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An Online Gradient Algorithm for Optimal

Power Flow on Radial Networks
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Abstract—We propose an online algorithm for solving optimal
power flow (OPF) problems on radial networks where the control-
lable devices continuously interact with the network that implicitly
computes a power flow solution given a control action. Collectively
the controllable devices and the network implement a gradient
projection algorithm for the OPF problem in real time. The key
design feature that enables this approach is that the intermedi-
ate iterates of our algorithm always satisfy power flow equations
and operational constraints. This is achieved by explicitly exploit-
ing the network to implicitly solve power flow equations for us
in real time at scale. We prove that the proposed algorithm con-
verges to the set of local optima and provide sufficient conditions
under which it converges to a global optimum. We derive an
upper bound on the suboptimality gap of any local optimum.
This bound suggests that any local minimum is almost as good
as any strictly feasible point. We explain how to greatly reduce
the gradient computation in each iteration by using approximate
gradient derived from linearized power flow equations. Numerical
results on test networks, ranging from 42-bus to 1990-bus, show
a great speedup over a second-order cone relaxation method with
negligible difference in objective values.

Index Terms—Branch flow model, distflow equations, interior
point method, online optimization algorithm, optimal power flow
(OPF).

I. INTRODUCTION

O PTIMAL power flow (OPF) is fundamental in power sys-

tem operations as it underlies many applications such as

economic dispatch, unit commitment, state estimation, stability

and reliability assessment, volt/var control, demand response,

etc. There has been a great deal of research on OPF since

Carpentier’s first formulation in 1962 [6]. An early solution

appears in [11], [33] and extensive surveys can be found in

e.g. [5], [7], [8], [16], [17], [23], [25]–[32]. Almost all algo-

rithms in this literature are offline where one must wait till the

iteration has converged to obtain a solution that can be applied

to the network because the intermediate iterates of these algo-

rithms do not satisfy power flow equations and therefore are not

implementable. In this paper, we propose a different approach,

motivated by the need to optimize the operation of a large net-

work of distributed energy resources in distribution systems

of the future, such as distributed wind and solar generations,
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electric vehicles, smart buildings, smart appliances, storage

devices, smart inverters and other power electronics.

In this scenario an OPF problem has two set of variables

(x(t), y(t)) where the independent variables x(t) represents

controllable devices and the dependent variables y(t) are deter-

mined by power flow equations given an x(t). Most exist-

ing algorithms update (x(t), y(t)) jointly in each iteration t

offline say, using the Newton-Raphson method. These iterates

typically do not satisfy power flow equations or operational

constraints until the algorithm has converged. In contrast, our

algorithm only updates x(t), based on (x(t − 1), y(t − 1)), and

applies the control x(t) to the network in each iteration t . The

network automatically computes a power flow solution y(t) by

implicitly solving the power flow equations. Our algorithm then

updates x(t + 1) based on measurements of y(t) and the cycle

repeats.

One of the key computational challenges in almost all the

offline AC OPF algorithms in the literature is implicitly solv-

ing power flow equations. Here, we explicitly exploit the laws

of physics to solve power flow equations in real time at scale

for free over the network. The key advantage of this approach

is that it can be used for continuous feedback optimiza-

tion to track evolving network conditions in a plug-and-play

framework.

See [4] for a similar approach and [12] for a purely local

algorithm, both for volt/var control.

Summary and contributions. We use the branch flow model

(DistFlow equations) proposed in [1], [2] for radial networks

and formulate the AC OPF problem in Section II. Our algo-

rithm is a first-order gradient algorithm where in each iteration,

derivatives of the objective function with respect to the con-

trollable variables x are calculated, based on (x(t), y(t)), to

compute the next control x(t + 1) in the direction of the neg-

ative gradient. We must ensure that, throughout the process,

the intermediate results (x(t), y(t)) both (i) satisfy power flow

equations and (ii) satisfy operational constraints (e.g., voltage

magnitudes must lie within 5% of their nominal values) so that

the control x(t) can be safely applied to the network at each

iteration t .

It is useful to treat our algorithm as a discrete-time feedback

system:

controller: x(t + 1) = g(x(t), y(t)) (1a)

network: y(t) = f (x(t)) (1b)

where (1a) is a gradient descent step and (1b) is a power flow

solution. While we can design the function g and actively apply

it to the network, the function f is determined by power flow

0733-8716 © 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution

requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



626 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 34, NO. 3, MARCH 2016

equations through the implicit function theorem and enforced

by the network. This design satisfies the first requirement. To

satisfy the second requirement, especially for constraints on the

dependent variables y that we do not explicitly control, we add

a log-barrier function to the objective to prevent y(t) from vio-

lating their constraints. The solution strategy is overviewed in

Section III and the algorithm is detailed in Section IV.

We prove in Section V that algorithm (1) always converges to

the set of local optima and provide sufficient conditions under

which it converges to a global optimum. Moreover we derive an

upper bound on the gap between the cost of any local optimum

and the cost of an arbitrary feasible point that is a small distance

away from the boundary of the feasible set. This bound suggests

that any local minimum is almost as good as any strictly feasible

point.

We present in Section VI several refinements and exten-

sions to the basic gradient algorithm. For example, due to the

implicit power flow solution (1b), the gradient computation in

(1a) requires inverting a certain Jacobian matrix. This is ineffi-

cient for large networks in terms of both computational effort

and communication requirement. We describe how to exploit

the tree topology of the network to iteratively compute the

gradient in (1a) without the need for matrix inversion. To fur-

ther reduce the computational effort, we describe how to use

linearized power flow equations to derive approximate gradi-

ents that avoids both matrix inversion and iterative calculation.

These two methods greatly reduce the computational effort in

each iteration of (1a), but does not directly address communica-

tion requirement. In [19] these algorithms are extended to their

distributed versions that require communication only between

neighboring buses.

While we discuss our algorithms mostly in the context of a

single-phase network for simplicity of exposition, most distri-

bution systems are multiphase unbalanced [10], [21], [24]. We

provide a sketch on how these algorithms can be extended to

multiphase unbalanced radial networks.

Finally we present in Section VII numerical experiments on

22 test networks with 42 buses to 1,990 buses. While semidef-

inite relaxation of OPF [25], [26] is able to compute globally

optimal solutions, it takes a much longer time. In comparison,

the algorithm developed in this paper takes a much shorter time

and is able to obtain a close-to-optimal solution. Specifically,

for all our test networks, the difference in objective values is

below 10−5 between these two methods but the speedup is

over 70x for large networks. It is therefore promising to further

develop the algorithms in this paper for real-time applications.

We conclude in Section VIII. A key challenge to overcome is

to minimize the measurement and communication requirements

so that these algorithms can be implemented in real time by a

large network of distributed energy resources, building on the

ideas in [19].

II. PROBLEM FORMULATION

A. Model

Consider a distribution network modeled as a directed (and

connected) tree graph (N+, E) where N+ := {0} ∪ N , N :=

{1, . . . , n}, and E ⊆ N+ × N+. We will refer to each i ∈ N+

Fig. 1. Some of the notations.

as a “bus” or “node” and each (i, j) ∈ E as a “line” or “link”.

Let m := |E | = n be the number of lines in E . Let bus 0

be the root of the tree. For convenience only, we assume

the graph is oriented such that each line (i, j) ∈ E points

away from the root. We may use (i, j) or i → j interchange-

ably to denote a line. For each (i, j) ∈ E , let zi j := ri j + ixi j

were ri j > 0 and xi j > 0 are the line resistance and reactance

respectively.

For each bus i ∈ N+, let Vi be the complex voltage at bus i

and vi = |Vi |
2 the square of its magnitude, e.g., if the voltage

is Vi = 1.05� 120◦ per unit, then vi = 1.052. Bus 0 is the slack

or substation bus and we assume as customary that V0 = 1� 0◦

pu. Let si = pi + iqi be the net complex power injection at

bus i with pi and qi as the real and reactive power injections

respectively. Let Pi denote the unique path from bus 0 to bus i .

Since the network is radial (has a tree topology), the path Pi is

well-defined.

For each line (i, j) ∈ E , let Ii j be the complex current and

ℓi j = |Ii j |
2 its squared magnitude, e.g., if the current is Ii j =

0.5� 10◦, then ℓi j = 0.52. Let Si j = Pi j + iQi j be the sending-

end complex power from buses i to j with Pi j and Qi j as the

real and reactive power respectively.

