
An Online Algorithm for Maximizing
Submodular Functions

Matthew Streeter
Google, Inc.

Pittsburgh, PA 15213
mstreeter@google.com

Daniel Golovin
Carnegie Mellon University

Pittsburgh, PA 15213
dgolovin@cs.cmu.edu

Abstract

We present an algorithm for solving a broad class of online resource allocation
problems. Our online algorithm can be applied in environments where abstract
jobs arrive one at a time, and one can complete the jobs by investing time in a
number of abstract activities, according to some schedule. We assume that the
fraction of jobs completed by a schedule is a monotone, submodular function of
a set of pairs (v, τ), where τ is the time invested in activity v. Under this as-
sumption, our online algorithm performs near-optimally according to two natural
metrics: (i) the fraction of jobs completed within time T , for some fixed dead-
line T > 0, and (ii) the average time required to complete each job. We evaluate
our algorithm experimentally by using it to learn, online, a schedule for allocating
CPU time among solvers entered in the 2007 SAT solver competition.

1 Introduction

This paper presents an algorithm for solving the following class of online resource allocation prob-
lems. We are given as input a finite set V of activities. A pair (v, τ) ∈ V × R>0 is called an
action, and represents spending time τ performing activity v. A schedule is a sequence of actions.
We use S to denote the set of all schedules. A job is a function f : S → [0, 1], where for any
schedule S ∈ S , f(S) represents the proportion of some task that is accomplished by performing
the sequence of actions S. We require that a job f have the following properties (here ⊕ is the
concatenation operator):

1. (monotonicity) for any schedules S1, S2 ∈ S, we have f(S1) ≤ f(S1 ⊕ S2) and f(S2) ≤
f(S1 ⊕ S2)

2. (submodularity) for any schedules S1, S2 ∈ S and any action a ∈ V×R>0, fa(S1⊕S2) ≤
fa(S1), where we define fa(S) ≡ f(S ⊕ 〈a〉)− f(S).

We will evaluate schedules in terms of two objectives. The first objective, which we call benefit-
maximization, is to maximize f (S) subject to the constraint ` (S) ≤ T , for some fixed T > 0, where
` (S) equals the sum of the durations of the actions in S. For example if S = 〈(v1, 3), (v2, 3)〉, then
`(S) = 6. The second objective is to minimize the cost of a schedule, which we define as

c (f, S) =
∫ ∞
t=0

1− f
(
S〈t〉

)
dt

where S〈t〉 is the schedule that results from truncating schedule S at time t. For example if S =
〈(v1, 3), (v2, 3)〉 then S〈5〉 = 〈(v1, 3), (v2, 2)〉.1 One way to interpret this objective is to imagine

1More formally, if S = 〈a1, a2, . . .〉, where ai = (vi, τi), then S〈t〉 = 〈a1, a2, . . . , ak−1, ak, (vk+1, τ
′)〉,

where k is the largest integer such that
Pk

i=1 τi < t and τ ′ = t−
Pk

i=1 τi.

1

that f(S) is the probability that some desired event occurs as a result of performing the actions in
S. For any non-negative random variable X , we have E [X] =

∫∞
t=0

P [X > t] dt. Thus c (f, S) is
the expected time we must wait before the desired event occurs if we execute actions according to
the schedule S. The following example illustrates these definitions.

Example 1. Let each activity v represent a randomized algorithm for solving some decision prob-
lem, and let the action (v, τ) represent running the algorithm (with a fresh random seed) for time
τ . Fix some particular instance of the decision problem, and for any schedule S, let f(S) be the
probability that one (or more) of the runs in the sequence S yields a solution to that instance. So
f(S〈T 〉) is (by definition) the probability that performing the runs in schedule S yields a solution
to the problem instance in time ≤ T , while c (f, S) is the expected time that elapses before a so-
lution is obtained. It is clear that f(S) is monotone, because adding runs to the sequence S can
only increase the probability that one of the runs is successful. The fact that f is submodular can
be seen as follows. For any schedule S and action a, fa(S) equals the probability that action a
succeeds after every action in S has failed, which can also be written as (1 − f(S)) · f(〈a〉). This,
together with the monotonicity of f , implies that for any schedules S1, S2 and any action a, we have
fa(S1 ⊕ S2) = (1− f(S1 ⊕ S2)) · f(〈a〉) ≤ (1− f(S1)) · f(〈a〉) = fa(S1).

