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An Online Brain-Computer Interface
Based on SSVEPs Measured From

Non-Hair-Bearing Areas
Yu-Te Wang, Member, IEEE, Masaki Nakanishi, Member, IEEE, Yijun Wang, Member, IEEE,

Chun-Shu Wei, Student Member, IEEE, Chung-Kuan Cheng, Fellow, IEEE,

and Tzyy-Ping Jung, Fellow, IEEE

Abstract— Steady state visual evoked potential (SSVEP)-
based brain-computer interface (BCI) has gained a lot of
attention due to its robustness and high information transfer
rate (ITR). However, transitioningwell-controlled laboratory-
oriented BCI demonstrations to real-world applications
poses severe challenges for this exciting field. For instance,
conducting BCI experiments usually requires skilled techni-
cians to abrade the area of skin underneath each electrode
and apply an electrolytic gel or paste to acquire high-quality
SSVEPs from hair-covered areas. Our previous proof-of-
concept study has proposed an alternative approach that
employed electroencephalographic signals collected from
easily accessible non-hair-bearing areas including neck,
behind the ears, and face to realize an SSVEP-based BCI.
The study results showed that, with proper electrode place-
ments and advanced signal-processing algorithms, the
SSVEPs measured from non-hair-bearing areas in off-line
SSVEP experiments could achieve comparable SNR to that
obtained from the hair-bearing occipital areas. This study
extended the previous work to systematically investigate
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the costs and benefits of non-hair SSVEPs. Furthermore,
this study developed and evaluated an online BCI sys-
tem based solely on non-hair EEG signals. A 12-target
identification task was employed to quantitatively assess
the performance of the online SSVEP-based BCI system.
All subjects successfully completed the tasks using non-
hair SSVEPs with 84.08 ± 15.60% averaged accuracy and
30.21 ± 10.61 bits/min averaged ITR. The empirical results
of this study demonstrated the practicality of implement-
ing an SSVEP-based BCI based on signals from non-hair-
bearing areas, significantly improving the feasibility and
practicality of real-world BCIs.

Index Terms— Brain-computer interfaces (BCI),
electroencephalogram (EEG), non-hair-bearing electrodes,
steady-state visual evoked potential (SSVEP).

I. INTRODUCTION

S
TEADY-STATE visual evoked potential (SSVEP), the

brain’s natural electrophysiological response to repeti-

tive visual flickering, has been widely used in the fields

of neural engineering and neuroscience [1]. In electroen-

cephalogram (EEG)-based brain-computer interfaces (BCIs),

the SSVEP-based BCI has attracted much attention due to

its advantages of high performance and rapid user train-

ing [2], [3].

The performance of SSVEP-based BCIs depends on the

level of sophistication in stimulus presentation, multiple target

coding, and target identification methods [4]. Recent progress

of the stimulus presentation methods allows presenting sta-

ble visual flickers at flexible frequencies on a computer

monitor or mobile platforms based on refresh rate [5]–[8].

In addition, the efficacy of hybrid frequency and phase coding

methods has been demonstrated for increasing the embedded

information in each of visual targets [4], [9]. Advanced

signal processing techniques have also been proposed to

improve the performance of SSVEP-based BCIs. Recently,

a canonical correlation analysis (CCA)-based approach has

been used widely to detect SSVEPs tagged with frequency

coding [10], [11]. To further enhance the performance of target

identification, extended CCA-based approaches that incorpo-

rate prerecorded individual calibration data [4], [12] and a

filter bank method [13] have been proposed in more recent

studies. By considering these issues jointly, the performance

of SSVEP-based BCIs has been drastically improved in the

past few years [14].

1534-4320 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Despite the success in improving the accuracy and speed

of SSVEP-based BCIs, moving BCI systems from a well-

controlled laboratory setting to a real-life environment remains

extremely challenging due to the complications of measuring

EEG outside well-controlled laboratory settings [15], [16].

