
An On-Line Algorithm for Checkpoint Placement"

Avi Ziv Jehoshua Bruck
IBM Israel, Science and Technology Center California Institute of Technology

MATAM - Advanced Technology Center
Haifa 31905, Israel

avi@haifa.vnat.ibm.com

Abstract

Checkpointing is a common technique for reducing the
time to recover from faults in computer systems. By saving
intermediate states ofprograms in a reliable storage, check-
pointing enables to reduce the lost processing time caused
by faults. The length of the intervals between checkpoints
affects the execution time of programs. Long intervals lead
to long re-processing time, while too frequent checkpoint-
ing leads to high checkpointing overhead. In this paper we
present an on-line algorithm for placement of checkpoints.
The algorithm uses on-line knowledge of the current cost
of a checkpoint when it decides whether or not to place a
checkpoint. We show how the execution time of a program
using this algorithm can be analyzed. The total overhead of
the execution time when the proposed algorithm is used is
smaller than the overhead whenjixed intervals are used. Al-
though the proposed algorithm uses only on-line knowledge
about the cost of checkpointing, its behavior is close to the
off-line optimal algorithm that uses a complete knowledge
of checkpointing cost.

Checkpointing is a common technique for reducing the
execution time of programs in the presence of faults. Check-
pointing consists of saving intermediate states of the task in
a reliable storage, and upon a detection of a fault, restoring
the previous stored state. Hence, checkpointing enables to
reduce the time to recover from a fault, while minimizing
the lost processing time.

The interval between checkpoints affects the execution
time of aprogram. On one hand, inserting more checkpoints
reduces the re-processing time after failures. On the other

*The research reported in this paper was supported in part by the NSF
Young Investigator Award CCR-9457811, by the Sloan Research Fellow-
ship, and by a grant from the IBM Almaden Research Center, San Jose,
Califomia.

0-8186-7707-4/96 $5.00 0 1996 IEEE

hand, inserting more checkpoints increases the checkpoint-
ing cost and the program execution time. This trade-off
between the re-processing time and the checkpointing over-
head leads to an optimal checkpoint placement strategy, that
optimizes certain performance measures [3,4,5].

Considerable theoretical work has been devoted to ana-
lyzing checkpointing schemes and determining the optimal
checkpoint placement strategy. Brock [11 and Duda [4] an-
alyzed the execution time of a program with and without
checkpoints. Gelenbe [SI showed that to maximize avail-
ability in transactions systems checkpoint intervals should
be deterministic and of the same length. L'Ecuyer and
Malenfant [7] derived a numerical approach for availabil-
ity in dynamic checkpointing strategies when the fault rate
is not constant. Nicola and van Spanje [9] compared anal-
ysis and optimization of several checkpointing models that
differ in the checkpoint's placement and fault occurrence
in transaction systems. Coffman and Gilbert [3] described
optimal strategies for placement of checkpoints in a single
program.

In all the work described above, it is assumed that the
checkpointing overhead does not depend on the time the
checkpoint is taken. Another approach for placing check-
points, that takes into account the change of checkpointing
overhead over time, can be found in [2]. In that paper
Chandy and Ramamoorthy proposed an algorithm, based on
a graph theoretic method, for a placement of checkpoints
that allows the programmer to decide where to place check-
points according to an a-priory knowledge about the cost of
checkpointing. In [lo], Toueg and Babaoglu derive an op-
timal algorithm to place checkpoints when there is a small
number of possible locations for the checkpoints and the
cost of checkpointing and recovery at each such location is
known. The CATCH tool [SI is a compiler assisted tech-
nique that helps to improve the placement of checkpoints
using information about the cost of checkpointing that is
gathered in previous executions of the program.

One of the operations that is performed at a checkpoint
is saving the program state on a stable storage. Therefore,

274

Mail Code 136-93
Pasadena, CA 9 1 125

bruck@paradise.caltech.edu

mailto:avi@haifa.vnat.ibm.com
mailto:bruck@paradise.caltech.edu

the size of the program state is one of the main factors that
determine the checkpointing cost. During the execution of
a program, the size of its state is dynamically changing due
to allocation and deallocation of memory blocks. While the
size of the program’s state might not be known in advance,
it is possible to keep track of the allocation and deallocation
operations and to know the state size of the program at the
current time. Therefore, an estimation of the checkpointing
cost at the current time can be obtained.

In this paper we present a new on-line algorithm for
placement of checkpoints. The algorithm keeps track of
the state size of the program, and uses it to estimate the
cost of checkpointing at the current point of execution. The
knowledge about the cost of checkpointing is used when
deciding at which points in the program to place checkpoints.