In the online setting, an arbitrary sequence 〈f (1), f (2), . . . , f (n)〉 of jobs arrive one at a time, and
we must finish each job (via some schedule) before moving on to the next job. When selecting a
schedule S(i) to use to finish job f (i), we have knowledge of the previous jobs f (1), f (2), . . . , f (i−1)

but we have no knowledge of f (i) itself or of any subsequent jobs. In this setting we aim to minimize
regret, which measures the difference between the average cost (or average benefit) of the schedules
produced by our online algorithm and that of the best single schedule (in hindsight) for the given
sequence of jobs.

1.1 Problems that fit into this framework

A number of previously-studied problems can be cast as the task of computing a schedule S that
minimizes c (f, S), where f is of the form f(S) = 1

n

∑n
i=1

(
1−

∏
(v,τ)∈S (1− pi(v, τ))

)
. This

expression can be interpreted as follows: the job f consists of n subtasks, and pi(v, τ) is the prob-
ability that investing time τ in activity v completes the ith subtask. Thus, f(S) is the expected
fraction of subtasks that are finished after performing the sequence of actions S. Assuming pi(v, τ)
is a non-decreasing function of τ for all i and v, it can be shown that any function f of this form is
monotone and submodular. PIPELINED SET COVER [11, 15] can be defined as the special case in
which for each activity v there is an associated time τv , and pi(v, τ) = 1 if τ ≥ τv and pi(v, τ) = 0
otherwise. MIN-SUM SET COVER [7] is the special case in which, additionally, τv = 1 or τv =∞
for all v ∈ V . The problem of constructing efficient sequences of trials [5] corresponds to the case
in which we are given a matrix q, and pi(v, τ) = qv,i if τ ≥ 1 and pi(v, τ) = 0 otherwise.

The problem of maximizing f(S〈T 〉) is a slight generalization of the problem of maximizing a
monotone submodular set function subject to a knapsack constraint [14, 20] (which in turn gener-
alizes BUDGETED MAXIMUM COVERAGE [12], which generalizes MAX k-COVERAGE [16]). The
only difference between the two problems is that, in the latter problem, f(S) may only depend on
the set of actions in the sequence S, and not on the order in which the actions appear.

1.2 Applications

We now discuss three applications, the first of which is the focus of our experiments in §5.

1. Online algorithm portfolio design. An algorithm portfolio [9] is a schedule for interleaving the
execution of multiple (randomized) algorithms and periodically restarting them with a fresh random
seed. Previous work has shown that combining multiple heuristics for NP-hard problems into a port-
folio can dramatically reduce average-case running time [8, 9, 19]. In particular, algorithms based
on chronological backtracking often exhibit heavy-tailed run length distributions, and periodically
restarting them with a fresh random seed can reduce the mean running time by orders of magnitude
[8]. As illustrated in Example 1, our algorithms can be used to learn an effective algorithm portfolio
online, in the course of solving a sequence of problem instances.

2

2. Database query processing. In database query processing, one must extract all the records in a
database that satisfy every predicate in a list of one or more predicates (the conjunction of predicates
comprises the query). To process the query, each record is evaluated against the predicates one
at a time until the record either fails to satisfy some predicate (in which case it does not match
the query) or all predicates have been examined. The order in which the predicates are examined
affects the time required to process the query. Munagala et al. [15] introduced and studied a problem
called PIPELINED SET COVER (discussed in §1.1), which entails finding an evaluation order for the
predicates that minimizes the average time required to process a record. Our work addresses the
online version of this problem, which arises naturally in practice.

3. Sensor placement. Sensor placement is the task of assigning locations to a set of sensors so
as to maximize the value of the information obtained (e.g., to maximize the number of intrusions
that are detected by the sensors). Many sensor placement problems can be optimally solved by
maximizing a monotone submodular set function subject to a knapsack constraint [13], a special
case of our benefit-maximization problem (see §1.1). Our online algorithms could be used to select
sensor placements when the same set of sensors is repeatedly deployed in an unknown or adversarial
environment.

1.3 Summary of results

We first consider the offline variant of our problem. As an immediate consequence of existing
results [6, 7], we find that, for any ε > 0, (i) achieving an approximation ratio of 4 − ε for the
cost-minimization problem is NP-hard and (ii) achieving an approximation ratio of 1− 1

e + ε for the
benefit-maximization problem is NP-hard. We then present a greedy approximation algorithm that
simultaneously achieves the optimal approximation ratios (of 4 and 1 − 1

e) for these two problems,
building on and generalizing previous work on special cases of these two problems [7, 20].