Current BCI operations require extensive subject prepara-

tion including scalp abrasion, gel application, and tethered

electrodes [17]. Developing a truly practical SSVEP-based

BCI system evidently requires significant improvements in

measuring EEG signals. Some efforts have been made to

overcome these technical barriers of the EEG measurement

in the past few years [17]–[20]. For instance, studies have

shown that dry-contact and noncontact electrodes can avoid

the usage of conduct gels [17], [20]. These electrodes can

simply be placed over the hair-covered areas to acquire EEG

signals from the scalp without requiring skin preparation or

conductive gels. However, a major concern over the use of

dry, nonprep electrodes for the EEG measurement is that

the signal-to-noise rate (SNR) of the acquired signals might

not be as good as that obtained from the gel-based wet

electrodes. Furthermore, for some clinical applications such

as patients lying face up, measuring EEG from the occipital

sites would be undoubtedly more difficult either by wet or

dry electrodes [21]. Therefore, an alternative approach to

robustly measure high-quality SSVEPs becomes imperative.

Our recent proof-of-concept study demonstrated that non-hair-

bearing areas including neck, face, and behind the ears can be

alternative locations to acquire EEGs without requiring skin

preparation or the use of conduct gels [22]. The empirical

results of the study showed that SSVEPs could be assessed

from those non-hair-bearing areas, and more importantly with

a proper electrode selection the SNR of the SSVEPs could

be comparable or even higher than that obtained by the wet

electrodes placed over the occipital areas. However, the study

only tested the SNRs of non-hair SSVEPs on a small group

of five subjects. The robustness of non-hair SSVEPs was not

fully evaluated. Furthermore, the study did not implement an

online SSVEP-based BCI system based solely on the non-hair

EEG to validate the feasibility of the non-hair BCI.

More recently, we also demonstrated an online SSVEP-

based BCI system using in-the-ear EEGs and the system

performance reached 16.6±6.55 bits/min [23]. Independently,

Norton et al. [24] also proposed a soft and curved electrode

system that is capable of acquiring EEGs from auricle. The

system provided long-term recording of EEG data by inti-

mately attaching the soft electrode to the complex surface of

the ear. The result of SSVEP experiment in the study showed

an ITR of 12 bits/min. In summary, although the advanced

sensing technologies enabled a new apparatus for acquiring

EEGs, the resultant ITRs were not nearly as good as those

reported in recent high-speed BCI studies based on occipital

EEGs [4], [13], [14]. However, because there are considerable

differences across the studies using non-hair and occipital

EEGs in terms of stimulus coding mechanism, experimental

design and setup, electrode positions and subject pools, it

is difficult to directly compare results between non-hair and

occipital SSVEPs. In other words, the cost and benefits of

using non-hair SSVEPs compared to that using the occipital

SSVEPs remains unclear. A concurrent recording of both non-

hair and occipital SSVEPs for each individual is required to

quantitatively compare the differences in BCI performance

between two montages.

This study aims to explore the feasibility and benefit of

using EEG data from non-hair-bearing areas, along with

the aforementioned advanced stimulus-coding and target-

identification methods, to develop and test an online SSVEP-

based BCI system. We first explored the scalp distributions

of the SNRs of the SSVEPs collected from the offline BCI

experiments, and then compared the SNRs of SSVEPs mea-

sured by different combinations of electrodes placed over

four scalp regions, including neck, face, behind-the-ear, and

occipital areas. The CCA-based spatial filtering method was

then used to enhance the SNRs of SSVEPs. In addition to

the offline analysis, an online BCI experiment was conducted

to evaluate the performance of a 12-target SSVEP-based BCI

using solely non-hair-bearing electrodes. In the online BCI

experiments, the aforementioned hybrid frequency and phase

coding method and the extended CCA-based methods that

incorporate individual training data and filter bank method

were used to optimize the BCI performance.

II. METHOD

A. Experimental Design

A square-shaped visual stimulus (5 × 5 cm) was coded and

flickering (white and black, 100% contrast, the frequencies

varied from 9 to 13 Hz with an interval of 1 Hz) at the center

of a ViewSonic P810 21-in CRT monitor (ViewSonic Corpo-

ration) with a refresh rate of 60 Hz. These frequencies were

generated using the frequency approximation approach [5].

Event triggers that indicated the onsets of visual stimuli were

sent and synchronized with EEG data in the amplifier. The

stimulation program was developed in Microsoft Visual C++

using the Microsoft DirectX 9.0 framework.

Eleven healthy male subjects (24.23 ± 5.1 years old) with

normal and corrected-to-normal vision participated in the

offline BCI study. They read and signed an informed consent

form approved by the Human Research Protections of the

University of California San Diego before the experiment.