The main idea in the algorithm described here, is to look
for points in the program in which placing a checkpoint is
the most beneficiary. The algorithm tries to find points in
the program in which the state size is small, and use these
points for checkpoints. If such points are found, checkpoints
are placed at these points with small intervals between the
checkpoints, so that the re-processing time after a fault is
small. If no such point is found after a period of time,
a checkpoint is taken at a point with higher cost to avoid
long re-processing time in case of a fault. In this case the
interval between the checkpoints is longer, to reduce the
checkpointing overhead. The main difference between the
adaptive checkpointing presented in [8] and the algorithm
presented in this paper is that our algorithm not only looks
for points with low checkpointing cost, it also changes the
interval between checkpoints to fit the current cost of check-
pointing.

We analyze the performance of the new on-line place-
ment algorithm for the simple case when the program have
only two possible state sizes, and the state size changes
according to a Markov chain. Comparison of the average
execution time of a program when the proposed algorithm
is used to the average execution time when the intervals
between checkpoints are fixed shows that the overhead for
the on-line algorithm is lower. Although the proposed al-
gorithm uses only the past and present information about
the cost of checkpointing when deciding whether or not to
place a checkpoint, its performance is close to the optimal
off-line algorithm given in [IO], that knows the cost of all
checkpoints ahead of time. Comparison of the decision on
checkpoint placement done by the two algorithm shows that
both algorithms can avoid long periods of high cost and
efficiently use periods of low cost checkpointing.

While the program might not know ahead of time how
its state size is going to change, it can detect changes in the
state size just before they occur. This additional knowledge
can be used to farther improve the placement algorithm. We
show how the on-line algorithm can use this knowledge to

place checkpoints just before the state size increases, and
what benefits this knowledge can provide. Analysis of the
modified algorithm shows that its performance is even closer
to the optimal algorithm than the on-line algorithm.

The rest of the paper is organized as follows. In Section 2,
we describe the model of the program and environment we
use in this paper and two existing placement strategies which
we use to compare the new algorithm with. In Section 3, we
describe the new on-line algorithm and show how to analyze
the average execution time of a program when the algorithm
is used. In Section 4, the performance of the new algorithm
is compared with the fixed interval placement strategy and
the optimal off-line algorithm. In Section 5, a modification
to the algorithm, that enables to take advantage of detection
of an increase in the state size before they occur is presented.
In section 6 , we discuss some practical issues regarding the
implementation of the algorithm. Section 7 concludes the
paper.

2 Background

In this paper we are interested in the average execution
time of a program with checkpoints in a system that is vul-
nerable to faults, and the effects of different checkpointing
placement strategies on the execution time. The faults in the
system occur according to a Poisson process with rate A. At
some points during the execution of the program checkpoints
are placed. At each checkpoint the state of the program is
saved on a stable storage. After a fault is detected, the pro-
gram is rolled back to the last saved state and execution is
resumed from that point. We assume that the program is
executed on a single processor, and that the processor has an
internal fault detection mechanism that enables it to detect
faults immediately. We also assume that the time to roll the
program back after a fault is detected is zero and that faults
cannot occur during checkpointing.

While the assumptions that we make are not necessary
for the operation of the algorithm presented in this paper,
they make the analysis simpler and help to illustrate the
advantages of the on-line algorithm.

Using these assumptions, we can calculate the average
execution time of a program with faults and checkpoints.
The analysis given here is the same one that is used by Duda
in [4]. A program of length t’ is divided into n intervals
of length t i , t 2 , . . . , t,, such that Cy=l t, = t. At the end
of each interval a checkpoint is placed. The cost of the
checkpoint at the end of the i’th interval is c,. Let T, be the
execution time of the i’th interval, including the checkpoint-
ing time at the end of it. The T,’s are random variables and
their values depend on the number and locations of the faults

‘Throughout the paper t , with and without subscnpts, denotes produc-
tive time (i.e., excludes time spent in checkpointing, repair, recovery and
re-processing), while T denotes elapsed time.

275

that occur when the i’th interval is executed. Note that be-
cause of the memoryless property of the faults process and
because faults cannot propagate over a checkpoint, the Tz’s
are independent of each other. The following proposition
gives the average execution time of a single interval. The
proof for the proposition can be found in [4].

Proposition 1 Under the assumptions stated above, T , the

rate are the same during the execution, the optimal lengths
of all the intervals are identical, and the optimal placement
strategy is fixed equi-distant intervals.

When fixed intervals are used, the overhead ratio of the
whole program is the same as the overhead ratio for a single
interval. Using Proposition 1, the overhead ratio for a single
interval is

-
(2)

ext + AZ - 1
At

- 1 . 1 =
average execution time of the i’th interval and the overall
execution time of the program are

U t) R(t) = - - t
n - ext . - 1 -

T , = ___ +e,, x
where E is the average cost of a checkpoint. The optimal
interval f, that minimizes the average execution time, is
roughly equals to

T = E’..
2= 1

A good metric to measure the performance of a check-

which is defined as the ratio between the average overhead,
pointing placement strategy is the average overhead ratio R, t N

caused by the checkpointing and the faults, and the program
length. In other words

When designing a placement strategy for checkpoints
with a goal to minimize the average execution time of a
program, or equivalently the overhead ratio R, two factors
have to be considered. The first one is the overhead caused
by the checkpoints themselves, and the second factor is the
re-processing time that is needed after a fault is detected.
If the checkpoints are placed close to each other, then the
number of checkpoints in the program is large and so is
the overhead caused by the checkpoints. However, the re-
processing time after a fault has occurred is short. When the
checkpoints are far from each other, the number of check-
points and the checkpointing overhead are low, but long
re-processing might be needed after a fault is detected.