In the online setting we provide an online algorithm whose worst-case performance guarantees ap-
proach those of the offline greedy approximation algorithm asymptotically (as the number of jobs
approaches infinity). We then show how to modify our online algorithm for use in several different
“bandit” feedback settings. Finally, we prove information-theoretic lower bounds on regret. We
conclude with an experimental evaluation.

2 Related Work

As discussed in §1.1, the offline cost-minimization problem considered here generalizes MIN-SUM
SET COVER [7], PIPELINED SET COVER [11, 15], and the problem of constructing efficient se-
quences of trials [5]. Several of these problems have been considered in the online setting. Mu-
nagala et al. [15] gave an online algorithm for PIPELINED SET COVER that is asymptotically
O (log |V|)-competitive. Babu et al. [3] and Kaplan et al. [11] gave online algorithms for PIPE-
LINED SET COVER that are asymptotically 4-competitive, but only in the special case where the
jobs are drawn independently at random from a fixed probability distribution (whereas our online
algorithm is asymptotically 4-competitive on an arbitrary sequence of jobs).

Our offline benefit-maximization problem generalizes the problem of maximizing a monotone sub-
modular set function subject to a knapsack constraint. Previous work gave offline greedy approx-
imation algorithms for this problem [14, 20], which generalized earlier algorithms for BUDGETED
MAXIMUM COVERAGE [12] and MAX k-COVERAGE [16]. To our knowledge, none of these prob-
lems have previously been studied in an online setting. Note that our problem is quite different from
online set covering problems (e.g., [1]) that require one to construct a single collection of sets that
covers each element in a sequence of elements that arrive online.

In this paper we convert a specific greedy approximation algorithm into an online algorithm. Re-
cently, Kakade et al. [10] gave a generic procedure for converting an α-approximation algorithm
into an online algorithm that is asymptotically α-competitive. Their algorithm applies to linear
optimization problems, but not to the non-linear problems we consider here.

Independently of us, Radlinkski et al. [17] developed a no-regret algorithm for the online version of
MAX k-COVERAGE, and applied it to online ranking. As it turns out, their algorithm is a special
case of the algorithm OGunit that we present in §4.1.

3

3 Offline Greedy Algorithm

In the offline setting, we are given as input a job f : S � [0, 1]. Our goal is to compute a schedule S
that achieves one of two objectives, either minimizing the cost c (f, S) or maximizing f(S) subject
to the constraint �(S) � T .2 As already mentioned, this offline problem generalizes MIN-SUM SET
COVER under the former objective and generalizes MAX k-COVERAGE under the latter objective,
which implies the following computational complexity result [6, 7].

Theorem 1. For any �> 0, achieving a 4��(resp. 1� 1
e + �) approximation ratio for the cost-

minimization (resp. benefit-maximization) problem is NP-hard.

We now consider an arbitrary schedule G, whose jth action is gj = (vj , �j). Let sj =
fgj (Gj)

�j
,

where Gj = �g1, g2, ..., gj�1�, and let �j = max(v,�)�V× R>0

�
f(v,�)(Gj)

�

�
�sj . We will prove

bounds on the performance of G in terms of the �j values. Note that we can ensure �j = 0 �j by

greedily choosing gj = arg max(v,�)�V× R>0

�
f(v,�)(Gj)

�

�
(i.e., greedily appending actions to the

schedule so as to maximize the resulting increase in f per unit time). A key property is stated in the
following lemma, which follows from the submodularity assumption (for the proof, see [18]).

Lemma 1. For any schedule S, any positive integer j, and any t > 0, f(S�t�) � f(Gj)+t · (sj+�j).

Using Lemma 1, together with a geometric proof technique developed in [7], we now show that the
greedy algorithm achieves the optimal approximation ratio for the cost-minimization problem.

Theorem 2. Let S� = arg minS�S c (f, S). If �j = 0 �j, then c (f,G) � 4 · c (f, S�). More
generally, let L be a positive integer, and let T =

� L
j=1 �j . For any schedule S, define cT (f, S) ��T

t=0
1�f

�
S�t�

�
dt. Then cT (f,G) � 4 · c (f, S�) +

� L
j=1Ej�j , where Ej =

�
l<j �l�l.