Subjects were seated in a dim room and faced a computer

monitor. They were asked to put their head on a chin rest

stationed 35 cm from the monitor, as shown in Fig. 1(a).

The experiment consisted of four runs, each run had five

trials, each involved a flickering visual stimulus rendering at

a different frequency in a random order. For instance, the first

run might consist of 11, 10, 12, 9, and 13 Hz, while another

run might consist of 12, 10, 11, 9, and 13 Hz, sequentially.

Subjects gazed at a 30-s-long flickering target and rested

(∼15 s) between trials to prevent visual fatigue. After each

run, there was a break for several minutes.

B. Data Acquisition

This study used a 256-channel EEG system (Biosemi, Inc.)

to measure high-density EEGs from each of the participants.

The electrodes roughly evenly distributed over the entire

head, including face, behind-the-ear, and neck areas, as shown
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Fig. 1. Subject wore a 256-channel EEG recording system (includes
a cap and a neck band) and gazed at a visual stimulus with his head
resting on a chin rest. Note that all the cables were removed temporarily
in order to have a clean view.

Fig. 2. (a) Subject wore a 256-channel EEG cap including a neck band.
The red, black, green, and blue circles roughly delineate the occipital,
behind-the-ear, face, and neck areas, respectively. Note that one or two
external electrodes were inserted into the gap between behind-the-ear
and EEG cap since the cap might not fit each individual’s head. (b) The
electrode distribution in a 2-D top view. Again, the red, black, green,
and blue circles delineate the occipital, behind-the-ear, face, and neck
areas, respectively. Note that this is an approximate 2-D plotting for all
electrodes so the actual electrode locations might deviate slightly. The
figures were adapted with permission from [22, Fig. 1].

in Fig. 2(a). Note that since the cap cannot perfectly fit

an individual subject’s head, several extra electrodes were

inserted into the gap between the cap and behind-the-ear areas.

Fig. 2(b) also shows the 2-D top view of the montage covering

the face (green), behind-the-ear (black), occipital (red), and

neck (blue) areas. All measured signals were amplified and

digitized at a sample rate of 2048 Hz, and referenced to the

middle of the forehead. The electrode locations were recorded

with a 3-D digitizer (Polhemus, Inc.).

C. EEG Data Analyzing

1) Signal Characteristic Evaluation: The 256-channel

EEG data were first down-sampled to 256 Hz and then band-

pass filtered from 5 to 50 Hz to investigate the characteris-

tics of the fundamental and harmonic SSVEP components.

Each 30-s-long trial was cut into six to seven 4-s-long

epochs according to the event codes generated by the stim-

ulus program. The epochs that were contaminated by severe

movements, such as eye blink, were manually removed. The

remaining trials formed a dataset.

For each recorded channel, the fast Fourier transform (FFT)

was applied to the 4-s-long EEG data of all 256 channels

to calculate the amplitude spectrum F( f ) at frequency f .

The SNR of SSVEP at a single channel is defined as the

ratio of F( f ) to the mean amplitude of the K neighboring

frequencies [25]

SNR =
K × F( f )

K/2∑
k=1

[F ( f + k� f ) + F( f − k� f )]

(1)

where f is the frequency of interest, � f is the frequency

resolution (0.25 Hz in this study), and K is set to 12. This

study focused on the scalp distribution (topography) of the

SNRs of SSVEPs. The scalp topography maps of multichannel

SSVEPs were plotted using the topoplot function in the

EEGLAB toolbox [26].

Recent studies reported that spatial filters based on CCA

could improve the SNR of SSVEPs [10], [11]. This study

thus applied CCA-based spatial filters to maximize the SNR

for each defined area. In general, CCA produces two weight

matrices that maximize the correlation between the two pro-

jected vectors. For instance, consider the two datasets x and

y that can be represented by X = wT
x x, and Y = wT

y y, where

wT
x and wT

y are linear coefficients, and X , Y are canonical

variables, respectively. We attempt to find the maximum

correlation ρ between X and Y by solving

ρ =
E[XY T ]√

E
[
X2

]
E[Y 2]

=
E[wx

T x yT wy]√
E[wx

T xxT wx ]E[wy
T y yT wy]

. (2)