This trade-off between the checkpointing overhead and
the re-processing time leads to some optimal placement
strategy, that minimizes the overhead ratio R. This optimal
placement strategy depends on the fault rate in the system
and the cost of checkpointing. Next, we describe two exist-
ing
the

placement strategies which we use for comparison with
on-line placement algorithm we present in this paper.

Checkpointing with Fixed Intervals

When the cost of checkpointing does not change with time,
or when only the average cost is known but not how it is
changing with time, the optimal placement strategy is to
place the checkpoints in fixed equi-distant intervals [l , 41.
Because the execution time of different intervals are inde-
pendent of each other when the location of the checkpoints
are known, and because placing a checkpoint at a specific
point does not effect future intervals, minimizing the over-
head ratio for each interval alone leads to the optimal place-
ment strategy. Since the checkpointing cost and the fault

Optimal Placement Algorithm

When checkpoints can be placed only in a finite number
of locations and the cost of a checkpoint at each of these
locations is known in advance, the optimal placement strat-
egy can be found. In [lo], Toueg and Babaoglu describe an
optimal algorithm for checkpoints placement. In this algo-
rithm it is assumed that checkpoints can be placed only at a
finite number of points in the program, and that the cost of
checkpoints in each such point is known in advance. Using
this assumptions, an O(n2) algorithm, based on dynamic
programming technique, is given, where n is the number of
points where checkpoints can be placed.

The algorithm assumes that there are n possible locations
for checkpoints, numbered 1 . . . n, and that the cost of a
checkpoint at point i is e,. The algorithm iteratively finds the
optimal placement of checkpoints and the average execution
time when this placement is used, when no more than k
checkpoints are used, for k = 1,2, . . . , n.

3 On-Line Placement Algorithm for Check-
points

The checkpointing cost depends on the point in the pro-
gram at which the checkpoint is placed. More specifically,
the checkpointing cost depends on the size of the program’s
state at that point. Since the state size of the program changes
during the execution due to memory allocation and dealloca-
tion operations, the checkpointing cost is changing with time
according to some random process. Therefore, the fixed in-
tervals placement strategy is not optimal. On the other hand,
the state size of the program is usually not known in advance,
and therefore the optimal off-line algorithm for placement
of checkpoints is not practical.

While the state size of the program is not known in ad-
vance, the program can keep track of its state size by mon-
itoring memory allocation and deallocation operations. By

276

monitoring these operations, the program knows its cur-
rent state size. Therefore, it can estimate the current cost
of checkpointing. In this section, we show how knowl-
edge about the current cost of checkpointing can be used in
placement of checkpoints.

The main idea in the algorithm described here, is to look
for points in the program in which placing a checkpoint
is the most beneficial. The algorithm finds points in the
program in which the state size is small, and uses these
points for checkpoints. If such points are found, checkpoints
are placed at these points with small intervals between the
checkpoints so that the re-processing time after a fault is
small. If no such point is found after a period of time,
a checkpoint is placed at a point with higher cost to avoid
long re-processing time. In this case the interval between the
checkpoints is longer to reduce the checkpointing overhead.

To demonstrate how a current knowledge about the
checkpointing cost can improve the performance of check-
pointing schemes, we use the following example. The pro-
gram has two possible state sizes, SI and s2, such that
SI < s2. The checkpointing cost when the state size is
si is ci (cl < c2). The state size of the program changes
according to a two state Markov chain with rate of leaving
state s, equal to pz.

The algorithm works in the following way. We define two
points in time, t l and t 2 , such that tl 5 t2. The algorithm
decides whether to place a checkpoint at t, where t is the
time since the last checkpoint, according to the following
rules:

1. If the state size at tl is SI, then a checkpoint is placed
at tl, The cost of the checkpoint is c1.

2. If the state size at t l is s 2 , the system waits until the
state size changes to SI and a checkpoint is placed at
that time. The cost of the checkpoint is c1.

3. If the state size at tl is s2 and the state size does not
change until t2, then a checkpoint is placed at t 2 . The
cost of the checkpoint in this case is c2.

Note that in order to avoid high checkpointing overhead,
a checkpoint is never placed before tl . Also, to avoid long
re-processing time, a checkpoint is never placed after t 2 .