Proof. We consider the special case �j = 0 �j; for the full proof see [18]. Let Rj = 1�f (Gj);
let xj = Rj

2sj
; let yj = Rj

2 ; and let h(x) = 1�f(S��x�). By Lemma 1, h(xj) � Rj �Rj
2 = yj .

The monotonicity of f implies that h(x) is non-increasing and also that the sequence�y1, y2, ...�is
non-increasing. These facts imply that

��
x=0

h(x) dx �
�
j�1 xj (yj �yj+1) (see Figure 1). The

left hand side equals c (f, S�), and, using the fact that sj = Rj�Rj+1
�j

, the right hand side simplifies
to 1

4

�
j�1Rj�j �

1
4c (f,G), proving c (f,G) � 4 · c (f, S�).

y1
x1

y2
x2

y3
x3

y4
x4

y5

x5

x

h(x)

Figure 1: An illustration of the inequality
��
x=0

h(x) dx �
�
j�1 xj (yj �yj+1).

The greedy algorithm also achieves the optimal approximation ratio for the benefit-maximization
problem, as can be shown using arguments similar to the ones in [14, 20]; see [18] for details.

Theorem 3. Let L be a positive integer, and let T =
� L
j=1 �j . Then f

�
G�T�

�
>�

1� 1
e

�
maxS�S

�
f
�
S�T�

��
�
� L
j=1 �j�j .

2Given a set of jobs { f (1), f (2), ..., f (n) } , we can optimize the average schedule cost (or benefit) simply
by applying our offline algorithm to the job f = 1

n

Pn
i=1 f

(i) (since any convex combination of jobs is a job).

4

4 Online Greedy Algorithm

In the online setting we are fed, one at a time, a sequence 〈f (1), f (2), . . . , f (n)〉 of jobs. Prior to
receiving job f (i), we must specify a schedule S(i). We then receive complete access to the function
f (i).

We measure performance using two different notions of regret. For the cost-minimization objective,
we defineRcost = 1

n

∑n
i=1 c

T
(
S(i), f (i)

)
−4·minS∈S

{
1
n

∑n
i=1 c

(
S, f (i)

)}
, for some fixed T > 0.

Here for any schedule S and job f , we define cT (S, f) =
∫ T
t=0

1− f
(
S〈t〉

)
dt to be the value of

c (S, f) when the integral is truncated at time T . Some form of truncation is necessary because
c
(
S(i), f (i)

)
could be infinite, and without bounding it we could not prove any finite bound on regret

(our regret bounds will be stated as a function of T). For the benefit-maximization objective, we
define Rbenefit =

(
1− 1

e

)
maxS∈S

{
1
n

∑n
i=1 f

(i)
(
S〈T 〉

)}
− 1

n

∑n
i=1 f

(i)
(
S(i)

)
. Here we require

that for each i, E
[
`
(
S(i)

)]
= T , where the expectation is over the online algorithm’s random bits.

That is, we allow the online algorithm to treat T as a budget in expectation, rather than a hard budget.

Our goal is to bound the worst-case expected values of Rcost and Rbenefit. For simplicity, we
consider the oblivious adversary model, in which the sequence of jobs is fixed in advance and does
not change in response to the decisions made by our online algorithm. We confine our attention to
schedules that consist of actions that come from some finite set A, and assume that the actions in A
have integer durations (i.e. A ⊆ V × Z>0).

4.1 Unit-cost actions

In the special case in which each action takes unit time (i.e., A ⊆ V × {1}), our online algorithm
OGunit is very simple. OGunit runs T action-selection algorithms, E1, E2, . . . , ET , where T is
the number of time steps for which our schedule is defined. The intent is that each action-selection
algorithm is a no-regret algorithm such as randomized weighted majority (WMR) [4], which selects
actions so as to maximize payoffs associated with the actions. Just before job f (i) arrives, each
action-selection algorithm Et selects an action ait. The schedule used by OGunit on job f (i) is
S(i) = 〈ai1, ai2, . . . , aiT 〉. The payoff that Et associates with action a is f (i)

a

(
S

(i)
〈t−1〉

)
.

Theorem 4. Algorithm OGunit has E [Rbenefit] = O
(√

T
n ln |A|

)
and E [Rcost] =

O
(
T
√

T
n ln |A|

)
in the worst case, when WMR [4] is the subroutine action-selection algorithm.