Therefore, the maximum ρ with respect to wT
x and wT

y is

the maximum canonical correlation. In this study, the source

dataset (i.e., x ∈ R
Nc×Ns ) was SSVEPs, and the reference

dataset (i.e., y ∈ R
2Nh×Ns ) was a combination of sinusoidal

signals as follows:

yn =

⎛
⎜⎜⎜⎜⎜⎝

sin(2π fn t)

cos(2π fn t)
...

sin(2π Nh fn t)

cos(2π Nh fn t)

⎞
⎟⎟⎟⎟⎟⎠

, t =
1

fs

,
2

fs

, . . .
Ns

fs

(3)

where fn is the nth stimulus frequency, fs is sampling rate,

Nc is the number of channels, Ns is the number of data points,

and Nh is the number of harmonics (was set to 3 in this study).

In order to find the best electrode combination, the process of

electrode selection was applied to recordings from each area.

Eight electrodes were randomly selected for each area, and

the SNRs were calculated using these electrodes after spatial

filtering. The electrode selection was repeated 50 000 times for

each area, and then the electrode combination that produces

the highest SNR was noted and used for the following analysis.



14 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 25, NO. 1, JANUARY 2017

2) Target Identification: This study also compared tar-

get identification accuracy and simulated ITRs using a 5-

class SSVEP dataset measured from four different areas.

The SSVEP signals were first down-sampled to 256 Hz.

The performances were evaluated by the filter bank analysis

proposed in [13] and the extended CCA analysis [4], [12]

through a leave-one-out cross validation. The recorded EEG

datasets were first decomposed into several sub-band com-

ponents. The i th sub-band used the frequency range from

the i× 8 Hz to 70 Hz, which are designed according to

our previous studies [13], [14]. The band-pass filters were

realized with an infinite impulse response (IIR) filter. Zero-

phase forward and reverse IIR filtering was implemented using

the filtfilt() function in MATLAB. After applying the filter

bank, an individual template x̂
(i)
n for nth visual stimulus and

i th sub-band can be obtained by averaging multiple training

trials in cross validation, and a test trial is denoted as x(i).

Correlation coefficients between projections of the test set

and the template signals using CCA-based spatial filters can

be used as features. Specifically, the following three weight

coefficients were used as spatial filters: 1) w
(i)

X X̂n
between the

test set x(i) and the template signals x̂
(i)
n ; 2) w

(i)
XYn

between the

test set x(i) and the sine-cosine reference signals yn; 3) w
(i)

X̂n Yn

between the template signals x̂
(i)
n and the sine–cosine reference

signals yn . In addition, the similarity between w
(i)

X X̂n
and

w
(i)

X̂n X
was indirectly measured by calculating the correlation

coefficient between the projections of template signals using

the two spatial filters. A correlation vector r
(i)
n is defined as

follows:

r(i)
n =

⎡
⎢⎢⎢⎢⎢⎢⎣

r
(i)
n,1

r
(i)
n,2

r
(i)
n,3

r
(i)
n,4

r
(i)
n,5

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ

((
w

(i)
XYn

)T

x(i),
(
w

(i)
Yn X

)T

yn

)

ρ

((
w

(i)

X X̂n

)T

x(i),
(
w

(i)

X X̂n

)T

x̂
(i)
n

)

ρ

((
w

(i)
XYn

)T

x(i),
(
w

(i)
XYn

)T

x̂
(i)
n

)

ρ

((
w

(i)

X̂nYn

)T

x(i),
(
w

(i)

X̂nYn

)T

x̂
(i)
n

)

ρ

((
w

(i)

X X̂n

)T

x̂
(i)
n ,

(
w

(i)

X̂n X

)T

x̂
(i)
n

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4)

where ρ(a, b) indicates the correlation coefficient between a

and b. The five correlation values were combined as follows:

ρ(i)
n =

5∑

j=1

sign
(

r
(i)
n, j

)
· r

(i)
n, j

2
(5)

where a sigmoid function was used to retain discriminative

information from negative coefficients between the test set and

template signals. A weighted sum of squares of the combined

correlation values corresponding to all sub-band components

was calculated as the feature for target identification

ρ̃n =

I∑

i=1

W(i) · ρ(i)
n

2
(6)

where i is the index of the sub-band, I is the total number

of sub-bands (I = 5 in this study), and W(i) was defined

as W (i) = i−1.25 + 0.25 according to [13]. The template

Fig. 3. SNR distribution of a sample subject gazing at a 9 Hz visual
stimulus. The topographic maps at the top (left to right) panels are the
2-D SNR distribution at the fundamental frequency, second harmonics,
third harmonics, and fourth harmonics, respectively.

signal that maximizes ρ̃n was selected as the template signal

corresponding to the target.