The values of t l and t z affect the performance of algorithm.
By analyzing the overhead ratio of the algorithm, we can
find the values of t l and t 2 that minimize the overhead ratio.
In the following section, we calculate the overhead ratio of
the on-line algorithm.

3.1 Analysis of the On-Line Algorithm

As we stated earlier, to focus on the benefits of the pro-
posed algorithm, and simplify the analysis of the proposed

algorithm, we assume that faults do not occur during check-
pointing, and that the recovery time after a fault is 0. We
also assume that the faults are detected immediately.

Lemma 2 With the above assumptions, R the average over-
head ratio when the on-line algorithm for checkpointing
placement is used is given by

(3)

where p 2 is the probability that the state size at a checkpoint
is s2.

Proof: The proof of the lemma consists of the following
propositions that derive the probability of placing a check-
point at t 2 and t l , the average length of an interval between
checkpoints and the average execution time of such interval.

Proposition 3 In a steady-state, p 2 the probability that the
state size at a checkpoint is s2 is

PI e ~ 2 t 1 - ~ - P I ~ I

p 2 = - . (4)
p1 + p2 e~2 t2 - e - P l t l .

Proof: In a steady-state the probability that the state size at
a checkpoint is s2 satisfies the following equation

p 2 = Pr{state is s2 I prev. state was s2} . p 2 +
Pr{state is s2 I prev. state was SI} . (1 - p 2) < 5)

The state size at a checkpoint is s2 if, and only if, a check-
point is placed at t2, and a checkpoint is placed at t2 if, and
only if, the state size at t l is s2 and the state size does not
change in the interval [t l , t 2] . Therefore,

PrIstate is s2 I prev. state was s 2) = ~ Z , z (t l) e - P 2 (t 2 - t l) ,

and

Pr{state is s2 I prev. state was S I > = ~ l , z (t l) . e - P 2 (t 2 - t l) ,

where P1,2(tl) and P2,2(tl) are the transition probabilities
from states SI and s2 respectively to s2 at time tl given by

P 2 , 2 (t I) = ___ + L e - (P l + P 2) t l

Pl f P 2 PI + f i 2

Assigning these values to Eq. (5) and solving for p2 yields
Eq. (4). I

277

Note that p2 is less than or equal to the steady-state prob-
ability of 52, and it can be close to 0 for high p2. It means
that the proposed algorithm uses the cheaper checkpoint
more often than algorithms that do not consider the current
checkpointing cost.

Proposition 4 In a steady-state, pl the probability that a
checkpoint is placed at t 1 is

pl = 1 - p2ep2(tz-t~). (6)

Proof: A checkpoint is placed at t 2 if, and only if, it was
not placed at t l and the state size remained 5 2 in the interval
[tl , tz]. Therefore,

p2 = (1 - pl) . e-p2(tz--tl)

Corollary 5 The probability density function (pdf) of the
interval length f (t) is

f (t) = (I - pl),u2e-~2('-~1) . (Ut, (4 - Ut*(t)) +
Pl . &, (t) t P2 . &,(t) , (7)

where 6, (.) and U, (.) are the impulse and step functions at
r respectively.

Proposition 6 The average length of an interval between
checkpoints is

Proof Let f (t) be the probability density function (pdfl of
the interval length, then

Proposition7 The average execution time of an interval
between checkpoints is

Proof Let T (t , c (t)) be the average execution time of an
interval of length t with checkpoint of cost c (t) at the end
of it From Proposition 1 we know that

ext - 1
T (t , c (t)) = ~ x + c (t) .

and

Proposition 8 The average overhead ratio of a program is

(10)
Tz R = = - 1 .
ta

Proof: To calculate the overhead ratio of a program it is
not enough to calculate the average overhead of an interval.
We need to consider also the length of the intervals, since
longer intervals occupy more of the program, and thus they
have bigger influence on the overhead ratio. Therefore,
using similar arguments to those used when considering the
current life of a random point in time in renewal theory [6],
the average overhead ratio of a program is given by

-

Assigning the values ofzfrom Eq. (8) andzf rom Eq. (9)
into the expression of the overhead ratio of a program given
in Eq. (10) yields the expression in Eq. (3) and completes
the proof of Lemma 2.

Given A, P I , 112, e1 and c l , we can numerically find the
values of tl and t 2 that minimize the overhead ratio R. More
on the selection of tl and t 2 can be found in Section 4.

I

3.2 On-line Algorithm with More Than Two State
Sizes

The on-line algorithm we have described in this section
is designed for the case when the program has two possible

278

state sizes. The algorithm can be extended to the case when
there are more than two state sizes in the following way.

We assume that the possible state sizes are S I , s2, . . . , s,,
and that the cost of acheckpoint for a state size si is c;, where
c1 5 cz 5 ... 5 c,. Each state size si has an interval ti
associated with it. The algorithm decides whether to place
a checkpoint at time t where t is the time since the last
checkpoint according to the following rules:

0 A checkpoint is never placed at the interval [0, t l) .

0 If at some time in the interval [ti, t;+l) the state size
is S I , s 2 , . . . , si a checkpoint is placed at that time.

