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a b s t r a c t

Adaptable Parsing Expression Grammar (APEG) is a formal method for defining the syntax

of programming languages. It provides an on-the-fly mechanism to perform modifications

of the syntax of the language during parsing time. The primary goal of this dynamic

mechanism is the formal specification and the automatic parser generation for extensible

languages. In this paper, we show how APEG can be used for the definition of the

extensible languages SugarJ and Fortress, clarifying many aspects of the syntax of these

languages. We also show that the mechanism for on-the-fly modification of syntax rules

can be useful for defining grammars in a modular way, implementing almost all types of

language composition in the context of specification of extensible languages.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The use of Domain-Specific Languages (DSLs) [1,2] has been considered a good way to improve readability of software,

bridging the gap between domain concepts and their implementation, while improving productivity [3–5] and maintain-

ability [3,6,7]. Despite the various methods for implementing DSLs, extensible languages seem to have several advantages

over other approaches [8–10]. One of the advantages is the possibility of implementing DSLs in a modular way. For example,

Erdweg et al. show how DSLs can be implemented using the extensible language SugarJ [8], by means of syntax units

designated as sugar libraries, which specify a new syntax for a domain concept. Tobin-Hochstadt et al. also discuss the

advantages of implementing DSLs by means of libraries [9].

The implementation of extensible languages requires adapting the parser every time the language is extended with a

new construction. This task has been implemented in an ad-hoc way by regenerating a static grammar which accomplishes

the new changes, compiling this grammar and using it for parsing the program [8,11,12]. Another way is to use models that

provide mechanisms for dynamically changing grammar rules. The latter approach has several advantages [13].

Reis et al. observed this lack of formalization when defining the syntax of extensible languages and proposed a new

formal method to fill this gap, which is called Adaptable Parsing Expression Grammars (APEG) [14]. The main feature of APEG

is the ability for formally describing how the syntax of a language can be modified on the fly, while parsing a program.

Although APEG was initially proposed as a formal method for defining the syntax of extensible languages and efficiently
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parsing them, its flexibility for dynamically changing the grammar during parsing time also accredits APEG to implement

other important issues in language design.

The main application of on-the-fly grammar modification during parsing is on the definition of extensible languages. This

work is an extension of [13], and shows that the mechanism for on-the-fly modification of syntax rules can implement

almost all types of language composition defined in [8] and allows defining grammars in a modular way. It proves that the

on-the-fly mechanism of APEG for changing grammars is powerful to define extensible languages. Composing grammars

dynamically also may be useful for defining parameterized DSL libraries

Extending and composing languages require more than only syntax. It involves semantics and also language-based tools,

such as editors and debuggers. In this paper, we only address syntactic aspects of extensibility. The semantic issues will be

object of further research.

The remaining of this paper starts giving a brief introduction on how APEG works, in Section 2. Section 3 discusses APEG

specifications of the extensible languages SugarJ and Fortress. In Sections 4 and 5, we show how the mechanisms provided

by APEG allow building modular specifications and language composition, respectively. Section 6 discusses the related work

and Section 7 presents the conclusions.

2. Adaptable Parsing Expression Grammar

Adaptable Parsing Expression Grammars or APEG [14] is an extension of PEG [15], so as to allow the set of grammar rules

to be changed during parsing. APEG associates attributes with nonterminal symbols and achieves adaptability through a

special inherited attribute called language attribute. The language attribute is the first attribute of every nonterminal.

It represents the current APEG grammar and contains the set of all its rules. This attribute can be changed, using update

expressions, by a special function adapt. During the recognition process, when the APEG parser initiates the expansion of a

nonterminal, its definition is obtained from its current language attribute.

Fig. 1 shows an example of an APEG grammar for parsing programs in a language initially containing only sum

expressions and also a construction to extend itself with other rules. The nonterminals Start, Sum, Add_Num and Num only

have the language attribute, enclosed by the symbols [and]. The nonterminal rule is the only one that has a synthesized

attribute, which is defined by the returns clause. The list of attributes of a nonterminal occurring on the right hand side of

a rule is enclosed by the symbols oand4 . Each list begins with the inherited attributes followed by the synthesized ones.

One example is the use of the nonterminal rule in the definition of the nonterminal Start, in Fig. 1.

The language defined by the nonterminal Start is a sequence of one or more Sum ‘;’ or ‘extend’ rule og,r 4 ’;’

{g¼adapt(g,r);}. The nonterminal Sum defines an arithmetic expression using only the addition operation. The parsing

expression ‘extend’ rule og,r 4 ‘;’ {g¼adapt(g,r);} is a construction used in this example to extend the language.

This parsing expression specifies a syntax that begins with the keyword extend followed by a nonterminal rule and ends

with the semicolon symbol. The parsing expression {g¼adapt(g,r);} is an update expression of APEG, and it is defined

within the symbols {and}. That update expression extends the grammar g with new rules, encoded in the string r. The

function adapt receives a grammar and a string representing the rules to be added to it and returns a new grammar, which

contains the new rules [16]. APEG only permits modifying the grammar by creating new rules or adding new choices to the

end of existing rules [16].

