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Abstract For the analysis of neuronal cooperativ-

ity, simultaneously recorded extracellular signals from

neighboring neurons need to be sorted reliably by a

spike sorting method. Many algorithms have been de-

veloped to this end, however, to date, none of them

manages to fulfill a set of demanding requirements. In

particular, it is desirable to have an algorithm that oper-

ates online, detects and classifies overlapping spikes in

real time, and that adapts to non-stationary data. Here,

we present a combined spike detection and classifica-

tion algorithm, which explicitly addresses these issues.

Our approach makes use of linear filters to find a new

representation of the data and to optimally enhance
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the signal-to-noise ratio. We introduce a method called

“Deconfusion” which de-correlates the filter outputs

and provides source separation. Finally, a set of well-

defined thresholds is applied and leads to simultaneous

spike detection and spike classification. By incorpo-

rating a direct feedback, the algorithm adapts to non-

stationary data and is, therefore, well suited for acute

recordings. We evaluate our method on simulated and

experimental data, including simultaneous intra/extra-

cellular recordings made in slices of a rat cortex and

recordings from the prefrontal cortex of awake be-

having macaques. We compare the results to existing

spike detection as well as spike sorting methods. We

conclude that our algorithm meets all of the mentioned

requirements and outperforms other methods under

realistic signal-to-noise ratios and in the presence of

overlapping spikes.

Keywords Realtime spike sorting · Extracellular multi

electrode recordings · Tetrode recordings ·

FIR filters · Deconfusion

1 Introduction

In order to understand higher brain functions and the

interactions between single neurons, an analysis of the

simultaneous activity of a large number of individual

neurons is essential. One common way to acquire the

necessary amount of neuronal activity data is to use

simultaneous extracellular recordings, either with sin-

gle electrodes or, more recently, with multi electrodes

like tetrodes (O’Keefe and Recce 1993). However, the

recorded data does not directly provide the isolated

activity of single neurons, but a mixture of neuronal
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activity from many neurons additionally corrupted by

noise. The task of so called “spike sorting” algorithms

is to reconstruct the single neuron signals (i.e. spike

trains) from these recordings. Many approaches for

analyzing the data after acquisition, i.e. offline spike

sorting algorithms, have been developed in the last

years; see for example Vargas-Irwin and Donoghue

(2007), Delescluse and Pouzat (2006), Pouzat et al.

(2004), Kim and Kim (2003), Takahashi et al. (2003),

Shoham et al. (2003), Hulata et al. (2002), Lewicki

(1998), Fee et al. (1996a). Although more methods are

available in this category, there are several reasons to

favor methods which provide results already during the

recordings, termed realtime online sorting algorithms.

For example, realtime online spike sorting techniques

are indispensable for conducting “closed-loop” exper-

iments and for brain-machine interfaces (Rutishauser

et al. 2006; Obeid and Wolf 2004). The few existing

approaches to realtime online sorting (Thakur et al.

2007; Rutishauser et al. 2006; Aksenova et al. 2003) are

clustering based and have at least one of the following

drawbacks: 1) They are not explicitly formulated for

data acquired from multi electrodes, 2) they do not

resolve overlapping spikes, 3) they do not perform well

on data with a low signal-to-noise ratio 4) they are not

able to adapt to non-stationarities of the data as caused

by tissue drifts. We discuss the reasons and importance

of these issues in the following:

1) Multi electrodes (e.g. tetrodes) provide signifi-

cantly more information about the local neuronal

population than single electrodes (Harris et al.

2000; Rebrik et al. 1999). Having several record-

ing electrodes closely spaced instead of one, the

same action potential is present on more than one

recording channel. The so called stereo-effect—

a neuron specific amplitude distribution among

the recording channels—allows for a better dis-

crimination between action potentials from dif-

ferent neurons (Gray et al. 1995). This allows

also for more a reliable resolution of overlapping

spikes.

2) With tetrodes recording an increased number of

neurons compared to high impedance single elec-

trodes, overlapping spikes are more likely to oc-

cur. Also, studies stress the relevance of ensemble

coding, which translates into local synchronized

firing and hence a raised occurrence frequency of

overlapping spikes (Sakurai and Takahashi 2006).

To identify such a code, the resolution of overlap-

ping spikes is crucial and efforts have been made

addressing this issue (Ding and Yuan 2008; Wang

et al. 2006; Zhang et al. 2004; McGill 2002; Chandra

and Optican 1997). However, the cited approaches

are all computationally very expensive, making a

realtime online implementation difficult. One of

the reasons for this computational complexity is

the implementation of separate sub-routines for

the processing of overlapping spikes, which, ad-

ditionally, are more complex than the processing

steps for non-overlapping spikes.

3) Most of the spike sorting approaches use a stand-

alone standard spike detection technique (see for

example Choi et al. 2006; Obeid and Wolf 2004;

Rebrik et al. 1999 for commonly used spike de-

tection techniques), and a separate classification

procedure. Neither the shape of the waveforms

nor their change over time or their amplitude dis-

tribution across the recording channels is taken

into account by the spike detection method. This

leads to a poor detection performance, in partic-

ular when the signal-to-noise ratio (SNR) is low.

Further, the spikes are cut and aligned on some

feature (e.g., peak position) as a preprocessing to

the classification algorithm. However, overlapping

spikes, which severely alter the spike waveform,

are not identified as such. This leads to wrong

alignments and false classifications by the sorting

procedure.

4) There are two general approaches to extracellu-

lar recording with electrodes, namely acute and

chronic recording methods. In acute recordings,

individual electrodes are advanced into tissue at

the beginning of each recording session anew,

causing a compression of the tissue (Cham et al.

2005). During the experiment the tissue relaxes and

the distances between the electrodes and neurons

change; an effect called tissue drift (Branchaud

et al. 2006). As a consequence, the shape of

the measured waveforms and the characteristic of

the background noise changes. Sorting algorithms

which do not take into account such variations will

perform poorly on data from acute recordings.

An approach based on blind source separation (BSS)

techniques and addressing primarily problems 1) and

4) was presented in Takahashi et al. (2002), in which

independent component analysis (ICA) was applied to

multichannel data recorded by tetrodes (4 channels).

Later, the method was adopted to data recorded by

dodecatrodes (12 channels) (Takahashi and Sakurai

2005). However, both approaches had to deal with

several new problems: Amongst others, time delays

between the channels were not considered, biologically

meaningless independent components had to be dis-

carded manually, and different neuronal signals with
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similar channel distributions could not be classified cor-

rectly. Furthermore, the methods can only be applied to

data recorded with certain electrode types (i.e. tetrodes,

dodecatrodes). The most severe problem, though, is the

fact that the method cannot deal with data containing

neuronal activity from a greater number of neurons

than recording channels (over-completeness).

In this work, we present a realtime online spike

sorting method based on the BSS idea, which explicitly

addresses the four issues 1)–4), but also avoids the

drawbacks of the method in Takahashi et al. (2002) and

Takahashi and Sakurai (2005). In sum, a spike sorting

algorithm for multi electrode data, which detects and

resolves overlapping spikes with the same computa-

tional cost as non-overlapping spikes, is formulated.

The method makes optimal use of an arbitrary number

of simultaneously recorded channels and can even run

on single channel data. Moreover, since spike detection,

spike alignment, and spike classification are not sepa-

rate parts, but are combined into a single algorithm,

our method performs well on data with low SNR and

containing many overlapping spikes. By incorporating

a direct feedback, the algorithm adapts to varying spike

shapes and to non-stationary noise characteristics. The

algorithm is fully automatic and due to its linear and

parallel computation steps it is ideally suited for re-

altime applications (see Fig. 4 for a summary of our

method).

