
 Open access Proceedings Article DOI:10.1109/CVPR.1994.323858

An on-line cursive word recognition system — Source link

Seni, Nasrabadi, Srihari

Institutions: State University of New York System

Published on: 21 Jun 1994 - Computer Vision and Pattern Recognition

Topics: Intelligent word recognition, Intelligent character recognition, Time delay neural network, Feature (machine learning)
and Cursive

Related papers:

 An On-Line Cursive Word Recognition System

 Large vocabulary recognition of on-line handwritten cursive words

 A connectionist recognizer for on-line cursive handwriting recognition

 Connectionist architectural learning for high performance character and speech recognition

 Using constrained snakes for feature spotting in off-line cursive script

Share this paper:

View more about this paper here: https://typeset.io/papers/an-on-line-cursive-word-recognition-system-
z1xpfmss2l

https://typeset.io/
https://www.doi.org/10.1109/CVPR.1994.323858
https://typeset.io/papers/an-on-line-cursive-word-recognition-system-z1xpfmss2l
https://typeset.io/authors/seni-3nogur694u
https://typeset.io/authors/nasrabadi-2qqhi6pznt
https://typeset.io/authors/srihari-3wo0s1cc9u
https://typeset.io/institutions/state-university-of-new-york-system-2yahzeh8
https://typeset.io/conferences/computer-vision-and-pattern-recognition-18ykss65
https://typeset.io/topics/intelligent-word-recognition-2yy6i1uy
https://typeset.io/topics/intelligent-character-recognition-567on30f
https://typeset.io/topics/time-delay-neural-network-1y6lsoju
https://typeset.io/topics/feature-machine-learning-ndjxk15e
https://typeset.io/topics/cursive-1tkhvveq
https://typeset.io/papers/an-on-line-cursive-word-recognition-system-485tzttlip
https://typeset.io/papers/large-vocabulary-recognition-of-on-line-handwritten-cursive-55yf96p4ol
https://typeset.io/papers/a-connectionist-recognizer-for-on-line-cursive-handwriting-rj2my9tfoz
https://typeset.io/papers/connectionist-architectural-learning-for-high-performance-1m2700jufq
https://typeset.io/papers/using-constrained-snakes-for-feature-spotting-in-off-line-51i1i3eyhh
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/an-on-line-cursive-word-recognition-system-z1xpfmss2l
https://twitter.com/intent/tweet?text=An%20on-line%20cursive%20word%20recognition%20system&url=https://typeset.io/papers/an-on-line-cursive-word-recognition-system-z1xpfmss2l
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/an-on-line-cursive-word-recognition-system-z1xpfmss2l
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/an-on-line-cursive-word-recognition-system-z1xpfmss2l
https://typeset.io/papers/an-on-line-cursive-word-recognition-system-z1xpfmss2l

An On-Line Cursive Word Recognition System

Giovanni Seniy, Nasser Nasrabadiz, Rohini Srihariy

yCenter of Excellence for Document Analysis and Recognition
zDepartment of Electrical and Computer Engineering

State University of New York at Bu�alo

Bu�alo, NY 14260

Abstract

This paper presents a system for large vocabulary
recognition of on-line handwritten cursive words. The
system �rst uses a �ltering module, based on simple
letter features, to quickly reduce a large reference dic-
tionary to a smaller number of candidates; the reduced
lexicon along with the original input is subsequently fed
to a recognition module. In order to exploit the sequen-
tial nature of the temporal data, we employ a TDNN-
style network architecture which has been successfully
used in the speech recognition domain. Explicit seg-
mentation of the input words into characters is avoided
by using a sliding window concept where the input word
representation (a set of frames) is presented to the
neural network-based recognizer sequentially. The out-
puts of the recognition module are collected and con-
verted into a string of characters that can be matched
with the candidate words. A description of the com-
plete system and its components is given.

1 Introduction

Computer recognition of on-line handwriting o�ers
a new way of improving the human-computer inter-
face. Since handwriting is one of the most famil-
iar communication media, an automatic handwriting
recognition system can o�er a very easy and natural
input method. However, most of the research e�ort
in this area has been devoted to the recognition of
isolated characters (particularly important for large-
alphabet languages such as Chinese, with over 3000
di�erent ideographs) [7, 12], or run-on hand-printed
words [15, 5]. A signi�cantly smaller number of recog-
nition systems have been devised for cursive words
[16, 13, 4], a more di�cult task due to the presence
of the letter segmentation problem (partitioning the
word into letters), and generally larger variations at

the letter level. Most of these systems restrict the
working dictionary sizes to less than few thousand
words.

