
1

An Online Mechanism for BGP Instability
Detection and Analysis

Shivani Deshpande, Marina Thottan, Tin Kam Ho and Biplab Sikdar Member, IEEE

Abstract—The importance of Border Gateway Protocol (BGP) as the primary inter-Autonomous System (AS) routing protocol that

maintains the connectivity of the Internet imposes stringent stability requirements on its route selection process. Accidental and

malicious activities such as misconfigurations, failures and worm attacks can induce severe BGP instabilities leading to data loss,

extensive delays and loss of connectivity. In this work we propose an online instability detection architecture that can be implemented

by individual routers. We use statistical pattern recognition techniques for detecting the instabilities and the algorithm is evaluated using

real Internet data for a diverse set of events including misconfiguration, node failures and several worm attacks. The proposed scheme

is based on adaptive segmentation of feature traces extracted from BGP update messages and exploiting the temporal and spatial

correlations in the traces for robust detection of the instability events. Furthermore, we use route change information to pinpoint the

culprit ASes where the instabilities have originated.

Index Terms—BGP, Anomaly Detection, Routing Instability, Statistical Pattern Recognition

✦

1 INTRODUCTION

With BGP being the default inter-domain routing proto-
col used in the Internet today, its stability and robust-
ness is critical for ensuring the delivery of packets and
maintaining connectivity. Since BGP is primarily respon-
sible for routing traffic across different administrative
domains, its route selection mechanisms are governed
by the policies of these domains. Therefore, the message
handling procedures of BGP are designed to support
such policy-based route selection. This intrinsic property
of BGP magnifies any route change event in the Inter-
net with an elaborate path exploration process. Under
stressful conditions like worm attacks, link outages or
router failures, this behavior of BGP causes severe route
fluctuations [4], [11] leading to loss of connectivity for
several networks for prolonged periods of time. These
instabilities also result in widespread degradation of the
network’s end-to-end utility and the user’s perception
of the quality of service offered by the Internet. It is
thus necessary to be able to detect and limit the impact
of routing instabilities. In this paper, we propose an
architecture for an online detection scheme that uses
statistical patterns in the BGP update message data to

• S. Deshpande now works at BlueCoat Systems, Sunnyvale, CA, USA. The
work was done while she was at Rensselaer Polytechnic Institute, Troy, NY,
USA.
E-mail:stephenson@mitre.org

• M. Thottan is with the Center for Networking Research at Bell Laborato-
ries, Alcatel-Lucent, Murray Hill, NJ, USA.
E-mail:marinat@alcatel-lucent.com

• T. K. Ho is with the Statistics and Learning Research Department of Bell
Laboratories, Alcatel-Lucent, Murray Hill, NJ, USA.
E-mail:tkh@research.bell-labs.com

• B. Sikdar is with the Department of Electrical, Computer and Systems
Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA.
E-mail:sikdab@rpi.edu

Manuscript received June 7, 2008; revised December 5, 2008.
This work supported in part by NSF grant 0347623.

detect instability events and isolate the location where
the event originated.

There has been some recent work focusing on the de-
tection of routing anomalies using BGP update message
data. Tools for visualization-aided anomaly detection
and root-cause analysis of BGP anomalies are presented
in [20], [25] and [19] respectively. An instance-learning
based scheme using wavelets for detecting BGP anoma-
lies is proposed in [28]. In [26] the authors use BGP
data from multiple border routers in a single AS along
with traffic load information inside the AS to detect BGP
routing changes that impact large amounts of traffic. The
authors of [9], [27] use principal component analysis
(PCA) based schemes to identify network disruptions
and for root cause analysis. A combination of routing
update analysis and data plane fingerprinting is used in
[8] to detect IP prefix hijacking. A data plane based IP
prefix hijacking scheme requiring multiple observation
points is proposed in [30] while the scheme in [29] is
based on active probing from multiple networks. The
system proposed in [12] fails to detect hijacks that occur
without a change in the origin AS and may not always
distinguish valid changes from actual hijacks.

In contrast to existing work, we propose an online
system for detecting the onset of instabilities in BGP
and isolate the location of its origin, without the need
for human intervention. The proposed system can be
implemented on a single router without raising issues
concerning widespread deployment and modification of
standards. Our work uses statistical techniques to detect
instabilities using the time domain characteristics of BGP
update message data and does not need any additional
probing. We first identify and extract features from the
BGP update message data that have a temporal correla-
tion with instability events. Next, we apply filtering and
adaptive segmentation techniques on the time-series fea-

2

ture data to isolate periods of instabilities. Correlations
in the presence of abnormalities across several features
are used to reduce the occurrence of false positives in
the detection. Our approach is thus mixed: it is based
on pure statistical techniques but the underlying data
used provides a more meaningful insight into the cause
and effect of the instabilities.

The main contributions of this paper are the following:
(1) we introduce new features extracted from BGP mes-
sage data that capture the topological changes induced
by instabilities and show distinct behavioral changes
during periods of instability; (2) we characterize the
BGP instability behavior observable at any router using
statistical methods and show that the characterization is
effective at detecting anomalous events; (3) we develop
a mechanism to isolate the ASes where the instabilities
originate from; (4) we evaluate the performance of our
schemes using real BGP data. The proposed method
performs uniformly well under all kinds of instabilities
and across different topologies and policies and is easy
to deploy.

The rest of the paper is organized as follows: Section
2 presents an overview of the proposed architecture.
Section 3 describes the features extracted from BGP mes-
sages, Section 4 explains the detection scheme, Section
5 describes the root cause location isolation process and
Section 6 presents the parameter estimation process. Sec-
tion 7 evaluates the proposed mechanism’s performance.
Finally, Section 8 presents the concluding remarks.

2 SYSTEM ARCHITECTURE

This section presents a description of the architecture of
the proposed system and its components and their func-
tions. The proposed system can be broadly described as a
two part scheme: the first part detects the BGP instability
events while the second pinpoints the source of the
instability to allow possible correcting actions. Figure 1
shows the various components of the proposed system
and the interactions between them. We emphasize that
this architecture is implemented entirely on a single BGP
router and the proposed functionalities add very little to
the computational load on the router.

The input data used by the proposed mechanism are
BGP update messages received by any BGP router from
its peers as part of its routing operations. The time series
features extracted from the update message data let us
view this as an anomaly detection problem. We now
describe the functions performed by the different blocks.

Feature Extractor: It performs the basic function of
parsing the needed features from the BGP update mes-
sages received by a router from its peers. It separates
the update messages received from different peers into
different datasets and then performs the necessary pars-
ing on these datasets to obtain the feature traces. The
features are extracted on data collected every 5 minutes
in order to limit the rate at which data needs to be
processed. We describe the features used in Section 3.

Fig. 1. Overall architecture of the detection and root

cause location scheme

Change Detector: The important function of tracking the
behavior of the feature time series and detecting when
a substantial change occurs in them is performed here.
The change detection is performed for every feature trace
extracted from each peer separately, in parallel, and the
process is described in Section 4.1.

Alarm Correlator: It is used to make the detection robust
against feature volatility. It implements the algorithm
described in Section 4.2 to establish whether the alarms
obtained from the different feature traces for the same
peer are correlated. The correlation is checked across
different combinations of features using a decision tree
based mechanism. These correlated alarms, if obtained,
are termed per-peer alarms. The per-peer alarms can be
further tested for spatial correlation to determine the
extent of the detected instability.

Alarm Classifier: It helps in identifying the location
of occurrence of the root cause event that caused the
instabilities. It uses the AS-path data for this purpose.

Policy Invoker: It invokes control policies that help
prevent route fluctuations caused by the instability from
propagating to the downstream peers of this BGP router.
This block is optional and the router can be configured
to only raise an alarm to signal the occurrence of an
instability. The development of control policies is outside
the scope of this paper.

Feature Tracker: This block is used together with the
policy controller. It monitors the behavior of the features
for continued presence of anomalous symptoms after
the detection of an instability. Once the features appear
to return to normality the policy controller is notified
and the route selection process is switched back to
normal. The feature tracker can be a simple threshold-
based mechanism which tracks the levels of the differ-
ent features being used. It implements a timer based
mechanism to readjust its thresholds to guard against
a permanent policy switch after a false positive.

3 FEATURE SELECTION

When a route or node failure occurs, each BGP router
initiates a path exploration process for the failed routes.

3

The path exploration process involves the exchange of
route withdrawal and announcement messages between
BGP routers. These update messages show certain char-
acteristics that are specific to periods of instability and
form the features used by our instability detection mech-
anism.

From the BGP update messages received by a router,
we identify and extract features that are used to dif-
ferentiate between BGP’s behavior during normal and
anomalous periods. The features are collected separately
for each peer of a router and are used in the form of a
time series collected every 5 minutes. The feature traces
are then median filtered to smooth out any unwanted
transients and the figures shown in this section show
these filtered traces. The features were identified using
a scatter plot of the data traces in the Mirage software
tool [7]. We now describe these features in detail.