0 At time t , a checkpoint is placed, regardless of the
state size at that time.

The analysis of the algorithm is essentially the same as
the analysis for the two state sizes case. We calculate the
distribution function of the interval length and the distribu-
tion of the checkpointing cost at each point. Using these
functions, we can calculate the average interval length, the
average execution time of an interval, and the overhead ratio.

4 Comparison with Existing Algorithms

To illustrate how the current knowledge about the cost
of checkpointing and the proposed on-line algorithm can
be used in reducing the execution time of a program, we
compare the overhead ratio of a program using the on-line
algorithm to the overhead ratio when the two strategies de-
scribed in Section 2 are used, namely the fixed intervals
strategy and the optimal placement. The comparison to the
fixed interval placement helps to understand how the current
knowledge about the cost of checkpointing helps to reduce
the average execution time of a program. It also provides
insight to the optimal values of tl and t 2 that minimize the
overhead ratio. The comparison to the optimal algorithm
shows how much the performance of the on-line algorithm
can be improved when the cost of checkpoints in all possi-
ble locations is known in advance and how the on-line and
optimal algorithms differ in the placement of checkpoints.

The comparison of the new on-line algorithm with the
fixed intervals placement strategy is done by comparing the
overhead ratio of the on-line algorithm, given in Lemma 2,
with the overhead ratio of the fixed intervals placement strat-
egy, given in Eq. (2) . The values of tl and t2 for the on-line
algorithm and the interval length t for the fixed intervals
placement strategy are those that minimize the overhead
ratio.

Since we cannot analytically find the overhead ratio of the
optimal algorithm, We used experimental results to compare
the on-line placement algorithm with the optimal placement.
We generated a large number of instances of the program’s

state size according to the two states Markov chain. For each
such instance, we found the placement of the checkpoints
when the optimal algorithm and the on-line algorithm are
used. After the checkpoints were placed, we calculated
the overhead ratio of the instance when both algorithms
are used. Finally, we calculated the average overhead ratio
over all instances that used the same parameters (A, p1, p2).
The experimental values of the overhead ratio for the on-
line algorithm are identical to the analytical values obtained
using Lemma 2.

Checkpointing with Fixed Intervals

In Figure 1 the overhead ratio of a program as a function of
the fault rate X is shown. The figure shows the execution
time when the checkpointing costs are c1 = 0.0005 and c2 =
0.005. The figure shows the execution time for two cases of
p1 and p2. In Figure l a p1 = pz = 10, and in Figure 1b
p1 = p 2 = 1. The figure compares the execution time of
a program when fixed equi-distant intervals are used to the
execution time when the on-line algorithm for placement of
checkpoints is used. As a reference, the figure also shows
the overhead ratio if the cost of the checkpoints is only c1.
It can be seen in the figure that the on-line algorithm has a
lower overhead ratio.

To understand why the on-line algorithm has a lower
overhead ratio than the fixed interval placement, lets con-
sider two extreme cases; the first is when the rate of changes
in the state size is very low, and the second when the rate of
changes is very high.

When the rate of changes in the state size is very low,
the probability of a change in the state size between t l and
t 2 is practically 0, and checkpoints are placed only at t1
and t2 . In this case, by using the optimal checkpointing
intervals when the cost of a checkpoint is only c1 or c2 as
tl and t 2 respectively, the on-line algorithm adapts to the
current checkpoint cost, and uses the optimal interval for
that cost. Therefore, for low rate of changes in the state
size, the optimal values of tl and t 2 are tl,opt = f1 and
t2,0pt = f2 , where f1 and f2 are the optimal checkpointing
intervals when the the cost of checkpoints are the constants
c1 and cz respectively.

When the rate of changes in the state size is high, the
on-line algorithm uses this fact to locate a point with a low
cost near f1 and place a checkpoint at that point. The result
is that the cost of a checkpoint is always the low cost, and
the interval between the checkpoints is close to the optimal
interval for that cost. In this case its is always better to wait
for a point with a low cost, and the optimal value for t2 is
very high.

In the medium range, when 1 has the same order of
magnitude as f1, the on-line algorithm can take advantage
of the points with low checkpointing cost that are near f1.

P2

279

I I
"0 0 1 02 03 0 4 0 5 O S 07 O B 09 1

0 ~ " ' ' ' ' " ' ~
0 0 1 02 03 0 4 0 5 06 07 08 09 1

(b) PI = ~2 1

Figure 1. Overhead ratio as a function of X

To be sure that such points are not missed, the algorithm
starts to look for it before the optimal interval fl . Therefore,
for this range of p2, tl,opt < fl. In this range there is a
good chance that the state size is going to change from high
to low when fz is reached and that this change will occur
fast enough so that it is better to wait for that change, and
therefore in that range t2,0pt > f2.