Two major approaches have traditionally been used
in cursive handwriting recognition, whether online or
o�ine: segmentation-based and word-based (also refer
to as `holistic'). In the segmentation-based approach
each word is segmented into its component letters and
a recognition technique is then used to identify each
letter. Unfortunately, the nature of cursive script is
such that the letter segmentation points1 can only be
correctly identi�ed when the correct letter sequence
is known, and the recognition of characters can only
be done successfully when the segmentation is cor-
rect. Therefore, a recognition engine that performs
character recognition and segmentation in parallel is
desirable. Segmentation-based systems also fail to ac-
count for handwriting variations due to co-articulation
(the in
uence of one letter on another) and can su�er
from combinatorial complexity when combining mul-
tiple decisions about individual characters.

In the word-based approach, individual letters are
not recognized as such but a global feature vector
is extracted from the input word which is matched
against a stored dictionary of prototype words; a dis-
tance measure is used to choose the best candidate.
This word recognition method has the advantage of
speed, and avoids problems associated with segmen-
tation. This method re
ects the human reading pro-
cess which is not character by character, but rather
by words or even phrases. The main disadvantage of
this method is the need to train the machine with sam-
ples of each word in the established dictionary, thereby
constraining vocabulary size.

In our recognition system, we adopt an intermedi-
ate position between the above fundamentally di�er-
ent approaches, and attempt to incorporate the follow-

1Points where one letter ends and the succeeding one begins.

ing three concepts regarding the cognition of cursive
handwriting. First, the perception of words by hu-
mans is a two step process: characteristic letters are
found in the word image which are used to select can-
didate words; an attempt is then made to align these
words with the input image. Second, the dynamic
pattern of motion in cursive handwriting carries more
information and less variability than the static geo-
metric representation of a word. Third, separating a
character from its background is not a necessary pre-
processing step for identifying the character.

Accordingly, the system �rst uses a �ltering mod-
ule that extracts a structural description for a given
input word and uses it to reduce quickly a large lex-
icon (i.e, more than 20,000 words) to a smaller set
of matchable words, and then a neural network-based
recognition module takes a temporal representation of
the input word and identi�es each of its letters (al-
phabets) without performing an explicit segmentation
step. The predicted word is then compared with the
possible matchable words. A narrowed-down lexicon
will limit the amount of work to be done during this
stage.

Section 2 shows the architecture of the system. Sec-
tion 3 presents the �ltering module. Section 4 de-
scribes the recognition module. The �nal section sum-
marizes and discusses future work.

2 Proposed recognition system

The structure of the proposed cursive word recog-
nition system is shown in Figure 1. Notice that both
the �ltering module and the recognition module works
on data which is preprocessed. This is necessary be-
cause the output of the digitizing tablet is noisy (due
to quantization e�ects and the shaking of the hand)
and usually contains too many points. Data reduc-
tion and enhancement is achieved by a resampling
algorithm which includes duplicated points removal,
enforcing even spacing between points and smoothing
(see [6] for an overview of these operations). Equal-
ization of di�erent writing orientations, writing slant,
and writing sizes is also desirable in order to reduce
writer dependent variability. A normalization algo-
rithm is provided for this purpose based on the work
of [1],[17].

The �ltering module (Lexicon reduction module)
starts by deriving a description string � = �1�2 . . .�n

where �i corresponds to a key feature found in the
input word. Such string is then passed to a proce-
dure search(�) which has knowledge about how to
derive ASCII letters from the symbols �i and uses

Data reduction
& enhancement

Orientation, slant
 & size normalization

Search algorithm
(Production rules)

Primitive extraction
(Vfeature)

Trajectory
encoding (τ)

TDNN-style
recognizer

Output
parsing

Recognition
result

Digitizing
tablet

✍
Handwriting

{(X(t),Y(t),Z(t))}
Raw data

{(X(t),Y(t),Z(t))}
Preprocessed data

α=α1α2...αn

Description string
{Matchable words}

ASCII dictionary

{F(t)}

Frame sequence

{Ol(t)}
Output sequence

String
matching

Interpretation
string

Filtering Module

Recognition Module

Preprocessing Module

(ranked word choices)

Figure 1: Overview of proposed model for large vocab-
ulary recognition of on-line handwritten cursive words.

it to generate matchable words. Speci�cally, the
problem is that of establishing a grammar Gfilter =
(Vascii; Vfeature; P; S), where the set Vascii of terminal
symbols is the English alphabet, the set Vfeature of
non-terminal symbols is made of those basic elements
in terms of which all letters can be described, P is the
set of production rules which de�ne the valid combina-
tions of these elements to generate letters, and S is the
starting (or root) symbol. The set of matchable words
is the set of strings � which constitute valid English
words and can be derived from � (i.e., �

�
=) �).