3.1 AS Path Length

Routing instabilities cause established paths to become
unavailable or may result in certain destinations being
unreachable. As a result, instabilities are characterized by
route withdrawals and the BGP path exploration process
to find an alternative route to the same destination.
Under such circumstances, we observed the occurrence
of many routes with abnormally long AS path lengths,
as shown in Figure 2. This is because in the absence of
stable paths of shorter lengths, BGP routers try to use
longer alternative paths.

Another reason for the receipt of routes with abnor-
mally large AS path lengths during instabilities is the
common practice of AS path prepending [22]. AS path
prepending is the practice where a BGP router prepends
its AS number multiple times consecutively instead of
just once to an AS path it advertises. This is done to
make the path through it less attractive to the BGP peers
that base their route selection on the shortest path length
criteria. As a result, these routes are the very rarely used
backup paths. During a failure however, these routes are
also eventually selected when all other shorter routes fail
and as a result, they can form a considerable percentage
of the number of AS paths received by a BGP router.
Note that the AS path length that we use is just the count
of AS numbers listed in the AS path sequence received
in the message and are not required to be a unique list
of AS numbers.

During normal periods of operation, the lengths of
the AS paths advertised by any given peer of a BGP
router show only a small deviation around the average
value. We call the mode values of the distribution of
AS path lengths during normal periods as the “normal
value”. Thus, the number of messages received with
AS path lengths differing from this normal value is
relatively small during normal periods of operation but
shows a prominent increase under instability conditions,
as shown in Figure 2. We use the length of the AS paths
received from a peer as one of our features and define

0300 0400 0500 0600 0700 0800
0

5

10

15

20

25

Time Hours on 01/25/03

A
S

 p
a
th

 L
e
n

g
th

s
 V

a
lu

e
s

Fig. 2. Number of messages with different AS path

lengths received from the router in AS513 during 5 hours

around the onset of the Slammer worm attack on 25th

January 2003. The red part (right half) indicates the time

period after the attack started. As can be seen there is a

sudden increase in the number of messages with AS path

lengths greater than (4 or 5) which is the normal average

at the onset of the worm (midpoint of the interval).

it as

ASPL = {X̄ij =〈x0, x1, · · ·〉; i = 1, · · · ,Ml; j = 1, · · · , NP}

where, X̄ij is a time series of the number of messages
with AS path length = i, received over every 5 minute
interval from peer number j, Ml is the maximum ob-
served AS path length value and NP is the number of
peers of the local BGP router.

3.2 AS Path Edit Distance

During an instability, not only are a large number of long
AS paths exchanged but also a large number of “rare”
AS paths are advertised. We quantify the latter effect by
treating AS paths received in consecutive messages as
strings and obtaining edit distances [21] between them
as a measure of their dissimilarity. We define the edit
distance between any two AS paths as the minimum
amount of AS number substitutions, deletions and in-
sertions (or combinations thereof) needed to convert one
path into another. As an example, consider the sequence
of messages received at AS2 from AS6 [6-1-7; 6-4-3-1-
7]. The edit distance between these AS paths can be
counted as 2 insertions. If on the other hand because of
a link failure between AS6 and AS7, the path advertised
by AS2 to AS3 changes from [2-6-7] to [2-1-7], then the
edit distance between the two AS paths will be one
substitution.

During the path exploration following any instability
event, as all possible paths for a particular destination
are exchanged, a large number of successive messages
show higher edit distances. Fig. 3 shows this effect for
the Slammer worm attack. The AS path edit distance
feature set is defined as

ASPED = {X̄ij =〈x0, x1, · · ·〉; i=1, · · · ,Med; j =1, · · · , NP}

where, X̄ij is a time series of the number of messages
with AS path edit distance i, received over every 5

4

01/23
01/24

01/25
01/26

01/27

AS513

AS559

AS6893
0

2000

4000

6000

8000

10/06

10/07

10/08

AS3257
AS3333

AS6762
AS9057

0

200

400

600

(a) BGP announcement message volumes from 23rd to 27th of January 2003. (b) BGP withdrawal message volumes from 6th to 8th of October 2001.
The Slammer worm attacked the Internet on the 25th of January. A BGP misconfiguration error occurred on the 7th of October.

Fig. 4. Message volumes for two periods of instability

0300 0400 0500 0600 0700 0800
0

5

10

15

20

A
S

 P
at

h
 E

d
it

 D
is

ta
n

ce
 V

al
u

es

Time Hours on 01/25/03

Fig. 3. Number of messages with different pairwise AS

path edit distances received from the router in AS513

during 5 hours around the onset of the Slammer worm

attack on 25th January 2003. The red part (right half)

indicates the time period after the attack started. At the

onset of the attack (midpoint of the interval) there is a

sudden increase in the number of successive messages

with AS path edit distances greater than (0 or 1) which is

the normal value.

minute interval from peer number j and Med is the
maximum observed AS path edit distance value.

3.3 Message Volume

Interdomain routing instabilities also exhibit a sharp and
sustained increase in the number of announcement and
withdrawal messages exchanged by the BGP routers [4],
[11], [5]. To illustrate this effect, Figures 4(a) and 4(b)
show the BGP update message volume traces around the
period of the instabilities associated with the Slammer
worm attack on the Internet on the 25th January 2003 [11]
and the leakage of private AS numbers from AS2008 and
AS3300 due to a router misconfiguration on 7th October
2001 [13]. We observe a large peak in the number of
announcement and withdrawal messages received at a
router from its peers during the periods of these insta-
bilities. Thus we consider the volume of announcement
and withdrawal messages as possible features that can
be used to detect instabilities. These features are defined

as

AVi = {X̄i = 〈x(0), x(1), · · ·〉},∀i = 1, 2, · · · , NP

WVi = {Ȳi = 〈y(0), y(1), · · ·〉}∀i = 1, 2, · · · , NP

where X̄i and Ȳi are the time series of the number
of announcements and withdrawls received in each 5
minute interval from peer number i, respectively.

3.4 Relevant Features

Based on the features above, our available feature set is:

F ′ = [AV,WV,ASPL,ASPED] (1)

where, AV and WV are the volume feature sets, ASPL
is the AS path length and ASPED the AS path edit
distance feature set. Now, the maximum values of AS
path length (Ml) and edit distance (Med) observed can
be very high. We first filter out feature traces for values
of AS path length very close to Ml and values of AS
path edit distance very close to Med. This is necessary in
order to avoid using very sparse feature traces that can
be statistically irrelevant. Also, the sum of the number
of messages over all AS path lengths in any 5 minute
interval will be equal to the number of announcements
received in that interval. Hence we also remove the
AV feature trace from consideration (since it is a linear
combination of some other features in the set).

Next, we use the Fisher score [23] of each feature to
dete-rmine its discriminability for detecting the occur-
rence of an instability. For this purpose we assume that
the detection problem is analogous to a discrimination
between the normal periods and periods of instability
for the BGP sessions. We use data from a period of 10
hours around the incidence of an anomaly for finding the
Fisher scores of all the features. With a sampling rate of
5 minutes the feature traces used are thus 120 samples
long, with the first 60 samples belonging to the normal
class and the next 60 to the abnormal (unstable) class.

To understand how exactly we obtain the Fisher score
for each feature consider the (filtered) feature set with N
features:

F = {fi|i = 1, ..., N} (2)

5

The Fisher score for each feature is obtained as:

Ri =
|m1

i − m2
i |

s1(fi) + s2(fi)
(3)

where m1
i and m2

i are the mean values of feature i from
the datasets corresponding to the normal and abnormal
periods respectively and s1(fi) and s2(fi) are the corre-
sponding feature scatters, i.e.,

sj =
∑

y∈Di

(y − mj)2. (4)

where Di is the set of samples of feature i and j is
the dataset index. The features are then arranged in
the descending order of Fisher scores and added to the
classifier one by one until

(

j=M
∑

j=1

Rj) > λ, (5)

where λ is a threshold to ensure enough discriminability
in the final feature set. Thus, the final feature set is
selected by averaging the sums of the feature scores for
datasets from multiple instability events and comparing
this average against λ. We then use the following mod-
ified version of Equation (5) for final feature selection:

1

D
(

k=D
∑

k=1

j=M
∑

j=1

Rk
j) > λ, (6)

where D is the number of datasets considered here as
training events for feature selection. We use D = 9,
which consists of 3 events with datasets for 3 peers each.
We empirically set the value of λ = 0.45 so as to obtain
an optimum number of meaningful features [23].