Figure 2 shows the overhead ratio and the optimal tl
and t 2 as a function of p2. The figure shows this values
when X = 0.1, and the possible costs of a checkpoint are
cl = 0.0005 and e2 = 0.005 and p1 = p2. The figure
shows that for low p2 the overhead ratio is somewhat lower
than the execution time when fixed intervals are used. As 112
increases, the overhead ratio of the on-line algorithm drops,
and for ,LQ > 100 the overhead ratio is as if the cost of
checkpointing was e1 everywhere. The plot of the optimal
t1 and t 2 shows that for low p2 the optimal values equals to fl
and f2. When p2 increases, the optimal value of tl decreases
so that a point of low cost near fl is not missed, while the
optimal value for t 2 increases to enable the algorithm to
catch points with low cost at that area. Further increasing
112 causes the optimal t l to increase and be closer to fl
because for these values of p2 the chance of finding a point

0.024

Figure 2. Overhead ratio as a function of p2

with low cost is getting higher. The behavior of the overhead
ratio and the optimal tl and t 2 for different ratios of pz/,u1
are identical to the behavior shown in Figure 2.

Optimal Placement Algorithm

Figure 1 shows the overhead ratio of a program as a function
of the fault rate X for the on-line and optimal algorithms.
The figure shows that the optimal algorithm performs better
than the on-line algorithm, but the difference between the
algorithm is not large, and the on-line algorithm is closer to
the optimal algorithm than the fixed intervals strategy.

In Figure 2a the overhead ratio of the program as a func-
tion of the rate of changes in the state size is show for both al-
gorithms. The figure shows that both algorithms are affected
in the same way by 112. When p2 is low, both algorithms
adapt to the current state size and use the optimal interval
for that state size. When 112 is high, both algorithms can find
points with small state size close to the optimal interval for
that state size and place checkpoints there. Therefore, the
overhead ratio is the same as if only the low state size exists.
In the medium range for p2, the optimal algorithm can use
its knowledge about the cost of future possible checkpoints
to achieve lower overhead ratio.

To understand the difference and similarities in check-
pointing placement between the two algorithms, we ex-
amined few of the instances of the random state sizes we
generated, and looked where each of the algorithms placed

280

.- w
m
a,
m
m
c
c

.- w
CO
a,
0s
m
c
c

s2-

sl-

I _ - I I I I

;c m m % m u m > c m
0 0 0 (1 0 0 0 0 0 0

:: x >: x :< x x >: x (
I I I I I I

s2-

SI

X on-line algorithm 0 rise detection X optimal algorithm

I I I I I I I I

m I- m m m m % 3: c 3c 3c m m m >: 3c
0 0 0 0 0 0 0 00 o o 0 0 0 0 0 0

x x x x x x x x x r: (x x x x x x x
I I I 1 - 1 I I I

-

Figure 3. Placement of checkpoints by the optimal off-line algorithm and the on-line algorithm with
and without rise detection

its checkpoints. Figure 3 shows two such instances. In
both cases the fault rate is X = 0.1 and the checkpointing
costs are e1 = 0.0005 and e2 = 0.005. In the top plot
pl = p2 = 10, and in the bottom plot p1 = p2 = 3. The
plots show the state size of the program as a function of the
time t, and the points where each of the algorithms places
the checkpoints. The figure also shows the checkpointing
placement of a modified version of the on-line algorithm
that is described later in the paper, in Section 5.

The top plot shows that both algorithms avoid placing
checkpoints when the cost is high, even when there are long
intervals of high cost. The difference in the algorithms
in this plot is the interval between the checkpoints. The
optimal algorithm knows exactly the intervals of low and
high cost so it can use them to place the checkpoints with
the optimal interval between them. On the other hand, the
on-line algorithm does not know when the cost is going to
change from low to high, and so it prefers to use intervals
which are shorter than the optimal interval when the cost is
low, instead of losing the possibility to place a checkpoint
with a low cost.

The top plot also shows an example where the optimal
algorithm places a checkpoint at a point with a high cost,
while the on-line algorithm avoids it. In this example the
on-line algorithm anticipates a fast change in the state size,
and therefore it decides to wait for the small state size and
place the checkpoint there. On the other hand, the optimal
algorithm knows that the interval is going to be long, and
therefore it is better to place a checkpoint in it.

The second plot gives an example where the on-line algo-
rithm places a checkpoint with high cost while the optimal
algorithm avoids the high cost interval. The optimal algo-
rithm knows the length of the high cost interval, and that it

is better not to place a checkpoint in it. On the other hand,
the on-line algorithm anticipates that the interval is going to
be much longer (because of the value of p2), and therefore
it concludes that it is better to place a checkpoint in it.