The definition of the nonterminals Sum, Add_Numm and Num is straightforward. The nonterminal rule just defines a

string which encodes a rule. This string is a sequence of characters enclosed by “and”. The parsing expression s¼(!”.)* in

the definition of the nonterminal rule is a bind expression. It captures the text matched by the parsing expression (!”.)*

and binds it to the synthesized attribute s. The parsing expression !”. uses the not-predicate operator, !, to assure that the

next symbol is not ”, without consuming it. Next, exactly one symbol is consumed using the any-expression symbol (a dot),

which recognizes any character. Summarizing, the parsing expression s¼(!”.)* matches a sequence of symbols until it

finds ”, associating this sequence to the variable s.

Fig. 1. An example of an APEG grammar.
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If we have the program of Fig. 2 as input, the parser will work as follows: it begins parsing with the nonterminal Start

with the initial grammar, containing only the rules of Fig. 1. After this, it successfully matches the first expression 1þ2 using

the first rule choice, Sum ‘;’, and does not change the grammar. Next, the construction adding new rules is parsed using the

second choice of the repetition. This time, the grammar g is modified with the new rule Add_Num[Grammar g]: ‘-’ Num

og 4;, by the update expression. Therefore, the new grammar has a new choice for the nonterminal Add_Num, allowing

the minus expression. In the next iteration of the repetition, when parsing the last expression, the language attribute g

passed to the nonterminal Sum has this new rule, so it is possible to correctly parse the expression in line 3.

It is important to highlight that although in this example we use the keyword extend in the construction that extends

the language, it is not a requirement of the APEG model. A language designer can create a construct that extends the

language using different keywords, or even no keyword at all.

This example illustrates some important features that APEG adds to the PEG model. The update expression is a new

feature added by APEG, which is used, in the example, to assign a new grammar to the language attribute. However, the

adaptability effectively takes place only when this attribute is passed to the nonterminal Sum as its language attribute in the

next iteration of the repetition. APEG also has constraint expressions, which may indicate that a parsing expression fails if

the given condition is not satisfied. We may omit the language attribute whenever it is only passed on without

modifications.

A formal definition of the semantics of APEG is presented in [14].

3. Defining the syntax of extensible languages using APEG

As we stated in the introduction, extensible languages arise as a good method for implementing DSLs. However,

analyzing extensible languages which have the properties required for defining DSLs in a modular way, such as the

languages SugarJ [8], Fortress [17,18,11] and XAJ [12], we have noted a lack of formal tools for their definition, leading to

ad-hoc implementations. The parsers available for these languages use a mix of a handwriting approach and automatic

generation, first collecting all definitions of new syntax and, next, generating a new parser table at compile-time for parsing

the code that uses the new syntax.

Due the flexibility of APEG to change the grammar definition on the fly, it is possible to formally define the syntax of

extensible languages, including the extensibility mechanism, and automatically parse them. In order to show how extensible

languages can be implemented using APEG, we specify the syntax of the extensible languages SugarJ and Fortress, described

in Sections 3.1 and 3.2, respectively.

3.1. The syntax of SugarJ

SugarJ [8] is a language recently developed by Erdweg et al. to experiment and validate their idea of sugar libraries.

The main aim of sugar libraries is to encapsulate the definition of extensions for the Java language in units that may be

imported or composed for creating other extensions, in a modular way. Fig. 3 shows an example of a definition of a sugar

library for a new syntax for pairs, creating two new rules: a rule for the definition of pair types in line 5, type- ‘(’type ‘,’

type; ‘)’, and a rule for using pair expressions in line 6, expr- ‘(’expr ‘,’ expr; ‘)’. Note that the definition of a rule in SugarJ is

in an order that is reverse to the one commonly used in context-free grammars.

A definition of a sugar library does not immediately extend the language, an extension is only created when a module or

file imports a sugar library. As an example, Fig. 4 shows a program that imports the sugar library Pair in line 1. After this

import statement, the parser effectively extends the language, adding the two rules defined by the sugar library. The rules

added are used for correctly parsing the instance variable p of the class Test in line 5.

Fig. 3. A definition of sugar library for Pairs in SugarJ (borrowed from [8]).

Fig. 2. A program of the language defined by Fig. 1.
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We have defined the syntax of SugarJ in APEG and used an experimental version of an interpreter of the model to

automatically perform parsing. As APEG is based on PEG, we adapted an implementation of the Java grammar for the Mouse

project [19], which is also based on PEG, and extended it to allow the definition of sugar libraries. Fig. 5 shows the syntax

definition of sugar libraries. As a definition of a sugar library does not extend immediately the grammar, the nonterminal

sugar_decl only collects the name of the sugar library and the rules in a single string. This information is passed through the

rules of Fig. 5 as synthesized attributes and is used later in an import statement to extend the grammar. Differently from the

implementation of SugarJ, which defines the rules in SDF [20] syntax, we have decided to use the PEG style for defining the

rules of SugarJ, because of the base model. Otherwise, we would have to translate the context-free rules to PEG and this

would add complexity that is out of the scope of the project. The nonterminal peg_rule defines a sequence of rules in the PEG

style (lines 5 and 6 of Fig. 3 are a concrete example of the kind of syntax defined by this rule), but they are in an order that is

reverse to the one commonly used in PEGs. The update expression of the peg_rule, {rule þ¼id þ ‘:’ þ s þ ‘;’;},

creates a string representing the rules being defined, in the APEG style. The other nonterminals define the syntax of parsing

expressions and return their respective strings.

We have also modified the nonterminal that represents type declarations to allow declarations of sugar libraries.