We will mainly be using branch flow models in real domain,

so we will abuse notation to use si to denote either the complex

number pi + iqi or the real pair (pi , qi ) depending on the con-

text; similarly for other variables zi j , Vi , Si j , Ii j . Some of the

notations are summarized in Figure 1.

Let x := (pi , qi , i ∈ N ) ∈ R
2n denote the bus injec-

tions1 and y := (p0, q0, vi , i ∈ N ; Pi j , Qi j , ℓi j , (i, j) ∈ E) ∈

R
3m+n+2 the other dependent variables. We assume x repre-

sents controllable devices and y uncontrollable network states.

These variables, together with v0, satisfy the power flow equa-

tions:

∑

k: j→k

Pjk = Pi j − ri jℓi j + p j , j ∈ N+ (2a)

∑

k: j→k

Q jk = Qi j − xi jℓi j + q j , j ∈ N+ (2b)

vi − v j = 2(ri j Pi j + xi j Qi j ) − |zi j |
2ℓi j , i → j (2c)

viℓi j = P2
i j + Q2

i j , i → j (2d)

where i in (2a) and (2b) is the unique bus between bus 0 and bus

j . Note that the number 2(m + n + 1) = 4n + 2 of equations

is the same as the number of variables in y. The equations (2),

called the DistFlow equations, are first proposed in [1], [2] and

1Even though x is also used to denote line reactances, the meaning should

be clear from the context.
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are valid only for radial networks (see [14] for the generaliza-

tion to mesh networks). Discrete devices like tap-changers and

circuit breakers are not modeled.

B. Optimal Power Flow (OPF)

The OPF problem that we seek to solve is:

min

n
∑

i=0

ai p2
i + bi pi (3a)

over x := (pi , qi , i ∈ N )

y := (p0, q0, vi , i ∈ N ; Pi j , Qi j , ℓi j , (i, j) ∈ E)

s.t. (2)

vi ≤ vi ≤ vi , i ∈ N (3b)

p
i
≤ pi ≤ pi , q

i
≤ qi ≤ q i , i ∈ N (3c)

The objective function (3a) is assumed to be separable,

quadratic, and purely a function of real power injections p.

Equation (3b) represents the voltage constraints, and (3c) rep-

resents the power injection constraints. If there is no bound on

an injection x j then we set x j = −∞ or/and x j = ∞. On the

other hand if an injection x j is fixed (e.g. a constant-power load)

then we set x j = x j to the specified value.

OPF as defined (3) is a simplified version that ignores other

important constraints such as line limits, security constraints,

stability constraints, and chance constraints. Some of these

(e.g., including shunt elements or line limits on ℓi j ) can be

incorporated without much change to the results in this paper.

III. SOLUTION STRATEGY

We are motivated by the need to optimize the operation of

a large network of distributed energy resources in the future,

such as distributed wind and solar generations, electric vehi-

cles, smart buildings, smart appliances, storage devices, and

power electronics. We model these controllable devices by

injections x := (pi , qi , i ∈ N ). We will develop a gradient pro-

jection algorithm that iteratively solves an approximate version

of the OPF problem (3) as follows: at each iteration t ,

1) the algorithm applies the current iterate x(t) to the net-

work;

2) the network automatically computes the dependent vari-

ables y(t) according to the power flow equations (2);

3) the algorithm computes x(t + 1) based on (x(t), y(t))

using a gradient projection algorithm; goto 1 until con-

verge.

Hence we explicitly exploit the law of physics, modeled by

power flow equations (2), to carry out part of the gradient pro-

jection algorithm to solve approximately our OPF problem. The

key advantage of this approach is that, by applying intermedi-

ate iterates (x(t), y(t)) to the network at each t , it can be used

in real time for continuous feedback control to track evolving

network conditions. This is in stark contrast to most traditional

OPF algorithms where intermediate iterates (x(t), y(t)) do not

satisfy power flow equations and therefore cannot be imple-

mented until the algorithms have converged. We will comment

on the communication requirements to implement this strategy

in Section VI.

We now describe, in two steps the approximate OPF problem

that we solve.

A. Injection Optimization

We first transform (3) into one where the optimization

variable is only x . To this end, let

X := { (pi , qi ) | p
i
≤ pi ≤ pi , q

i
≤ qi ≤ q i , i ∈ N } (4)

Write the power flow equations (2), in terms of a continuously

differentiable function F : X → R
2(m+n+1), as:

F(x, y) = 0 (5)

We make the following assumption throughout the paper:

A1: Given any x̃ ∈ X (and v0), there is a unique ỹ that solves

the power flow equation (5) and satisfies the voltage con-

straints (3b). Moreover the Jacobian matrix ∂y F(x̃, ỹ) at

(x̃, ỹ) is nonsingular.

A1 is widely believed to hold in practice for radial networks

and a rigorous proof for some special cases are provided in [9].

Equation (5) hence defines implicitly a function y = y(x)

over X :

p0 := p0(x), q0 := q0(x);

vi := vi (x), i ∈ N

Pi j := Pi j (x), Qi j := Qi j (x), ℓi j = ℓi j (x), i → j

such that F(x, y(x)) = 0. Then the OPF problem (3) can be

written in terms of x :

min a0 p2
0(x) + b0 p0(x) +

n
∑

i=1

(ai p2
i + bi pi ) (6a)

over x := (pi , qi , i ∈ N ) ∈ X (6b)

s.t. vi ≤ vi (x) ≤ vi , i ∈ N (6c)

where X is defined in (4). While (6) is equivalent to (3), (6)

has much fewer optimization variables and is therefore poten-

tially more efficient to compute. Note however that while (3b)

is linear in vi , (6c) is generally nonlinear in x .

B. Modified OPF

The nonlinear voltage constraints (6c) couple the variables

x = (pi , qi , i ∈ N ). To further simplify the feasible set to facil-

itate a distributed algorithm (see [19]) where each bus i updates

its own (pi , qi ) locally, we replace the hard constraints (6c) by

a log-barrier function in the objective that prevents the voltages

from violating (6c):

L(x;µ) := a0 p2
0(x) + b0 p0(x) +

n
∑

i=1

(ai p2
i + bi pi )

− µ

n
∑

i=1

ln(vi (x) − vi ) − µ

n
∑

i=1

ln(vi − vi (x)) (7)



628 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 34, NO. 3, MARCH 2016

where µ = (µ,µ) > 0 componentwise. Since

lim
t↓vi

−µ ln(t − vi ) = ∞, lim
t↑vi

−µ ln(vi − t) = ∞, i ∈ N

minimizing L ensures vi (x) stays in (vi , vi ) as long as µ > 0.

Moreover L converges to the original objective function as µ

tends to zero:

lim
µ↓0

L(x;µ) = a0 p2
0(x) + b0 p0(x) +

n
∑

i=1

(ai p2
i + bi pi )

and therefore solving OPF is similar to minimizing L(x;µ)

with small µ > 0.

To summarize, our goal is to solve

OPF(µ) : min L(x;µ) (8a)

over x := (pi , qi , i ∈ N ) ∈ X (8b)

for a decreasing sequence of µ > 0, where the objective L is

defined in (7) and the feasible set X in (4).

IV. GRADIENT PROJECTION ALGORITHM

A. Solving OPF(µ) for Fixed µ

For each µ > 0 our algorithm is a gradient projection algo-

rithm that takes the form

x(t + 1) = [x(t) − η(t)∂x L(x(t);µ)]X

where ∂x L denotes the partial derivative of L with respect to

x , η(t) > 0 is a stepsize at iteration t , and [x]X projects x onto

X . Under assumption A1, the implicit function theorem implies

that the Jacobian matrix ∂x y(x) of y(x) with respect to x exists

in X and is continuous. It is given by:

∂x y(x) = −
[

∂y F(x, y(x))
]−1

∂x F(x, y(x))

Writing the objective L(x;µ) = L(x, y(x);µ), we have

∂x L = ∂x L(x, y(x);µ) + ∂y L(x, y(x);µ) ∂x y(x)

= ∂x L(x, y(x);µ) − ∂y L(x, y(x);µ)
[

∂y F(x, y(x))
]−1

∂x F(x, y(x)) (9)

For a gradient projection algorithm that uses the network to

compute the dependent variables y(t), it is practical to use a

constant stepsize η(t) ≡ η, especially if we wish the algorithm

to track slowly evolving network conditions. (See Section VI-D

for time-varying stepsizes.) As long as η is small enough, the

iterates (x(t), y(t)) will converge to a local minimum, as we

now explain.