The recognition module uses a temporal represen-
tation of the input, thereby preserving the sequential
nature of the cursive data and enabling the use of a
Time-Delay Neural Network (TDNN)-style architec-
ture [18]. This recognizer is trained to classify the sig-
nal within its �xed-size input window as this window
sequentially scans the input word representation, thus
allowing us to built a system that no longer depends on
a potentially errorful segmentation procedure during
the recognition. By training and recognizing charac-
ters in context2 (i.e., we de�ne a large enough input
window to include more than one character) the co-
articulation phenomena is accounted for. Finally, the
recognizer's outputs are collected and converted into
an ASCII string that can be matched against the re-
duced lexicon.

3 Filtering module

According to the harmonic oscillator description of
the muscle action involved in handwriting production
[9], cursive handwriting generation can be viewed as
a sequential modulation of two coupled oscillations;
one in the vertical direction and one in the horizon-
tal direction. In this context, it is natural to charac-

2By character context we mean a small portion of the word
image that precedes and follows the given character.

terize the writing as an ordered sequence of upward
and downward strokes. However, it has been previ-
ously suggested that downward strokes in the word
are more important than upward strokes because they
are always part of the letters while the former ones
sometimes act as joining strokes [1]. Therefore, we
choose to extract downward strokes only which are
subsequently classi�ed based on their relative heights
and direction of movement. They constitute the set of
key features which are going to be used to describe the
structure of the words. Accordingly, grammar Gfilter

is currently de�ned as follows:

Gfilter = (Vascii; Vfeature; P; S)

where

Vfeature = fA;D;M;B;C;K;L;R; Ug

Vascii = fa; b; c; . . . ; zg

P = fA! bjdjf jhjkjljt

D ! f jgjjjpjqjyjz

M ! ajcjejijmjnjojrjsjujvjwjx

. . .

AM ! bjhjk

RD! gjq

. . .

MMM ! mjw

RDM ! qg

In total there are 64 production rules; therefore,
only a few of them are shown. Referring to the lines
illustrated in Figure 2 the following interpretation of
the symbols in Vfeature is used: ,

A Ascender stroke (a stroke that substantially ex-
tends from the half-line to the upper region of
the word);

D Descender stroke (a stroke that substantially ex-
tends from the base-line to the lower region of
the word);

M Median stroke (a stroke that lies between the half-
line and the base-line of the word);

B Both stroke (a stroke that expands both the upper
region and the lower region of the word);

C Connection stroke (a stroke that lies above the cen-
ter line between the half-line and the base-line);

K K-stroke (the middle downward stroke in a letter
`k');

L L-stroke (a retrograde stroke pointing leftwards);

R R-stroke (a retrograde stroke pointing rightwards);

U Unknown stroke (a stroke with an ambiguous clas-
si�cation).

(a)

half line

base line

(b)

Figure 2: The �ltering module: (a) a raw word image,
and the (b) preprocessed image shown with base-line,
half-line and extracted downward strokes. The associ-
ated code word is `ULMMCRDMRMMMM' and the re-
duced lexicon is f`program',`programmer',`programs'g.

The searching procedure uses a trie [10] representa-
tion of the dictionary to check if derived strings con-
stitute valid English words. The �nal set of matchable
words is further pruned if any diacritical mark (points
on \i",\j", \t" bars, and \x" slash) is detected in the
input image.

3.1 Discussion of �ltering module

Care has been taken in the selection of features and
derivation rules since exclusion of the correct word at
this stage may deter e�ective recognition in the sub-
sequent stage. Tested on a database of 750 cursive
words (3 to 8 letters long) written by 10 writers, using
a lexicon of 21,000 words, the reduced lexicon contains
the correct word in 733 cases (i.e., 97.7% accuracy).
The size of the correctly pruned lexicon is 112.8 words
on average (i.e., 99.4% reduction e�cacy) and 3103
words in the worst case. It took the �ltering mod-
ule, running on a Sun IPC (concurrently with other
light processes), 9 secs in the worst case to output the
reduced lexicon for an eight letter word.