Therefore, the definition rule for this nonterminal has a new choice:

type_declaration ½String pack;Map m� returns½Map m1�:

…=sugar_declos; r4fm1¼ addðm;pack; s; rÞ; g

The nonterminal type_declaration has two inherited attributes, the package name and a map from names to rules,

and one synthesized attribute, a map from sugar names to their corresponding definitions. So, when a sugar library is

defined by the user, a type_declaration returns a new map associating the sugar library to its rules. Fig. 6 shows a

new syntax definition for a compilation unit, highlighting the possible changes on the grammar rules. The nonterminal

compilation_unit receives a map of sugar libraries and passes it to the nonterminal import_decl. The nonterminal

Fig. 5. Syntax definition of sugar libraries.

Fig. 4. Use of the pair syntax (borrowed from [8]).
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import_decl checks if the file is importing a sugar library and adapts the grammar, if necessary, using the function adapt.
The adaptable grammar is returned as a synthesized attribute and passed to the nonterminal type_declaration, which

may use the new syntax.

Every file is parsed by the nonterminal compilation_unit. So, for parsing our examples of Figs. 3 and 4, the compiler

parses the definition in Fig. 3 with the nonterminal compilation_unit, which receives the initial grammar of the SugarJ

language and an empty map without any definition of sugar libraries. As a result, the nonterminal compilation_unit

returns a new map that has an entry for the new sugar library Pair. This new map is used in the import declaration for

parsing the program text in Fig. 4, so that the grammar is modified with the new rules defining Pair syntax.

Composing sugar libraries: Sugar libraries are composed by importing more than one sugar library into the same file. As an

example, Fig. 7 shows a program that uses the syntax of pairs and closures. The compiler extends the grammar with the

rules of the syntax of closures defined in Fig. 8 when parsing the first import statement, in line 1. Next, the grammar is also

changed with the syntax of pairs when parsing the import declaration in line 2. The modified grammar, which has the

syntactic rules of pairs and closures, is used for parsing the class Partial.

The implementation of SugarJ uses SDF [20] and it may be necessary to write disambiguation rules when composing

various grammars. However, it is impossible to prevent all the possibilities of ambiguities and conflicts, consequently

composing two or more sugar libraries is not always possible. APEG avoids ambiguities using ordered choice, so composition

is, in principle, always possible using APEG. In fact, if there is some overlapping between the rules of two or more

extensions, the first option on the ordered choice clause will prevail. As new choices are always inserted at the end of a rule

definition, a user may change the priority altering the order of the import declarations. It seems a simple task, but it is not

always easy to understand the interactions between overlapping rules.

3.2. The syntax of Fortress

The main goals of the design of the Fortress language were to emulate mathematical syntax and to be extensible [18].

These two goals impose additional difficulties to build a parser for the language. However, defining the extensibility system

in a formalism like PEG [15], which supports unlimited lookahead, would bring some advantages [18,11].

Fig. 7. Composition of more than one sugar library (borrowed from [8]).

Fig. 8. Definition of the closure syntax (borrowed from [8]).

Fig. 6. Syntax definition of compilation units.
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Fig. 9 shows an example of the definition of an extension in Fortress. Line 1 defines a new grammar, called ForLoop,

which may use symbols of two other grammars, Expression and Identifier. The Fortress language has two types of

nonterminal specifications: the extension of an existing nonterminal, using the symbol j≔ðline 2Þ or the definition of a new

one (line 4). The right-hand side of a rule has two parts, a parsing expression and an action. The parsing expression defines

the syntax of the new construct in a PEG style and the action part specifies how to translate the syntax into the core

language. The action part is everything after the symbol ). It is possible to use aliases associated with terminal or

nonterminal symbols, creating references for them, which can be used in the action part. Fig. 9 shows an example in which

the nonterminal forStart is referenced by b in line 2.

Fig. 10 shows part of an APEG syntax definition of the Fortress language. Similar to the SugarJ definition, the nonterminal

gram_def defines the syntax of an extension in Fortress and returns a map with the new entry for it. However, different

from the SugarJ definition, a grammar in Fortress allows self-recursion and may use the new syntax in the action part.

Therefore, it is necessary to collect the grammar rules before parsing the code. We use the and-predicate operator “&” to

specify this, collecting the grammar rules while ignoring the action part. Next, we reparse the program with the modified

grammar. Note that, when collecting the grammar rules using the and-predicate operator, the action part is parsed as a

string, ignoring every symbol between ‘o[’ and ‘]4 ’ (nonterminal syn). After collecting the rule definitions, we adapt the

grammar and generate a new grammar g1. This new grammar is passed to the nonterminal nonterm_def, which passes it

to its children, allowing parsing the action part (nonterminal syntax). Therefore, the action part may use the new syntax

being defined.

The use of the and-operator, which allows an infinite lookahead, was very important to handle self-recursion, a kind of

forward reference. This operator is inherited by APEG from PEG and it is implemented efficiently with the packrat algorithm,

using memoization.

Combining grammars: Fig. 11 shows an example of composition of grammars in Fortress. Grammar A defines a new

nonterminal Nt, and grammar B extends grammar A. Fortress allows the use of the syntax of A in the action part of B, as in

line 6. Grammar C extends B and can use its syntax, however, C cannot use the syntax of A because it does not explicitly

extend grammar A. In [18], the authors report that they need to resolve the set of extensions (for example, in grammar C it

may use syntax defined in C or B, but not in A) to generate the table for parsing the action part and this is not an easy task.