Table 1 presents the scores of the top 10 features
averaged over these 9 datasets. For the features under
consideration, we obtain an averaged sum of Fisher
scores over different kinds of instabilities as 0.495, which
is well above the threshold value for λ and thus the fea-
tures we have selected have adequate discriminability to
be used for detection. Thus, this mechanism successfully
validates our current feature set. Consequently, at each
router, the final feature set F we use has 9 traces:

F = [WV,ASPL′, ASPED′]

ASPL′ = [X̄ij , |i = 3, 6, 7, 8; j = 1, 2, ..., NP];

ASPED′ = [X̄ij , |i = 2, 3, 4, 5; j = 1, 2, ..., NP]

4 DETECTION OF INSTABILITIES

This section describes our detection mechanism in detail.
The detection scheme is based on adaptive sequential
segmentation. The core of the segmentation is change
detection using a Generalized Likelihood Ratio (GLR)
based hypothesis test. The segment boundary detection
mechanism uses the GLR test to detect change points.
This step is followed first by a process to optimize the
segment boundary position and then by a clustering

mechanism that exploits the spatial and temporal cor-
relations in multiple features to minimize false alarms.

4.1 Change Detection

This section describes the statistical test and the al-
gorithm for detecting and isolating the instance when
an instability occurs. We start with the basic GLR test
used for instability detection and then follow it with the
algorithms that use this test to detect and optimize the
position of the change point.

4.1.1 Generalized Likelihood Ratio Test

The test is based on capturing statistical changes in the
characteristics of the BGP feature traces using a GLR
based hypothesis test. Changes are detected by com-
paring the variance of the residuals obtained from two
adjacent windows of data which are referred to as the
learning (L(t)) and test (S(t)) windows. A windowing
mechanism is used to convert the feature time series
into the two windows of data (of lengths NL and NS

respectively):

L(t) = {l1(t), l2(t), · · · , lNL
(t)} (7)

S(t) = {l1(t), l2(t), · · · , lNS
(t)} (8)

that are piece-wise stationary. Residuals are obtained by
imposing an AR model on the time series data in each
of these windows. Any li(t) in the equations above can
be expressed as l̃i(t) + µ where l̃i(t) = li(t) − µ and µ is
the mean of the segment L(t). Now, l̃i(t) is modeled as
an AR process of order ρ with a residual error ǫi(t)

ǫi(t) = l̃i(t) −

ρ
∑

k=1

αk l̃i(t − k) (9)

where αL = {α1, α2, · · · , αρ} are the AR parameters.
Changes are detected by comparing the variance of the
residuals obtained from these two adjacent windows of
data. Assuming each residual is drawn from an N(0, σ2

L)
distribution, the joint likelihood of the residual time
series is given by

p(ǫρ+1, · · · , ǫNL
|α1, · · · , αρ) =

(

1
√

2πσ2
L

)ŃL

e

„

−ŃLσ̂
2

L

2σ2

L

«

where σ2
L is the variance of the segment L(t), ŃL = NL−

ρ and σ̂2
L is the covariance estimate of σ2

L. Using a similar
expression for the test window S(t), the joint likelihood
ν of the two segments L(t) and S(t) is given by

ν =

(

1
√

2πσ2
L

)ŃL
(

1
√

2πσ2
S

)ŃS

e

„

−ŃLσ̂
2

L

2σ2

L

«

e

„

−ŃSσ̂
2

S

2σ2

S

«

where σ2
S is the variance of the segment S(t), ŃS =

NS − ρ and σ̂2
S is the covariance estimate of σ2

S . The
expression for ν is a sufficient statistic and is used to
perform a binary hypothesis test based on the GLR.
Under the hypothesis H1 implying that a change is

6

Feature ASPL=3 ASPED=2 WDS ASPL=8 ASPL=6 ASPL=7 ASPL=9 ASPED=5 ASPED=4 ASPED=3
Score 0.0823 0.0629 0.0567 0.0508 0.0496 0.0489 0.0476 0.0436 0.0405 0.0388

TABLE 1

The top 10 features and their feature scores in descending order

Algorithm 1 Change detection and boundary position
optimization.

L minimum initial window size;
δ GLR threshold;
d(x, y) GLR dist betn. windows [1, x] and [x+1, y];
s = L initialize s as end of first learning

and beginning of first test window;
while (sizeof(data) > 0) do

while (d(s, s + L − 1) < δ) do
s = s + 1 grow the learning and slide

the test window by one sample;
end while
tD = s + L − 1 the change detection point;
r = tD − L + 1 pointer to the beginning of

current test window;
for (tD − L + 2 ≤ s ≤ tD) do

g1 = d(s, s + L − 1) GLR dist betn. growing
learning and fixed test windows;

g2 = d(r, s + L − 1) GLR dist betn. fixed
learning and growing test windows;

if (g1 > g2) then
r = s found better boundary position;

end if
s = s + 1

end for
ropt = r optimal boundary position found;
data = [data(r) : data(sizeof(data))] further seg-

mentation on remaining data;
end while

observed between the two windows, we have αL 6= αS

and σ2
L 6= σ2

S , while under H0 implying that no change
has occurred, αL = αS and σ2

L = σ2
S .

Using maximum likelihood estimates for the variance
terms, the likelihood ratio is given by

η = σ̂
(ŃL+ŃS)
P σ̂−ŃL

L σ̂−ŃS

S . (10)

where σ̂2
P is the pooled variance of the learning and

test windows. For computation purposes we use the
logarithmic form of the GLR as distance:

d = (ŃL + ŃS) log(σP) − ((ŃLσL) + (ŃSσS)) (11)

4.1.2 Segment Boundary Detection
The segment boundary detection process isolates pe-
riods of abnormal behavior in the feature traces. The
boundary/change points detected here are points where
the behavior of the feature traces deviates significantly
from the period since the last detected segment. The
core mechanism to detect the boundary points is the
GLR test described in the previous subsection. A change
point is detected when the GLR distance between the
test and learning windows exceeds a fixed threshold δ.
For a feature time series, let the most recently detected

segment boundary by the segmentation algorithm be
at an arbitrary time index t = r; then without loss of
generality we can define r = 1. The decision process
needed to detect a new boundary at an arbitrary time
index s > L (L is the minimum segment length, L > 1),
is then performed for all indices s > L by establishing a
test window St = 〈x(s), · · · , x(s+L−1)〉 and a learning
window Lt = 〈x(1), · · · , x(s − 1)〉 and applying a GLR
test to the sequences defined by these windows. A
new segment boundary is detected whenever the GLR
distance for a potential boundary position s, i.e., the
GLR distance between the windows, 〈x(1), · · · , x(s)〉 and
〈x(s+1), · · · , x(s+L−1)〉, denoted by d(s, s+L−1), exceeds
the threshold δ. At this point, the time index s + L − 1
is called the “detection time” tD.

The position of the detection time is the indicator that
somewhere within the range from the beginning of the
current test window till the position tD a change in the
behavior of the traces has been detected. The second
part of our algorithm, explained below, determines the
optimal position for the boundary within the current test
window range (tD − L + 1, · · · , tD), thus, detecting the
exact position of the change.

4.1.3 Boundary Position Optimization

The main purpose of this step in the algorithm is to
detect accurately the point in the traces where the change
occurs. Initially the optimal boundary is assumed to be:
tD−L+1. Then, for all other potential boundary positions
within (tD−L+2, · · · , tD) the GLR distance between the
growing learning (WGL) and fixed test (WFT) window
is compared with the GLR distance between the fixed
learning (WFL) and growing test (WGT) window. The
initial sizes of these windows are (ref. Figure 5):

WGL : 〈x(1), · · · , x(tD − L + 2)〉,

WFT : 〈x(tD − L + 3), · · · , x(tD + 1),

WFL : 〈x(1), · · · , x(tD − L + 1)〉,

WGT : 〈x(tD − L + 2), · · · , x(tD + 1)〉

The growing window increases and the fixed test win-
dow moves ahead by one at each iteration. The total
length composed of both windows is identical in both
cases and grows continuously. The learning window size
grows from tD − L + 2 to tD and the test window size
from L−1 to 2L−1 at the end of the last iteration. At each
iteration the GLR distance between WGL and WFT and
the GLR distance between WFL and WGT is calculated.
Then the new boundary position is determined based on
a second tier comparison of the GLR distances between
these two pairs of windows as per:

7

Fig. 5. The first 2 iterations of the boundary position

optimization algorithm. The shaded regions of WGL and

WGT indicate their growth in the next iteration. The sec-

ond iteration shown is under the assumption that the GLR

distance d(WGT ,WFL) is more than d(WGL,WFT) and

the boundary position is not updated.

• If the GLR distance between WGL and WFT is
greater than that between WFL and WGT , the cur-
rent optimal boundary position is updated to the
end of the current learning window.

• If on the other hand, the GLR distance between WFL

and WGT is greater, then the current optimal bound-
ary position is unchanged as it indicates that adding
a new sample to the test window has not affected
the statistical similarity of the two segments.

When the last potential boundary position is reached, the
algorithm stops and the last allocated boundary position,
r, is the optimized boundary. The boundary positions
marked after the optimization process are called alarms.
Algorithm 1 shows the steps for change point detection
and boundary optimization.