5 Detection of Increase in the State Size

So far we have assumed that the program does not have
any knowledge about future changes in its state size. While
this assumption is generally true, there are some cases when
a partial knowledge about the future behavior exists. This
partial knowledge can be used to improve the placement
strategy. The simplest example about future knowledge
is knowledge about changes in the state size just before
they occur. When the memory allocation or deallocation
functions are called, the program knows that state size is
going to change before the change actually occur.

Detection of changes in the state size before they occur
is important when the state size increases. In this case, it
might be beneficial to place a checkpoint with lower cost
just before the state size increases. The ability to place a
checkpoint just before the state size increases can contribute
to the performance of the placement strategy in two ways.
When the algorithm can place a checkpoint before the state
size increases, it does not have to be ‘over-eager’ when
looking for points with low cost (the drop down in the value
of t,,opt in Figure 2). Instead, it can wait until 81 is reached,
or the state size is about to change, and place the checkpoint
at that time. Also, when a checkpoint is placed before the
state size increases, the probability of placing a checkpoint
with a large state size gets lower, and thus the checkpointing
overhead is smaller.

In this section we show how to modify the on-line al-

281

gorithm we presented in Section 3 to include the case of
detection of an increase in the state size before they occur.
We also compare the modified algorithm performance to the
original on-line algorithm and optimal off-line placement.

5.1 The Modified Algorithm

In the modified algorithm we add another point in time
to, such that t o 5 t l . A checkpoint is placed at time t ,
to 6 t < t l , if the state size at t is SI and the state size
at t+ is s2. In other words, if the state size is changing
from SI to s2 during the interval [to , t l) , then a checkpoint is
placed just before the change. If a checkpoint is not placed
in the interval [to, t l) , then the algorithm continues as the
algorithm in Section 3.

The analysis of the modified algorithm is essentially the
same as the analysis of the original on-line algorithm that
was shown in Lemma 2. Due to space limitation, we omit
the analysis of the modified algorithm. The analysis can be
found in [111.

Figure 4 shows the overhead ratio and the optimal to and
tl as a function of p2. The figure shows this values when
X = 0.1, the possible costs of a checkpoint are c1 = 0.0005
and c2 = 0.005, and p1 = p2.

Figure 4a shows the overhead ratio as a function of p2
for the modified algorithm, the original on-line algorithm
and the optimal off-line algorithm. The figure shows that
the modified algorithm has a lower overhead ratio then the
original on-line algorithm, and its behavior is closer to the
optimal algorithm.

One of the reasons the modified algorithm performs better
than the original on-line algorithm, is that it does not have
to be 'over eager' when looking for points with a small
state size. The original algorithm does not know when the
state size is going to increase, therefore, in order not to
lose the small state size, it places checkpoints before the
optimal interval for the small state size fl is reached. On
the other hand, the modified algorithm can wait until just
before the state size changes or f1 is reached before it places
a checkpoint, because it knows about the change in the state
size before it occurs. Also, when the algorithm knows that
the state size is going to increase, it is sometimes better to
place a checkpoint after a short interval, specially when ,LQ

is low. Therefore, the optimal value for t o for the modified
algorithm is lower then the optimal value for tl in the original
algorithm.

Figure 4b shows the optimal values of t o and tl for the
modified algorithm as a function of p2, and for comparison
the optimal value of tl for the original algorithm. The figure
confirms that the optimal value of tl for the modified algo-
rithm is equal to fl , and the drop in the value of t , ,opt that
occur in the original algorithm to avoid losing points with
a small state size is not needed in the modified algorithm.

OoZ4-

(a) Overhead ratio

I " " " " ""' ' ' ' " " " ' - ' ' ' I

:A-, ;*o* 1;' "% j;, ,bA ' ,b. '
PZ

(b) Optimal Intervals

Figure 4. Overhead ratio and optimal t o and tl
for the modified algorithm

The figure also shows that for low values of p2, when the
average time before the state size changes from 5-2 to s1 is
high, it is beneficial to place checkpoints with a very short
interval between them to use the small state size. As the
value of p2 gets higher, the value of t o is also getting higher,
until it reaches tl for very high values of p2.

The placement examples that are shown in Figure 3 also
help to illustrate the advantages of the modified algorithm
over the original algorithm. The plots in the figure show two
instances of changes in the state size, and the points where
the on-line algorithm, the modified on-line algorithm and
the optimal algorithm placed their checkpoints. The figure
shows that during long periods of small state size, the modi-
fied algorithm places its checkpoints with the same intervals
as the optimal algorithm, while the original algorithm uses
smaller intervals. Another advantage that the modified al-
gorithm has on the original algorithm is that it can sometime
avoid checkpoints with large state size, as can be seen in the
bottom plot of Figure 3. Because the modified algorithm
places checkpoints just before the state size increases, the
probability that the state size will not change to SI before t 2

is smaller than the same probability in the original algorithm
that places the checkpoint some time before the state size
increases.

