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Abstract

We consider a simplified accoustic model to describe nonlinear phenomena occuring in
loudspeakers. The simplification is that we restrict to the one–dimensional isentropic
Euler equations in a slab, where on the right end a membrane is moving periodically
with frequency ω and maximal displacement ε � 1. The asymptotic model based
on the small parameter ε yields hyperbolic first order systems, which are investigated
numerically for two different frequencies ω.

1 Introduction

Modern bass–reflex loudspeakers should combine a small bass-reflex enclosure together
with a high power and an excellent sound quality. The design and optimization of such
moving iron loudspeakers requires the accurate prediction of the generated sound fields.
During the operation the change in the enclosure volume due to the moving membrane is
often no longer negligible. In such cases, the linear wave equation is no longer an appro-
priate mathematical model.
To take into account nonlinear phenomena in the sound field one should go back to the
fundamental equations from gas dynamics, like the Euler equations for the density, pres-
sure and velocity of the enclosed gas. Nevertheless, numerical simulations for the nonlinear
equations from gas dynamics, which include the moving membrane as a moving bound-
ary, are quite difficult, because the maximal displacement of the membrane is still small
compared to the typical dimension of the enclosure.
In the present work we consider a simplified model from gas dynamics, namely the one–
dimensional isentropic Euler equations in a slab. On the right boundary of the slab there is
a moving membrane with frequency ω and a maximal displacement ε � 1. Transforming
this time–dependent domain to a fixed interval results in a modified nonlinear system for
the density and velocity, which contains the small parameter ε.
An asymptotic expansion of this system yields a hierarchy of hyperbolic systems, which
are coupled via nonlinear right hand sides. We show that the second order system exactly
describes the first harmonic in the sound field and is therefore appropriate to include non-
linear phenomena.

∗Grant sponsor: Fraunhofer–Institute for Industrial Mathematics, Kaiserslautern, Germany.
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Our work is connected with the description of oscillations of a gas contained in a tube
closed at one end and driven by a piston located at the other end, see for example the
recently published work by Cox, Mortell and Reck [1] and the references given there; in
particular, Klein and Peters [2]. An advantage of our approach might be that it can be
easily extended to the multi–dimensional case.

2 The Acoustic Model

The starting point for our acoustic model are the isentropic Euler equations in one–space
dimensions given by

∂
∂t

ρ +
∂
∂x

(ρu) = 0(2.1)

∂
∂t

(ρu) +
∂
∂x

(ρu2) +
∂
∂x

p = 0(2.2)

with equation of state

(2.3)
( p

p0

)

=
( ρ

ρ0

)γ
,

Here, ρ, u and p denote the mass density, the velocity and pressure, respectively, which
are functions of the space variable x and the time t > 0. The value γ in (2.3) defines the
ratio of specific heat, ρ0 und p0 are the reference values for the density and the pressure.
We consider the above system on the time–dependent domain Ω ⊂ R, with

Ω = [0, 1 + εh(t; ω))

where ε � 1 denotes the maximal displacement of the moving membrane and h(t; ω) is
the oscillatory movement with frequency ω.
Applying the transformation

x1 =
x

1 + εh(t;ω)
, t1 = t,

the system above transform to

(1 + εh) ρt − εxḣ ρx + (ρu)x = 0(2.4)

(1 + εh) (ρu)t − εxḣ (ρu)x + (ρu2)x + px = 0(2.5)

with x ∈ [0, 1].

2.1 The asymptotic model

On the right boundary of Ω we have by Taylor–expansion

(2.6) u(t, 1 + εh) = u(t, 1) + εh(t)ux(t, 1) + O(ε2)

On the other hand, assuming ω = O(1), the moving membrane yields

(2.7) u(t, 1 + εh) =
d
dt

(1 + εh(t)) = εḣ = O(ε)
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From (2.6) and (2.7) we obtain u(1, t) = O(ε) and we assume for the following that
u = O(ε) on the whole domain.
Then the asymptotic expansions reads

ρ = ρ(0) + ερ(1) + ε2ρ(2) + o(ε3)

u = εu(1) + ε2u(2) + o(ε3)

p = p(0) + εp(1) + ε2p(2) + o(ε3)

Substituting the Ansatz into the system (2.4), (2.5) yields the zeroth order approximation

ρ(0)
t = 0, p(0)

x = 0

i.e. the zeroth order density is independent of t, ρ(0) = ρ(0)(x), and the pressure p(0) only
depends on t, p(0) = p(0)(t).
From the equation of state (2.3) we have by Taylor expansion

p = p0ρ
−γ
0

[

ρ(0)γ + ε
(

γρ(0)γ−1
ρ(1)

)

+ε2
(

γρ(0)γ−1
ρ(2) +

γ(γ − 1)
2

ρ(0)γ−2
ρ(1)2

)

+ O(ε3)
]

from which we conclude that

p(0) = p0ρ
−γ
0 ρ(0)γ(2.8)

p(1) = γp0ρ
−γ
0 ρ(0)γ−1

ρ(1)(2.9)

p(2) = p0ρ
−γ
0

(

γρ(0)γ−1
ρ(2) +

γ(γ − 1)
2

ρ(0)γ−2
ρ(1)2

)