At the end of the last iteration the learning window
size grows from tD − L + 2 to tD. At one extreme, the
position of the optimum boundary is updated at every
iteration and the last iteration optimizes the boundary
point. On the other extreme, there is no change in the
boundary position, i.e., the boundary detected in the
first part of the algorithm itself is accurate enough, and
the test window size grows from L to 2L − 1 at the
end of the last iteration. For a general case, the final
optimal boundary position can be anywhere between
the two extreme values (tD −L + 1, tD). Thus, the delay
between the final boundary position and the detection
time of the initial change point is dependent on the

Algorithm 2 Processes for online alarm clustering.

n number of traces;
ai alarm for trace i, i = 1, 2,, n;
t(ai) time at which alarm ai occurs;
τ maximum time between alarms in a cluster;
N(ai) alarm cluster in neighborhood of ai;
A Final alarm indicating instability event;

FOR EVERY ALARM ai

Set a timer for τ timer to inactivate ai after τ;
Set N(ai) = ai add ai to its own neighborhood;
if (aj still active and i 6= j) then

Include ai in N(aj) add ai to the neighborhood
of other active alarms;

end if

SUBROUTINE FOR TIMER EXPIRATION
if (N(ai)) then

Delete N(ai) delete alarm neighborhood;
Delete ai from all N(ai) delete ai from all other

neighborhoods;
end if
Delete ai

BACKGROUND PROCESS
if (|N(ai)| ≥

n

2
) then

A = TRUE majority alarm cluster detected;
Delete N(ai)
Delete ai from all N(aj)
Delete ai

end if

minimum window size L. Though the boundary position
optimization step introduces a delay in the detection, it
is important for minimizing the number of false alarms.
This is further explained in the next subsection which
describes the clustering of the boundary points.

4.2 Alarm Correlation

The change detection and boundary position optimiza-
tion processes of Algorithm 1 are applied to each feature
trace and the change points detected are termed per-
feature-trace alarms. The temporal correlations between
the per-feature-trace alarms are used in this section to
reduce false alarms and make the detection process more
robust against volatility of feature traces.

The clustering of the per-feature-trace alarms is done
by using the time difference between them as a distance
measure. Then a majority voting rule that requires the
largest cluster to have alarms from more than half the
number of feature traces is used to generate the final
alarm. This two step process to combine the per-feature-
traces alarms is defined in Algorithm 2 and is now
described in detail.

Step I: In the first step, we consider the feature traces
for different values of AS path lengths and AS path
edit distances, with each group considered separately,
and cluster them in time. We define N(ai) as the neigh-
borhood of any alarm generated by the ith trace. Also
associated with each alarm ai is a timer that is initialized
when the alarm is generated and expires at the end of
a threshold τ . The routines for every alarm ai and those
to be run at the expiration of the timer are as given in

8

the pseudocode. Every newly generated alarm for trace
i is included in the neighborhood of an alarm aj , i 6= j,
as long as the timer for alarm aj has not expired. A
process running in the background keeps track of all the
alarm neighborhoods and as soon as any neighborhood
contains at least ⌈n/2⌉ change points, where n is the total
number of traces, a first level alarm is generated for the
AS path length (or AS path edit distance).

Step II: Next, we cluster the alarms generated by AS
path length and AS path edit distance at end of step I
and the change points detected by the withdrawal traces
in time. If the cluster strength is 2 or more elements,
an instability-alarm is generated. The different pairs of
features are preserved in the combination scheme for
possible classification of different kinds of instabilities.

4.3 Preventing False Alarms

The suppression of false alarms is achieved through
the use of a diverse feature set as well as through the
various steps in our detection process. The use of AS
path length and path edit distance features helps lower
the false alarm rate and minimize the detection delay
by maintaining a low clustering threshold τ . This is
a significant advantage over using just volume-based
(announce and withdrawal message volume) detection.

In order to ensure that we detect the instabilities
correctly and do not miss any, the individual feature
trace alarms are required to be as precise as possible.
This is ensured by the boundary position optimization
step in the segmentation process. In the absence of the
optimization step, valid instability indicator alarms may
be missed when the initial step for change detection
gives a delayed change point that does not fall within
the clustering distance of the change points of the other
traces. The optimization step gives an alarm at the
exact segment boundary, facilitating its clustering with
alarms from other traces and thereby generating a valid
instability indicator alarm. While the cluster threshold
τ may also be increased in order to include delayed
change points, this can lead to an increased number of
false alarms and delay the detection of the instability.

4.4 Complexity of the Detection Algorithm

The complexity of the proposed scheme can be consid-
ered in parts and independently for every peer. The first
step of the algorithm is feature extraction and the most
expensive in that is AS path edit distance calculation
that is performed for every update message received per
peer. This is typically O(n2) complexity where n is the
number of ASes in the AS path. Since the normal value
of n is around 5 and the worst case value is around
20, this will not prove to be very expensive. The next
step is the ‘Segment Boundary Detection’ (Section 4.1.2)
which involves the calculation of covariance matrices
and pooled covariance matrices. These operations can
however be performed incrementally for every new data
point received [3] and thus the GLR calculation is just

O(ρ2) where ρ is the AR order that decides the order
of these matrices. For our experiments we chose ρ = 1
and typically the value of ρ is small enough for these
operations to be quite inexpensive.

The next step of ‘Boundary Position Optimization’
(Section 4.1.3) calculates the GLR distance between dif-
ferent combinations of the learning and test window
sizes. However, again for the growing learning, fixed
learning and the growing test windows this calculation
can be done in an incremental manner. The only ex-
pensive calculation is the covariance estimation for the
fixed test window which is O(L2). It is important to note
here that this expensive step is performed only after an
initial segment boundary has been detected. The other
steps of the algorithm such as ‘Median filtering’, ‘Alarm
correlation’ etc. are all of constant order and do not cause
any additional complexity. So the overall complexity
of the algorithm is just dependent on ρ and L, but is
dominated by L since typically L ≫ ρ.

4.5 System Evaluation

This section discusses the system requirements for im-
plementing our methodology in a real-time environment,
focusing specifically on memory usage and execution
time. We implemented our system on a simple Notebook
PC with a 2.16GHz Intel processor and 2.00GB of RAM.
Since the online implementation of our detection scheme
was not operationally possible we implemented it of-
fline for our experiments using Matlab. For the longest
duration of the data that we processed (i.e. 11 days
for the January 2006 event), the memory usage for the
process did not exceed 121Mb and the execution time
was 9.813 seconds. This included the resources needed
for covariance calculations over the entire dataset, which
in an online implementation will be done in an incre-
mental step for each time sample of 5 minutes. The only
other expense that our detection scheme will incur is
the storage of the time series data and that requirement
depends on the number of peers used, the duration of
data stored etc.

5 ROOT CAUSE LOCATION ANALYSIS

This section presents the details of the Alarm Classifier
component of the proposed system architecture shown
in Figure 1. The objective of this component of the
system is to pinpoint the exact location where the root
cause of the instability event may have occurred be-
fore the instability propagated to the local router. We
focus on just identifying the AS where the root cause
event occurred and call it the root-cause-AS. While other
information like the time when the root cause event
happened, the actual network prefixes that it affected,
etc. could also be obtained, we focus on the root-cause-
AS since it is the most useful in terms of controlling the
spread of the instability.

In order to locate the root-cause-AS, we first introduce
the concept of first-changed-AS. This is the AS (in the

9

update messages) where the first change is seen between
AS paths received for routes to the same destination
in consecutive update messages. The method that we
employ to find the first-changed-AS is an extension of
the AS path edit distance feature extraction process. We
first use the same algorithm that is used for edit distance
calculation to align the successively received AS paths,
say ASPath1 and ASPath2. Let l1 = |ASPath1| and
l2 = |ASPath2| be their respective lengths. Also, let
the aligned AS paths be referred to as ASPath′

1 and
ASPath′

2 respectively and their common length after
alignment be l. We denote by ASPathi(k) the k−th AS
in ASpathi. The first-changed-AS, ASPath(l − i∗ + 1)′,
then corresponds to i∗ given by

i∗=arg min
i

[ASPath(l−i)′1 6=ASPath(l−i)′2],∀i={0, · · · , l}

where l = max(l1, l2). Thus we trace the AS paths in
the reverse direction i.e. starting from the origin AS and
identify the AS where the first change in the AS path is
observed. To illustrate this better, consider the following
pair of AS paths:

6762 701 6453 17557 9557

6762 17557 9557

After alignment they can be represented as:

6762 701 6453 17557 9557

6762 − − 17557 9557

Here the dashes represent the deletion of 2 ASes in
the first AS path to obtain the second. Using the above
alignment we can identify AS17557 as the first-changed-
AS.

The basic data-set used for this analysis is update mes-
sages exchanged by the BGP routers. In order to ensure
the absence of transient route fluctuations, we first apply
the route-flap damping process of the BGP protocol [15]
to suppress redundant routes that flap persistently. Our
experiments used the default values of the route flap
damping algorithm parameters according to those set on
Cisco routers [18]. The root cause analysis is then applied
on the unsuppressed routes that are not flapping. After
obtaining the unsuppressed non-flapping route changes,
the next step is to obtain the first-changed-AS for each
route change. Since at any given time there are a large
number of route changes, a large set of first-changed-
ASes is obtained. We term this as the set of candidate-
root-cause ASes. The mode of the frequency distribution
of the candidate AS number(s) is then marked as the
actual root-cause-AS (ASes) where the event occurred. It
is important to note that this method is only determines
the AS where the root cause originated and not the actual
root cause of the event.