This paper is organized as follows: In Section 2 we

present our method step by step. First, we briefly in-

troduce linear filters. These filters were used in radar

applications (Turin 1960), geophysics (Robinson and

Treitel 1980) as well as for spike detection (Thakur

et al. 2007; Vollgraf et al. 2005), but to our knowledge

have not been applied to spike sorting yet. Moreover,

in contrast to those studies, we do not directly apply a

threshold to the filter outputs, but consider them as a

new representation of the data. In this representation

the spike sorting task can be handled as a well defined

BSS problem, which we solve with a un-mixing tech-

nique we will refer to as “Deconfusion”.

The evaluation of our method is done on two dif-

ferent datasets from real recordings and also on sim-

ulated data. The experimental setup, used equipment

and the characteristic of recorded data are described in

Section 3. The advantages and abilities of the method

are demonstrated in Section 4. Evaluations of the spike

detection performance are done using data from si-

multaneous intra- and extracellular recordings made in

slices of rat visual cortex, and show that the proposed

algorithm is superior to conventional spike detection

methods. The noise robustness and the ability to suc-

cessfully resolve overlapping spikes is evaluated sys-

tematically on synthetic data. Finally, the method is ap-

plied to data from extracellular recordings made in the

prefrontal cortex of awake behaving macaques. This

data is particularly challenging, because the tetrodes

are not implanted chronically, but inserted before every

experiment anew, leading to tissue drifts. We conclude

that our method adopts to non-stationarities and also

successfully resolves overlapping spikes in real data. A

summary and a discussion of further improvements is

given in Section 5.

2 Methods

2.1 Glossary of mathematical notation

We use a notation in which symbols for scalar quan-

tities are represented by lower case letters, vectorial

quantities are represented by bold lower case letters,

and operators or matrices are represented by bold up-

per case letters. Matrices representing several vectorial

quantities, but not linear transformations, are labeled

with an additional bar. In Table 1 all important quan-

tities are listed. The corresponding vectorial quantities

are defined by concatenating all channel-wise defined

vectors. As an example the vectorial template ξ i of

neuron i is given by

ξ i :=
(

ξ i
1,1 . . . ξ i

1,T f
. . . ξ i

N,1 . . . ξ i
N,T f

)⊤

where the superscript ⊤ means transpose. The vectors

υ i, x, f i are defined in the same way. Analogously,

Table 1 Definitions of important quantities and their meaning

M Number of neurons

N Number of recording channels (N = 4 for tetrodes)

T Period of time during which the templates are constant

T f Length of the filters and templates in samples on one

channel

xk,t Measured signal on recording channel k at time t

X̄ Data matrix,
(

X̄
)

k,t
= xk,t

υi
t Intrinsic signal of neuron i at time t

ξ i
k,t

Multichannel template (i.e. mean waveform) of neuron i on

channel k at time t, i = 1, ..., M, t = 1, ..., T f , k = 1, ..., N

si
k,t

:=
∑

τ υi
t−τ ξ

i
k,τ

, noiseless, extracellular signal of neuron i

f i
k,t

Filter (designed to detect template i) on channel k at time t

yi := X̄ ⋆ f i :=
∑

k,τ xk,t+τ f i
k,t

, filter output of filter f i

Ȳ Matrix whose i-th row is yi
⊤

zi Output of filter f i after Deconfusion

Z̄ Matrix whose i-th row is zi
⊤

H i Covariance matrix of si

ηk,t Multivariate zero mean Gaussian noise

C Noise covariance matrix

R Data covariance matrix
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covariance matrices, e.g, the data covariance matrix R,

are defined as

R :=

⎛

⎜

⎝

R1,1 . . . R1,N

...
. . .

...

RN,1 . . . RN,N

⎞

⎟

⎠
.

with (Rk,l)t1,t2 := Cov(xk,t1 , xl,t2). R is a symmetric N ·
T f by N · T f Toeplitz matrix. Alternatively, it can be

expressed as

R =
∑

i

H i + C. (1)

2.2 Generative model

We assume an explicit model for the neuronal data

recorded extracellularly. The underlying assumptions

are:

1. Each neuron generates a unique spike waveform

ξ i (called template), which is constant over a time

period of length T.

2. All time series υ i of spike times of neuron i (called

spike trains) are statistically independent of the

noise η. Furthermore, these quantities sum up

linearly.

3. The noise statistic is entirely captured by a covari-

ance matrix C.

As discussed extensively in Pouzat et al. (2002), these

assumptions are reasonable and are used explicitly

or implicitly in most spike sorting techniques. Conse-

quently the measured data x can be expressed as

xk,t =
∑

i

∑

τ

υ i
t−τ ξ

i
k,τ + ηk,t =

∑

i

si
k,t + ηk,t. (2)

The measured data are a convolution of the mean

waveforms with the corresponding intrinsic spike

trains corrupted by colored Gaussian noise (see also

Fig. 1(a)–(c)).

2.3 Calculation of linear filters

Spike sorting is achieved when the intrinsic spike trains

υ i are reconstructed from the measured data X̄. Since,

according to the model assumptions, the data were

generated by a convolution of intrinsic spike trains with

fixed waveforms, the most straightforward procedure

would be to apply a deconvolution on X̄ in order to

retrieve υ i. For an exact deconvolution a filter with an

infinite impulse response is necessary. In general, such

a filter is not stable and would amplify noise (Robinson

and Treitel 1980). Nevertheless, a noise robust approxi-

mation for an exact deconvolution can be achieved with

(a)

(b)

(c)

(d)

(e)

Fig. 1 Sketch of the generative model (a–c) and the processing
stages of the algorithm (d–e). (a) Spike trains of two neurons.
(b) Simulated waveforms of each neuron on a hypothetical multi
electrode (two recording channels, without noise). (c) Simulated
data of a multi electrode recording. The signals of the two neu-
rons and the noise are mixed linearly. (d) Filter output of two
optimal linear filters. (e) Output after Deconfusion; for details
see text

finite impulse response filters, to which we will refer as

linear filter.

Let us briefly summarize the idea of these filters: The

goal is to construct a set of filters
{

f 1, . . . , f M
}

such

that each filter f i has a well defined response of 1 to

its matching template ξ i at shift 0 (i.e. ξ i⊤ · f i = 1), but

minimal response to the rest of the data. This means

that the spikes of neuron i are the signal for filter f i to

detect but will be treated as noise by filter f j�=i.

Incorporating these conditions leads to a constrained

optimization problem

f i = argmin
f i

Var
(

X̄ ⋆ f i
)

subject to ξ i⊤ · f i = 1 (3)
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to which the solution are the desired filters (see

Appendix A for a more detailed derivation). A major

advantage is the fact that the mentioned optimization

problem can be solved analytically. In particular, the

filters are given by the following expression:

f i =
R−1ξ i

ξ i⊤ R−1ξ i
i = 1, ..., M (4)

where R is the data covariance matrix defined in

Section 2.1. Linear filters maximize the signal-to-noise

ratio and minimize the sum of false negative and false

positive detections, and are, therefore, optimal in this

sense (Melvin 2004).

2.4 Filtering the data

Once the filters are calculated, they are cross-correlated

with the measured signal, i.e.
∑

k,τ xk,τ+t f i
k,τ

=: yi
t. Note

that we do not have to pre-process the data with a

whitening filter, but the filters can be applied directly

to X̄. This is because the noise statistics is already

captured in the matrix R.