(2.10)

2.2 First order system

From (2.8) it follows that the zeroth order density and pressure are constant in space and
time and with ρ(0) = ρ0 relations (2.9), (2.10) simplify to

p(1) = c2ρ(1)(2.11)

p(2) = c2ρ(2) + c2 γ − 1
2ρ0

(ρ(1))2(2.12)

Then, the first order system reads

∂
∂t

p(1) + c2ρ0
∂
∂x

u(1) = 0(2.13)

∂
∂t

u(1) +
1
ρ0

∂
∂x

p(1) = 0(2.14)

where
c =

(γp0

ρ0

) 1
2

denotes the sound speed.
The linear system (2.13), (2.14) is strictly hyperbolic with characteristics speeds λ+/− =
±c and invariants p + cρ0u and p− cρ0u, respectively.
From the moving membrane we have

u(1)(t, 1) = ḣ
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On the left boundary we use the corresponding condition

u(1)(t, 0) = 0

One may even decouple the system into two homogeneous wave equations, namely

p(1)
tt − c2p(1)

xx = 0

and
u(1)

tt − c2u(1)
xx = 0

but then additional boundary conditions are necessary in order to define a well–posed
problem.

2.3 Second order system

Collecting the terms of order ε2 yields the inhomogeneous system

ρ(2)
t + ρ0u(2)

x = −
(

hρ(1)
t − xḣρ(1)

x + (ρ(1)u(1))x

)

u(2)
t +

1
ρ0

p(2)
x = −

(

hu(1)
t +

1
ρ0

(ρ(1)u(1))t − xḣu(1)
x +

(

(u(1))2
)

x

)

and using (2.11), (2.12) we obtain

p(2)
t + c2ρ0u(2)

x =
(

xḣ− u(1)
)

p(1)
x +

(

γ
c2ρ0

p(1) − h
)

p(1)
t(2.15)

u(2)
t +

1
ρ0

p(2)
x =

(

xḣ− u(1)
)

u(1)
x −

( 1
c2ρ0

p(1) + h
)

u(1)
t(2.16)

The boundary conditions for the second order velocity are now

u(2)(t, 0) = u(2)(t, 1) = 0

i.e. a nonvanishing velocity is generated only by the inhomogeneous part of the system.
The system (2.15), (2.16) may again written as a wave equation: differentiating the first
equation with respect to t, the second with respect to x yields

p(2)
tt − c2p(2)

xx = c2ρ0

(

(u(1))2
)

xx
− 2hp(1)

tt + xḧp(1)
x + 2xḣp(1)

xt +
γ − 1
c2ρ0

(

p(1)
tt p(1) + (p(1)

t )2
)

A similar inhomogeneous wave equation may be derived for the second order velocity u(2).

2.4 Higher order systems and validity of the asymptotic expansion

The asymptotic procedure given above can be easily extended to higher order systems.
The corresponding equations will have the same structure like Eqns. (2.15), (2.16), i.e.
the left hand side is a linear hyperbolic system with characteristic speeds λ+/− = ±c and
a nonlinear inhomogeneous right hand side which couples the system with the lower order
models.
We will see in the next section that the second order model corresponds to the first
harmonic of the nonlinear accoustic model. Hence the higher order systems will describe
the behaviour of the higher order harmonics, respectively.
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Our asymptotic approach is certainly restricted to the case ω = O(1). If ω � 1, e.g.
ω = O(ε), then the moving membrane will give a velocity u(t, 1 + εh) = O(ε2) and the
asymptotic expansion will look different.
For ω � 1, e.g. ω = O(1/ε), we will have u(t, 1 + εh) = O(1) and the asymptotic
approach becomes more difficult, because alreads the zeroth system is nonlinear. The
resulting equation are even more complicated than Euler’s equation, because the model
contains the moving membrane in the equations itself. The advantage remains that the
model can be considered on a fixed spatial domain and it is worthwhile to consider this
asymptotic case separately.
Even for ω = O(1) the current approach will break down in the long time behaviour when
considering a resonant frequency ω. For this case it is known from linear theory that the
resonance vibration will yield an amplitude which is linearly increasing in time. Hence,
for t = O(1/ε) the velocity u(t, x) will no longer be of the order O(ε).