Proof. We will view OGunit as producing an approximate version of the offline greedy schedule for
the job f = 1

n

∑n
i=1 f

(i). First, view the sequence of actions selected by Et as a single meta-action
ãt, and extend the domain of each f (i) to include the meta-actions by defining f (i)(S ⊕ 〈ãt〉) =
f (i)(S ⊕ 〈ait〉) for all S ∈ S (note each f (i) remains monotone and submodular). Thus, the online
algorithm produces a single schedule S̃ = 〈ã1, ã2, . . . , ãT 〉 for all i. Let rt be the regret experienced
by action-selection algorithm Et. By construction, rt = maxa∈A

{
fa

(
S̃〈t−1〉

)}
− fãt

(
S̃〈t−1〉

)
.

Thus OGunit behaves exactly like the greedy schedule G for the function f , with εt = rt. Thus,
Theorem 3 implies that Rbenefit ≤

∑T
t=1 rt ≡ R. Similarly, Theorem 2 implies that Rcost ≤ TR.

To complete the analysis, it remains to bound E [R]. WMR has worst-case expected regret
O
(

1
n

√
Gmax ln |A|

)
, where Gmax is the maximum sum of payoffs payoff for any single ac-

tion.3 Because each payoff is at most 1 and there are n rounds, Gmax ≤ n, so a trivial bound is

E [R] = O
(
T
√

1
n ln |A|

)
. In fact, the worst case is whenGmax = Θ

(
n
T

)
for all T action-selection

algorithms, leading to an improved bound of E [R] = O
(√

T
n ln |A|

)
(for details see [18]), which

completes the proof.

3This bound requires Gmax to be known in advance; however, the same guarantee can be achieved by
guessing a value of Gmax and doubling the guess whenever it is proven wrong.

5

4.2 From unit-cost actions to arbitrary actions

In this section we generalize the online greedy algorithm presented in the previous section to accom-
modate actions with arbitrary durations. Like OGunit, our generalized algorithm OG makes use
of a series of action-selection algorithms E1, E2, . . . , EL (for L to be determined). On each round
i, OG constructs a schedule S(i) as follows: for t = 1, 2, . . . , L, it uses Et to choose an action
ait = (v, τ) ∈ A, and appends this action to S(i) with probability 1

τ . Let S(i)
t denote the schedule

that results from the first t steps of this process (so S(i)
t contains between 0 and t actions). The

payoff that Et associates with an action a = (v, τ) equals 1
τ fa(S(i)

t−1) (i.e., the increase in f per unit
time that would have resulted from appending a to the schedule-under-construction).

As in the previous section, we view each action-selection algorithm Et as selecting a single meta-
action ãt. We extend the domain of each f (i) to include the meta-actions by defining f (i)(S⊕〈ãt〉) =
f (i)(S⊕〈ait〉) if ait was appended to S(i), and f (i)(S⊕〈ãt〉) = f (i)(S) otherwise. Thus, the online
algorithm produces a single schedule S̃ = 〈ã1, ã2, . . . , ãL〉 for all i. Note that each f (i) remains
monotone and submodular.

For the purposes of analysis, we will imagine that each meta-action ãt always takes unit time
(whereas in fact, ãt takes unit time per job in expectation). We show later that this assumption
does not invalidate any of our arguments.

Let f = 1
n

∑n
i=1 f

(i), and let S̃t = 〈ã1, ã2, . . . , ãt〉. Thus S̃ can be viewed as a version of the

greedy schedule from §3, with εt = max(v,τ)∈A

{
1
τ

(
f(v,τ)(S̃t−1)

)}
−
(
fãt(S̃t−1)

)
, where we

are using the assumption that ãt takes unit time. Let rt be the regret experienced by Et. Although
rt 6= εt in general, the two quantities are equal in expectation (proof omitted).

Lemma 2. E [εt] = E [rt].

We now prove a bound on E [Rbenefit]. Because each f (i) is monotone and submodular, f is mono-
tone and submodular as well, so the greedy schedule’s approximation guarantees apply to f . In
particular, by Theorem 3, we have Rbenefit ≤

∑T
t=1 εt. Thus by Lemma 2, E [Rbenefit] ≤ E [R],

where R =
∑T
t=1 rt.