4 Recognition module

On-line data represents text as a coordinate se-
quence fP (t) = (X(t); Y (t); Z(t))g, where X;Y are

the coordinates of the pen tip, and Z corresponds to
the pen-up/pen-down indication. Although all the dy-
namic information about handwriting can be presum-
ably inferred from this sequence, this data is too un-
constrained so we must make a decision about how
to encode it. However, we want to avoid the hand-
crafting involved in selecting features, a process which
could result in the discarding of information essen-
tial for recognition. Therefore, we choose mainly to
encode information about the local direction and cur-
vature in the pen trajectory, and rely on the neural
network-based recognizer for the selection of features
relevant for performing the classi�cation task.

Two parameters are used in the coding of direc-
tion: (i) sine of the angle between each segment
(X(t); Y (t))�(X(t�1); Y (t�1)) of the trajectory and
the Y-axis (sin �y(t)), and (ii) sine of the angle be-
tween (X(t); Y (t))� (X(t� 1); Y (t� 1)) and the X-
axis (sin �x(t)). By restricting these angles to vary
between ��=2 and +�=2 we make the parameters
unambiguous; a negative value of sin �y(t) will indi-
cate that point P (t) = (X(t); Y (t)) is before point
P (t�1) = (X(t�1); Y (t�1)) (i.e., a backward pen
movement was made in going from P (t�1) to P (t)),
and a positive value will indicate that point P (t) is
after point P (t�1) (i.e., a forward pen movement was
made). Similarly, the sign of sin �x(t) will indicate
whether point P (t) is above or below point P (t�1)
(i.e., if an upward or downward pen movement was
made).

In addition to the directional information, the lo-
cation of the points in the trajectory at which sharp
changes in the direction of movement (i.e., cusps)
take place is found. A very simple measurement of
the `local' curvature can be obtained by calculating
the change between two consecutive directional an-
gles. Guyon et al.[7] suggested to represent the angle
�(t) = �x(t+1)��x(t�1) by its sine and cosine values.
However, we found that the values of cos �(t) behave
more smoothly than that of sin�(t); the reason being
that for small values of �(t) (i.e., little change in direc-
tion), cos �(t) remains
at and at the high value of +1
while sin�(t) will oscillate around zero. We choose
cos�(t) as our only curvature descriptor: it will go
down to �1 for sharp cusps (independently of their
orientation) and down to around 0 for more smoother
turns.

4.1 Varying duration and scaling

The trajectory representation is made scale invari-
ant by normalizing the size of the word with respect to
the vertical axis to a given heightH, while maintaining

the same aspect ratio. Thus, the height of small letters
(those that fall between the base-line and the half-line)
is approximately �xed for all words. Since the distance
between points is kept constant, the above procedure
e�ectively minimizes time distortions of letters.

4.2 Time frames

Given a sequence f(X(t); Y (t); Z(t))g of on-line
data, we de�ne a time frame F(t) to be a 4-
dimensional feature vector consisting of four ele-
ments (sin �x(t); sin �y(t); cos�(t); zone(Y (t))), where
the �rst three elements have already been described
above. The fourth element, zone(Y (t)), is introduced
to help distinguish pairs such as `e-l' and `a-d', which
have similar temporal representations. These pairs
can be di�erentiated by encoding their corresponding
Y (t) values into the previously determined zones: the
middle zone (between the base-line and the half-line),
the ascender zone (above the half-line) and the descen-
der zone (below the base-line). The frame sequence
fF(t)g constitutes an intermediate representation of
the on-line data and is used as the input to the neural
network recognizer.

4.3 Neural network recognizer

Our current three layer TDNN-style network is
shown in Figure 3. The input to the neural net-
work is a window of L = 96 frames (network recep-
tive �eld) which are extracted from the input frame
sequence fF(t)g. The input window is continuously
moved across the frame sequence fF(t)g thus gener-
ating activation traces Ol(t) at the output of the net-
work where Ol(t) corresponds to the network's con�-
dence in recognizing a letter l at time t. These output
traces would be subsequently examined to determine
the most likely interpretation of the input word. The
input window is shifted by S=3 frames between suc-
cessive generations of the output activation trace.