From a different point of view, the filtering just

changes the representation of the templates. While in

the original space the template i was represented by

ξ i, its representation in the filter output space is given

by the vectors ξ i ⋆ f j, j = 1, ..., M, where
(

ξ i ⋆ f j
)

t
:=

∑

k,τ ξ i
k,t+τ

f
j

k,t, see also Fig. 2. This interpretation of

filtering will be useful in the next section.

2.5 Deconfusion

The linear filters derived in Section 2.3 should suppress

all signal components except their corresponding tem-

plate with zero shift. Thus, the filter response to all

templates (and their shifted variants) has to be minimal.

This already leads to
(

2T f − 1
)

· M minimization con-

straints; a number which is normally greater than the

number of free variables of a filter which is T f · N. In

addition, if the SNR is low, the noise covariance matrix

C dominates Eq. (1).

The lower the SNR, the less spikes from other neu-

rons a filter will suppress. Thresholding of every filter

output yi individually will, thus, lead to false positive

detections. The idea is to de-correlated the filter output

in order to achieve an improved spike detection and

classification.

We have seen in the previous section that each

template ξ i can be represented in the filter output by

M vectors ξ i ⋆ f j, j = 1, ..., M. Since the detection and

classification of the spikes is based on the detection

of high positive peak values in the filter output (by

construction), all values below zero in the filter output

are irrelevant, and thus, can be discarded. As a result,

we ignore all values below zero by applying a half-wave

rectification I(x) to the filter output Ȳ , where

I(x) :=

{

x, x > 0

0, x ≤ 0
(5)

The next step is to consider I(Ȳ) as a linear mixture

of different sources, where every source is the intrinsic

spike train υ i of a neuron. Since there are as many filters

as neurons, the dimension of the filter output space

is equal to the number of neurons, and therefore, the

detection and classification problem can be considered

as a complete BSS problem. However, it is not guar-

anteed that the maximal response of filter f i to spikes

from neuron j will be at a shift of 0, i.e., when the

filter and the template overlap entirely. This leads to

the following model for the rectified filter output:

I(yi
t) =

∑

j

(A)i, j υ
j

t+τi, j
(6)

with A being the mixture matrix, and τi, j being the shifts

between the maximal response of filter f j to template

ξ i; i.e.,

(A)i, j = max
τ

{(

ξ i ⋆ f j
)

τ

}

τi, j = argmax
τ

{(

ξ i ⋆ f j
)

τ

}

(7)

where (A)i,i = 1 and τi,i = 0 ∀i by construction. We

want to reconstruct the sources υ i by solving the cor-

responding inverse problem:

υ i
t ≈ zi

t =
∑

j

(W )i, j I(y
j
t−τ j,i

) (8)

with W = A−1. Here, the relation to ICA becomes

clear, since this is a similar inverse problem ICA solves.

In contrast to ICA, we do not have to estimate W

and τi, j from the data, but can calculate them directly

from the responses (i.e. cross-correlation functions) of

all filters to all templates, as illustrated in Fig. 2.

All steps of these procedure are summarized under

the term “Deconfusion” (see also Fig. 1(d)–(e) for

a schematic illustration). After Deconfusion the false

responses of the filters to non-matching templates are

suppressed (see Fig. 3). In principle, it is possible that

the inverse problem in Eq. (8) is not exactly solvable,

if the shifts are not consistent. Consistent shifts have to

satisfy the following equation:

τ j1,k − τ j1,i = τ j2,k − τ j2,i ∀i, j1, j2, k (9)

A derivation is given in Appendix B. For arbitrary

templates and data covariance structures, Eq. (9) can
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Fig. 2 This figure exemplary illustrates the representation of
the templates in the filter output space and the calculation of
the Deconfusion parameters. In this example, three templates
(ξ1, ξ2, ξ3, top row of the figure) originating from tetrode record-
ings are used. The corresponding linear filters are calculated by
Eq. (4) and are shown on the left. The 9 plots show the responses
of the linear filters to the templates, i.e. the cross-correlations
ξ i ⋆ f j, i, j = 1, 2, 3. The template ξ i is now represented by the
three vectors ξ i ⋆ f j, j = 1, 2, 3. Although filter f i has a maximal

response of 1 to template ξ i, the filters do not provide an exact
deconvolution, as the responses of filters f j�=i to template ξ i are
not equal to zero. However, since every template is represented
on all filter output channels, the problem of extracting the signal
from neuron i can be viewed as a source separation problem.
The entry at position i, j of the mixing matrix A is given by the
maximal peak value of ξ i ⋆ f j; exemplary (A)2,3 and (A)3,2 are
shown. The shift indicates the position at which this maximal
values occur; as an example the shifts τ2,3 and τ3,2 are shown

in principle be violated. However, with templates from

real experiments we did not observe this to be a

problem.

2.6 Spike detection and classification

In the final step, thresholding is applied to every row i of

Z̄. Again, by construction we have only to consider pos-

itive peaks. All local maxima after a threshold crossing

are identified as spiking times of neuron i. In this sense,

spike detection and spike classification is performed

simultaneously.

The threshold is set for each row of Z̄ individually

such that the total error of false negative and false

positive detections is minimal. Amongst others, the

threshold depends on the variance of the noise, on

the Deconfusion output, and on the firing frequen-

cies of the neurons. A detailed derivation is given in

Appendix C.

2.7 Artifact detection

Artifacts were removed from our data in two ways.

First, all periods during which the animal had to per-

form a physical task (e.g., pressing a button) were

not considered for further analysis. Secondly, for each

period of length 10 ms the number of zero-crossings

on each data channel was counted and summed up.

All periods, in which this number was below 10% of

the maximal number of possible zero crossings, were

not considered for further analysis. This second type of

heuristic removal aims at eliminating artifacts caused

by oscillations of the electrode shaft inside the guiding

tube (e.g., caused by movement of the animal).

2.8 Noise estimation

The noise covariance matrix C is determined by calcu-

lating the auto- and cross correlation functions of every

channel. Only data points which were not part of any

spike nor any artifact period, were used for the calcu-
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Fig. 3 The figure shows the effect of Deconfusion on the filter
outputs. The input for Deconfusion were the filter responses ξ i ⋆

f j, i, j = 1, 2, 3 shown in Fig. 2. After Deconfusion the signal of
neuron i is mainly present on the output channel i

lation. The noise covariance matrix is needed for the

initialization phase, see Section 2.10, and for evaluation

of the sorting result on real data, see Section 4.2.3.

2.9 Adaptation

Due to tissue relaxations the measured waveforms

change over time as the relative distance between the

multi electrode and the neurons change. In order to

track these changes we re-estimate the templates as

well as the data covariance matrix after every time

period of length T. Each template ξ i is re-estimated

as the mean of the last 350 spikes (see Section 5 for

a discussion of this value) detected from neuron i;

whereas the spikes of neuron i are aligned on the

maximal peak of the response of filter f i. For the re-

estimation only spikes which were classified by our

method as non-overlapping spikes are used. The data

covariance matrix is re-estimated from the last 30 s of

the recordings and the linear filters are re-calculated.

Consequently, the Deconfusion and the thresholds are

re-computed as well. In Section 4.2.3 we show that we

can indeed track drifts with this approach.

Templates whose SNR decreases over time might be

a concern. By constantly adapting the template, finally,

there is a risk of getting a template which is very close

to the noise signature, and the corresponding filter will

detect pure noise. This can be prevented by removing

filters at the appropriate moment. Consequently, we

stop tracking templates whose SNR drops below 0.65.