To bound E [Rbenefit], it remains to justify the assumption that each meta-action ãt always takes unit
time. First, note that the value of the objective function f(S̃) is independent of how long each meta-
action ãt takes. Thus, the only potential danger is that in making this assumption we have overlooked
a constraint violation of the form E

[
`
(
S(i)

)]
6= T . But by construction, E

[
`
(
S(i)

)]
= L for each

i, regardless of what actions are chosen by each action-selection algorithm. Thus if we set L = T
there is no constraint violation. Combining the bound on E [R] stated in the proof of Theorem 4
with the fact that E [Rbenefit] ≤ E [R] yields the following theorem.

Theorem 5. Algorithm OG, run with input L = T , has E [Rbenefit] ≤ E [R]. If WMR [4] is used

as the subroutine action-selection algorithm, then E [R] = O
(√

T
n ln |A|

)
.

The argument bounding E [Rcost] is similar, although somewhat more involved (for details, see [18]).
One additional complication is that `

(
S(i)

)
is now a random variable, whereas in the definition of

Rcost the cost of a schedule is always calculated up to time T . This can be addressed by making the
probability that `

(
S(i)

)
< T sufficiently small, which can be done by setting L� T and applying

concentration of measure inequalities. However, E [R] grows as a function of L, so we do not want
to make L too large. The (approximately) best bound is obtained by setting L = T lnn.

Theorem 6. Algorithm OG, run with input L = T lnn, has E [Rcost] = O(T lnn · E [R] + T√
n

).

In particular, E [Rcost] = O
(

(lnn)
3
2T
√

T
n ln |A|

)
if WMR [4] is used as the subroutine action-

selection algorithm.

6

4.3 Dealing with limited feedback

Thus far we have assumed that, after specifying a schedule S(i), the online algorithm receives com-
plete access to the job f (i). We now consider three more limited feedback settings that may arise
in practice. In the priced feedback model, to receive access to f (i) we must pay a price C, which
is added to our regret. In the partially transparent feedback model, we only observe f (i)

(
S

(i)
〈t〉

)
for

each t > 0. In the opaque feedback model, we only observe f (i)
(
S(i)

)
.

The priced and partially transparent feedback models arise naturally in the case where action (v, τ)
represents running a deterministic algorithm v for τ time units, and f(S) = 1 if some action in S
yields a solution to some particular problem instance, and f(S) = 0 otherwise. If we execute a
schedule S and halt as soon as some action yields a solution, we obtain exactly the information that
is revealed in the partially transparent model. Alternatively, running each algorithm v until it returns
a solution would completely reveal the function f (i), but incurs a computational cost, as reflected in
the priced feedback model.

Algorithm OG can be adapted to work in each of these three feedback settings; see [18] for the
specific bounds. In all cases, the high-level idea is to replace the unknown quantities used by OG
with (unbiased) estimates of those quantities. This technique has been used in a number of online
algorithms (e.g., see [2]).

4.4 Lower bounds on regret

We now state lower bounds on regret; for the proofs see the full paper [18]. Our proofs have the
same high-level structure as that of the lower bound given in [4], in that we define a distribution
over jobs that allows any online algorithm’s expected performance to be easily bounded, and then
prove a bound on the expected performance of the best schedule in hindsight. The upper bounds in
Theorem 4 match the lower bounds in Theorem 7 up to logarithmic factors, although the latter apply
to standard regret as opposed to Rbenefit and Rcost (which include factors of 1− 1

e and 4).

Theorem 7. Let X =
√

T
n ln |V|T . Then any online algorithm has worst-case expected regret Ω (X)

(resp. Ω (TX)) for the online benefit-maximization (resp. cost-minimization) problem.

5 Experimental Evaluation on SAT 2007 Competition Data

The annual SAT solver competition (www.satcompetition.org) is designed to encourage the
development of efficient Boolean satisfiability solvers, which are used as subroutines in state-of-
the-art model checkers, theorem provers, and planners. The competition consists of running each
submitted solver on a number of benchmark instances, with a per-instance time limit. Solvers are
ranked according to the instances they solve within each of three instance categories: industrial,
random, and hand-crafted.

We evaluated the online algorithm OG by using it to combine solvers from the 2007 SAT solver
competition. To do so, we used data available on the competition web site to construct a matrix
X , where Xi,j is the time that the jth solver required on the ith benchmark instance. We used this
data to determine whether or not a given schedule would solve an instance within the time limit
T (schedule S solves instance i if and only if, for some j, S〈T 〉 contains an action (hj , τ) with
τ ≥ Xi,j). As illustrated in Example 1, the task of maximizing the number of instances solved
within the time limit, in an online setting in which a sequence of instances must be solved one at a
time, is an instance of our online problem (under the benefit-maximization objective).