Definition 1: A point x = (p, q) ∈ X is a local minimum of

L if

〈

∂xi
L , x̃i − xi

〉

≥ 0, x̃i ∈ (x i , x i ), i ∈ N

Let O∗ ⊆ X denote the set of local minima of L .

Consider the sequence (x(t), y(t)) generated by the gradient

projection algorithm:

x(t + 1) = [x(t) − η ∂x L(x(t);µ)]X (10a)

y(t) = y(x(t)) (10b)

where ∂x L is given by (9). We will interchangeably refer to the

sequence by x(t) or (x(t), y(t)) := (x(t), y(x(t)). A point x∗

or equivalently (x∗, y∗) is called a limit point of x(t) or equiva-

lently (x(t), y(t)) if there is a subsequence x(tk) or equivalently

(x(tk), y(tk)) such that x(tk) → x∗ and y(tk) → y∗ as k → ∞.

To estimate a bound on the stepsize η, note that since F in (2)

is twice continuously differentiable, the implicit function theo-

rem implies that y(x) is also twice continuously differentiable

over X and hence the Hessian matrix ∂xx L(x;µ) exists and is

continuous (see below for an explicit expression). Therefore,

since X is compact, ∂xx L(x;µ) is bounded uniformly on X .

This implies that ∂x L is Lipschitz over X , i.e., there exists an

K such that

‖∂x L(x ′;µ) − ∂x L(x;µ)‖2 ≤ K‖x ′ − x‖2, x, x ′ ∈ X

Theorem 1 (Local optimality): Suppose assumption A1

holds and the stepsize 0 < η < 2/K .

1) Every limit point x∗ of x(t) is a local minimum.

2) The sequence x(t) converges to the set O
∗ of local

minima, i.e., minx∈O∗ ‖x(t) − x‖2 → 0 as t → ∞.

3) If there are only finitely many local minima, then the

sequence x(t) itself converges to a local minimum.

The theorem is proved in Appendix A

B. Iterating Over µ

To approximately solve (6), we solve OPF(µ) in (8) with

different values of µ. Specifically, let µ1, µ2, . . . , µK denote

a sequence of µ > 0 that approaches 0. Given a feasible ini-

tial point x (0), we solve OPF(µ1), using the gradient projection

algorithm (10), with initial point x (0) to obtain x (1), then solves

OPF(µ2) with initial point x (1) to obtain x (2), . . ., and finally

solves OPF(µK ) with initial point x (K−1) to obtain the final

solution x (K ), which solves (6) approximately.

V. OPTIMALITY ANALYSIS

The gradient projection algorithm (10) may converge to a

local minimum (Theorem 1). In this section, we discuss condi-

tions under which it converges to a global minimum and bound

the suboptimality when it does not.

A. Global Optimality and Convexity

The condition in Definition 1 is necessary for an x to be a

global minimum of OPF(µ). If L were convex, it would also be

sufficient. Then Theorem 1 would have implied that any limit

point of the gradient projection algorithm (10) would be glob-

ally optimal. L however is in general nonconvex, but we now

show that it is “nearly” convex in the sense that the Hessian

matrix H(x;µ) := ∂xx L(x;µ) is positive semidefinite on a

large portion of the feasible set of (6).
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1) Computing Hessian H: From (7) we have, for i ∈ N ,

∂xi
L = (2a0 p0(x) + b0)∂xi

p0(x) + (2ai pi + bi )1(xi = pi )

−

n
∑

j=1

(

µ

v j (x) − v j

+
µ

v j (x) − v j

)

∂xi
v j (x) (11)

where 1(α) = 1 if α is true and 0 otherwise. Let Diag(a) denote

the diagonal matrix with diagonal entries (a1, a2, . . . , an). Let

c0(x) := 2a0 p0(x) + b0 (12a)

be the marginal cost of bus 0 power p0(x) and for k ∈ N

αk(x) :=
µ

(vk(x) − vk)
2

+
µ

(vk(x) − vk)2
(12b)

βk(x) :=
µ

vk(x) − vk

+
µ

vk(x) − vk

(12c)

Then, for i, j ∈ N ,

∂2L

∂pi∂p j

= 2a0
∂p0

∂pi

∂p0

∂p j

+ (2a0 p0 + b0)
∂2 p0

∂pi∂p j

+ 2ai1(i = j)

+

n
∑

k=1

[

µ

(vk − vk)
2

+
µ

(vk − vk)2

]

∂vk

∂pi

∂vk

∂p j

−

n
∑

k=1

[

µ

vk − vk

+
µ

vk − vk

]

∂2vk

∂pi∂p j

= 2a0

[

∂p p0∂
T
p p0

]

i j
+ c0(x)

[

∂pp p0

]

i j
+ 2

[

Diag(a)
]

i j

+

n
∑

k=1

αk(x)
[

∂pvk∂
T
p vk

]

i j
−

n
∑

k=1

βk(x)
[

∂ppvk

]

i j

Hence

∂pp L = 2 Diag(a) + 2a0 ∂p p0∂
T
p p0 + c0(x) ∂pp p0

+

n
∑

k=1

αk(x) ∂pvk∂
T
p vk −

n
∑

k=1

βk(x) ∂ppvk

Similarly one can compute

∂qq L = 2a0 ∂q p0∂
T
q p0 + c0(x) ∂qq p0

+

n
∑

k=1

αk(x) ∂qvk∂
T
q vk −

n
∑

k=1

βk(x) ∂qqvk

∂qp L = 2a0 ∂q p0∂
T
p p0 + c0(x) ∂qp p0

+

n
∑

k=1

αk(x) ∂qvk∂
T
p vk −

n
∑

k=1

βk(x) ∂qpvk

Hence the Hessian matrix is

H(x;µ) =

[

∂pp L ∂pq L

∂qp L ∂qq L

]

= c0(x) ∂xx p0+2

[

Diag(a)

0

]

+2a0

[

∂x p0

] [

∂x p0

]T

+

n
∑

k=1

αk(x) [∂x vk] [∂x vk]T −

n
∑

k=1

βk(x) ∂xx vk (13)

2) Conditions for Convexity: Consider:

C1) The quadratic coefficients are nonnegative, i.e., ai ≥ 0 for

i = 0, 1, . . . , n;

C2) The marginal cost at bus 0 is nonnegative, i.e., c0(x) :=

2a0 p0(x) + b0 ≥ 0 on X .

C3) p0(x) is convex on X ;

C4) vk(x) is concave on X for k = 1, 2, . . . , n.

Conditions C1 and C2 are typically satisfied in practice. We

will justify C3 and C4 below after we have explained the impli-

cation of these conditions. The first term on the right-hand

side of (13) is positive semidefinite (psd) under C2 and C3,

the second and third terms are psd under C1, and the fourth

term is psd since α(x) is positive. Hence, under C1–C4, the

Hessian H(x;µ) is psd at x ∈ X where β(x) ≥ 0 (the set A in

Lemma 2). We summarize.

Lemma 2: Assume C1–C4 hold. Then H(x;µ) � 0 on

A :=

{

x ∈ X |v(x) ≤
µ

µ + µ
v +

µ

µ + µ
v

}

.

In particular, H(x;µ) � 0 on X if µ := (µ,µ) = 0 or v = ∞.

Lemma 2 implies that L(x;µ) is convex in x over A. This,

together with Theorem 1 directly implies

Theorem 3 (Global optimality): Suppose conditions A1,

C1–C4 hold. Suppose the stepsize of the gradient projection

algorithm (10) satisfies 0 < η < 2/K . Let x(t) be a sequence

generated by the algorithm. If A contains all local optima, then:

1) Every limit point x∗ of x(t) is a global minimum of

OPF(µ) in (8).

2) If there are only finitely many local minima, then the

sequence x(t) itself converges minimum.

We make two remarks on the region A in Lemma 2 over

which H(x;µ) � 0 or equivalently L(x) is convex. First, µ

is equivalently 0 if voltage constraints do not bind, and that

v is equivalently ∞ if voltage upper bound constraints do not

bind. Hence, if voltage upper bound constraints do not bind,

then H(x;µ) � 0 on A = X . Second, let

X̃ := {x ∈ X |vi ≤ vi (x) ≤ vi , i ∈ N } (14)

denote the (generally nonconvex) feasible set of (6). If the

sequence µ1, µ2, . . . , µk, . . . of µ is chosen according to

µ
k

= δk, µk = δ2
k , k = 1, 2, . . .

where limk→∞ δk = 0, then the difference set X̃\A vanishes as

k → ∞. We emphasize however that Lemma 2 does not guar-

antee L(x;µ) to be convex over X̃ , though the set A can be

arbitrarily close to X̃ with carefully chosen µ.