This value proved to be appropriate during simulations

(see Section 4.2.2).

2.10 Initialization phase

Most of the analysis done in the precedent sections was

based on the assumption of known initial templates.

Hence, before applying our method, one needs an ini-

tialization phase during which the templates are found.

In principle, any supervised or unsupervised learning

method can be applied.

We want to emphasize that the initialization phase is

only necessary at the beginning of a recording session

(Fig. 4): Once the initial templates are estimated, the

main algorithm runs online. Furthermore, because of

the feedback described in Section 2.9, the initialization

does not have to be very accurate, as the templates

are re-estimated after every period of length T. Usu-

ally we used an initialization phase of about 30 s in

our real recordings (Section 3.3). This time window is

short enough so that the templates change only very

slightly in time and can, therefore, be clustered reliably,

but long enough to acquire enough spikes to estimate

robustly the mean waveforms.

2.10.1 Initial spike detection and initial spike alignment

During the initialization phase spike detection can be

done with any conventional technique. We used an

energy based approach, since it usually delivers a better

performance than other methods (Mtetwa and Smith

2006; Obeid and Wolf 2004).

In particular, we applied the MTEO detector (see

Section 4.1 for definition) with k-values [1, 3, 5] to each

recording channel separately and set the threshold to

3.5 times the median of its output. Spike periods were

defined as intervals of length 1.5 ms, in which the output

of the MTEO detector exceeded the threshold value at

least once.

Correct spike alignment is crucial for a good cluster-

ing result. While in many studies an alignment based

on the maximal and/or minimal peak value of a spike

is used, again, methods based on the energy of a spike

usually yield better results (Fee et al. 1996a). After

cutting out all spikes around the peak of the detector,

we used the following algorithm for alignment:

1. Calculate the average template over all spikes

2. Minimize the energy difference between every

spike and the template by shifting the spikes

3. Repeat until convergence or a maximal number of

iterations is reached

In our experiments described in Section 3.3 the average

number of spikes in the first 30 s of recordings is

around 2500 and convergence is obtained after 15 to 20

iterations.
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Fig. 4 Schematic illustration of the way data is processed: The
data is bandpass filtered and periods containing artifacts are ex-
cluded from further analysis (Section 2.7). During the initializa-
tion phase a conventional spike detection and clustering method
is used to determine initial templates (Section 2.10). The data
covariance matrix R is estimated and for every template the cor-
responding linear filter is calculated as described in Section 2.3.
The data are filtered and all values in the filter output below zero

are set to zero (half-wave rectification). From all filter responses
to all templates the un-mixing transformation is determined and
applied to the processed data (Section 2.5). A threshold is applied
to the Deconfusion output resulting in simultaneous spike detec-
tion and classification. The newly found spikes are used to re-
estimated the templates. Also the covariance matrix of the data
is re-calculated after regular time intervals (Section 2.9)

2.10.2 Initial clustering

Although a broad range of sophisticated clustering al-

gorithms is available, we used a standard approach,

since a very accurate initialization is not crucial for

our method. The aligned spikes are whitened (e.g., see

Pouzat et al. 2002) and projected into the space of

the first 6 principle components. The clustering consists

of a Gaussian mixture model in combination with the

Expectation-Maximization algorithm (Xu and Wunsch

2005). For every number of cluster means between 1

and 15 the clustering procedure is executed 3 times

with random initial means. The covariance matrices are

fixed to 2.5 times the identity matrix. The run and the

number of means with the highest score according to

the Bayesian inference criterion (Xu and Wunsch 2005)

are selected as initialization for the main algorithm.

2.11 Signal-to-noise ratio (SNR)

The SNR is a scalar value which is an indicator for

the difficulty of detecting a signal in noisy data. In this

sense, the SNR definition should be dependent on the

method used for signal detection. Several definitions

of the SNR are used in the spike sorting literature. A

very common one is to define the SNR by some max-

imal value, e.g., the maximal amplitude, the maximal

difference in amplitudes (peak to peak distance), or

the maximum of the absolute value of the amplitude,

divided by the variance of noise σ 2, i.e.,

SNRp (ξ) :=

√

(Extremum value of ξ)
2

σ 2

(e.g. see Choi et al. 2006). Another current definition

for the SNR is based on the energy of a signal, i.e.,

SNRe (ξ) :=

√

ξ 2

N · T f · σ 2

(e.g. see Rutishauser et al. 2006). We introduce a de-

finition of SNR which is based on the Mahalanobis

distance of a template ξ to zero:

SNRm (ξ) :=

√

ξ⊤C−1ξ

N · T f

. (10)

In the special case of single electrode data and of 1-

dimensional templates (T f = 1), all SNR definitions

are equivalent. To show that SNRm is an appropriate

SNR definition for the linear filters, while the other de-

finitions are in contradiction with the meaning of signal-

to-noise ratio, we simulated datasets containing a single

neuron, which fired according to a Poisson statistic, and
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a noise covariance matrix C (α) := (1 − α) · 1 + α · Cexp

σ 2 ,

where 1 denotes the identity matrix, and Cexp is a

noise covariance matrix from one of the experiments

described in Section 3.1, with
(

Cexp

)

i,i
= σ 2 for all i.

The used template was extracted from the same exper-

iment. We simulated datasets for ten different α values

between 0 and 1. The SNRm decreased with increas-

ing α, and consistently the detection performance of

our method decreased, see Fig. 5. Note that SNRp =
SNRe = 1 for all α values, which means that those

definitions are inappropriate for the proposed method.

Nevertheless, we always provide values for all three

definitions of SNR in order to allow comparisons with

other publications.

3 Experiments and datasets

For the performance evaluation of our method, three

different datasets were used. All experiments were

performed in accordance with German law for the

protection of experimental animals, approved by the

local authorities (“Regierungspräsidium”), and are in

full compliance with the guidelines of the European

Community (EUVD 86/609/EEC) for the care and use

of laboratory animals.

3.1 Simultaneous intra/extra-cellular recordings

The experiments were done in acute brain slices

from Long Evans rats (P17–P25). In every experi-

ment a pyramidal cell from visual cortex, Layer 3

or 5 depending on the experiment, was simultane-

ously recorded intracellularly and extracellularly. Ex-

tracellular spike waveforms were recorded using a

4-core-Multifiber Electrode (Tetrode) from Thomas

RECORDING GmbH, Germany. The cell was intra-

cellularly stimulated by a current injection (varying

from experiment to experiment between 80 pA and

350 pA). Extracellular recordings were sampled at

28 kHz and filtered with a bandpass FIR filter (300 Hz

to 5000 Hz).

The intracellularly recorded spikes were detected

using a manually set threshold on the membrane poten-

tial. The threshold crossings in the membrane potential

were used as triggers to cut out periods from the ex-

tracellular recordings (2 ms before and 5 ms after the

trigger). In total, data was recorded from 6 different

cells, which resulted in 9957 intracellularly detected

spikes. For analysis only the recording channel with the

highest SNR was considered. The SNR of the different

experiments varied from SNRm = 0.20 (SNRp = 0.79,

SNRe = 0.39) to SNRm = 2.37 (SNRp = 7.09, SNRe =
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Fig. 5 (a) Template ξ (in arbitrary units) used for the simula-
tions. (b) Noise autocorrelation function of the same experiment
from which the template was extracted. This autocorrelation was
used to calculate C. (c) Plot of SNRp (ξ), of SNRe (ξ) and of
SNRm (ξ) in dependence of α (see text for definition). (d) Aver-
age detection performance of different spike detection methods
(described in Section 4.1) for different values of α. For each α

value the average was done over 5 datasets, each with a noise
covariance matrix C (α) (see text for definition)

3.64). A short period of recordings with a moder-

ate SNR (SNRm = 1.16, SNRp = 4.3, SNRe = 1.97) is

shown in Fig. 6, top row.