The weight connection in the network is arranged
such that each hidden unit has a receptive �eld that
is limited by a time delay; each neuron's decision at
time t is based on the previous frames F(t);F(t�
1); . . . ;F(t�N �1) where N is the receptive �eld's
size or the number of delays. In the �rst hidden layer
there are 30 frames FL1

(t) and each frame consists of
8 feature detecting units interconnected to the input
layer with 9 delays. That is, each unit in the �rst
hidden layer receives input from 9 consecutive frames
in the input layer; therefore, there are 36 connections.
The particular choice of 9 delays comes from the goal
of detecting features with short duration at this level,

time

Input
layer

Output layer

Hidden L

sin θx(t)

sin θy(t)

cos φ(t)

zone(t)

L

... ...

......

...

...

b

z

a

c

Hidden L

...

...

...

...

9 time delays

6 time delays

...

1
2

1
2

12 2

1
8

Figure 3: The architecture of a TDNN-style network for
cursive word recognition.

but also long enough for each unit to detect a mean-
ingful feature (e.g., a cusp). The receptive �elds of two
consecutive units in the �rst hidden layer overlap by 6
frames. In the second hidden layer, there are 9 frames
FL2

(t) each with 12 feature detecting units and look-
ing at a 6 frame window of activity levels in the �rst
hidden layer. These units receive a larger time spans
information from the input, and hence are expected to
detect more complex and global features (i.e., longer
in duration). The receptive �elds of two consecutive
units in the second hidden layer overlap by 3 frames.
Finally, the second hidden layer is fully connected to
the output layer which has 24 units (one for each of
the English letters except `t' and `x' which we are not
currently dealing with since they require special treat-
ment of their crossing stroke). In the current network
there are a total of 660 units.

The choice of L=96 frames as the size of the input
window to the network is related toH (currently set at
about 3mm), the normalization height. H is selected
such that L frames are enough to represent a character
and, in most cases, include part of the characters on
each side of it for contextual information.

Weights are also shared: the weights connecting one
frame FLi

(t) in layer Li to its corresponding receptive
�eld (in the layer below) are the same as the weights
connecting the next frame FLi

(t+1) in layer Li to its
corresponding receptive �eld. Therefore, in total there
are only 3428 independent weights. Weight sharing is
a general paradigm that allows us to build reduced
size networks. Minimizing the number of free param-
eters in the network (i.e., weights that must be deter-
mined by the learning algorithm) is an e�ective way
of increasing the likelihood of correct generalization
[11]. Weight sharing also guarantees invariance under
translation in time [14]; by constraining all the frames

to learn the same pattern of weights, each frame com-
putes the same set of features over its receptive �eld as
the neighboring frames do. Intuitively, if a particular
feature detector is useful on one part of the sequence,
it is likely to be useful on other parts of the sequence
as well, particularly if such a feature appears in the
input, displaced from its ideal position.

4.4 Training data set

In order to perform training, with back-propagation
algorithm, a training data set is created by labelling
each word sample with the positions of each inter-
character boundary (where roughly one character ends
and the next one begins). This information is then
used to pair each frame F(t), in the dynamic rep-
resentation of the word, with an output vector. The
goal is to generate a target signal that ramps up about
halfway through the character and then quickly backs
down afterwards, so that the network learns to recog-
nize this character whenever its center is in the middle
of the network's receptive �eld. For every character in
every word of the training data set, a target signal that
ramps up at 30% of the character's length, reaches its
maximum between 45% and 55% of the character's
length, and backs down to its minimum afterwards
was generated.

About 25 di�erent words were randomly selected
from a 60,000 words dictionary keeping the letter fre-
quency `roughly' uniform (the maximum letter fre-
quency is about three times the minimum letter fre-
quency in the set). Three di�erent writers were asked
to write these words 4 times, using a WACOM SD-
311 digitizing tablet, resulting in 225 words for train-
ing and 75 words for testing. All 225 training words
were concatenated together, after preprocessing and
size-normalization, into a sequence of 64,596 pairs
(frame,target).

4.5 Network simulation

The activation range of the neurons is chosen to be
between �1 and +1 with the following computation-
ally e�cient squashing function [2] :

f(u) = u
1+juj , f 0(u) = 1

(1+juj)2 + offset

where juj stands for the absolute value of the
weighted sum and offset is a constant suggested by
Fahlman [3] to kill
at spots. Weights are initialized
with random numbers uniformly distributed between
�0:1 and +0:1. A single bias unit is used by all weight-
shared units that are controlled by the same weight

kernel, as opposed to an independent bias per unit
(we found no reason to have independent bias units in
order to develop truly invariant feature detectors).