Using the APEG model, defining the task described above is simple and clear. We adapt the grammar, adding the rules of

the grammars specified in the extends part. For example, parsing the grammar B, we add only the rules of A and when

parsing the grammar C, we add only the rules of B. Another difficulty reported in [18] is how to compose the rules with

multiple extensions, as defined in grammar D. In APEG, to have the same behavior of the original Fortress implementation,

Fig. 10. APEG formalization of Fortress language.

Fig. 9. Definition of a for loop in Fortress.
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we must adapt the grammar in the following order: first, we add the rules of the grammar which is currently being defined

(rules of D in the example), next the grammars in the extends part in the same order that is specified (first, it adds rules of B

and in the sequel, rules of C, for the example of Fig. 11).

The combination of extensions is difficult in the Fortress implementation because it must generate an entire grammar

which must contain the definitions of all grammars used. As in the APEG model the grammar is changed locally and only as

needed, combining grammars is easy and clear.

4. Grammar modularization

Grammars in APEG are first-class types in the sense that they can be used as inherited or synthesized attributes from

which APEG fetches the parsing expression of the associated nonterminal during parsing. This feature enables us to pass

pieces of grammars as attributes and to use them to build other grammars.

For example, Fig. 12 shows an APEG grammar for expressions, and Fig. 13 shows an example of a language which uses the

definition of the language of expressions. In Fig. 14, we show a concrete example of an input string which conforms with

grammar of Fig. 13. Observe that, in the definition of the nonterminal stmt in Fig. 13, the nonterminal expr comes from the

grammar g_exp, which is an inherited attribute of nonterminal stmt. This is possible because of the APEG semantics of the

use of a nonterminal on a parsing expression. The parsing expression of the nonterminal is fetched from the language

attribute being used. For example, when using expr og_exp 4 in Fig. 13, the parsing expression associated with the

nonterminal expr is defined by the grammar g_exp, which is the language attribute in this case.

Fig. 12. APEG grammar for expressions (the language attribute was omitted).

Fig. 11. Combining grammars (borrowed from [18]).

Fig. 13. Example of a APEG grammar which uses the definition of another APEG grammar.
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The APEG flexibility for changing grammars during parsing allows building grammars in a modular way. It is possible to

define different pieces of grammars and use all of them together for building another language. So, we can think of an APEG

grammar as a module, which defines a set of “syntactic functions”. Thus, grammars can be passed on as inherited attributes

and their “syntactic functions” can be used when these grammars are selected as the language attribute.

Another advantage of this APEG semantics is that we can change the language just by using a different grammar

definition. For example, the attribute exp of the nonterminal start could be associated with alternative grammars for

expressions using postfix or prefix notation, creating different languages without modifying the text of Fig. 13. This feature

can be useful for describing the syntax of languages by means of a parametrization mechanism in which a symbol has

different meanings in different contexts, such as the “if” expression in the AspectJ language.

5. Language composition

Erdweg et al. proposed a new taxonomy for distinguishing different types of language composition, namely language
extension and restriction, self-extension, language unification and extension composition [21]. Although APEG has been

originally proposed as a formalism for defining the syntax of extensible languages [14,16] (self-extension as defined by

Erdweg et al.), its dynamic behavior is able to specify these kinds of language composition, in the syntactic level. In this

section, we discuss how each type of language composition can be defined using APEG.

5.1. Self-extension

Erdweg et al. define that a language supports self-extension if the language can be extended by programs of the language

itself without changing its implementation [21].

In Section 3, we showed how to define the entire syntax of two self-extensible languages, SugarJ and Fortress, using APEG.

Our specifications define clearly what rules are available at a given moment during parsing. The combination of Fortress

grammars is clear in the APEG specification, showing explicitly what set of rules will be used when a grammar extends

another. So, we have provided enough evidence that APEG is capable for specifying self-extensible languages. The original

definition and implementation of the languages SugarJ and Fortress present a lack of formalization of the syntax, especially

for the aspects related with the extensibility mechanism of the language. When comparing the APEG specifications with

those definitions, it is even more clear that APEG is appropriate to specify self-extensible languages.

5.2. Language extension and restriction

Different from self-extensibility, which is a property of the language, language extensibility is a property of language

definitions. Erdweg et al. define that a system has this property if it allows extending a base language by reusing its

definition without modifications [21].

APEG clearly has this property and it is used for defining the syntax of extensible languages, as in the case of SugarJ and

Fortress. In fact, when the SugarJ grammar (the base language) is extended with a new DSL (for example, the Pair DSL of

Fig. 4), the language extensibility property provided by APEG is used for extending the language.

The initial formalization of APEG [14] does not restrict how the grammar can be extended, indicating that extensions will

be performed by functions defined by the designer. Later, in a prototype interpreter that was developed [16], extensions on

the base grammar were restricted by the addition of new rules or by the addition of new choices at the end of an existing

rule. As APEG has ordered choices as in PEG, language extension could not be always possible. For example, suppose a

grammar consisting of the APEG rule

rule:α:

If we extend this rule with the new choice α β, this second choice will never be used, because if the input succeeds for the

parsing expression α, the former choice will always be used. Otherwise, both choices fail. Although APEG may present this

problem when extending a language, it can be avoided as we did when extending the SugarJ language with some DSLs [16].