III. RESULTS

Fig. 3 shows that all of the four recording areas exhibit an

SNR peak at the fundamental frequency (9 Hz) of the stimulus.

The second, third, and fourth harmonics of SNR peaks are also

appreciable. The top panels of Fig. 3 show 2-D scalp distrib-

utions of the SNRs of SSVEPs at the fundamental (9 Hz), the

second harmonic, the third harmonic, and the fourth harmonic

frequencies in response to 9 Hz stimulus (from left to right),

respectively. Inferred from the two left-most scalp maps, the

high SNRs (more red) appeared at the occipital area over the

visual cortex, where, as expected, the source of SSVEPs is.

The farther away from this area, the lower SNR (more green)

an area could have, such as the face and neck areas. In the two

right-most scalp maps, the SNR distribution is less explicit at

the third and fourth harmonics, indicating lower SNR SSVEPs

at the fourth harmonic over the neck, behind-the-ear, and face

areas. Base on this finding, the online implementation used

only the fundamental and the second harmonic for SSVEP

detection, as described in detail in Section IV.

Fig. 4 shows the best SNR of each area after 50 000

iterations (i.e., randomly selects eight electrodes for each area)

across 11 subjects. The resultant SNRs from low to high were

from the face, neck, behind-the-ear, and occipital areas, which

is consistent with our pilot study [22]. As the difference of

the SNRs between the neck and the behind-the-ear areas was

not statistically significant (Paired t-test, p = 0.51), only

the signals from behind-the-ear area were used in the online

SSVEP experiments described as follows.

Fig. 5 shows the average accuracy across all subjects for

the five-target classification using the best combination of

electrodes in each area across different data length from

1 to 4 s. In general, the accuracy of SSVEP detection increased

as the data length increased. The occipital area achieved over

95% in classification accuracy even with a short data length.
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Fig. 4. Maximal SNR for each area across 11 subjects. Error bars
indicate standard errors. The asterisks indicate significant difference
between different areas (∗p < 0.05).

Fig. 5. Averaged classification accuracy across subjects using different
electrode locations with different data lengths. Error bars indicate stan-
dard errors. The dotted line indicates chance-level accuracy in five-class
classification.

The comparison of accuracy among behind-the-ear, neck, and

face areas showed that the performance of the behind-the-ear

area outperformed that of the neck area. One-way repeated

measures analysis of variance (ANOVA) showed significant

differences of the classification accuracy between these areas

under all data length (p < 0.05). Although post hoc paired

t-test did not show significant differences between behind-the-

ear and neck areas, the accuracy of the behind-the-ear areas

was higher than that of the neck area under all data length

(behind the ear versus neck; 1 s: 64.10±4.93% versus 55.76±

6.51%, p = 0.22; 2 s: 73.71 ± 5.67% versus 65.23 ± 7.14%,

p = 0.16; 3 s: 76.52±5.13% versus 68.71±6.52%, p = 0.15;

4 s: 79.47 ± 4.83% versus 71.44 ± 6.53%, p = 0.12).

In summary, results from high-density EEG recordings

provided invaluable insights into the optimal channel selection:

Fig. 6. Twelve-target stimulus matrix used in the online BCI experiment.
(a) User interface in the experiment. (b) Frequency and phase values
used for encoding each target in the stimulation matrix. Red square in
(a) is the visual cue indicating a target symbol ‘5’ in the experiment. Both
figures were adapted from [27].

the electrodes near the occipital lobe (e.g., behind the ear and

neck) were the best candidates to build an SSVEP-based BCI

system based on non-hair-bearing montage. Considering that

the muscle activities might contaminate the signals measured

from the neck area, signals measured behind the ear areas

seem to be the better choice of an online SSVEP-based BCI.

IV. ONLINE VALIDATION

A. Experimental Design

Twelve visual stimuli (each one consisted of a 6 × 6 cm

square) were presented on a 27-in LCD monitor (ASUS

VG278) with a refresh rate of 60 Hz and a resolution of

1280 × 800 pixels. As shown in Fig. 6, the stimuli were

arranged in a 4 × 3 array similar to the keypad of a phone [16].