3) Justification of C3–C4: To justify condition C3, consider

the following second-order cone program (SOCP) for each x :=

(p, q) ∈ X :

SOCP−p0(x) : min p0

over y := (p0, q0, v, P, Q, ℓ)

s.t. (2a)–(2c)

viℓi j ≥ P2
i j + Q2

i j , i → j ∈ E (15)
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Replacing the quadratic equality in the power flow equa-

tions (2d) by inequality in (15) relaxes the (nonconvex) set of

power flow solutions to a superset that is a (convex) second-

order cone, making SOCP-p0(x) a convex program. The idea

of SOCP relaxation of the DistFlow equations is first proposed

in [13], [14] and used to convexify OPF problems. We say that

SOCP-p0(x) is exact if every of its optimal solutions attains

equality in (15) and therefore satisfies the power flow equa-

tions (2). In that case, one can obtain a globally optimal solution

of a nonconvex OPF problem by solving its SOCP relaxation.

Even though SOCP relaxations may not be exact in general,

there are various sufficient conditions that guarantee the exact-

ness of SOCP relaxations for radial networks, e.g., [13], [14],

[20]; see also [25], [26] for extensive references. Moreover

SOCP relaxations for practical radial networks are often exact

even when these sufficient conditions are not satisfied. This is

important for us because of the following result that justifies

condition C3. It is proved in Appendix B.

Theorem 4 (Convexity of p0): Let C be convex. If SOCP-

p0(x) is exact for x ∈ C , then p0(x) is convex on C .

For C4, consider the following second-order cone program

(SOCP) for each x := (p, q) ∈ X and each k ∈ N :

SOCP−vk(x) : max vk

over y := (p0, q0, v, P, Q, ℓ)

s.t. (2a)−(2c)

viℓi j ≥ P2
i j + Q2

i j , i → j ∈ E (16)

Similarly the following result justifies condition C4: if SOCP-

vk(x) is exact on X , then vk(x) is concave on X . Its proof is

similar to that of Theorem 4 and omitted.

Theorem 5 (Convexity of vk): Let C be convex and k ∈ N .

If SOCP-vk(x) is exact for x ∈ C , then vk(x) is concave on C .

In summary, C3 and C4 hold under various conditions for the

exactness of SOCP relaxations of OPF problems; see [13], [14],

[20], [26].

B. Suboptimality Bound

When Theorem 3 does not hold, i.e., when a limit point x∗

generated by the gradient projection algorithm (10) is not in A,

x∗ may not be a global minimum of OPF(µ) in (8). Theorem 1

still guarantees that x∗ is a local minimum. We now bound the

gap between the cost L(x∗;µ) of such a local minimum x∗

and the cost L(x̃;µ) of an arbitrary feasible point x̃ ∈ X̃ of the

original problem (6), where X̃ is defined in (14). It suggests that

any local minimum x∗ is almost as good as any strictly feasible

point of (6).

Theorem 6 (Suboptimality bound): Assume C1–C4 hold. Let

x∗ = (p∗, q∗) be a local minimum of L(x;µ) and x̃ = ( p̃, q̃) ∈

X̃ be feasible for (6). Let �x := x̃ − x∗. Define for θ ∈ (0, 1),

∂qv :=
[

∂qv1 ∂qv2 · · · ∂qvn

]

r(θ) :=
1

2

[

∂qv(x∗)
]−1

⎡

⎢

⎢

⎢

⎣

�xT · ∂xx v1(x∗ + θ�x) · �x

�xT · ∂xx v2(x∗ + θ�x) · �x
...

�xT · ∂xx vn(x∗ + θ�x) · �x

⎤

⎥

⎥

⎥

⎦

If q̃ + r(θ) ∈
(

q, q
)

for θ ∈ (0, 1), then

L(x∗;µ) − L(x̃;µ) ≤
(

2a0 p0(x∗) + b0

)

· ∂q p0(x∗) · r(θ∗)

− a0(p0(x∗) − p0(x̃))2

for some θ∗ ∈ (0, 1).

The theorem bounds the gap between the cost L(x∗;µ) of

any local minimum x∗ and the cost L(x̃;µ) of any feasible

point x̃ ∈ X̃ of (6) that is r(θ) away from the boundary of X

(not X̃). In practice, the term r(θ) is small for all θ ∈ (0, 1).

Hence, x̃ can be taken from a large portion of X̃ . The deriva-

tive ∂q p0 is typically small and therefore the upper bound on

the gap is approximately zero. Hence Theorem 6 roughly says

that any local minimum x∗ is no worse than almost any strictly

feasible point x̃ of (6). It is proved in Appendix C.

VI. REFINEMENTS AND EXTENSIONS

In this section we describe several refinements to the basic

gradient projection algorithm (10) discussed in Section IV.

A. Overview

First it is difficult to apply the basic algorithm for real-time

continuous feedback optimization because it needs to invert

the Jacobian matrix ∂y F in each iteration (see (9)). A natural

implementation takes a centralized approach that uses global

information for matrix inversion. This is inefficient for large

networks in terms of both computational effort and communi-

cation requirement. We partially address this in Sections VI-B

and VI-C. In Section VI-B we describe a method that exploits

the tree topology of the network to iteratively compute the

gradient ∂x L without having to invert the Jacobian matrix

∂y F . In Section VI-C we use linearized power flow equa-

tions to derive approximate gradients ∂x L̂ that avoids both

matrix inversion and iterative calculation. These two methods

greatly reduce the computational effort in each iteration, but

does not directly address communication requirement. In [19]

these algorithms are extended to their distributed versions that

require communication only between neighboring buses.

Second the basic algorithm of Section IV uses a constant

stepsize η. The bound on η in Theorem 1 is typically conser-

vative and there is no easy way to determine a constant η a

priori that is not conservative but guarantees convergence. In

Section VI-D we describe a gradient algorithm that uses time-

varying stepsize η(t) obtained through line search. It can be

proved that it retains the convergence properties of the basic

algorithm [19].

While we discuss our algorithms mostly in the context of a

single-phase network in this paper, most distribution systems

are multiphase unbalanced. In Section VI-E we provide a sketch

on how these algorithms can be extended to multiphase unbal-

anced networks based on the model in [21] for multiphase radial

networks.

B. Gradient Computation ∂x L

We present an iterative algorithm to compute ∂x L in (9).

It exploits the tree topology to avoid inverting the matrix



GAN AND LOW: ONLINE GRADIENT ALGORITHM FOR OPTIMAL POWER FLOW 631

∂y F(x, y(x)). It is similar to backward-forward sweep in the

literature to compute power flow solutions and similarly enjoys

fast convergence. In our experience, the algorithm for com-

puting ∂x L typically converges in just a few iterations, even

though there is no formal proof of convergence for general

backward-forward sweep to our knowledge.

Recall ∂x L from (11). We first express ∂x p0(x) in terms of

(∂x v, ∂x P, ∂x Q, ∂xℓ). Sum up (2a) for j ∈ N+ to obtain

n
∑

i=0

pi =
∑

i→ j

ri jℓi j =
∑

i→ j

ri j

P2
i j + Q2

i j

vi

.