Within each instance category, we compared OG to the offline greedy schedule, to the individual
solver that solved the most instances within the time limit, and to a schedule that ran each solver
in parallel at equal strength. For these experiments, we ran OG in the full-information feedback
model, after finding that the number of benchmark instances was too small for OG to be effective
in the limited feedback models. Table 1 summarizes the results. In each category, the offline greedy
schedule and the online greedy algorithm outperform all solvers entered in the competition as well
as the naı̈ve parallel schedule.

7

Table 1: Number of benchmark instances solved within the time limit.

Category Offline Online Parallel Top
greedy greedy schedule solver

Industrial 147 149 132 139
Random 350 347 302 257
Hand-crafted 114 107 95 98

References
[1] Noga Alon, Baruch Awerbuch, and Yossi Azar. The online set cover problem. In Proceedings

of the 35th STOC, pages 100–105, 2003.
[2] Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. The nonstochastic

multiarmed bandit problem. SIAM Journal on Computing, 32(1):48–77, 2002.
[3] Shivnath Babu, Rajeev Motwani, Kamesh Munagala, Itaru Nishizawa, and Jennifer Widom.

Adaptive ordering of pipelined stream filters. In Proc. Intl. Conf. on Management of Data,
pages 407–418, 2004.

[4] Nicolò Cesa-Bianchi, Yoav Freund, David Haussler, David Helmbold, Robert Schapire, and
Manfred Warmuth. How to use expert advice. Journal of the ACM, 44(3):427–485, 1997.

[5] Edith Cohen, Amos Fiat, and Haim Kaplan. Efficient sequences of trials. In Proceedings of
the 14th SODA, pages 737–746, 2003.

[6] Uriel Feige. A threshold of lnn for approximating set cover. Journal of the ACM, 45(4):634–
652, 1998.

[7] Uriel Feige, László Lovász, and Prasad Tetali. Approximating min sum set cover. Algorith-
mica, 40(4):219–234, 2004.

[8] Carla P. Gomes and Bart Selman. Algorithm portfolios. Artificial Intelligence, 126:43–62,
2001.

[9] Bernardo A. Huberman, Rajan M. Lukose, and Tad Hogg. An economics approach to hard
computational problems. Science, 275:51–54, 1997.

[10] Sham Kakade, Adam Kalai, and Katrina Ligett. Playing games with approximation algorithms.
In Proceedings of the 39th STOC, pages 546–555, 2007.

[11] Haim Kaplan, Eyal Kushilevitz, and Yishay Mansour. Learning with attribute costs. In Pro-
ceedings of the 37th STOC, pages 356–365, 2005.

[12] Samir Khuller, Anna Moss, and Joseph (Seffi) Naor. The budgeted maximum coverage prob-
lem. Information Processing Letters, 70(1):39–45, 1999.

[13] Andreas Krause and Carlos Guestrin. Near-optimal nonmyopic value of information in graph-
ical models. In Proceedings of the 21st UAI, pages 324–331, 2005.

[14] Andreas Krause and Carlos Guestrin. A note on the budgeted maximization of submodular
functions. Technical Report CMU-CALD-05-103, Carnegie Mellon University, 2005.

[15] Kamesh Munagala, Shivnath Babu, Rajeev Motwani, Jennifer Widom, and Eiter Thomas. The
pipelined set cover problem. In Proc. Intl. Conf. on Database Theory, pages 83–98, 2005.

[16] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations for maxi-
mizing submodular set functions. Mathematical Programming, 14(1):265–294, 1978.

[17] Filip Radlinski, Robert Kleinberg, and Thorsten Joachims. Learning diverse rankings with
multi-armed bandits. In Proceedings of the 25th ICML, pages 784–791, 2008.

[18] Matthew Streeter and Daniel Golovin. An online algorithm for maximizing submodular func-
tions. Technical Report CMU-CS-07-171, Carnegie Mellon University, 2007.

[19] Matthew Streeter, Daniel Golovin, and Stephen F. Smith. Combining multiple heuristics on-
line. In Proceedings of the 22nd AAAI, pages 1197–1203, 2007.

[20] Maxim Sviridenko. A note on maximizing a submodular set function subject to a knapsack
constraint. Operations Research Letters, 32:41–43, 2004.

8