3 Periodic Excitation

In this section we study numerically the behaviour of the first and second order pressure
and velocity. We assume that the membrane moves periodically according to

h(t; ω) = cos(ωt)

The numerical simulations use the finite–difference approach based on a Lax–Friedrich
discretization of the flux terms [3]. For simplicity we use c2 = ρ0 = 1 and γ = 5/3. The
simulations are performed with a grid spacing of 10−3 and time step ∆t = 5 · 10−4, such
that the CFL–condition is satisfied.
The first order system is given by the initial–boundary value problem

∂
∂t

p(1) + c2ρ0
∂
∂x

u(1) = 0

∂
∂t

u(1) +
1
ρ0

∂
∂x

p(1) = 0

with initial conditions p(1)(0, x) = u(1)(0, x) = 0 and boundary conditions

u(1)(t, 0) = 0, u(1)(t, 1) = −ω sin(ωt)

The second order system reads

p(2)
t + c2ρ0u(2)

x = −
(

xω sin(ωt) + u(1)
)

p(1)
x +

(

γ
c2ρ0

p(1) − cos(ωt)
)

p(1)
t

u(2)
t +

1
ρ0

p(2)
x = −

(

xω sin(ωt) + u(1)
)

u(1)
x −

( 1
c2ρ0

p(1) + cos(ωt)
)

u(1)
t

with initial conditions p(2)(0, x) = u(2)(0, x) = 0 and boundary conditions

u(2)(t, 0) = u(2)(t, 1) = 0
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3.1 Excitation frequency ω = 12

Figures 3.1–3.4 show the first and second order pressure and velocity profiles at time t = 1
and t = 2. The moving membrane on the right end of the slab generates waves moving
from right to the left with characteristic speed c = −1.
At time t = 1 the wave exactly arrives at the left end of the slab. Due to the numerical
diffusion of the Lax–Friedrichs discretization the first order pressure wave already interacts
with the left boundary, see Fig. 3.1.
The second order system yields pressure and velocity waves with doubled frequency and
increasing amplitude when moving from right to the left. The amplitude close to the left
boundary is two orders of magnitude larger than the excitation amplitude, see Fig 3.2.
The double frequency belongs to the first harmonic, which seems to be strongly excited.
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Fig. 3.1: 1st order pressure (solid), velocity (dash) at t = 1.
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Fig. 3.2: 2nd order pressure (solid), velocity (dash) at t = 1.

At t = 1 the incoming waves are reflected at the left boundary and afterwards the whole
system starts to oscillate. Figures 3.3 and 3.4 show the intermediate state of the system
of first and second order, respectively, at time t = 2.
One observes a small phase shift between the pressure and velocity profiles. The second
order system describes the behaviour of the first harmonic, where the amplitude is again
two orders of magnitude larger than the one of the ground frequency.
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Fig. 3.3: 1st order pressure (solid), velocity (dash) at t = 2.
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Fig. 3.4: 2nd order pressure (solid), velocity (dash) at t = 2.

3.2 Excitation frequency ω = π

In the next example we consider the resonant frequency ω = π. From linear theory one
expects that the first order system generates a standing oscillation with an amplitude
linearly increasing in time. This is exactly reproduced by our simulations shown in Figs.
3.5 and 3.6, where we show the intermediate state at t = 1 and t = 2. Morover we detect
a phase shift between the pressure and the velocity wave of π/4.
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Fig. 3.5: 1st order pressure (solid), velocity (dash) at t = 1.
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Fig. 3.6: 1st order pressure (solid), velocity (dash) at t = 10.

The numerical diffusion again results in a small deviation from the true behaviour of the
pressure at the left boundary in Fig. 3.5 and the right boundary in Fig. 3.6, respectively.
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Fig. 3.7: 2nd order pressure (solid), velocity (dash) at t = 1.
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Fig. 3.8: 2nd order pressure (solid), velocity (dash) at t = 10.

The results for the second order system are shown in Figs. 3.7 and 3.8. After some initial
phase, see Fig. 3.7, even the second order system produces a standing oscillation with an
increasing amplitude in time. Fig 3.8 indicates that we again have the first harmonic, i.e.
the oscillation has the frequency ω1 = 2π.
The phase shift between pressure and velocity profile is again about π/4, although the
pressure at time t = 10 is not exactly in rest position, like in the first order system. This
again might be due to some numerical defects.
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time 1st order 2nd order
3 9.32 153
4 12.38 364
5 15.42 675
6 18.44 1161
7 21.43 1793
8 24.40 2655
9 27.35 3794
10 30.28 5032

Tab. 3.1: Amplitude of the velocity wave vs. time

Tab. 3.1 shows the velocity amplitudes between t = 3 and t = 10. Whereas the first order
system shows the expected linear increase in time, the amplitude of the second order
system increases cubically in time.

4 Conclusion

In the present paper we investigated a simplified nonlinear accoustic model based on the
one–dimensional isentropic Euler equations from gas dynamics. The equations were con-
sidered in a slab, where on the right boundary there is a moving membrane with frequency
ω and maximal displacement ε � 1. Transforming the moving domain to a fixed interval
we derived nonlinear equations containing the small parameter ε.
An asymptotic expansion procedure was used to define a hierarchy of inhomogeneous
hyperbolic equations, which describe the higher order harmonics in the sound field. Nu-
merical simulations were performed for the first and second order system, which show a
cubically increase in time of the amplitude of the first harmonic, when the membrane
moves with a resonant frequency. In the non–resonant case the amplitude of the first har-
monic was two orders of magnitude larger then the excitation amplitude, which indicates
that the first harmonic is strongly excited.
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