Hence for i ∈ N

∂xi
p0 = −1(xi = pi ) +

∑

k→l

rkl ∂xi

(

P2
kl + Q2

kl

vk

)

= −1(xi = pi ) +
∑

k→l

rkl

(

2Pkl

vk

∂xi
Pkl

+
2Qkl

vk

∂xi
Qkl −

ℓkl

vk

∂xi
vk

)

(17)

Next, we derive (∂x v, ∂x P, ∂x Q, ∂xℓ) from (2): for all i → j

∂x Pi j = ri j∂xℓi j − ∂x p j +
∑

k: j→k

∂x Pjk

∂x Qi j = xi j∂xℓi j − ∂x q j +
∑

k: j→k

∂x Q jk

∂x v j = ∂x vi − 2
(

ri j∂x Pi j + xi j∂x Qi j

)

+ |zi j |
2∂xℓi j

∂xℓi j =
2Pi j

vi

∂x Pi j +
2Qi j

vi

∂x Qi j −
ℓi j

vi

∂x vi

Let I denote the 2 × 2 identity matrix. Eliminate ∂xℓi j to obtain

for i → j

(

∂x Pi j

∂x Qi j

)

=

[

I −
2

vi

(

ri j

xi j

)

(

Pi j Qi j

)

]−1

⎡

⎣

∑

k: j→k

(

∂x Pjk

∂x Q jk

)

−

(

∂x p j

∂x q j

)

−

(

ri j

xi j

)

ℓi j

vi

∂x vi

⎤

⎦

(18a)

∂x v j =

(

1 − |zi j |
2 ℓi j

vi

)

∂x vi −2

(

ri j − |zi j |
2 Pi j

vi

)

∂x Pi j

− 2

(

xi j − |zi j |
2 Qi j

vi

)

∂x Qi j (18b)

Since the network is radial, (18) defines a recursion that allows

us to compute ∂x (p0, q0, v, P, Q) efficiently using a backward-

forward sweep, as shown in Algorithm 1. Then the gradient ∂x L

can be computed from (11) and (17) using the output ∂x p0(x)

and ∂x v(x) of Algorithm 1.

C. Approximate Gradient ∂x L̂

To further simplify computation, we can approximate gradi-

ent using a linearization of the power flow equations (2). The

terms ℓ in (2a)–(2c) are typically much smaller than the other

Algorithm 1. Compute partial derivatives

Input: network graph (N+, E), power flow solution

(p, q, v, P, Q, ℓ), stopping criterion ǫ.

Output: ∂x (p0, q0, v, P, Q) where x = (pi , qi , i ∈ N ).

1: Initialization: ∂x vi ← 0 for i = 0, 1, . . . , n;

2: Backward sweep: from the leafs towards the root, compute

(

∂x Pi j

∂x Qi j

)

←

[

I −
2

vi

(

ri j

xi j

)

(

Pi j Qi j

)

]−1

⎡

⎣

∑

k: j→k

(

∂x Pjk

∂x Q jk

)

−

(

∂x p j

∂x q j

)

−

(

ri j

xi j

)

ℓi j

vi

∂x vi

⎤

⎦

3: Forward sweep: from the root towards the leafs, compute

∂x v j ←

(

1 − |zi j |
2 ℓi j

vi

)

∂x vi − 2

(

ri j − |zi j |
2 Pi j

vi

)

∂x Pi j

− 2

(

xi j − z2
i j

Qi j

vi

)

∂x Qi j

4: if update in ∂x (P, Q, v) > ǫ

go to 2;

end

5: Return value: ∂x v and

(

∂x p0

∂x q0

)

←
∑

k: 0→k

[

I −
2

v0

(

r0k

x0k

)

(

P0k Q0k

)

]−1

[

∑

l: k→l

(

∂x Pkl

∂x Qkl

)

−

(

∂x pk

∂x qk

)

−

(

r0k

x0k

)

ℓ0k

v0
∂x v0

]

terms. Ignoring ℓ in (2) leads to linearized power flow equations

(called simplified DistFlow equations in [2]):

∑

i : i→ j

P̂i j + p j =
∑

k: j→k

P̂jk, j ∈ N+

∑

i : i→ j

Q̂i j + q j =
∑

k: j→k

Q̂ jk, j ∈ N+

v̂i − v̂ j = 2(ri j P̂i j + xi j Q̂i j ), i → j ∈ E

Hence

∂x P̂i j =
∑

k: j→k

∂x P̂jk − ∂x p j , i → j

∂x Q̂i j =
∑

k: j→k

∂x Q̂ jk − ∂x q j , i → j

∂x v̂ j = ∂x v̂i − 2ri j∂x P̂i j − 2xi j∂x Q̂i j , i → j

Let i ∧ j denote the joint of buses i and j for i, j ∈ N+ (i.e., the

bus that is farthest away from bus 0 and on the paths from bus

0 both to bus i and to bus j). Let Ri :=
∑

( j,k)∈Pi
r jk denote

the total resistance from bus 0 to bus i for i ∈ N (Pi denotes

the path from bus 0 to bus i). See Figure 2 for an example.

Then ∂x (P̂, Q̂, v̂) has the following closed-form expression: for

k ∈ N , i → j ∈ E ,
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Fig. 2. The bus i ∧ j denotes the joint of bus i and bus j . The resistance Ri

denotes the sum of resistances on the red solid line segment.

∂pk
P̂i j = −1( j ∈ Pk), ∂qk

P̂i j = 0 (19a)

∂qk
Q̂i j = −1( j ∈ Pk), ∂pk

Q̂i j = 0 (19b)

∂pk
vi = 2Ri∧k, ∂qk

vi = 2X i∧k (19c)

Note that ∂x (P̂, Q̂, v̂) is constant that does not depend on

(P, Q, v), and therefore can be pre-computed just once.

Recall ∂x L from (11) reproduced here:

∂xi
L = c0(x) ∂xi

p0(x) + (2ai pi + bi )1(xi = pi )

−

n
∑

j=1

βk(x) ∂xi
v j (x) (20)

where c0(x) and βk(x) are defined in (12). We will approxi-

mate the gradient ∂x L by approximating the partial derivatives

∂xi
p0(x) and ∂x (P, Q, v) in (20) by ∂x (P̂, Q̂, v̂) in (19). In

particular, using (17), we approximate ∂xi
p0(x) by

∂xi
p̂0 := −1(xi = pi ) +

∑

k→l

rkl

(

2Pkl

vk

∂xi
P̂kl

+
2Qkl

vk

∂xi
Q̂kl −

ℓkl

vk

∂xi
v̂k

)

for i ∈ N . Note that we do not ignore ℓ in (17), but only sub-

stitute the approximate gradient ∂x (P̂, Q̂, v̂) which does not

contain ℓ. Hence, using (20), we approximate the gradient

∂x L(x;µ) by: for i ∈ N

∂pi
L̂ := c0(x)

∑

k→l

rkl

(

2Pkl

vk

∂pi
P̂kl +

2Qkl

vk

∂pi
Q̂kl −

ℓkl

vk

∂pi
v̂k

)

−

n
∑

k=1

βk(x) ∂pi
v̂k + (2ai pi + bi − c0(x))

= −c0(x)
∑

k→l

2rkl

(

Pkl

vk

1(l ∈ Pi ) +
ℓkl

vk

Ri∧k

)

−

n
∑

k=1

2βk(x) Ri∧k + (2ai pi + bi − c0(x)) (21a)

∂qi
L̂ := c0(x)

∑

k→l

rkl

(

2Pkl

vk

∂qi
P̂kl +

2Qkl

vk

∂qi
Q̂kl −

ℓkl

vk

∂qi
v̂k

)

−

n
∑

k=1

βk(x) ∂qi
v̂k

= −c0(x)
∑

k→l

2rkl

(

Qkl

vk

1(l ∈ Pi ) +
ℓkl

vk

X i∧k

)

−

n
∑

k=1

2βk(x) X i∧k (21b)

Algorithm 2. Compute next iterate using line search

Input: back-off parameter α̂ ∈ (0, 1), linearization-criterion

parameter β̂ ∈ (0, 1), slow-progress parameter ǫ ≪ 1, cur-

rent iterate x := (p, q), bounds
(

p, p, q, q, v, v
)

, gradient

∂x L .

Output: next iterate x ′ := (p′, q ′), stopping flag stopFlag.

1: η = 1, stopFlag = 0;

2: x ′ ← [x − η ∂x L(x;µ)]X ;

3: solve (2) for a power flow solution (v′, p′
0, q ′

0) given x (and

v0), e.g., using a backward-forward sweep method;

4: if v′ /∈ [v, v]

η ← α̂η, go to 2;

end

5: �x ← x ′ − x ;

6: if ‖�x‖ ≤ ǫ

stopFlag = 1;

else if L(x ′;µ) > L(x;µ) + β̂ · ∂x L(x;µ)�x

η ← α̂η, go to 2;

end

7: if L(x ′) > L(x)

x ′ ← x ;

end

It can be verified that it will take O(n3) time to compute

∂x L by brute force. The approximate gradient in (21) can be

computed in O(n) time in a distributed manner; see [19].

D. Time-Varying Stepsize η(t)

A constant stepsize η in the gradient projection algo-

rithm (10) is convenient if we want to execute the algorithm

in real time and rely on the network to automatically compute

y(x(t)). It also naturally tracks evolving network conditions.