The use of an error tolerance3 during training was
very helpful in mediating the disproportion between
the training samples with negative target values (neg-
ative evidence indicating that the network should not
respond) and the training samples with positive tar-
get values (positive evidence indicating the network
should respond). We start this parameter at 0:3 and
subsequently gradually reduced it to 0.1. All our sim-
ulations have been performed with an in-house devel-
oped simulator written in ANSI C. A Mean Squared
Error (MSE) of 0:17 was obtained after a training ses-
sion of 140 iterations using an error tolerance of 0:3
during the �rst hundred iterations, and then 0:15 and
0:1 for the next thirty and ten iterations respectively.

4.6 Output trace parsing

In order to convert the output trace signal Ol(t)
generated by the network into an ASCII string, the
sizes and widths of all activation `peaks' for every out-
put unit are determined. Figure 4b shows the output
activation traces, for all the 24 output units, gener-
ated by the network when presented with the word
`vainer' from our testing data set. Eight di�erent ac-
tivation peaks are clearly visible; the six larger ones
corresponding to a letter in the word.

The sizes of all activation peaks are computed by
scanning the output activation traces, from left to
right, looking for activation levels that exceed a given
threshold. When the activation value of an output
unit exceeds the threshold (currently set at �0:8), a
summing process begins for the unit, that ends when
it's activation value falls below the threshold. The
width of a peak is de�ned as the maximum of the ac-
tual peak width (finish time � beginning time) and
the expected peak width. The expected peak width
for a given letter is given by the average width of all
the peaks in the training signal for that letter.

Activation peaks with a maximumvalue below�0:2
are ignored (i.e., they are not considered con�dent
enough). In order to compensate for smaller letters,
which are shorter in the temporal domain, we normal-
ize the size of a peak by its expected average size [8].
The expected average peak size is computed in a sim-
ilar way to the expected peak width. The set fPig of

3An error tolerance of, say, 0:3 means that any activation
value of an output unit below �0:7 is considered to be a �1:0
and any value above +0:7 is considered to be a +1:0 (i.e., no
error is feed back).

all selected activation peaks is ordered based on the
beginning time of each peak Pi.

In order to handle overlapping peaks, we construct
an interpretation directed graph from the ordered set
of activation peaks as follows: there is a node Ni in
the graph for every activation peak Pi, and there is
an edge between nodes Ni and Nj (i < j) if peaks
Pi and Pj are adjacent and do not overlap; otherwise,
nodes Ni and Nj will lie on parallel paths of the graph.
In Figure 4b all activation peaks that reach a maxi-
mum value above �0:2 are shown with their expected
widths ($) centered around the middle of each peak.
Figure 4c shows the associated interpretation graph:
the number next to each node is the size of the corre-
sponding activation peak. Word hypotheses are gen-
erated by traversing all possible paths in the graph
from the root to all the `leaves'. We currently set the
con�dence of a word hypothesis as the product of the
node's values in the corresponding path.

0

20

40

60

80

100

120

140

0 100 200 300 400 500 600 700 800 900

Y

X

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120

A
c
t
i
v
a
t
i
o
n

Time

v a

w
i

n e

r

s

(a) (b)

> v
0.83

 a
0.86

 w
0.11

 i
0.64

 n
0.82

 e
0.93

 r
1.05

 s
0.16

vainer (0.36)
vwner (0.07)
vaines (0.05)
vwnes (0.01)

(c)

Figure 4: The operation of the output trace parsing
algorithm: (a) the preprocessed image of a word `vainer',
(b) the plot of the corresponding network output traces
(selected activation peaks are shown with their expected
peak width), and (c) the associated interpretation graph
and generated word hypotheses (nodes of the graph are
shown with their corresponding peak's sizes).

4.7 Discussion of recognition module

Without any additional postprocessing than what
was described in the previous section, the top choice
word recognition rate of the recognition module was
76% on the testing set. With elementary spell check-
ing of the top choice returned by the recognizer, accu-
racy increases to 88%. The size of the returned word

hypotheses set ranged between 1 and 8 words with an
average of 1:6 words. There were in total 1; 232 let-
ters in our testing strings and the corresponding letter
level recognition rate was 98:5%. This is an indica-
tion, which we manually con�rmed, that when the top
choice word was incorrect the recognizer had missed
only a few characters (at most one in our testing set).