Another limitation imposed by APEG when extending a grammar is that it is not possible to change the set of attributes

(inherited or synthesized) of nonterminals. The attributes in APEG are syntactic, evaluated during parsing. When a

nonterminal is used on a parsing expression, all its attributes must be specified. They are very similar to arguments in

function calls. So, if APEG allowed adding a new attribute on a nonterminal, it would be necessary to change every use of

this nonterminal on all parsing expressions for defining the value of the new attribute. To avoid redefining many rules, APEG

does not allow changing the set of attributes.

Fig. 14. A concrete example which conforms with the grammar of Fig. 13.
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Erdweg et al. present another type of language composition, the language restriction [21]. The idea of language restriction

is the opposite of language extension: it consists in the exclusion of features from a language. Erdweg et al. do not give

special treatment to this type of language composition because they argue that language restriction can be implemented as

an extension of the validation phase of the base language. APEG does not have any feature to restrict the base language, thus

it does not provide any support for language restriction. In [22] it is shown how to give support for language restriction.

5.3. Language unification

A language-development system supports language unification when it is possible to reuse, unchanged, the implementa-

tion of two languages being unified only by the addition of glue code [21]. A possible solution for unifying languages using

APEG is to use ideas similar to the ones presented in Section 4, for modularization of grammars. We may define a grammar

which has the two other grammars being unified as inherited attributes and create a new one which uses or has the

definition of these two grammars.

For example, Fig. 15 shows a language for declaring variables. In Fig. 16, we show how to combine the language of Fig. 15

with the language of expressions of Fig. 12, so as to build a new language which allows variables in expressions. In line 3 of

Fig. 16, a new grammar which has the rules of both grammars is created. This is done by adding all rules of the grammar

expr to grammar decl. Note that, if there is any nonterminal in the second grammar which is already defined in the first

grammar, the parsing expression of this nonterminal in the first grammar is extended with a new choice, consisting of the

parsing expression of the second one. It is similar to add a new rule, as explained in Section 2, but, in this case, it may add a

set of rules. In line 4, the resulted grammar is extended with a rule to allow variables in expressions and, in line 5, a new

nonterminal definition, exprdecl, which defines a rule for allowing a list of declarations followed by an expression is

added, completing the unification of the language of declaration with that of expressions. The grammar unified is stored in

the synthesized attribute result, allowing other grammars to use it.

Creating a new grammar by extending a grammar with the rules of another one, such as in line 3 of Fig. 16, resembles the idea of

inheritance of object-oriented programming. Mernik shows that the notion of inheritance enables us to implement all the types of

language composition described by Erdweg et al. [22]. Thus, by passing grammars as inherited attributes and using the idea

presented in Fig. 16, which simulates inheritance, APEG can achieve language unification. However, APEG does not allow overriding

a nonterminal definition as in object-oriented programming, or simulate it, thus it is not possible to use inheritance as discussed in

[22] when it is needed to override a nonterminal definition. Also, unifying languages by creating a new grammar dynamically, as in

Fig. 16, is not efficient when the set of nonterminals and rules are static. However, in the context of defining the syntax of extensible

languages, composing grammars in this way using APEG could be useful, because the syntax would change dynamically.

5.4. Extension composition

The kind of language composition described above only defines how a system can be extended with a single extension.

To refer to a system which allows composing more than one extension, Erdweg et al. [21] define a new term, extension
composition. There are two interesting cases of extension composition: incremental extension and extension unification.

A system supports incremental extension if it is possible to extend a base language with a extension E1 and also extends

the result with another extension, E2. In other words, the system allows language extensibility twice or more times in the

base language. APEG supports incremental extension because it is possible to extend a grammar and, afterwards, to extend

the result. In fact, this property was used to implement composition of sugar libraries of SugarJ, as shown in Fig. 7. The only

restriction to incremental extension of APEG is the problem discussed in Section 5.2 that can occur between extensions too.

Fig. 15. APEG grammar for a declaration language.

Fig. 16. A grammar which unifies the declaration and expression languages.
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A system supports extension unification when it allows extending a language with the result of the unification of two

other languages or extending the result of the unification. So it refers to the process of combining together the properties

language extension and language unification. APEG also supports extension unification. As an example, Fig. 17 shows an

extension to the result of the unification shown in Fig. 16. In line 2, the grammar of Fig. 16 is used to unify the languages of

declarations and expressions. In the sequel, line 3 extends the result with the rule mul:‘/’ to allow division operation in

expressions. Finally, line 4 uses the definition of the nonterminal exprdecl, fetching the parsing expression of this

nonterminal from the new grammar, represented by the attribute result.

Fig. 18 shows a concrete example which conforms with the syntax defined by the grammar of Fig. 17. Note that the

language defined (nonterminal exprdecl) is a list of variable declarations followed by an expression, as defined by the

unification (grammar of Fig. 16). However, as the result of the unification was extended to allow the division operation,

expressions can use this operation. Therefore, line 1 has a list of variable declarations, which comes from the nonterminal

declist that was originally defined by the grammar of Fig. 15, and line 2 shows the extended version of expressions, which

allows the division operation. This example shows a language unification and afterwards a language extension, giving a idea

of how APEG supports extension unification. The same idea can be used to extend a language with the set of rules that results

from the unification of other two languages.