The bound on η in Theorems 1 and 3 however is typically too

conservative. Alternatively if we execute the algorithm until

it converges before applying the result to the network, then

using time-varying stepsize η(t) in each iteration t can be less

conservative.

In this subsection we describe a method (Algorithm 2) to

determine the stepsize η(t) by a line search along the (nega-

tive) direction of the gradient −∂x L (or approximate gradient

−∂x L̂ in (21). Algorithm 2 iteratively backs off the stepsize

until the cost function L can be well-approximated by its lin-

earization around the current iterate. Three parameters are used

in the line search Algorithm 2: α̂ (that determines the backoff

speed, set to 0.5 in the current implementation), β̂ (criterion

for the linearization of the objective function to be accurate

enough, set to 0.5 in the current implementation), and ǫ (cri-

terion for the progress to be too slow, set to 1e-4 in the current

implementation).

The next result says that Algorithm 2 is well defined. It is

proved in Appendix D.

Theorem 7 (Line serach): Algorithm 2 always terminates.

The “if” condition in Step 6 of Algorithm 2 is to stop the

line search when progress is too slow, i.e., when ‖�x‖ ≤

ǫ. Otherwise, a large number of iterations will run without
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updating x significantly. With this condition, it is possible that

L(x ′;µ) > L(x;µ) when Step 6 is exited through the “if”

branch. In this case, x ′ is set to x to ensure that the output x ′

does not have a higher cost.

An advantage of Algorithm 2 is that it can be implemented

in a distributed manner. See [19] for a suite of distributed

algorithms for solving OPF(µ) (8) that executes the (approxi-

mate) gradient projection algorithm by computing the approx-

imate gradient using (21) and time-varying η(t) using line

search, all in a distributed manner.

E. Multiphase Networks

So far, we have assumed a single-phase network. All the

algorithms we have discussed, however, extend to multiphase

networks with mild adjustments; see [19] for details and [18]

for a C++ implementation. In this subsection we only highlight

the differences from single-phase networks.

We adopt the model and notations of [21] for multiphase

networks. The cost function becomes

L(x;µ) :=
∑

φ∈�0

(

a
(

p
φ

0 (x)
)2

+ bp
φ

0 (x)

)

−

n
∑

i=1

∑

φ∈�i

(

µ ln(v
φ
i − vi ) + µ ln(vi − v

φ
i )
)

To compute ∂x L , it suffices to compute ∂x p
φ

0 and ∂x v
φ
i for

each i ∈ N and each φ ∈ {a, b, c}. To simplify computation, we

approximate these partial derivatives by ∂x p̂
φ

0 and ∂x v̂
φ
i , i ∈ N

and φ ∈ {a, b, c}, obtained from a linearized branch flow model

proposed in [21] for multiphase radial networks. Let Diag(vi )

denote a diagonal matrix with vi as its diagonal entries and

diag(M) denote a vector whose components are the diagonal

entries Mi i of matrix M . The multiphase linearized branch flow

model for radial networks is (omitting ˆ on the variables for

simplicity):

∑

i : i→ j

i j = s j + diag
(

Diag(v j )γ
� j yH

j

)

+
∑

k: j→k


� j

jk , j ∈ N+

Si j = γ �i j Diag(i j ), i → j ∈ E

v j = v
�i j

i − diag(Si j z
H
i j + zi j SH

i j ), i → j ∈ E

where

α = e−2π/3, β =

⎡

⎣

1

α

α2

⎤

⎦ , γ = ββH .

Write the above equations in scalar form:

∑

i : i→ j


φ
i j = s

φ
j +

∑

k: j→k


φ
jk + v

φ
j

∑

ϕ∈� j

αφ−ϕ y
φϕ
j

j ∈ N+, φ ∈ � j (22a)

v
φ
j = v

φ
i −

∑

ϕ∈� j

(
ϕ
i jα

φ−ϕz
φϕ
i j + 

ϕ

i jα
ϕ−φz

φϕ
i j )

i → j, φ ∈ �i j (22b)

Now we estimate ∂x (
φ
i j , v

φ
i ) in two rounds as follows. In

the first round, we ignore the last term in (22a) involving v
φ
j to

obtain:

∂p
ϕ
i


φ
kl = 1(φ = ϕ)1(i ∈ Down(l))

∂q
ϕ
i


φ
kl = i1(φ = ϕ)1(i ∈ Down(l))

We use this expression to obtain the estimates of ∂x v
φ
k as

∂x v
φ
k = ∂x v

φ
j −

∑

ϕ∈�k

(∂x
ϕ
jkα

φ−ϕz
φϕ
jk + ∂x

ϕ

jkα
ϕ−φz

φϕ
jk )

= −
∑

(i, j)∈Pk

∑

ϕ∈� j

(∂x
ϕ
i jα

φ−ϕz
φϕ
i j + ∂x

ϕ

i jα
ϕ−φz

φϕ
i j )

which simplifies to

∂p
ϕ
i
v
φ
k = −2

∑

(s,t)∈Pk∧i

Re
(

αφ−ϕz
φϕ
st

)

(23a)

∂q
ϕ
i

v
φ
k = 2

∑

(s,t)∈Pk∧i

Im
(

αφ−ϕz
φϕ
st

)

(23b)

for k ∈ N , φ ∈ �k , and x = p
ϕ
i or q

ϕ
i for i ∈ N and ϕ ∈ �i .

At last, we estimate ∂x
φ
kl as: for k → l, φ ∈ �l

∂x
φ
kl = ∂x s

φ
l +

∑

m: l→m

∂x
φ
lm + ∂x v

φ
l

∑

ϕ∈�l

αφ−ϕ y
φϕ
l

=
∑

t∈Down(l)

⎡

⎣∂x s
φ
t + ∂x v

φ
t

∑

ξ∈�t

αφ−ξ y
φξ
t

⎤

⎦ (24)

This can be used to obtain

∂p
ϕ
i

p
φ

0 = 1(φ = ϕ) +

n
∑

t=1

∂p
ϕ
i
v
φ
t Re

⎛

⎝

∑

ξ∈�t

αφ−ξ y
φξ
t

⎞

⎠

∂q
ϕ
i

p
φ

0 =

n
∑

t=1

∂q
ϕ
i

v
φ
t Re

⎛

⎝

∑

ξ∈�t

αφ−ξ y
φξ
t

⎞

⎠

for φ ∈ �0, i ∈ N , and ϕ ∈ �i .

To estimate the gradient ∂x L , define

g
φ
k := (2ap

φ

0 + b)Re

⎛

⎝

∑

ξ∈�k

αφ−ξ y
φξ
k

⎞

⎠−
µ

v
φ
k − vk

+
µ

vk − v
φ
k

for k ∈ N and φ ∈ �k . Then it is derived in [19] that the

approximate gradient is:

∂p
ϕ
i

L̂ = 2ap
ϕ

0 + b − 2
∑

(s,t)∈Pi

∑

φ∈�t

Re
(

αφ−ϕz
φϕ
st

)

∑

k∈Down(t)

g
φ
k

∂q
ϕ
i

L̂ = 2
∑

(s,t)∈Pi

∑

φ∈�t

Im
(

αφ−ϕz
φϕ
st

)

∑

k∈Down(t)

g
φ
k

for i ∈ N and ϕ ∈ �i .
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Fig. 3. Topologies of the SCE 47-bus and 56-bus networks from [13], [15].

VII. NUMERICAL RESULTS

In this section we evaluate the accuracy and efficiency of our

gradient project algorithm on a number of single-phase radial

networks. We compare the results of our algorithm against the

global optimal value of (3) obtained from solving its semidef-

inite relaxation using techniques in [13], [14], [20], [25], [26].

The convex relaxation is solved by CVX [22], [34] in Matlab,

and its execution time and objective value are used as a bench-

mark for our algorithm. All simulations use Matlab 7.9.0.529

(64-bit) with toolbox cvx 1.21 on Mac OS X 10.7.5 with

2.66GHz Intel Core 2 Due CPU and 4GB 1067MHz DDR3

memory.

A. Test Networks

The test networks include a 42-bus network adapted from

[13], a 56-bus network from [15], and several subnetworks

of a 2065-bus network. These three networks are all models

of distribution systems in the service territory of the util-

ity company Southern California Edison (SCE). Topologies

of the 47-bus network and the 56-bus network are shown in

Figure 3.