136 J Comput Neurosci (2010) 29:127–148

Fig. 6 A short piece (approx. 400 ms) of extracellularly recorded
data from slices of rat visual cortex is processed with different
spike detection techniques (rows 3–6). Data were recorded si-
multaneously intracellularly (first row) and extracellularly with
a tetrode. In this experiment the cell was repeatedly stimulated
with 30 ms pulses of 350 pA current injection to elicit action
potentials. Only the tetrode channel with the highest SNR was
used for further analysis (second row)

3.2 Simulated data

The artificially generated data simulates a single chan-

nel recording of 15 s length at a sample frequency of

32 kHz containing activity from three neurons. Every

dataset contained exactly 750 equidistantly distributed

spikes of every neuron, which corresponds to a firing

frequency of 50 Hz. The three used templates were

extracted from the recordings described in Section 3.1

and had a length of 2.1 ms. The noise was generated

by an ARMA model (Hayes 1996) approximating the

noise characteristic shown in Fig. 5(b).

3.2.1 Dataset with overlapping spikes

The relative number of overlapping spikes was sys-

tematically varied from 1% up to 50%. 75% of all

overlapping spikes consist of overlaps between two

templates (25% for each combination), and 25% of

all overlapping spikes consist of overlaps between all

three templates. The amount of overlap, i.e., how much

the templates overlap, is distributed according to a

uniform distribution on the interval [1/3, 1]. The SNR

was kept constant for all overlapping ratios, namely, all

three templates were scaled to an equal SNR, which

was SNRm = 1.2. This corresponds to SNRp = 5.42 and

SNRe = 2.12 (average values over the three templates).

3.2.2 Dataset with SNR variation

The SNRm was systematically varied from 0.6 to 1.4

(which is equivalent to 2.71 to 6.32 average SNRp and

1.06 to 2.48 average SNRe). The amount of overlapping

spikes was constant and set to 7%, which is approxima-

tively the overlap ratio resulting by chance under the

assumption of independent spike trains.

The over-completeness, the equal SNR of all three

templates, and the presence of overlapping spikes make

these datasets particularly challenging.

3.3 Acute recordings

Tetrodes were placed in ventral prefrontal cortex for

individual recording sessions, sampling data from the

same region across experiments. Recordings were per-

formed simultaneously from up to 16 adjacent sites with

an array of individually movable fiber micro-tetrodes

(Eckhorn and Thomas 1993). Recording positions of

individual tetrodes were manually chosen to maximize

the recorded activity and the signal quality. Data were

sampled at 32 kHz and bandpass filtered between

0.5 kHz and 10 kHz.

Neuronal activity was recorded while 2 macaque

monkeys performed a visual short-term memory task.

The task required the monkeys to compare a test stim-

ulus to a sample stimulus presented after a 3 s long

delay and to decide by differential button press whether

both stimuli were the same or not. Stimuli consisted

of 20 different pictures of fruits and vegetables which

were presented for 0.5 s (test stimulus) or for 2 s

(sample stimulus). Correct responses were rewarded.

Match and non-match trials were randomly presented

with an equal probability. This experimental setup was

presented in Wu et al. (2008).

Approximately, the monkeys perform 2000 trials per

session, which is equivalent to almost 4 h of recording

time. For the evaluation of our algorithm only the first

5 s of every trial were processed, as the remaining data

might contain severe artifacts caused by the monkey’s

movement.

4 Results and discussion

The performance of a spike sorting method depends

on its capability to detect spikes and to assign every

spike to a putative neuron. As described in Section 2.6,

our method achieves both simultaneously. We evalu-

ated the performance of our approach, first, as a pure

detection method, and then, as a combined detection
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and classification technique. In both categories we com-

pared it against techniques commonly used.

4.1 Spike detection performance

The evaluation was done on the in-vitro dataset de-

scribed in Section 3.1. Although the extracellular sig-

nal was recorded with a tetrode, we used only one

recording channel for further analysis, since most con-

ventional spike detection methods are only defined for

single channel data. The detectors used are:

1. Mahalanobis distance: This method is described

in Rebrik et al. (1999). In brief, periods having a

greater Mahalanobis distance to zero than a cer-

tain threshold are identified as spikes. The noise

covariance matrix was estimated from data pieces

in which the neuron was not stimulated. The size of

the matrix was chosen to match the observed length

of spikes in the experiment and was then applied

window-wise. Local maxima crossing the threshold

are identified as spike times.

2. Squaring: The raw data is squared and normalized.

Local maxima crossing the threshold are identified

as spike times. In case of an one-dimensional noise

covariance matrix, this method is equivalent to the

method “Mahalanobis distance”.

3. Squaring smoothed: A Savitzky-Golay filter of span

5 and order 2 is additionally applied to the output of

the method “squaring”. This method is very similar

to the one used in Rutishauser et al. (2006).

4. MTEO: This method is described in Choi et al.

(2006). In brief, the data is smoothed with a Ham-

ming window and a quantity (which depends on

parameters k) related to the energy of the signal

is computed. We used two parameter sets for this

method, one with k-values of [1, 3, 5] and one with

k-values of [1, 3, 5, 7, 9].

5. Optimal filter: Since the occurrence of the spikes is

known (due to the intra-cellular recording), the op-

timal filter is calculated using the average waveform

of all spikes of the recorded neuron.

6. Our method: In the case of a single neuron, our

spike sorting method corresponds to a single “es-

timated filter” detector, i.e., the initial filter is cal-

culated using the average waveform of all spikes

found by the MTEO [1, 3, 5] with a threshold set to

3.5 times the median of its output.

A short piece of the recordings and some of the corre-

sponding detector outputs are shown in Fig. 6.

We compared the performance of the different spike

detection methods using receiver operating character-

istic (ROC) curves. For every detector the threshold
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Fig. 7 ROC curves for different spike detection methods. In this
experiment SNRm = 0.81, SNRp = 3.28, SNRe = 1.63

is systematically varied between 0, resulting in zero

false negative detections (FN), and the minimal value

which does not detect any spikes; i.e., zero true positive

detections (TP). For every threshold the percentage

of TP is plotted against the false positive (FP) rate.

