot with transmissionD tuned by the QPC gate voltageVG. The dot potential is varied by a
radiofrequency excitationVexc applied on a macroscopic gate located on top of the dot. The
electrostatic potential can also be tuned byVG due to the electrostatic coupling between the dot
and the QPC. B) Time-domain measurement of the average current (black curves) on one period
of the excitation signal (red curves) at2eVexc = ∆ for three values of the transmissionD. The
relaxation timeτ is deduced from an exponential fit (blue curve).
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