B. OPF Setup

The following OPF setup is used throughout this section.

1) The objective is to minimize power loss in the network.

2) The power injection constraints are as follows. For each

bus i ∈ N , there may be multiple devices including loads,

capacitors, and PV panels. Assume that there is a total

of Di such devices and label them by 1, 2, . . . , Di . Let

si,d = pi,d + iqi,d denote the power injection of device

d for d = 1, 2, . . . , Di . If device d is a load with given

real and reactive power consumptions p and q, then we

impose

si,d = −p − iq. (25)

If device d is a load with given peak apparent power speak,

then we impose

si,d = −speak exp( jθ) (26)

where θ = cos−1(0.9), i.e, power injection si,d is a con-

stant, obtained by assuming a power factor of 0.9 at peak

apparent power speak. If device d is a capacitor with

nameplate q , then we impose

Re(si,d) = 0 and 0 ≤ Im(si,d) ≤ q. (27)

If device d is a PV panel with nameplate s and real power

generation pi , then we impose

Re(si,d) = pi and |si,d | ≤ s. (28)

The power injection at bus i is

si =

Di
∑

d=1

si,d

where si,d satisfies one of (25)–(28).

3) The voltage constraint is 0.952 ≤ vi ≤ 1.052 for i ∈ N .

C. Results

Numerical results are summarized in Table I. The first col-

umn lists the 22 test networks we have used with their numbers

of buses. The next two columns labeled “CVX” report the glob-

ally optimal objective value and computation time obtained
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TABLE I

OBJECTIVE VALUES AND CPU TIMES OF CVX AND IPM

from solving semidefinite relaxation of OPF (3) using CVX

in Matlab. The two columns labeled “IPM” report the results

obtained from solving the approximate OPF problem (8) using

our interior-point method, i.e., the gradient projection algorithm

discussed in Section IV with the following modifications:

• instead of exact gradient ∂x L , it uses approximate gra-

dient ∂x L̂ in (21) obtained from linearized power flow

equations as described in Section VI-C;

• instead of a constant stepsize, it uses time-varying step-

sizes η(t) obtained from line search as described in

Section VI-D

• the networks are multiphase unbalanced.

The next column “error” is the difference between the objec-

tive value of CVX and that of IPM. The last column “speedup”

is the ratio of the computation time of CVX to that of IPM.

Each row summarizes the result for a test network. For exam-

ple, the first row of the table summarizes the simulation result

for a test network with 42 buses adapted from the 47-bus

network in Fig. 3.

From the last two columns, we conclude that while semidef-

inite relaxation is able to compute globally optimal solutions,

it takes a much longer time. In comparison, the algorithm

developed in this paper takes a much shorter time and is able

to obtain a close-to-optimal solution. Specifically, for all our

test networks, the difference in objective values is below 10−5

between these two methods but the speedup is over 70x for large

networks.

VIII. CONCLUSIONS

We have proposed an online algorithm for solving OPF on

radial networks where the controllable devices continuously

interact with the network that implicitly computes a power flow

solution given a control action. Collectively the controllable

devices and the network implement a gradient projection algo-

rithm for the OPF problem in real time. The key feature that

enables this approach is that the intermediate iterates always

satisfy power flow equations and operational constraints. We

have proved the convergence and optimality of the proposed

algorithm and have bounded the suboptimality gap of any local

minimum.

To greatly reduce the gradient computation in each itera-

tion, we have derive approximate gradient based on linearized

power flow equations. We have also outlined how these algo-

rithms can be extended to multiphase unbalanced networks.

Finally the evaluation of our algorithm on test networks, rang-

ing from 42-bus to 1990-bus, shows more than 70x speedup

over a semidefinite relaxation method with negligible difference

in objective values.

It is therefore promising to further develop the algorithms

in this paper for real-time applications. A key challenge to

overcome is to minimize the measurement and communication

requirements so that these algorithms can be implemented in

real time by a large network of distributed energy resources,

building on the ideas in [19].

APPENDIX A

PROOF OF THEOREM 1: LOCAL OPTIMALITY

Proof: Fix any µ > 0. Since the objective function

L(x;µ) is continuous in x and X is compact, L(x;µ) is lower

bounded. Then, with 0 < η < 2/K , the first assertion (if any

subsequence of x(t) converges to an x∗ then x∗ is locally

optimal) follows from standard convergence results of gradient

projection algorithms; see e.g. [3, Proposition 3.4, p. 214].

This is equivalent to the second claim that x(t) converges to

the set O∗ of local minima, i.e., for any ǫ > 0, we have

min
x∈O∗

‖x(t) − x‖2 < ǫ (29)

for all sufficiently large t . This is because, otherwise, there is

an ǫ > 0 such that for each integer k = 1, 2, . . . , there is an

x(tk) with minx∈O∗ ‖x(tk) − x‖2 ≥ ǫ. Since the (sub)sequence

(x(tk), k = 1, 2, . . . ), lives in the compact set X , it has a con-

vergent subsequence (x(tk j
), j = 1, 2, . . . ) which converges

to a certain point x̂ . But minx∈O∗ ‖x(tk j
) − x‖2 ≥ ǫ for all j

implies that

min
x∈O∗

‖x̂ − x‖2 ≥ ǫ

i.e., x̂ �∈ O
∗, contradicting that any limit point of x(t) is a local

minimum (first assertion).

For the third assertion, suppose O
∗ has only finitely many

local minima and let d > 0 denote the minimum distance

among these local minima. Pick any convergent subsequence

(x(tk), k = 1, 2, . . . ) of x(t) and suppose without loss of gen-

erality that it converges to one of the local minima x∗ ∈

O
∗:

x(tk) → x∗ as k → ∞ (30)

We now argue that x(t) itself converges to x∗, in two steps.

First we claim that

‖x(t + 1) − x(t)‖2 → 0 as t → ∞ (31)

To see this, using the Descent Lemma [3, Lemma 2.1], it can be

shown that (omitting µ in L(x;µ) for simplicity)
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L(x(t + 1)) ≤ L(x(t)) + (x(t + 1) − x(t))T ∂x L(x)

+ ‖x(t + 1) − x(t)‖2
2

≤ L(x(t)) − κ ‖x(t + 1) − x(t)‖2
2

where

κ :=
1

η
−

K

2
> 0

Since this holds for all t = 0, 1, . . . , sum the above inequality

over all t to obtain

L(x(t + 1)) ≤ L(x(0) + κ

∞
∑

t=0

‖x(t + 1) − x(t)‖2
2

But L(x) is lower bounded on X and hence (31) holds.

Next we argue that (29), (30) and (31) imply that x(t) con-

verges to x∗. Indeed, fix any 0 < ǫ < d/3. Then (30) and (31)

imply that there is a certain t such that

‖x(t) − x∗‖2 < ǫ, ‖x(t + 1) − x(t)‖2 < ǫ

This implies

‖x(t + 1) − x∗‖2 < 2ǫ <
2d

3

and hence

‖x(t + 1) − x‖2 >
d

3
for all x ∈ O

∗, x �= x∗

But (29) implies that x(t + 1) must be less than ǫ away from

some point in O
∗, and hence we must have

‖x(t + 1) − x∗‖2 < ǫ

This, together with ‖x(t + 2) − x(t + 1)‖2 < ǫ (due to (31)),

implies by induction that

‖x(t + k) − x∗‖2 < ǫ for all k = 0, 1, . . .

i.e., x(t) → x∗. �

APPENDIX B

PROOF OF THEOREM 4: CONVEXITY OF p0

Proof: Let x̃ = ( p̃, q̃) ∈ C and x̂ = ( p̂, q̂) ∈ C be dis-

tinct. It suffices to show that the point x = θ x̃ + (1 − θ)x̂

satisfies p0(x) ≤ θp0(x̃) + (1 − θ)p0(x̂) for any θ ∈ (0, 1),

i.e., p0(x) is convex in x .

Let ỹ := ( p̃0, q̃0, ṽ, P̃, Q̃, ℓ̃) denote the power flow solution

given x̃ . Then p̃0 = p0(x̃). Let ŷ := ( p̂0, q̂0, v̂, P̂, Q̂, ℓ̂) denote

the power flow solution given x̂ and p̂0 = p0(x̂). Since p0(x)

is the optimal value of SOCP-p0(x), and the point

(p0, q0, v, P, Q, ℓ, ) := θ ỹ + (1 − θ)ŷ

is feasible for SOCP-p0(x), one must have

p0(x) ≤ p0 = θ p̃0 + (1 − θ) p̂0 = θp0(x̃) + (1 − θ)p0(x̂).