The horizontal and vertical intervals between two neighboring

stimuli were 5 and 1.5 cm, respectively. In this study, the joint

frequency and phase coding method, in which two adjacent

targets are tagged with different frequencies and phases, was

used to enhance the discriminability of each stimulus [9].

To be more specific, each stimulus was tagged with different

frequencies (9.25 to 14.75 Hz with an interval of 0.5 Hz)

and phases (0, 0.5π , π and 1.5π). The stimulation program
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Fig. 7. Placements of four behind-the-ear electrodes while subjects
performed the online SSVEP experiment.

was developed on MATLAB (Mathworks, Inc.) using the

Psychophysics Toolbox extensions [28].

Five subjects (five males and three of them did not partici-

pate in the offline experiments, mean age: 28.2 ± 1.92 years)

with normal or corrected-to-normal vision participated in

this online BCI study. They were asked to read and sign

an informed consent form approved by the UCSD Human

Research Protections before the experiment. They were seated

in a comfortable chair and put their head on a chin rest that

is 60 cm in front of the visual stimulator in a dim room.

Eight Ag/AgCl electrodes were placed over the behind-the-ear

areas (four on each side) to collect informative EEG signals,

as shown in Fig. 7. Eight additional electrodes were placed

over the occipital lobe as the gold standard for comparison.

EEG signals were amplified and digitized at a sampling rate

of 2048 Hz using BioSemi ActiveTwo EEG system (Biosemi,

Inc.), and all electrodes were referenced to a forehead elec-

trode. Event triggers that indicate the onsets of visual stimuli

were sent and synchronized with EEG data in the amplifier.

B. Training Data Recording

This study performed a simulated online analysis for esti-

mating the performance of BCIs [4], [29]. The experiment

consisted of 15 bouts. Each bout consisted of 12 trials, in each

trial subjects were asked to gaze at one of the targets for 4 s

and then switched to the next target within 1 s. During this 1 s,

the next target was rendered in red [i.e., #5 of Fig. 6(a)] as

a cue. The cue appeared in a random order. To reduce eye-

movement artifacts, subjects were asked to avoid blinks during

the stimulation period.

C. Simulated Results

Data epochs comprising eight-channel SSVEPs over the

occipital and the behind-the-ear areas, respectively, were

extracted according to event triggers generated by the stimulus

presentation program. All data epochs were down-sampled to

256 Hz. Considering a latency delay in the visual system, the

data epochs were extracted in [0.135 s 0.135+d s], where the

time zero indicated stimulus onset and d indicated data length

used in the offline analysis. The 135-ms delay was selected

Fig. 8. (a) Classification accuracy and (b) ITRs of simulated online
BCI experiments using the occipital and behind-the-ear electrodes with
different data lengths. Error bars indicate standard errors. The dotted
line in the bottom of (a) indicates chance-level accuracy in 12-class
classification.

towards the highest classification accuracy [14]. This study

used a leave-one-out cross validation to estimate the target

identification accuracy and the simulated ITR.

Fig. 8(a) and (b) shows the average accuracy and ITRs

across all subjects with data length from 1 to 4 s, respectively.

The target identification using the occipital area achieved

nearly perfect accuracy even with short data length (1 s:

99.11 ± 0.62%, 2 s: 99.89 ± 0.11%, 3 s: 100.00± 0.00%, 4 s:

100.00±0.00%). The ITRs decline as the data length increased

(1 s: 105.37 ± 1.51 bits/min, 2 s: 71.51 ± 0.19 bits/min, 3 s:

53.77±0.00 bits/min, 4 s: 43.02±0.00 bits/min). Although the

accuracy using the behind-the-ear channels were not as high

as that using the occipital channels (1 s: 52.33± 10.04%, 2 s:

73.11 ± 6.69%, 3 s: 81.89 ± 4.96%, 4 s: 88.11 ± 3.93%), the

average accuracy using the behind-the-ear channels reached

almost 90%. With 4 s-long data, the ITR using the behind-

the-ear channels reached 33.22 ± 2.62 bits/min.

D. Online BCI Results

The truly online BCI experiment requires subjects to input a

predetermined 12-symbol sequence without visual cues. Each

subject performed three bouts with a short break in between.