Such a curve is shown for one exemplary experiment in

Fig. 7. The curve for the best possible detector (i.e. no

FP, but 100% TP detections) would pass through the

point (0, 100). The area under such a curve (AUC) is,

thus, a measure for the performance of a detector. The

normalized AUC values for the area up to 30 Hz of FPs

of all detectors averaged over all available datasets are

shown in Table 2. Although only the average perfor-

mance is presented, our method and the optimal linear

filter also achieved higher scores on every individual

dataset described in Section 3.1. In all experiments the

optimal filter was superior to the other detectors, while

our method scored second with a very similar perfor-

mance. This shows that taking into account the full

Table 2 Average normalized area under the curve for each
evaluated spike detection method

Method Average normalized AUC

Mahalanobis distance 0.70827

Squaring 0.76371

Squaring smoothed 0.77073

MTEO[1 3 5] 0.78501

MTEO[1 3 5 7 9] 0.77255

Optimal filter 0.81957

Our method 0.80887

The averaging was done over all 6 datasets described in
Section 3.1. The AUC values were computed up to a FP fre-
quency of 30 Hz and normalized by 3000 which is the AUC of
a perfect detector
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Fig. 8 Number of errors for each spike detection method in
respect to varying thresholds. The color coding is the same as
in Fig. 7. For each detection method the maximal threshold was
determined and normalized to 1. The maximal threshold is de-
fined as the smallest threshold so that no spikes are detected. The
total error is plotted in dependence of threshold values equally
sampled from the interval [0, maximal threshold]. The total error
for the linear filter increases slower than for the other methods,
when the threshold deviates from the optimal threshold. For this
evaluation a dataset from the recordings described in Section 3.1
was used with SNRm = 1.39, SNRp = 6.31, SNRe = 3.04

waveforms as well as the data statistic always greatly

improves the detection performance. The optimal lin-

ear filter was included into the evaluation to provide

an upper bound on the performance one can achieve

with our method. Our method offers another advantage

for the detection of spikes, namely a bigger robustness

to threshold variations, see Fig. 8. This means that a

deviation from the optimal threshold has a less drastic

impact on the total error (FP + FN) than for the other

methods.

4.2 Spike sorting performance

4.2.1 Resolution of overlapping spikes

We recall that the applied operations to the recorded

data could be summarized in Eq. (8). The cross-

correlation between the filters and the data is a lin-

ear operation. The following Deconfusion consists of

a half-wave rectification, which is a non-linear oper-

ation, but affects only noise and not the action po-

tentials (represented in the filter output), and the

un-mixing, which is linear again. Hence, one can expect

that if the superposition of spike waveforms is also

linear, overlaps should be resolved successfully. We

validated this assumption on the dataset described in

Section 3.2.1. The algorithm was executed in the same

Table 3 Average performance of the proposed method for non
overlapping and overlapping spikes

N A B C AB AC BC ABC

A 0.0 96.0 0.1 0.0 91.7 93.5 1.7 92.0

B 0.0 0.0 98.2 0.1 87.4 9.7 92.8 87.2

C 0.0 0.0 0.0 97.8 1.1 92.0 92.1 88.7

Each column represents the true category of events detected as
spikes (e.g. “N” meaning “noise”, “AB” meaning an overlapping
spike of template A and template B, etc.), while each row repre-
sents the category to which they were assigned by our algorithm.
Each total number of classifications was divided by the number of
corresponding spike events, resulting in a percentage value. The
bold numbers represent the percentage of correct classifications.
The table shows the average performance over 10 datasets with
an overlap ratio of 40% (see Section 3.2.1). For a systematic
evaluation over different overlap ratios the absolute numbers of
the correct classifications were added and divided by the total
number of inserted spikes; see Fig. 9

way as described in Section 2. In order to allow the

method to adapt (Section 2.9), the method was iterated

5 times on the same dataset. We also compared the

performance of our method to those of two popular

clustering based offline methods, one of them being

the method described in Section 2.10.2, which will be

abbreviated as “GMM”. Since this is also the method

which is used for initialization of our algorithm, the

comparison with GMM directly provides information

about the improvements in sorting when our method is

used.

The other algorithm, called “KlustaKwik”, was ex-

plicitly developed for clustering neuronal data and was
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Fig. 9 Average performance of the different spike sorting meth-
ods over 10 simulations. The x-axis indicates the overlap ratio, i.e.
the relative number of overlapping spikes (see Section 3.2) while
the y-axis represents the correct classifications in percentage
(true positives divided by total number of spikes)
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Table 4 Same evaluation as in Table 3, but for the method
“GMM” described in Section 2.10

N A B C AB AC BC ABC

A 0 81.0 0.0 0.1 27.8 27.3 0.4 21.5

B 0.2 14.5 100.0 0.6 68.0 4.2 45.0 42.7

C 0.1 4.4 0.1 99.4 4.7 69.0 53.2 41.7

The method sorts non overlapping spikes well, but has difficulties
in resolving overlapping spikes

first introduced in Harris et al. (2000). The cluster-

ing parameters were set to their default values. Spike

detection and alignment was done in the same way

as described in Section 2.10.1. To provide an upper

bound on the performance our approach could achieve,

we included the evaluation with the optimal filters

calculated directly from the real templates. Note that

other existing, purely clustering-based sorting methods,

either in the PCA space or in the original data space,

would perform similarly to GMM and KlustaKwik.

For the evaluation the relative number of TP was

counted (Tables 3 and 4).

The simulations show that our method indeed re-

solves overlapping spikes and outperforms the cluster-

ing based methods; see Fig. 9. Our method works even

for datasets with a large amount of overlapping spikes,

and the performance is close to the theoretical bound of

this approach. On the other hand, the performance of

the purely clustering based methods rapidly decreases

with an increasing amount of overlapping spikes. Over-

lapping spikes are mostly detected as single events by

conventional spike detection techniques, which leads

to a high FN rate. Furthermore, since the waveforms

of overlapping spikes are distorted, their distances to

the corresponding cluster means are large, making it

difficult to assign them to a neuron. This results in a

low TP score for clustering based methods.

4.2.2 Performance for various SNR

The evaluation on the dataset with a varying SNR

(see Section 3.2.2) was done in the same way as in

the previous section. The results are shown in Fig. 10.

The performance of the clustering based methods is

severely affected by a low SNR. The performance of

the proposed method follows the one of the GMM

algorithm, since it relies on its output for initializa-

tion. Nevertheless, our method is always superior to it.

Because of the rapid decrease in performance from a

SNR level of 0.7 to an SNR level of 0.6, we stopped

the algorithm from detecting spikes for templates with

a lower SNR than 0.65 in real recordings by deleting

the corresponding templates and filters. In contrast, the
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Fig. 10 Average performance of the different spike sorting meth-
ods over 10 simulations in respect to various SNR levels. Note
that the performance of the proposed method degrades with
the performance of the GMM algorithm. This is because the
output of the GMM is used as the initialization for our method.
However, the our method is always superior to it. Low SNRs do
not severely affect the performance of the optimal filter

optimal filter method is only slightly affected by a low

SNR level, indicating that a more elaborate initializa-

tion would increase the performance of the proposed

method on datasets with very low SNRs.

4.2.3 Performance on experimental data

We applied our method to data recorded in the pre-

frontal cortex of monkeys performing a short-term

memory task as described in Section 3.3. For illustrative

purposes, we show the results obtained by processing

data from one tetrode, since the qualitative outcomes

from processing other tetrodes and different recording

sessions are similar.

For the initialization phase we used the first 7 trials of

the recording. The initial spike detection and clustering

was done as described in Section 2.10, resulting in a

total of 3219 detected spikes, which were assigned to 8

clusters. This basic clustering was used as an initializa-

tion for the main algorithm, which was executed in the

same way and with the same parameters as described

in Section 2 (see also Fig. 4 for a summarization). The 7

trials used for initialization were also processed with the

main method in order to improve the sorting quality.