The APEG ability to add new rules or rule choices and also to change the grammar during parsing provides a flexible

mechanism to compose languages. APEG is indeed a powerful mechanism to define extensible languages by means of

features for composing and reusing definitions of DSLs.

6. Related work

In this section, we discuss works related to ours and split them into four categories: parsing of extensible languages,

models for defining extensible languages, grammar modularization and language composition. First, we discuss some

implementations of extensible languages which allow a flexible mechanism to extend their own concrete syntax (Section

6.1) and some adaptable models to define them (Section 6.2). Afterwards, we show related work in grammar modularization

(Section 6.3) and in the field of language composition (Section 6.4).

6.1. Parsing of extensible languages

The idea of offering facilities to add syntactic constructions to a language remotes to the Lisp language and its dialects,

such as Scheme and Racket [9]. These languages use the same notation for data and program, S-expressions, thus they allow

the implementation of a flexible and powerful macro-system. Racket implements macros by means of functions from syntax

to syntax that are executed at compile time when a macro use is reached by the macro-expander. However, S-expressions

impose restrictions on macro-syntax, and Racket lacks support for a high-level syntax formalism, and modern extensible

languages avoid this approach.

The implementation of parsers for extensible languages which do not use the same notation for data and program is

similar. In general, it uses a stepwise approach, which collects the grammar definitions and generates a parse table from the

new rules collected. Then, the parser analyzes the program using the table generated.

For example, the SugarJ compiler [8] uses a stepwise approach for parsing its syntax: parsing, desugaring, splitting and

adaptation; and the compiler uses an incremental compilation process, in which every top-level entry is parsed at a time. A

top-level entry in SugarJ is either a package declaration, an import statement, a Java type declaration, a declaration of

syntactic sugar or a user-defined top-level entry introduced with a sugar library. Every top-level entry passes through the

four stages before parsing other top-level entries.

In the parsing phase, a top-level entry is parsed with the current grammar, which reflects all sugar libraries currently in

scope, and the other entries are parsed as a string. As a result of this stage, an abstract syntax tree is constructed with nodes

of SugarJ and user-defined extension nodes. In the desugaring stage, user-defined extension nodes are desugared in nodes of

SugarJ. The desugaring is done by the Stratego tool [23] (a language for program transformation) with the rules defined in a

sugar library. In the splitting stage, the compiler splits every top-level entry into fragments of Java code, SDF [20] grammar

(a syntax formalism whose parsing algorithm allows ambiguous grammars) and Stratego rules. SDF grammar and Stratego

Fig. 18. A concrete example which conforms with the grammar defined by Fig. 17.

Fig. 17. An example of extension composition.
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rules produced in the splitting stage are used in the adaptation stage for modifying the current grammar of the parsing stage

and the desugar rules in the desugaring stage. In the adaptation stage of the SugarJ compiler, the SDF grammar needs to be

compiled to generate a parsing table at compile time, which will replace the current grammar to parse the other top-level

entries. This approach only works because the current grammar in SugarJ is only changed after parsing top-level entries,

which are disposed according to the structure of a file. For example, a file starts with a package declaration, next is the

import statements, then class declarations and so forth. This allows parsing, for example, an import statement, changing the

current grammar and parsing the next top-level entry, that could be a new syntax defined by the user.

Fortress is also an extensible language which does not use the same notation for data and program. To parse a program in

the Fortress language, a two-phase approach is taken [18]: in the first step, all the grammars except the action part (a rule

that describes how to desugar the extension in terms of Fortress core syntax) and the main expression are parsed. In this

step, the action part and the main expression are parsed as Unicode Strings. Next, the parser computes the set of extensions

that are available and generates another parser that is used for parsing the action part and the main expression, which may

use the new syntax. This strategy only works because all the grammar definitions must come before the main expression, so

they can be processed first. Similarly, the parser of the XAJ language [12] collects the new syntactic constructions defined by

syntax classes and generates a new parser using the PPG tool [24]. The generated parser is used for parsing the program,

which may use the new syntax.

The approach described for parsing SugarJ, Fortress and XAJ has some problems: the lack of a formalism for defining the

extensibility aspects of the language makes it impossible to automatically generate the parser, increases the complexity of

writing the parser, and raises difficulties to understand the language; the parser implementation may not conform with the

language specification; and the generation of the entire parser table every time the language is extended with few rules may

be inefficient.

6.2. Models for defining extensible languages

As extensible languages may change their own set of rules during parsing, the most appropriate formalisms to specify

their syntaxes may be the ones which also allow modifying the own set of grammar rules. Christiansen [25] proposes a

formalism with these features, called Adaptable Grammars, which is essentially an Extended Attribute Grammar [26] where

the first attribute of every nonterminal symbol is inherited and represents the language attribute. The language attribute

contains the set of rules allowed in each derivation. The initial grammar works as the language attribute for the root node of

the parse tree, and new language attributes may be built and used in different nodes. Each grammar adaptation is restricted

to a specific branch of the parse tree. One advantage of this approach is that it is easy to define statically scoped dependent

relations, such as block structure declarations of several programming languages. APEG was inspired in Adaptable

Grammars of Christiansen and the main difference between APEG and Adaptable Grammars is the models on which they

are based [14].