All 12 visual stimuli started to flicker simultaneously for 4 s

on the monitor. During that time, subjects were asked to gaze

at a target stimulus. They had to keep their gaze on the target

until a red rectangle marked the position of the correct target

stimulus identified by the online program. After that, subjects

had 1 s to switch their gaze to the next target. Before the

online experiment, every subject practiced for a few minutes

to become familiar with the online task.

Table I lists the results of online BCI operation across the

five subjects. The average accuracy was 84.08 ± 15.60%,

leading to an average ITR of 30.21 ± 10.61 bits/min. Three

subjects (Subjects 1, 4, and 5) achieved an accuracy over

90%, and subject 4 achieved 100% accuracy. Although the
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TABLE I

ONLINE RESULTS

ITR obtained in this study is not comparable to those reported

in the previous results that used signals from the occipital

electrodes, the results clearly suggested that signals measured

from behind-the-ear electrodes could provide reliable SSVEPs

for realizing an online BCI system.

V. DISCUSSION AND CONCLUSION

SSVEP-based BCIs have attracted increasing attention in

recent years. However, most studies mainly focused on

improving the performance (i.e., ITR and accuracy) in well-

controlled laboratory environments. Transitioning laboratory

demonstrations of SSVEP-based BCIs to real-world appli-

cations poses severe challenges on signal measuring and

processing. For instance, long skin preparation and conduct-

gel usage are some of the technical barriers of using SSVEP-

based BCI systems in daily life. Despite the fact that dry

electrodes, in-the-ear electrodes, and soft and curved auricle-

based electrodes provide alternative approaches to reduce the

preparation time and to avoid the usage of conduct gels, low

ITRs make these advanced sensing technologies impracticable

in real-life BCI applications.

This study conducted an offline and an online experiment

to explore the feasibility of using electrodes placed over non-

hair-bearing areas to build an SSVEP-based BCI system. The

offline SSVEP experiments acquired signals from 256 elec-

trodes populated across the whole head across 11 subjects.

First, the SNR topographies showed that the elicited SSVEPs

were indeed projected to the whole head, including the face,

neck, and behind-the-ear areas. In general, the ranking of

SNRs was occipital > behind the ears > neck ≈ face area,

which was consistent with our previous finding [22]. Second,

this study evaluated the five-class classification accuracy

using leave-one-trial-out cross-validation. The resultant aver-

age accuracy using 4-s-length data was 79.47±4.83%, 71.44±

6.53%, and 68.18±6.43% for the behind-the-ear, the neck, and

the face area, respectively. Moreover, the study results showed

that the SSVEPs at the fundamental and second harmonic

frequencies were appreciable while the SSVEPs at higher

harmonics were not visible in the signals measured from the

non-hair-bearing areas. These empirical results suggested that

using EEG signals from non-hair-bearing areas could be an

alternative approach to realize an online SSVEP-based BCI.

Third, five subjects successfully completed the truly online

SSVEP tasks, in which each of them inputted 12 coded

targets using EEG signals solely from eight electrodes placed

over the behind-the-ear area. The averaged accuracy was

84.08 ± 15.60% and averaged ITR was 30.21±10.61 bits/min.

Among the subjects, three achieved accuracy over 90% and

one could achieve 100%.

Another important contribution of this work is to quantita-

tively compare the SSVEP target identification accuracy and

ITRs obtained from non-hair areas with that obtained from

the simultaneously recorded signals from occipital electrodes.

The comparison provided a guideline for finding a balance

between the advantages (accessibility) of and the disadvan-

tages (reduced accuracy and ITRs) of non-hair EEG signals.

Although the performance of the BCI with occipital SSVEPs

is significantly better than that with non-hair SSVEPs, placing

electrodes on non-hair area can be an alternative way for some

users. Recording from hair-covered area is inconvenient. For

example, for some patients who faced up and were lying on

the bed, a non-hair BCI system might be a better choice since

occipital area is difficult to access. However, the BCI with

recordings on the occipital electrodes might be preferred for

some users since the accuracy can be nearly 100%.

In summary, this study demonstrated the feasibility and

practicality of using non-hair-bearing electrodes to build an

online SSVEP-based BCI application. Possible future direc-

tions of this study could be reducing the number of non-hair-

bearing electrodes, optimizing electrodes combinations, and

increasing the number of targets in real-world BCI applications

such as a BCI speller.
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