Any set of candidate-root-cause ASes will include
ASes where path changes due to transient route changes,
short-lived failure events, policy shifts, session resets as
well as the large instability events are seen. By consid-

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

100

200

300

400

500

600

700

sample times

G
L

R
 v

a
lu

e
s

Fig. 6. The GLR values for the withdrawal messages

received from the peer in AS6893 for the entire month

of December 2002. The straight horizontal line indicates

the 95th percentile of the data.

ering only the path changes for a given period after the
instability has been detected and eliminating persistently
flapping routes, we maximize the likelihood of the set
of candidate-root-cause ASes being formed only by path
changes that are induced by the root cause and related
to the instability. But to further account for the high rate
of update messages and path changes seen at most core
BGP routers, we select the n most frequently occurring
candidate-root-cause ASes as the set of actual root-cause-
ASes. The value of n is chosen based on the volume of
path changes usually seen at the router and on the error
requirements of the system. Section 7 discusses the effect
of the choice of n on the detection accuracy.

6 PARAMETER ESTIMATION

In this section we describe the methodology for selecting
the parameters required to implement our detection
algorithm.

Order of the median filter (m): In order to avoid cap-
turing the transient peaks, we median filter the feature
traces. It has been shown that after a normal routing
change the BGP convergence process can last upto 15
minutes before a new stable route is installed [10]. We
consider such spikes in the traces as normal routing
changes and suppress them by setting the median fil-
tering order accordingly.

Minimum window size (L): We select this to be at least
twice the median filter order, so as to avoid choosing a
window that is entirely smoothed out. On the higher
side, the limit on the window size is the size of the
smallest segment of change that is to be detected. It has
been recommended that [1]

L ≤ 0.7c (12)

where c is the size of the smallest segment of change to
be detected. Given the timescales of the BGP instabilities,
we select L to be 20 samples (100 minutes of data).

AR Order (ρ): The selection of the AR order is done
according to the Akaike’s Information Criteria (AIC)

10

Data for Month RRC No. of peers Peers that sent messages
Moscow blackout May 2005 rrc05, Vienna 3 AS1853,AS12793, AS13237

SQL/Slammer Worm January 2003 rrc04, Geneva 3 AS513, AS559, AS6893
Nimda Worm September 2001 rrc04, Geneva 3 AS513, AS559, AS6893

Code Red II Worm July 2001 rrc04, Geneva 3 AS513, AS559, AS6893
AS3300,AS2008 AS-path error October 2001 rrc03, Amsterdam 4 AS3257, AS3333, AS6762, AS9057
AS9121 Routing Table Leak December 2004 rrc05, Vienna 3 AS13237, AS12793, AS1853
AS3561 Improper Filtering April 2001 rrc03, Amsterdam 3 AS3257, AS3333, AS286

AS3356 Incorrect import to IGP October 2005 rrc01, London, 4 AS13237, AS8342, AS5511, AS16034
Panix Domain Hijack January 2006 RouteViews, Oregon 4 AS12956, AS6762, AS6939, AS3549

TABLE 2

The datasets used to test for different instabilities.

[2]. To estimate the best value of ρ, we use one of the
smoothed data sets and segment it into windows of size
L = 20. We then impose AR orders from 1 to 10 on each
of these windows and note the value of the AR order that
gives the minimum AIC value for each of the windows.
We then select the AR order that gives the minimum AIC
value for maximum number of windows of the selected
size. Based on this method we estimated ρ = 1 to be
appropriate for the data.

GLR Threshold (δ): δ affects the sensitivity as well as
accuracy of the detection. While small values result in
almost all the routing changes being captured, a very
large value can lead to missing even the significant
instabilities. To select a suitable δ, we use data from
a period of normal operation. We run the detection
algorithm with window size L = 20 and a very high
δ. As the threshold is very high, no segment change
is detected during this process and we obtain the GLR
ratios over all the segments. Then, we set δ to be greater
than the 95th percentile of these (ref. Figure 6). This
process obtains a δ that will not be crossed 95% of the
time, so that only the update message surges that are
relevant will cause a segment boundary to be detected.

Cluster distance threshold for the alarms (τ): The value of
τ is dependent on factors like number of peers, nature of
the peers, topology, etc. We empirically set the value of
the clustering threshold to be 40 minutes guaranteeing
that any instability will be detected within an hour of its
detection in the feature traces at the router.

7 PERFORMANCE EVALUATION

In order to evaluate the performance of the proposed
system, we tested it on real BGP update messages col-
lected at the Réseaux IP Européens (RIPE) remote route
collectors (RRC’s) and the Routeviews, Oregon server.
We only used data from those route collectors that have
a direct BGP connection with peers located at the same
exchange points in order to avoid any impact of the
collection process itself on the data [24]. We used five-
day long traces for testing the detection of different types
of instabilities. The raw data collected was in the form
of the update message logs received during 5 minute
intervals. For each period of instability, we use data from
different route collectors. This was done because some
instabilities have a significant impact only at specific

RRCs and also to test the scheme for data from diverse
sources. Table 2 gives a list of the different data traces we
used for the different instability types. We observed that
even though the RRCs listed in the table peer with many
more BGP routers [16], only the peers mentioned in the
table sent a statistically significant amount of update
messages during the particular periods we tested on.

7.1 Evaluation of the Detection Mechanism

In this section we test our detection mechanism on three
types of instability events and present the associated
results. The results of the evaluation of our detection
algorithm are shown in Table 3. Note that the parameter
values estimated in Section 6 were used for all these
experiments and no additional tuning of the parameters
was necessary.

Worm Attacks: We tested our scheme for detecting the
instabilities caused by three worm attacks on the Internet
that have occurred in the past and are known to have im-
pacted the BGP routing mechanisms. Figure 7 shows the
results of each step of the detection algorithm as applied
to the different feature traces for one peer during the
five days around the period of the Slammer worm attack
(from 23rd to 27th January 2003).1 Figure 7(a) shows the
median filtered traces for the withdrawal volume and
AS path length features, in which the anomaly is seen
as a sharp peak. Similarly, Figure 7(b) shows the median
filtered traces for the AS path edit distance features. In
part (c) of the figure we show the results of the change
point detection step for each feature trace and the last
figure at the bottom shows the final alarm. We also
applied the detection mechanism on the periods around
the Nimda and Code Red II worm attacks of September
and July 2001 respectively. Table 3 shows the duration
of these events and the number of alarms raised per
peer with our detection algorithm. The number of false
alarms generated are also given. The detection of the
worm attacks at a majority of the peers indicates that
their impact was global.

Equipment Failures: Around the 25th of May 2005,
there was a blackout in Moscow that is known to have
caused the Moscow Internet Exchange (MSIX) to be shut

1. Detection results for the other instabilities are similar and omitted
due to lack of space.

11

Event Slammer Worm Moscow Blackout Code Red II Worm
Month Jan 2003 May 2005 Jul 2001

AS Num. AS513 AS559 AS6893 AS1853 AS12793 AS13237 AS513 AS559 AS6893
Duration* 22hrs 21hrs. 30hrs 6hrs. 8hrs <2hrs. 11hrs 11hrs 11hrs

Our Detection Algorithm
Alarms per event 1 1 1 0 1 0 1 0 1

False Alarms 0 1 0 0 0 0 1 0 0
EWMA-mechanism using only volume features

Alarms per event 246 254 271 2 0 47 0 20 13
False Alarms 6 14 6 2 47 0 2 11 4

EWMA-mechanism using all our features
Alarms per event 209 134 156 0 1 0 0 14 6

False Alarms 1 12 4 0 1 0 0 2 0
PCA based mechanism using only volume features

Alarms per event 22 1 1
False Alarms 14 8 8

Wavelet based mechanism using only volume features
Alarms per event 2 0 1 0 0 0 4 0 1

False Alarms 0 0 0 2 5 2 0 4 0
Wavelet based mechanism using all our features

Alarms per event 0 0 0 0 0 0 4 0 0
False Alarms 0 0 0 1 3 0 0 4 0

Event Nimda Worm AS9121 Leak AS3356, error in import to IGP.
Month Sep 2001 Dec 2004 Oct 2005

AS Num. AS513 AS559 AS6893 AS1853 AS12793 AS13237 AS13237 AS8342 AS5511 AS16034
Duration* >48hrs >48hrs >48hrs 5hrs 8hrs. 6hrs 3hrs. 5hrs 9hrs. 9hrs

Our Detection Algorithm
Alarms per event 1 0 1 1 1 1 0 1 1 1

False Alarms 1 0 1 0 0 0 1 1 0 1
EWMA-mechanism using only volume features

Alarms per event 77 20 236 60 14 13 31 0 9 34
False Alarms 3 10 3 12 1 6 12 13 7 14