This completes the proof of Theorem 4. �

APPENDIX C

PROOF OF THEOREM 6: SUBOPTIMALITY BOUND

Proof: The idea is to create a trajectory x(θ) of feasible

solutions of (6) that approaches x∗ as θ → 0, and make use of

the fact that L(x∗) ≤ L(x(θ)) for sufficiently small θ .

The trajectory x(θ) is constructed using the implicit func-

tion theorem. Let (v′, p′
0) and (v∗, p∗

0) denote the power flow

solutions corresponding to x ′ and x∗ respectively, i.e., v′ =

v(x ′), p′
0 = p0(x ′), v∗ = v(x∗), p∗

0 = p0(x∗). Consider the

following function

f (q, θ) := (1 − θ)v∗ + θv′ − v
[

(1 − θ)p∗ + θp′, q
]

.

Note that f (q∗, 0) = v∗ − v(p∗, q∗) = 0 and that the partial

derivative ∂q f = −∂qv is full rank. Hence, there exists q(θ)

near a small neighborhood (−ω,ω) where ω > 0 of 0 that

satisfies

q(0) = q∗, f (q(θ), θ) = 0.

The equality f (q(θ), θ) = 0 is equivalent to

(1 − θ)v∗ + θv′ = v
[

(1 − θ)p∗ + θp′, q(θ)
]

.

Let v(θ) := (1 − θ)v∗ + θv′ and p(θ) := (1 − θ)p∗ + θp′

for θ ∈ (−ω,ω), then v(θ) = v(p(θ), q(θ)). Let p0(θ) :=

p0(p(θ), q(θ)) for θ ∈ (−ω,ω). At this point, the trajectory

x(θ) has been constructed.

Now we show that x(θ) ∈ X̃ for sufficiently small θ . In par-

ticular, it suffices to prove q(θ) ∈ [q, q] for sufficiently small

θ . It follows from

0 = ∂q f (q∗, 0) · ∂θq(0) + ∂θ f (q∗, 0)

= −∂qv(x∗) · ∂θq(0) + v′ − v∗ − ∂pv(x∗) · (p′ − p∗)

that

∂θq(0) =
[

∂qv(x∗)
]−1

·
[

v′ − v∗ − ∂pv(x∗) · (p′ − p∗)
]

= q ′ − q∗ + r(ν) ∈
(

q, q
)

− q∗

for some ν ∈ (0, 1). Therefore,

q(θ) = q∗ + θ · ∂θq(0) + o(θ) ∈
(

q, q
)

for sufficiently small θ .

Finally we make use of the local optimality of L(x∗),

which implies L(x∗) ≤ L(x(θ)) for sufficiently small θ > 0.

Substitute

L(x(θ))

= a0 p2
0(θ) + b0 p0(θ) +

n
∑

i=1

(

ai p2
i (θ) + bi pi (θ)

)

−

n
∑

i=1

(

µ ln(vi (θ) − vi ) + µ ln(vi − vi (θ))
)
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≤ a0 p2
0(θ) + b0 p0(θ) + (1 − θ)

(

n
∑

i=1

ai

(

p∗
i

)2
+ bi p∗

i

)

+ θ

(

n
∑

i=1

ai

[

p′
i

]2
+ bi p′

i

)

− (1 − θ)

n
∑

i=1

(

µ ln(v∗
i − vi ) + µ ln(vi − v∗

i )
)

− θ

n
∑

i=1

(

µ ln(v′
i − vi ) + µ ln(vi − v′

i )
)

= (1 − θ)L(x∗) + θ L(x ′) + a0 p2
0(θ) + b0 p0(θ)

− (1 − θ)
(

a0

(

p∗
0

)2
+ b0 p∗

0

)

− θ
(

a0

(

p′
0

)2
+ b0 p′

0

)

to obtain

θ
[

L(x∗) − L(x ′)
]

≤ a0 p2
0(θ) + b0 p0(θ) − a0

(

p∗
0

)2
− b0 p∗

0

+ θ
(

a0

(

p∗
0

)2
+ b0 p∗

0 − a0

(

p′
0

)2
− b0 p′

0

)

for sufficiently small θ > 0. Take the gradient with respect to θ

at θ = 0 to obtain that

L(x∗) − L(x ′) ≤
(

2a0 p∗
0 + b0

)

·
[

∂p p0(x∗) · (p′ − p∗)

+∂q p0(x∗) · (q ′ − q∗ + r(ν))
]

+ a0

(

p∗
0

)2
+ b0 p∗

0 − a0

(

p′
0

)2
− b0 p′

0.

Due to the convexity of p0(x), one has

p′
0 − p∗

0 ≥ ∂p p0(x∗) · (p′ − p∗) + ∂q p0(x∗) · (q ′ − q∗)

and therefore

L(x∗) − L(x ′) ≤
(

2a0 p∗
0 + b0

)

·
(

p′
0 − p∗

0 + ∂q p0(x∗) · r(ν)
)

+ a0

(

p∗
0

)2
+ b0 p∗

0 − a0

(

p′
0

)2
− b0 p′

0

=
(

2a0 p∗
0 + b0

)

· ∂q p0(x∗) · r(ν)

− a0(p∗
0 − p′

0)
2

This completes the proof of Theorem 6. �

APPENDIX D

PROOF OF THEOREM 7: LINE SEARCH

Proof: Assume that Algorithm 2 fails to produce

(p′, q ′, stopFlag) for some instance. Consider this instance and

derive a contradiction as follows. Let the superscript (k) denote

the round of iteration for k = 0, 1, 2, . . . where iteration 0 refers

to the initial value, e.g., �p(k) = p(k) − p for k ≥ 1.

Let m̂ > 0 denote the minimum positive number among

{|∂pi
L|, |∂qi

L| : i = 1, 2, . . . , n}. Note that ∂pi
L · �p

(k)
i ≤

0 and ∂qi
L · �q

(k)
i ≤ 0 for k ≥ 1 and i ∈ N . Furthermore,

∂pi
L = 0 implies �p

(k)
i = 0 for k ≥ 1 and i ∈ N . Hence,

∂pi
L · �p

(k)
i ≤ −m̂|�p

(k)
i |, k ≥ 1, i ∈ N .

It follows that

∂p L · �p(k) =
∑

i∈N

∂pi
L · �p

(k)
i

≤
∑

i∈N

−m̂

∣

∣

∣�p
(k)
i

∣

∣

∣

= −m̂

∥

∥

∥
�p(k)

∥

∥

∥

1

for k ≥ 1, where ‖ · ‖1 denotes the ℓ1 norm of a vector, i.e.,

‖x‖1 =
∑n

i=1 |xi | for x ∈ R
n . Similarly

∂q L · �q(k) ≤ −m̂‖�q(k)‖1

for k ≥ 1. It follows that

L(p(k), q(k)) = L(p + �p(k), q + �q(k))

= L(p, q) + ∂p L · �p(k) + ∂q L · �q(k)

+ o(�p(k),�q(k))

= L(p, q) + β̂
(

∂p L · �p(k) + ∂q L · �q(k)
)

+ (1 − β̂)
(

∂p L · �p(k) + ∂q L · �q(k)
)

+ o(�p(k),�q(k))

≤ L(p, q) + β̂
(

∂p L · �p(k) + ∂q L · �q(k)
)

− m̂(1 − β̂)
(∥

∥

∥�p(k)
∥

∥

∥

1
+
∥

∥

∥�q(k)
∥

∥

∥

1

)

+ o(�p(k),�q(k))

for k ≥ 1. When k is sufficiently big, ‖�p(k)‖1 + ‖�q(k)‖1 is

sufficiently small such that

o(�p(k),�q(k)) ≤ m̂(1 − β̂)
(∥

∥

∥�p(k)
∥

∥

∥

1
+
∥

∥

∥�q(k)
∥

∥

∥

1

)

Hence, eventually

L(p(k), q(k)) ≤ L(p, q) + β̂
(

∂p L · �p(k) + ∂q L · �q(k)
)

Then, the loop specified by Step 6 is exited and

(p′, q ′,stopFlag) is produced. This contradicts with

the assumption that Algorithm 2 fails to produce a

(p′, q ′, stopFlag) and completes the proof of Theorem 7. �
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