The templates after the first 90 trials are shown in

Fig. 11, and seem to be reasonable by visual inspection

of an expert. In total, our method found almost 200000

spikes (57111, 18060, 50724, 51709, 3974, 7057, 444,

10915 for each template). Two well-established tests
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Fig. 11 (a) Plot of the concatenated templates and their standard
deviation. For the averaging all detected spikes from trial 50

to trial 90 were used. The vertical lines indicate the concate-
nation points, while the colored dots on the right serve as a
label. On the left, the SNRm value is shown, the channel length
of the template being T f = 47 and N = 4. The corresponding
SNRp are (10.06, 13.28, 21.82, 11.57, 13.12, 13.32, 14.27, 10.34),
and the SNRe are (1.84, 3.73, 4.22, 2.91, 2.90, 3.45, 2.99, 2.53), re-
spectively. (b) Histograms of the inter-spike interval distributions

with a bin size of 1 ms. The numbers on the left represent the
percentage of spikes with an inter-spike interval of less than 3 ms.
(c) Projection test of the found clusters. The fit (solid line) rep-
resents a Gaussian distribution whose mean is the corresponding
template and with variance 1. The D value indicates the distance
in standard deviations between the means. Note that in case of
acute recordings, the waveforms change over time and thus the
projection test is only meaningful for short time intervals; see also
Fig. 13. For the projection test the same spikes as in (a) were used

to quantitatively asses the sorting quality of a method

performing on real data are the inter spike interval

distribution and the projection test (Rutishauser et al.

2006; Pouzat et al. 2002); the evaluation of our sort-

ing with both tests is shown in Fig. 11. The relative

number of spikes during the first 3 ms is smaller than

1.5% for all neurons, implying that the refractory pe-

riod is respected. On the other hand, the projection

test verifies that the spikes of a single neuron have

not been artificially split by the sorting algorithm into

multiple clusters or that spikes from multiple neurons

are assigned to the same cluster. The sorting of our

method also passes the projection test since the clus-

ter distributions do not overlap and are close to the

theoretical prediction of a normal distribution with a

variance 1. In sum, the good results of these two tests

imply that the found clusters are well separated and

indeed correspond to single neurons, as well as that the

assumptions made in Section 2.2 are justified.

Since we inserted the tetrodes before every exper-

iment anew, our algorithm has to deal with the vari-

ability in the data caused by tissue drifts. The adaption
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Fig. 12 Effects of tissue drift on the amplitudes of all tem-
plates over the whole experiment. For every recording channel
of the tetrode and for every trial a peak amplitude histogram
was calculated. In every trial the number of local extrema of
50 samples width and a certain amplitude interval was counted
for positive and negative peaks independently and normalized
by the trial length, giving an estimate for the rate of spikes of
that amplitude. Shown is the logarithm of that count, where
light pixels correspond to high counts. Small amplitude peaks

were ignored because these are strongly effected by noise. A
neuron with a high SNR should be visible as two light horizontal
bands, one with a high positive amplitude and one with a high
negative amplitude, respectively. Superimposed are the minimal
and maximal amplitudes of the found templates in every trial.
The color code is the same as in Fig. 11. The plot reveals that
the amplitudes of the spikes change drastically over time. Due to
the feedback described in Section 2.9 the algorithm adapts to this
changes and successfully tracks the neurons

procedure described in Section 2.9 was executed after

every trial and adapted the algorithm correspondingly.

The time period over which the templates were as-

sumed to be constant was set to T = 5 s.1 As a re-

sult, 2 neurons could be tracked from the beginning

to the very end of the experiment, see Fig. 12. The

other templates were deleted earlier, since their SNRm

dropped below 0.65. The importance of taking tempo-

ral variations for sorting into account is demonstrated

in Fig. 13. If the drift is not accounted for, the clusters

are elongated and their spread is larger, making any

classification more difficult.

1The value of T was set to 5 s just for convenience of implemen-
tation, since the first 5 s of each trial were processed.

The disappearance of neurons from the recording

volume is a common phenomenon in our recordings.

However, the opposite, i.e., the appearance of new

neurons during recordings, is rarely observed. This

might be explained by the fact, that at the beginning of

the experiments, the tetrodes are explicitly placed at a

position where a lot of neuronal activity is measured.

Therefore, it is more probable that during the tissue

drifts the high activity population of neurons disappears

than that new, highly active neurons appear. We discuss

this problem also in Section 4.4.

In Section 4.2.1 we have already demonstrated on

simulated data the ability of our method to resolve

overlapping spikes instantaneously. This is also the

case for real data, see Fig. 14. The same figure also

shows, that it would be very difficult to classify correctly

these overlapping spikes with a purely clustering based

algorithm.
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Fig. 13 Effects of tissue drift on templates and cluster distribu-
tions in the PCA space. (a) For three filters which detected spikes
nearly throughout the whole experiment, the corresponding tem-
plates of the initialization and at trials 50, 1000 and 2001 are
shown. The color code is the same as in Fig. 11. Note that the
middle template was deleted by the algorithm during trials 1000

and 2001 (compare Fig. 12). (b) The projections of the whitened
spikes on the first two principle components (left column) and the

projection test for three selected templates (middle and right col-

umn) are shown during three different periods. Note that during
the two short periods (upper two rows) the whitened spikes of
every neuron are nearly standard normal distributed. However,
if the spikes are collected over a longer period (bottom row),
the clusters are elongated and overlapping, making a clustering
difficult. For sake of clarity only every 100th trial was plotted for
the 1–2001 period

The evaluation in Fig. 11 and Fig. 13 shows that

the clustered spikes, although whitened, are not per-

fectly Gaussian distributed. This deviation is caused by

overlapping spikes, but it is also due to an intrinsic

waveform variability, as it is observed for example

during bursts (Fee et al. 1996b). In this sense, the

generative model assumed in Section 2.2 is not strictly

valid anymore. Nevertheless, our method achieves a

good performance, even for datasets containing burst-

ing neurons identified by visual inspection. This can be

explained by the fact that the scaling of the waveform

during burst is close to linear (Rutishauser et al. 2006).

Because of the linear character of our method (e.g.

see Section 4.2.1), the response to a linearly scaled

waveform will also only be scaled by the same factor.

Hence, the algorithm classifies spikes from bursting

neurons correctly as long as the amplitude degradation

of the spikes is not too strong.

4.3 Limitations of our method

We have shown that our method is of great poten-

tial for spike detection and classification applications.

However, there is a principle limitation: Since the fil-
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Fig. 14 Ability of our algorithm to resolve overlapping spikes in
real data. (a): Projection of all detected and whitened spikes from
the trials 50–90 into the space of the first two principle compo-
nents (the solid bars correspond to 3 standard deviations each).
Spikes were detected and classified with the proposed method
(color scheme is the same as in Fig. 11). For the additionally
letter labeled spikes, the corresponding sections in the original
recorded data are shown in (b)–(e), indicating that these spikes
are overlapping spikes (the solid bar corresponds to 1 ms). In (b)–
(e) all detected spikes are shown but only those participating in
an overlap are labeled in (a). The plots right next to the original
recordings show the same data after subtracting the templates of

the neurons to which the spikes were assigned. The residual is
similar to the noise signature, suggesting that our sorting was in-
deed correct. Note that the templates were not scaled to account
for the amplitude variability of the spikes. This would reduce the
residual. An example for a putative overlapping spike is labeled
“d1” and would probably be detected as a single spike event by
a standard spike detection. Furthermore its misclassification by a
purely clustering based algorithm is likely, because its distance to
the corresponding cluster means is large. Also spikes like “b1” or
“b2” would have been probably classified as outliers by standard
sorting methods

tering and the Deconfusion are linear operations, it is

impossible to discriminate waveforms which are strictly

linear dependent, i.e., when the spike waveform of

one neuron is a multiple of the waveform of another

neuron. A possible way to solve this problem is to sort

the templates according to their SNR. Spikes with the

highest SNR are detected first. Whenever a spike is

found, the corresponding template is subtracted from

the data and all other filter outputs are re-calculated

for the affected period. This procedure is repeated for

templates with a lower SNR. Further, if the sum of the

waveforms of two different neurons with a certain shift

is nearly identical to another neurons spike waveform,

it is impossible to judge whether a spike is an overlap or

not. Only probabilistic methods or soft clustering could

give a hint at where the waveform came from.