Shutt [27] observes that Christiansen's Adaptable Grammars inherit the lack of orthogonality of attribute grammars, with

two different models competing. The CFG kernel is simple, generative, but computationally weak. The augmenting facility is

obscure and computationally strong. He proposes Recursive Adaptable Grammars (RAGs) [27], where a single domain

combines the syntactic elements (terminals), meta-syntactic (nonterminals and the language attribute) and semantic values

(all other attributes). One problem of RAG is the difficulty to check for forward references, which is important for defining

the syntax of the Fortress language, for example. Modelling forward references is also difficult with Christiansen's Adaptable
Grammars. As shown in Section 3.2, the and-predicate and the not-predicate operators allow APEG to model forward

reference of Fortress.

Carmi [28] argues that existing adaptable formalisms do not handle forward references well, such as goto statements that

precede label declarations, and extensible languages with features like macro-syntax and its expansion. Thus, he proposes a

newmodel, called AMG. AMG is driven by the parsing algorithm and the derivation must be rightmost. Nonterminal symbols

of AMGs may have annotations and a special type of rule, a multi-pass rule. A multi-pass rule is similar to a simple rule,

however, when the parser reduces using this type of rule, the annotation of the rule is put as a prefix of the input to be

parsed. The multi-pass rules together with nonterminal annotations allow parsing a prefix of the input string and then

reparsing it using the same grammar rules or a different set of rules, handling forward references, macro-definitions and

expansion accordingly.

6.3. Grammar modularization

Mernik and Z̆umer [29] present an approach to write modular grammars by incorporating the idea of inheritance in

Attribute Grammars (AG). Using inheritance, the definition of new grammars may reuse productions rules and attributes of

other grammar definitions, as well extend or modify them. The tool LISA [30,31] implements this notion of inheritance.

An important difference between APEG and LISA is that LISA, as it is an AG system, models the syntax and semantics of the

language. APEG is a formalism to define the syntax of languages and, although the attributes can be used for semantic

purpose, APEG does not allow extending the set of attributes of a nonterminal as in LISA. Another difference between LISA

(and also AG systems) and APEG is that the attributes of APEG are evaluated during parsing and not after it, traversing the

AST. Also, APEG is L-attributed and does not allow definitions with circular dependency.
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Rats! [32] is a parser generator tool based on PEG that allows the production of modular grammars. The tool has a

module system for organizing, modifying, and composing syntactic specifications. Every grammar module can use other

module definitions and also modify them by adding, overriding or removing individual alternatives in a production. SDF [20]

also can separate grammars in modules and allows building new grammar definitions importing and using the definition of

other grammars. However, different from LISA and Rats!, SDF cannot allow modifying or overriding the definitions of the

grammar being used and only permit adding new production rules to them. The ANTLR [33] parser generator tool also has

an import mechanism which resembles inheritance. It processes a list of imports of grammars in depth-first strategy,

adopting the first definition of some rule that it encounters and ignoring subsequent instances. However, ANTLR does not

have any mechanism for overriding or modifying rules of imported grammars. Johnstone et al. introduced the idea of

Modularized Grammar Specification, which divides the grammar specification into modules [34]. The main difference to

previous works is the treatment for module namespaces, allowing using or importing the same nonterminal name from

different grammar modules.

The above tools work at source level and produce a global grammar from the modules, so they make it hard to produce

separated pieces of compiled grammars (parsers) and use them when building a new parser. As APEG allows changing the

grammar during parsing, it is possible to generate binary pieces of grammars and use them as libraries, but the prototype

interpreter does not have this feature yet. Several works have this goal and propose techniques for generating small parse

tables for parts of the language, and combining them to form the table for the language. As an example, Cervelle et al. [35]

implements a system which supports to separate compilation of pieces of grammars and dynamic linkage of these pieces at

runtime. Parse tables are generated using a bottom-up approach from incomplete grammars in which some nonterminals,

those that come from other pieces of grammars, are treated as special terminals (branch points). During runtime, the parser

switches between the parse tables when needed. The algorithm described by Bravenboer and Visser [36] for parse table

composition supports separate compilation of grammars to parse table components, using modular definition of syntax.

A prototype for this algorithm generates parse tables for scannerless Generalized LR (GLR) parsers [37], with input

grammars defined in SDF [20]. Schwerdfeger and Van Wyk [38,39] define conditions for composing parsing tables while

guaranteeing deterministic parsing, allowing defining extension to a base language with the guarantee that problems will

not occur when combining several extensions.

6.4. Language composition

The increasing use of DSLs has brought new challenges for language development, requiring that languages and

development systems can be planned to be composed and evolved. Many researches and systems have been developed to

allow easy implementation and composition of languages, specially to DSLs.

Erdweg et al. [21] noticed that there is a lack of precise terminology and ambiguity about the many meanings of language

composition, therefore they proposed a new terminology and classification to language composition, which we used to

analyze APEG. Also, composing languages involves to compose syntax and semantics. We discussed how APEG can achieve

language composition only in the syntactic level, however there is much work which goes beyond syntax.

Attribute Grammars are a model that allows defining the syntax and semantics of languages, and the mechanism of

inheritance applied to AG, which is implemented in LISA, allows LISA to compose languages in both syntactic and semantic

levels [22]. JastAdd [40] takes a similar approach to LISA and also allows all types of language composition in both levels,

syntax and semantics. JastAdd works on an object-oriented representation of an AST, in which nonterminals act as abstract

superclasses and their productions act as specialized concrete subclasses. The subclasses specify the syntactic structure,

semantics rules and attributes, which can be specialized or overrided using inheritance. By means of aspect-oriented

concepts, JastAdd allows combining language specifications.