5 Summary and Conclusions

We have presented a system for writer independent
large vocabulary recognition of on-line handwritten
cursive words. The system is composed of two mod-
ules: a �ltering module, based on features that are
computationaly very easy to compute, which quickly
reduces a large reference dictionary to a much smaller
number of string candidates, and a recognition mod-
ule which uses a temporal representation of the input
word, instead of a static 2-dimensional image of the
word, which allows us to preserve the sequential na-
ture of the data and enables us to use a TDNN-style
network. The network recognizer avoids explicit seg-
mentation of the input words by using a sliding win-
dow concept. Both modules were tested on a number
of images and have been shown to be useful in this
domain.

Acknowledgements

The authors wish to thank several people at
CEDAR. Dar-Shyang Lee for his many suggestions
and assistance. Stayvis Ng implemented most of the
lexicon reduction routines. Bobby Kleinberg imple-
mented the slant correction algorithm. This work was
supported in part by the USPS O�ce of Advanced
Technology and by the National Science Foundation
under research grant IRI9315006.

References

[1] E. Brocklehurst and P. Kenward. Preprocessing
for cursive script recognition. NPL Report DITC
132/88, 1988.

[2] D. Elliott. A better activation function for ar-
ti�cial neural networks. Tech. Report TR93-
8, Institute for Systems Research, University of
Maryland, 1993.

[3] S. Fahlman. An empirical study of learn-
ing speed in back-propagation networks. Tech.
Report CMU-CS-DD-88-162, Computer Science
Department, Carnegie Mellon University, 1988.

[4] D. Ford. On-line recognition of connected hand-
writing. PhD thesis, University of Nottingham,
1991.

[5] T. Fujisaki, H. Beigi, C. Tappert, M. Ukel-
son, and C. Wolf. Online recognition of un-
constrained handprinting: a stroke-based system
and its evaluation. In From Pixels to Features
III. Elsevier Science Publishers, 1992.

[6] W. Guerfali and R. Plamondon. Normaliz-
ing and restoring on-line handwriting. Pattern
Recognition, 26(3):419{431, 1993.

[7] I. Guyon, P. Albrecht, Y. LeCun, J. Denker, and
W. Hubbard. Design of a neural network char-
acter recognizer for a touch terminal. Pattern
Recognition, 24(2):105{119, 1991.

[8] N. Hakim, J. Kaufman, G. Cerf, and H. Mead-
ows. Cursive script online character recogni-
tion with a recurrent neural network model. In
IJCNN. IEEE, 1992.

[9] J. Hollerbach. An oscillation theory of handwrit-
ing. Biological Cybernetics, 39:139{156, 1981.

[10] D. Knuth. The Art of Computer Programming:
Sorting and Searching, vol 3. Addison Wesley,
1973.

[11] Y. LeCun. Generalization and network design
strategies. In Connectionism in Perspective. El-
sevier Science Publishers, 1989.

[12] G. Martin and J. Pittman. Recognizing hand-
printed letters and digits using backpropagation
learning. Neural Computation, 3:258{267, 1991.

[13] P. Morasso, L. Barberis, S. Pagliano, and
D. Vergano. Recognition experiments of cur-
sive dynamic handwriting with self-organizing
networks. Pattern Recognition, 26(3):451{460,
1993.

[14] D. Rumelhart, G. Hinton, and R. Williams.
Learning internal representations by error prop-
agation, vol 1, p. 318{362. Bradford Books,
1986.

[15] M. Schenkel, H. Weissman, I. Guyon, C. Nohl,
and D. Henderson. Recognition-based segmen-
tation of on-line hand-printed words. In NIPS
V. Morgan Kaufmann, 1993.

[16] L. Schomaker. Using stroke or character-based
self-organizing maps in the recognition of on-
line, connected cursive script. Pattern Recog-
nition, 26(3):443{450, 1993.

[17] Y. Singer and N. Tishby. A discrete dynamical
approach to cursive handwriting analysis. Tech.
Report CS93-4, Institute of Computer Science,
The Hebrew University of Jerusalem, 1993.

[18] A. Waibel, T.Hanazawa, G. Hinton, K.Shikano,
and K. Lang. Phoneme recognition using time-
delay neural networks. IEEE Trans. on ASSP,
37:328{339, 1989.