EWMA-mechanism using all our features
Alarms per event 0 0 153 23 11 13 25 0 9 21

False Alarms 1 3 1 7 0 1 6 10 2 1
PCA based mechanism using only volume features

Alarms per event 2 14 5
False Alarms 0 3 4

Wavelet based mechanism using only volume features
Alarms per event 9 0 8 1 5 1 0 3 0 0

False Alarms 8 0 0 0 0 0 0 1 3 0
Wavelet based mechanism using all our features

Alarms per event 8 1 15 4 7 3 0 8 1 0
False Alarms 6 0 0 1 0 0 0 1 1 0

Event AS3561 Filtering error AS3300,AS2008 AS-path error Panix.com Domain Hijack
Month April 2001 Oct 2001 Jan 2006

AS Num. AS3257 AS3333 AS286 AS3257 AS6762 AS3333 AS12956 AS3549 AS6762 AS6939
Duration* 8hrs 2hrs 16hrs 5hrs 7hrs 6.5hrs 10hrs <1hr. 22hrs. 20hrs

Our Detection Algorithm
Alarms per event 1 0 1 0 1 1 1 1 1 1

False Alarms 0 1 1 0 1 0 0 3 3 0
EWMA-mechanism using only volume features

Alarms per event 6 1 31 4 28 13 20 7 0 5
False Alarms. 5 4 21 8 2 8 6 1 0 7

EWMA-mechanism using all our features
Alarms per event 0 0 0 0 68 14 2 0 0 2

False Alarms 0 0 15 1 1 3 3 0 0 1
PCA based mechanism using only volume features

Alarms per event 5 2 32
False Alarms 4 16 48

Wavelet based mechanism using only volume features
Alarms per event 2 0 2 0 1 4 4 0 0 0

False Alarms 4 2 9 1 5 2 1 4 2 6
Wavelet based mechanism using all our features

Alarms per event 1 0 0 0 0 0 3 0 0 0
False Alarms 6 1 5 0 4 2 0 0 1 4

TABLE 3

The results for our detection algorithm and schemes proposed in literature for various events. The entries showing

zero alarms in the true alarm clusters represent the missed alarms. *Duration of an event is the approximate amount

of time for which the surge in the volume of update messages lasts.

12

23 24 25 26 27

1000

2000

3000

4000

5000

6000

7000

8000

9000
W

it
h

d
ra

w
al

s

Date

AS513

23 24 25 26 27

200

400

600

800

1000

1200

1400

1600

A
S

p
at

h
 e

d
it

 d
is

ta
n

ce
 =

 2

Date

AS513

23 24 25 26 27
Date

AS513 Chg Points Withdrawals

23 24 25 26 27

50

100

150

200

250

300

350

400

450

500

A
S

p
at

h
 L

en
g

th
 =

 3

Date

AS513

23 24 25 26 27

100

200

300

400

500

600

700

800

A
S

p
at

h
 e

d
it

 d
is

ta
n

ce
 =

 3

Date

AS513

23 24 25 26 27
Date

AS513 Chg Points AS Path Length = 3

23 24 25 26 27
Date

AS513 Chg Points AS Path Length = 6

23 24 25 26 27
Date

AS513 Chg Points AS Path Length = 7

23 24 25 26 27
Date

AS513 Chg Points AS Path Length = 8

23 24 25 26 27

200

400

600

800

1000

1200

1400

1600

1800

A
S

p
at

h
 L

en
g

th
 =

 6

Date

AS513

23 24 25 26 27

50

100

150

200

250

300

350

A
S

p
at

h
 e

d
it

 d
is

ta
n

ce
 =

 4

Date

AS513

23 24 25 26 27
Date

AS513 Chg Points AS Path Edit Dist = 2

23 24 25 26 27
Date

AS513 Chg Points AS Path Edit Dist = 3

23 24 25 26 27
Date

AS513 Chg Points AS Path Edit Dist = 4

23 24 25 26 27
Date

AS513 Chg Points AS Path Edit Dist = 5

23 24 25 26 27

100

200

300

400

500

600

700

800

A
S

p
at

h
 L

en
g

th
 =

 7

Date

AS513

23 24 25 26 27
0

20

40

60

80

100

120

140

160

180

200

A
S

p
at

h
 e

d
it

 d
is

ta
n

ce
 =

 5

Date

AS513

23 24 25 26 27
Date

AS513 Alarm

(a) Median filtered feature traces (b) Median filtered feature traces (c) Optimized Change Points per trace and Alarm

Fig. 7. Results of the different steps of the algorithm for the Slammer worm of January 2003. The data is shown for

23rd to 27th of January; Parameters: L = 100mins, ρ = 1, δ = 95th quantile of the normal period GLR, τ = 50mins

data points. The circular markers indicate the period of the Slammer worm. In Figure(c) the markers at the upper limit

of the y-axis show the alarms after boundary position optimization. The final plot in (c) shows the alarm obtained after

correlating the alarms from these traces.

down for several hours [13]. Though this did not affect
the Internet on a global scale, some of the ISPs peering
at this exchange did lose connectivity for an extended
period, leading to routing instabilities visible to some
parts of the Internet. We observed that the number of
announcement and withdrawal messages received at the
RIPE rrc05 in Vienna surged during this period and our
algorithm raised an alarm for the peer in AS12793 for
this instability. Table 3 shows the detection results for
this event for this dataset.

BGP Misconfiguration and Hijack Events: Our
scheme was also tested for the detection of a number of
instabilities due to BGP misconfigurations. Five different
instability events were considered. These misconfigura-
tion events had causes as diverse as: incorrect import
to IGP, domain hijack, improper filtering and private
AS number leak. As shown in the results in Table 3,
the correct detection of the events was seen at a large
number of peers. Peers where an alarm is not generated
in Table 3 correspond to those where the impact of the

13

event was felt only for a short duration.

7.2 Comparison with Other Detection Mechanisms

In this section, we compare the proposed detection
scheme with three existing mechanisms: an adaptive
EWMA based scheme [17], a PCA based scheme [9] and
a wavelet based scheme [28]. The EWMA based mech-
anism can accommodate any linear trends or baseline
shifts in the feature time series and uses the number
of best routes seen exiting a specific PoP by the local
route collector as the feature for detection. This feature
is very close to counting the number of updates sent
by a particular router, i.e. volume features used in our
algorithm. The other two mechanisms work specifically
on volume traces.

The detection results for the various schemes are
presented in Table 3. For the 9 datasets covering 9 events,
the number of false alarms generated is 235 for the
EWMA based scheme, 103 for the PCA based scheme
and 61 for the wavelet based scheme. In contrast, our
algorithm generates only 16 false alarms. Due to the
inherent nature of the PCA based scheme, the alarms
are obtained by finding the principal component based
residuals of the matrix constructed from the volume
traces from each peer as a column. Thus the results are
presented “per event” rather than “per peer” as in the
other schemes.

In order to reduce the false alarms in the existing
schemes, we also implemented them using all our fea-
tures. The final alarm is thus generated only after the
alarms from all the feature traces coincide. Using all
the features reduces the overall number of false alarms
in the EWMA scheme to 76 and in the wavelet based
scheme to 40. However, with more constrained alarm
generation, the number of missed alarms also increases
for the EWMA and wavelet based scheme for most
cases. For the PCA based scheme, using the edit distance
and path length features does not produce statistically
significant results, since we are already looking at only
those AS path length and edit distance values for which
the number of messages under normal circumstances
is quite low. Our detection algorithm performs signifi-
cantly better in terms of the false alarm rate and slightly
better in terms of the missed alarms (with longer learn-
ing periods we expect much fewer missed alarms).

7.3 Evaluation of the Root Cause Location Scheme

We applied the method discussed in Section 5 for iden-
tifying the root-cause-AS on the data from the dura-
tion of different events. The results are presented (in
Table 4) for six instability events: four of these are due to
misconfigurations, one is due to the equipment failure
caused by power outage in Moscow in May 2005 and
one due to the hijacking of the domain panix.com in
January 2006. We do not present any results for the
instabilities caused by worm attacks. This is primarily
due to unavailability of any information regarding the

AS where the event started. Also, since the method of
the worm attack propagation is random, its effect on
the routing process cannot be traced. Hence, there was
no means of validating the results of our root-cause-AS
identification technique applied on data from the worm
attack events.

From Table 4 we can see that our methodology was
able to locate the root-cause-AS for most of the events
and datasets irrespective of the actual root cause. For the
BGP misconfiguration error events in December 2004,
October 2005, April 2001, and October 2001 a single root
cause AS was known and it was successfully identified
by our technique. However, for the events in May 2005
and January 2006 a single root cause is not known and
we discuss the results for these two cases in detail.