Spoofax [41] is an approach based on SDF and Stratego. Using SDF, Spoofax is able to implement all types of language

composition on the syntax level. By means of the Stratego tool, Spoofax supports language composition on the semantics

level, however Stratego only supports the addition of new semantic rules to extend the base language semantics and does

not support the adaptation of an existing rule, so Spoofax only supports extension unification on the semantic level.

There are many systems that allow only composition by language extension. The main purpose of these systems is to

provide a way to extend a base language with DSLs (incremental extension, to use the taxonomy of Erdweg et al. [21]).

Language boxes [42] and island grammar based approaches [43] are examples of approaches that allow only incremental

extension. Language boxes specify extensions by defining the syntax, including modification on the base grammar to

integrate with the new syntax, the transformation of the DSL AST to the AST of the base grammar and some integration with

IDEs, such as highlighting code. The idea of language boxes is very similar to sugar libraries of SugarJ [8] and to syntax

classes of XAJ [12], which define how to extend the syntax of the language (the difference is that SugarJ and XAJ are

extensible languages) and the transformation of the extension to the base language code, encapsulated in a single definition.

The implementation of language boxes is based on PEG and parser combinators. However, language boxes also allow

more than four forms to modify a nonterminal definition, besides insertions of new choices at the end of the nonterminal

parsing expression allowed by APEG. It also allows adding a new choice at the beginning, adding a sequence parsing

expression at the beginning or the end of the pre-defined parsing expression or overriding the nonterminal definition.

Using island grammars, Dinkelaker et al. propose an approach to extend a host language with DSLs [43]. Due to the use of

island grammars, they avoid to specify the complete grammar of the DSL and the host-language. It is necessary only to
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specify the parts of the grammars (DSL and host language) that are relevant to the DSL concrete syntax implementation.

The Dinkelaker et al.'s approach also uses the notion of grammar inheritance, which allows defining syntax and semantics

based on other definitions. Their approach composes languages in the syntax level using a version of the Earley parser

algorithm [44] which supports composable island grammars [45]. The semantics of DSLs is given by translation to code in

the host-language.

7. Conclusion

The primary goal of designing APEG is to provide a formal method to define the syntax of extensible languages and also

automatically generate efficient parser for such languages. In this paper, we argued that APEG may have achieved these

goals by defining the syntax of SugarJ and Fortress. The specification of these languages shows that APEG is a powerful

formalism, which permits a clear definition of what rules are available at a given moment during parsing. Also, how to

combine Fortress grammars is clear in the APEG specification, explicitly showing what set of rules is to be used when a

grammar extends another.

Forward reference is reported as difficult to be handled with adaptable models [28]. The definition of grammars in

Fortress has a kind of forward reference, in which the action part may use syntax that is defined later. Therefore, it is

necessary to use a multi-pass approach. We showed that the predicate operator & of APEG allows simulating a multi-pass

parser, handling forward reference properly.

In this work, we do not address the efficiency of parsers generated using APEG. However, an experiment on parsing

programs with SugarJ using a prototype version of an APEG interpreter indicates that APEG may significantly improve the

performance of parsing such programs, when compared to the original implementation built with SDF [16].

We also analyze the flexible mechanism of APEG to change the grammar on the fly with respect to its power to define

grammars in a modular way and to compose languages. We showed that the flexibility to modify the grammar, by means of

the language attribute, during parsing allows APEG to reuse definitions from other grammars. This mechanism makes

possible to generate parsers from APEG grammars and distribute them as libraries. At this moment, we only have a

prototype interpreter for APEG and we are working on a parser generator, therefore we still do not have the appropriate tool

to make libraries from APEG grammars.

Erdweg et al. claim that implementing DSLs by means of libraries in an extensible language, such as SugarJ, is a better

choice than other approaches [8]. Defining DSLs' libraries may require the use of the definition of other DSLs and composing

them, therefore it is important that a formalism for specifying extensible languages supports composition of DSLs.

We showed that APEG allows implementing almost all types of language composition presented by Erdweg et al. [21],

showing that the mechanism for changing grammars on the fly is very flexible.

Implementing and composing languages require more than only syntax. It involves semantics and also language-based

tools, such as editors and debuggers [46–48]. We have used APEG's attributes for syntactic purposes, but it may be used for

giving semantics. Therefore, a first question to investigate is whether APEG is appropriate for giving semantics or we should

use other formalism after building the AST, such as metaprogramming or rewrite rules. APEG does not allow modifications

on the set of attributes and also the definition of them is embedded into the parsing expression, then we must investigate

whether it is a severe restriction to compose semantics. As inheritance is a good solution to compose grammars

incrementally and modularly [22,29], we are planning to study how inheritance could be incorporated to APEG and how

it would fit its dynamic mechanism.

Another important issue is error reporting. APEG reports errors based on the concrete syntax of the extension, however

the prototype interpreter used does not have a mechanism for error recovery and abort on the first error found. Error

reporting is also object of future work. Support for integrating APEG with IDEs and offering facilities to language-based tools,

such as debugging and syntax highlighting, are also important future work.
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