282

6 Implementation Issues

The on-line algorithm can be easily implemented in sys-
tems where the system hardware is used to determine the
place of checkpoints. For example, if an interrupt by a timer
is used to determine the time of the next checkpoint, this
timer can be updated every time the state size changes. Af-
ter a checkpoint is placed, the timer is initialized to t,, where
s, is the state size when the checkpoint was placed, and the
timer starts counting downward. After each memory allo-
cation or deallocation operation that causes a change in the
state size of the program from s, to s,, the timer value is
increased by t, - t,. A checkpoint is placed when the timer
value is less than or equal to 0.

The algorithm presented in this paper assumes that the
program has only a finite set of state sizes (two in the an-
alyzed example) and that the state size of the program is
changing according to a Markov process with known pa-
rameters. In practice, both assumptions are not valid. The
state size of a program is a continuous random process whose
parameters are hard to estimate. To overcome the continu-
ous state size problem, we can quantize it, for example to
the nearest K-byte. If the quantization error is not big, the
affects of the quantization on the performance of the algo-
rithm are minimal. The parameters of random process that
controls the state size of program are used to calculate the
optimal values for the t,'s. Without knowledge about these
parameters, the optimal values have to be estimated. A good
estimation for t,,opt are optimal intervals when the cost of
checkpointing is a constant fx. The dotted line in Figure 1
shows the overhead ratio when and E2 are used instead of
t,,opt and t2,0pt. As can be seen in the figure, the overhead
ratio is almost identical (about 5 % difference). Since l, are
independent of the parameters of the Markov process, they
can be used even if these parameters are not known.

7 Conclusions

In this paper we showed that knowledge about the current
state size of the program can be used in placement of check-
points in a program, and that using this knowledge can lead
to a significant reduction in the overhead ratio. To illustrate
how this knowledge can be used, we presented a new on-
line algorithm for placement of checkpoints. The algorithm
first tries to place a checkpoint in places where the cost of
the checkpoint is small. Only if no such point was found,
a checkpoint is placed at a point with higher checkpointing
cost.

We analyzed the overhead ratio of a program using this
algorithm, and compared the performance of the proposed
algorithm to a simple algorithm that places the checkpoints
at fixed intervals, and to the optimal algorithm that uses a
perfect a-priori knowledge on the cost of checkpoints at all

possible locations. The comparison results show that the
proposed algorithm performs better than the fixed intervals
algorithm, and a significant reduction of up to 66% in the
overhead ratio can be obtained. Although the proposed
algorithm uses only the cost of a checkpoint at the current
location, its behavior is close to the optimal algorithm that
uses an a-priory knowledge of the checkpointing cost in all
possible locations.

The same on-line placement strategy can be combined
with other placement algorithms and improve their perfor-
mance when the fault rate in the system is not a constant or
when the changes in the state size do not occur according to
a Markov process.

An interesting problem is to combine the on-line algo-
rithm with some partial knowledge about the state size of
the program in the future, like the information collected by
the CATCH tool [8]. This additional knowledge about the
state size can be used to improve the decision about the
placement of checkpoints, and bring the algorithm closer to
the optimal algorithm.

References

[l] A. Brock. An analysis of checkpointing. ICL Technical
Joumal, 1, 1979.

[2] K. M. Chandy and C. V. Ramamoorthy. Rollback and recov-
ery strategies for computer programs. IEEE Transactions on
Computers, 21546556, June 1972.

[3] E. G. Coffman and E. N. Gilbert. Optimal strategies for
scheduling checkpoints and preventive maintenance. IEEE
Transactions on Reliability, 39:9-18, April 1990.

[4] A. Duda. The effects of checkpointing on program execu-
tion time. Information Processing Letters, 16:221-229, June
1983.

[5] E. Gelenbe. On the optimum checkpoint interval. Journal of
the ACM, 26:259-270, April 1979.

[6] S. Karlin and H. M. Taylor. A First Course in Stochastic
Processes. Academic Press, 1975.

[7] P. L'Ecuyer and J. Malenfant. Computing optimal check-
pointing for rollback and recovery systems. IEEE Transac-
tions on Computers, 37:491-496, April 1988.

[8] C.-C. J. Li, E. M. Stewart, and W. K. Fuchs. Compiler-
assisted full checkpointing. Software - Practice and Expe-
rience, 24871-886, October 1994.

[9] V. E Nicola and J. M. van Spanje. Comparative analysis
of different models of checkpointing and recovery. IEEE
Transactions on Sofhvare Engineering, 16307-821, August
1990.

[lo] S. Toueg and 0. Babaoglu. On the optimum checkpoint
selection problem. SIAM Joumal on Computing, 13:63O-
649, August 1984.

[1 I] A. Ziv. Analysis and Performance Optimization of Check-
pointing Schemes with Task Duplication. PhD thesis, Stan-
ford University, 1995.

283