On 25th May 2005, a power failure in Moscow affected
the MSIX, causing loss of connectivity between several
ASes peering there. Hence, a single AS cannot be identi-
fied as the originating AS for this event. It is known that
a large number of networks in the Asia-Pacific region
are reached through peering at MSIX and as a result
many of the ASes whose connectivity was affected due to
the event were from the APNIC blocks [13]. Also, many
Russian ASes were affected by the power failure [13].
Thus, we deem any AS that falls in either of these
categories as a possible root-cause-AS for this event. We
can see from the results that our techniques were able
to capture many such ASes as the top candidate root-
cause-ASes for data from the period of this event. A
list of some of these ASes that appear in our results
is as follows: AS7473: Singtel (APNIC); AS8342: Russia
Telecom, RUNet; AS20485: JSC Company TransTelecom
(Participant at MSIX); AS9198: KazakhTelecom; AS7693:
COMNET-TH (APNIC); AS4795: INDOSAT (APNIC);
AS7610: SINGAREN-AS-AP (APNIC); AS5568: RBNet
Russian Backbone; AS9270: APAN-KR-AS (APNIC).

On January 22, 2006, the domain panix.com was
hijacked, leading to BGP instabilities [14]. The event
was caused because AS27506 advertised routes to several
prefixes that it did not own. Thus, the known root-cause-
AS for this event is AS27506. However, the major Inter-
net Service Providers (ISPs) downstream from AS27506
did not have correct filters in place and advertised
these incorrect routes which in turn led to the routing
message storm and caused a major instability. Thus even
though the originating AS for these incorrect routes
was AS27506, the ASes that actually caused a long-term
instability were the ISPs such as UUNet (AS701, AS702),
Time Warner (AS4323) etc. and are thus the actual root
cause ASes for the event. Our scheme thus correctly
identified the major ISPs as the root-cause-ASes for this
event.

In Table 4, we used the top 5 candidate root-cause-
ASes (i.e. n = 5) as identified by our algorithm. By pro-
viding top 5 candidates we reduced the total number of
candidates by 99.6%. Overall, the number of missed root
cause ASes were 3 in the 20 datasets that we considered.
If we use only the top candidate root cause AS, we miss

14

Event and Peer AS Top 5 Candidate No. of Candidate
root cause AS Root Cause ASes Root Cause ASes

Apr 2001, AS15412 AS3257 AS15412, AS8708, AS5727, AS855, AS3749 1192
Apr 2001, AS15412 AS3333 AS15412, AS9057, AS701, AS1239, AS209 1080
Apr 2001, AS15412 AS286 -*** -***
Dec 2004, AS9121 AS12793 AS9121, AS701, AS14359, AS6762, AS702 5373
Dec 2004, AS9121 AS13237 AS9121, AS701, AS6762, AS7018, AS1239 8559
Dec 2004, AS9121 AS1853 AS9121,AS5588, AS702, AS721, AS6762 4863
Oct 2005, AS3356 AS5511 AS6389, AS3356, AS702, AS6167, AS3464 466
Oct 2005, AS3356 AS16034 AS3356, AS8210, AS701, AS2907, AS18566 725
Oct 2005, AS3356 AS13237 AS3356, AS8342, AS6389, AS852, AS3216 1080
Oct 2005, AS3356 AS8342 AS3662, AS3356, AS6453, AS18662, AS9121 257

Jan 2006, -* AS12956 AS17676, AS22822, AS4323, AS9837, AS6389 1734
Jan 2006, -* AS6762 AS2529, AS5417, AS8992, AS8342, AS7738 285
Jan 2006, -* AS6939 AS5511, AS701, AS22351, AS1299, AS7303 113
Jan 2006, -* AS3549 AS4766, AS702, AS4621, AS9121, AS18747 340

Oct 2001, AS3300 AS3257 AS3356, AS12083, AS12302, AS10242, AS11042 270
Oct 2001, AS3300 AS3333 AS701, AS3356, AS12083, AS1239, AS3561 181
Oct 2001, AS3300 AS6762 AS701, AS1239, AS3300, AS3356, AS7018 262

May 2005, -** AS12793 AS3356, AS7473, AS8342, AS1273, AS9198 629
May 2005, -** AS13237 AS3356, AS7473, AS8342, AS1299, AS7018 706
May 2005, -** AS1853 AS1273, AS20485, AS7693, AS7473, AS6667 526

TABLE 4

Root cause location analysis results for different instability events conducted over a period of 1 hour after the event

detection flag time. *Even though for the January 2006 event the root cause is identified as AS27506, very few

messages are seen from this particular AS. Instead, messages for a number of affected prefixes show candidate

root-cause-ASes as some big ISP ASes like UUNet (AS701), TimeWarner (AS4323) etc. **The root-cause-AS for

this MSIX failure event is in fact a large group of ASes that were affected. ***In case of the peer in AS286 for the April

2001 event duration the highest frequency of messages was flapping routes and duplicate announcements, as a

result a clear candidate root-cause-AS was not identified.

13 of the 20 root cause ASes. Instead if we use the top
3, we miss 4 of the 20 datasets and achieve an average
reduction of 99.8% in the total number of candidates.
Thus, based on our error requirements we can select a
value of n and use the top n candidate root cause ASes to
identify the correct root cause AS.

7.4 Parameter Sensitivity

In this section we discuss the sensitivity of our algorithm
to the estimated parameters. For each of the parameters
discussed in Section 6, we varied the possible values
and observed the impact on the number of false and
missed alarms generated by our algorithm. The analysis
was done using the data for the BGP misconfiguration
events described above. The total number of per peer
alarms that can be raised for this dataset is 17, whereas
our algorithm generates 14.

It is important to note here that the parameter sen-
sitivity is studied only in terms of the number of
false/missed alarms and not the detection delay. This
is because even though all the parameters will influence
the detection delay to some extent, the clustering thresh-
old (τ) dominates the detection delay caused. Thus the
lower the clustering threshold, the lower will be the final
detection delay and we select the optimum value of τ
based on the number of false/missed alarms.

• Median Filter Order (m): In Figure 8 we plot the
incidence of false and missed alarms as a function
of the increasing values of m. As can be seen, m = 7
leads to the lowest number of false as well as missed
alarms. Thus, we select the median filter order of

3 4 5 6 7 8 9
0

5

10

15

20

25

30

35

Median Filter Order (m)

A
la

rm
s

Effect of the Median Filter Order on False/Missed Alarms

False Alarms
Missed Alarms

Fig. 8. Incidence of missed and false alarms as a function

of the median filter order m.

1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

14

16

18

20

22

24

AR Order (p)

A
la

rm
s

Effect of AR Order on the False/Missed Alarms

 False Alarms
Missed Alarms

Fig. 9. Incidence of missed and false alarms as a function

of AR order ρ.

15

1 1.5 2 2.5 3 3.5 4 4.5 5

3

5

7

9

11

12

Clustering Threshold (tau)

A
la

rm
s

Effect of the Clustering Threshold on False/Missed Alarms

False Alarms
Missed Alarms

Fig. 11. Incidence of missed and false alarms as a

function of the clustering threshold τ .

7 which is equivalent to 15minutes for our results.
The value of the initial learning window size (L) is
dependent on m and is selected to be just greater
than 2m.

• AR Order (ρ): The impact of the AR order on the
number of false and missed alarms is shown in
Figure 9. As can be seen, ρ = 1 leads to the
optimum performance in terms of both missed and
false alarms.

• GLR Threshold (δ): Figures 10 (a) and (b) depict the
incidence of false and missed alarms as a function
of increasing values of δ. As can be seen, the lower
values of δ are indiscriminate and generate alarms
for all possible deviations from normal behavior.
Thus, we select δ = 0.95 in order to obtain the
optimum number of false and missed alarms.

• Clustering threshold (τ): As can be seen in Figure 11,
τ = 4 leads to the minimum number of both missed
and false alarms. Thus we set τ = 4, which sets the
worst case detection delay at 2τ i.e. 40 minutes (as
the alarm correlation is a 2-step process) for the five
minute sampling interval.

8 CONCLUSION

This paper presents a mechanism for capturing the sta-
tistical changes in features extracted from BGP update
message data for online detection of routing instabilities
on a single router. The features like AS path length and
AS path edit distance that reflect the actual topological
changes rather than just volume anomalies were found
to be very useful in characterizing the behavior of the
topology under stress. Also, the spatial and temporal
correlations amongst these features were used effectively
to minimize the number of false alarms. The originating
ASes for the root cause of the instabilities were also
accurately identified based on AS path changes. We have
shown the validity of our approach through extensive
evaluations with different types of instabilities. We be-
lieve that our mechanism can complement most of the
existing work on improving BGP through changes to the
message handling procedures.

REFERENCES

[1] U. Appel, A. Brandt, “Adaptive Sequential Segmentation of Piece-
wise Stationary Time Series,” Information Sciences vol. 29, pp. 27-
56.

[2] H. Akaike, “ Information theory as an extension of the maximum
likelihood principle” Proc. of ISIT, pp. 267-281, 1973.

[3] T. Chan, G. Golub, R. LeVeque, “Algorithms for Computing the
Sample Variance: Analysis and Recommendations,” The American
Statistician, Vol. 37, No. 3, pp. 242-247, Aug. 1983.

[4] J. Cowie, A. Ogleski, B. Premore, and Y. Yuan, “Global routing
instabilities during Code Red II and Nimda worm propagation,”
Technical Report, Renesys Corporation, December 2001.

[5] S. Deshpande, M. Thottan and B. Sikdar, “Early Detection of BGP
Instabilities Resulting from Internet Worm Attacks,” Proc. of IEEE
GLOBECOM, pp. 2266-2270, Dallas, TX, November 2004

[6] A. Feldmann, O. Maennel, Z. Mao, A. Berger and B. Maggs, “Lo-
cating internet routing instabilities,” ACM SIGCOMM Computer
Communication Review, vol. 34, no. 4, pp. 205-218, August 2004.

[7] T. K. Ho, “Mirage: Interactive Tools for Pattern Discovery,” Proc.
of ICPR, Cambridge, U.K., August 22-26, 2004, pp. 509-512.

[8] X. Hu and M. Mao, “Accurate Real-time Identification of IP Prefix
Hijacking,” Proceedings of IEEE Symposium on Security and Privacy,
pp. 3-17, Oakland, CA, May 2007.

[9] Y. Huang, N. Feamster, A. Lakhina and J. Xu, “Diagnosing
network disruptions with network-wide analysis,” Proc. of ACM
SIGMETRICS, pp. 61-72, San Diego, CA, June 2007.

[10] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian. “Delayed Internet
Routing Convergence,” Proc. of ACM SIGCOMM, Stockholm,
Sweden, August 2000.

[11] M. Lad, X. Zhao, B. Zhang , D. Masey and L. Zhang, “ Analysis
of BGP Update Surge during the Slammer Worm Attack,” 5th
International Workshop on Distributed Computing (IWDC), 2003.

[12] M. Lad, D. Massey, D. Pei, W. Wu, B. Zhang and L. Zhang, “PHAS:
A Prefix Hijack Alert System,” Proc. of USENIX Security Symp.,
2006.

[13] North American Network Operators Group mailing list, http://
www.merit.edu/mail.archives/nanog/

[14] North American Network Operators Group
mailing list, “oof. panix sidelined by incom-
petence... again,” http://www.merit.edu/
mail.archives/nanog/2006-01/ msg00483.html

[15] Y. Rekhter and T. Li, “A border gateway protocol 4 (BGP-4),” RFC
1771, IETF, March 1995.

[16] Réseaux IP Européens Network Coordination Center,
http://www. ripe.net/projects/ris/rawdata.html.

[17] M. Roughan, T. Griffin, M. Mao, A. Greenberg, B. Freeman, “Com-
bining Routing and Traffic Data for Detection of IP Forwarding
Anomalies,” Proc. of ACM SIGCOMM NeTs Workshop, Portland,
OR, Aug, 2004.

[18] “The SSFNet Project, ” http://www.ssfnet.org
[19] S. Teoh, S. Ranjan, A. Nucci and C.-. Chuah, “BGP eye: a new

visualization tool for real-time detection and analysis of BGP
anomalies,” Proceedings of the International Workshop on Visualiza-
tion for Computer Security, Alexandria, VA, November 2006.

[20] S. Teoh, K. Zhang, S. Tseng, K. Ma and F. Wu, “Combining
Visual and Automated Data Mining for Near-Real-Time Anomaly
Detection and Analysis in BGP,” In Proc. of ACM VizSEC/DMSEC,
October 2004.

[21] R. Wagner and M. Fisher, “The string to string correction prob-
lem,” Journal of Assoc. Comp. Mach., 21(1):168– 173, 1974.

[22] H. Wang K. Chang, D. Chiu, C. Lui “Characterizing the Perfor-
mance and Stability Issues of the AS Path Prepending Method:
Taxonomy, Measurement Study and Analysis” Proc. of ACM SIG-
COMM Workshop, April 2005.

[23] J. Wang, X. Chen and W. Gao, “Online selecting discriminative
tracking features using particle filter,” IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 1037-1042, San Diego, CA,
June 2005.

[24] L. Wang, X. Zhao, D. Pei, R. Bush, D. Massey, A. Mankin, S. F.Wu,
and L. Zhang, “Observation and Analysis of BGP Behavior Under
Stress,” Proc. of ACM IMW, Marseille, France, Nov 2002.

[25] T. Wong, V. Jacobson and C. Alaettinoglu, “Internet routing
anomaly detection and visualization,” Proceedings of IEEE DSN,
pp. 172-181, 2005.

16

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

20

40

60

80

100

120

GLR Threshold (delta)

F
a

ls
e

 A
la

rm
s

Effect of GLR threshold on False Alarms

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.5

1

1.5

2

2.5

3

3.5

4

GLR Threshold (delta)

M
is

se
d

 A
la

rm
s

Effect of GLR Threshold on Missed Alarms

(a) False alarms (b) Missed alarms

Fig. 10. Incidence of missed and false alarms as a function of the GLR threshold δ.

[26] J. Wu, Z. Mao, J. Rexford and J. Wang, “Finding a Needle in a
Haystack: Pinpointing Significant BGP Routing Changes in an IP
Network,” Proceedings of NSDI, Boston, MA, May 2005.

[27] K. Xu, J. Chandrashekhar and Z. Zhang, “A first step towards
understanding inter-domain routing dynamics,” Proceedings of
ACM SIGCOMM MINENET, Philadelphia, PA, August 2005.

[28] J. Zhang, J. Rexford and J. Feigenbaum, “ Learning-Based
Anomaly Detection in BGP Updates,” Proc. of ACM MineNet
Workshop, 2005.

[29] Z. Zhang, Y. Zhang, Y. Hu. Z. Mao and R. Bush, “iSPY: Detecting
IP Prefix Hijacking on my Own,” Proc. of ACM SIGCOMM, Seattle,
WA, August 2008.

[30] C. Zheng, L. Ji, D. Pei, J. Wang and P. Francis, “A light-weight
distributed scheme for detecting IP prefix hijacks in real-time,”
Computer Communication Review, vol. 37, no. 4, pp. 277-288, Octo-
ber 2007.

PLACE
PHOTO
HERE

Shivani Deshpande Shivani Deshpande re-
ceived the B.E degree in Electronics and Tele-
Communication Engineering from Maharashtra
Institute of Technology, Pune, India, the M. S.
degree in Electrical Engineering and Ph.D in
Electrical Engineering from Rensselaer Poly-
technic Institute, Troy, NY, USA in 2000, 2003
and 2007, respectively. She is currently working
on improving traffic classification techniques as
a Software Engineer at BlueCoat Systems Inc.,
Sunnyvale, CA. Her research interests are traffic

characterization, machine learning, routing protocols and network secu-
rity.

PLACE
PHOTO
HERE

Marina Thottan Marina Thottan is a Member
of Technical Staff in the Center for Networking
Research at Bell Laboratories, Alcatel-Lucent.
She holds a Ph.D. in Electrical and Computer
systems engineering from Rensselaer Polytech-
nic Institute in Troy, NY. Dr. Thottan is active in
the fields of wire line networking and network
management and has served as a program com-
mittee member for several conferences in these
areas. Her research publications have appeared
in a number of ACM, and IEEE conferences and

journals. Her current research interests are in the areas of novel network
and switch architectures and high speed optical networks. She is a
member of the IEEE and the ACM.

PLACE
PHOTO
HERE

Tin Kam Ho Tin Kam Ho leads the Statistics and
Learning Research Department in the Enabling
Computing Technologies Research Domain of
Bell Labs. Her interests are in pattern recogni-
tion, data mining, and computational modeling
and simulation. She pioneered research in deci-
sion combination in multiple classifier systems,
random decision forests, data complexity analy-
sis, and many topics in image and text analysis.
She has also led major efforts on modeling and
monitoring large-scale optical transmission sys-

tems. Recently she worked on problems in user profiling, optical network
diagnostics, and customer experience management. She is Editor-in-
chief of the journal Pattern Recognition Letters, and elected Fellow of
the International Association for Pattern Recognition and the IEEE. She
has over 90 publications and was granted 7 U.S. patents. She received
a Ph.D. in Computer Science from SUNY at Buffalo in 1992.

PLACE
PHOTO
HERE

Biplab Sikdar (S’98, M’02) received the B.
Tech degree in electronics and communication
engineering from North Eastern Hill University,
Shillong, India, the M. Tech degree in electrical
engineering from Indian Institute of Technology,
Kanpur and Ph.D in electrical engineering from
Rensselaer Polytechnic Institute, Troy, NY, USA
in 1996, 1998 and 2001, respectively. He is cur-
rently an Associate Professor in the Department
of Electrical, Computer and Systems Engineer-
ing of Rensselaer Polytechnic Institute, Troy, NY,

USA. His research interests include wireless MAC protocols, network
routing and multicast protocols, network security and queueing theory.
Dr. Sikdar is a member of IEEE, Eta Kappa Nu and Tau Beta Pi and is
an Associate Editor of the IEEE Transactions on Communications.