4.4 Newly appearing neurons

We have not addressed the problem of neurons

which are not detected during the initialization phase.

As we observe spikes from neurons whose SNR de-

creases due to tissue drifts, and finally disappear com-

pletely from the recorded data, the opposite might also

happen; i.e., neurons, previously undetected, slowly

appear in the recording volume. A possible solution

would be to run a conventional spike detection method

in parallel to our method. All spikes detected by the
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conventional spike detection technique, but not by our

method, could be collected, aligned and clustered. Re-

specting the newly found clusters, corresponding filters

could be initialized and the Deconfusion procedure

adapted accordingly.

4.5 Implementation and computational complexity

Especially for a real-time implementation the runtime

of an algorithm is crucial. After the initialization phase,

the proposed method consists mainly of linear opera-

tions. The adaptation of the covariance matrix, of the

templates and of the Deconfusion parameters need

only to be computed every few seconds. Therefore,

the computational burden lies in the application of the

linear filters and the Deconfusion to a new sample

of recorded (multichannel) data. The current imple-

mentation was done in Matlab, however the source

code is not ready for publication yet. We will make

the method available e.g. on ModelDB as soon as the

implementation is finished.

4.5.1 Runtime analysis

If a new multichannel sample of data is recorded,

first the cross-correlation between the filters and the

data has to be calculated and afterwards Deconfusion

is applied. The number of operations needed for the

cross-correlation of a filter (the number of filters equals

the number of neurons M) and the data is directly

proportional to the product of the length of the filter

T f and the number of recording channels N. The De-

confusion procedure consists of a half-wave rectifica-

tion, which is just a sample wise trivial non-linearity,

and a matrix-vector multiplication between the square

matrix W of dimension M × M and the shifted and half-

wave rectified filter outputs. To sum up, the computa-

tional complexity for a newly arriving data sample is

O(MNT f ) +O(M2). Since we can assume the number

of filters to be higher than the number of recording

channels, the resulting complexity is O(M2T f ). This

means the runtime complexity mainly depends on the

number of filters and the filter length.2

2In principle, the cross-correlation can be calculated with the help
of the fast Fourier transform more efficiently. However, this pays
off for long data pieces only, and thus would require to buffer the
data first, spoiling the real-time idea.

4.5.2 Parallel computing

It is important to note that the cross-correlation for

every filter—even for every channel of every filter—are

independent of each other and can, thus, be computed

in parallel as simple vector-matrix multiplications. For

a so called vector processor such a multiplication would

be one single operation only. E.g this could be im-

plemented on a modern consumer computer-graphics

hardware or on programmable digital signal processors.

5 Conclusion and outlook

An automatic method for simultaneous spike detec-

tion and spike classification was presented, having sev-

eral advantages which were demonstrated on various

datasets. Explicitly, the method makes use of the ad-

ditional information provided by multi electrodes and

has no constraints concerning the number of record-

ing channels or the number of neurons present in the

data. It resolves overlapping spikes instantaneously,

performs well on datasets with a low SNR, and it adapts

to non-stationarities present in the data. Moreover, the

method operates online and is well suited for a realtime

implementation.

In the first step of our algorithm, optimal linear filters

were used to enhance the SNR. Linear filters, being an

approximation to an exact deconvolution, account for

the noise statistics as well as for the full, multi-channel

template, and are, therefore, superior to other methods

in detecting spikes of a specific neuron. An evaluation

on simultaneous intra/extra-cellular recordings in slices

of rat visual cortex and on realistic synthetic data shows

that the difference in performance is considerable.

Further, we used the output of the linear filters as a

new representation of the data. The advantage of the

filter output space is that its dimension is equal to the

number of neurons, whereas this was not the case in the

original data space. This allowed us to treat the spike

sorting problem as a well defined source separation

problem and solve it by Deconfusion.

In the final step, a channel specific threshold was ap-

plied providing simultaneous spike detection and classi-

fication. Unlike in many other methods, the thresholds

need not to be set manually by a human supervisor but

are determined automatically in an optimal way. The

advantage of a combined spike detection and classifi-

cation, in contrast to existing spike sorting methods,

was demonstrated on simulated datasets. Especially

in the presence of overlapping spike and low SNR,

our method achieved better performances. We showed
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that, in the case of linear filters, a proper definition of

the signal-to-noise ratio is based on the Mahalanobis

distance, whereas other commonly used definitions do

not reflect the difficulty in detecting the signal.

By iteratively updating all quantities, namely the lin-

ear filters, the Deconfusion parameters, and the thresh-

olds, the algorithm adopts to non-stationarities present

in the data. As such, the method is also suitable for

recordings made in acute experiments in which the

multi electrodes are inserted each time anew. The num-

ber of spikes detected by a filter which were used for the

calculation of the template, was set manually to a fixed

value, equal for all filters. Instead, one could develop a

model for the tissue drift and derive an optimal value

which depends on the estimated drifting velocity, the

firing rate of the neurons, on the SNR, and on the error

tolerance. This is the aim of a future study.

Two drawbacks of the proposed method were

discussed, namely the incapability to detect newly ap-

pearing neurons and the problem of strictly linear

dependent templates. However, for both problems a

possible solution was sketched. The detailed study and

realization of these solutions will be the scope a future

study.

By qualitative arguments, systematic runs on real-

istically simulated data and on real data from awake

behaving macaques, we have shown that the algorithm

is capable of resolving overlapping spikes; without addi-

tional computing time. However, for the acute record-

ings in awake behaving monkeys we cannot proof that

the found solution is correct, since the ground truth

is unknown. Only massive simultaneous intra- and ex-

tracellular recordings in vivo could be used to asses

the quality of the sorting in real experiments. Due to

technical limitations, such a dataset is currently not

available.

The algorithm mainly consist of linear, independent

operations, which can be executed in parallel and im-

plemented in hardware. Therefore, the algorithm can

be used for realtime implementations, making it an

potential spike sorting method for brain-machine inter-

faces and for the execution of closed-loop experiments.
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Appendix A: Derivation of optimal linear filters

Filter f i should respond with a peak to its matching

template ξ i, but should have minimal response to the

rest of the data. In particular, one demands that the

response to the matching template is 1, i.e. ξ i⊤ · f i = 1.

The response of the filter to the data is X̄ ⋆ f i, where
(

X̄ ⋆ f i
)

t
=

∑

k,τ xk,τ+t · f i
k,τ

. Using the third assump-

tion of Section 2.2 the response of a filter to X̄ will

be small (and therefore well distinguishable from the

peak response of 1 to the matching template) if the

variance of the filter output is small, i.e., one has to

minimize Var
(

X̄ ⋆ f i
)

. In summary, the constrained

minimization problem is stated as

f i = argmin
f i

{

Var
(

X̄ ⋆ f i
)}

subject to ξ i⊤ · f i = 1

(11)

A short calculation shows that

Var
(

X̄ ⋆ f i
)

= · f i⊤ · R · f i. (12)

Thus, the Lagrangian L of this minimization problem is

given by

L = f i⊤ · R · f i + λ
(

ξ i⊤ · f i − 1
)

(13)

where λ is the Lagrange multiplier. Since the objective

function is convex in f i, there exists a single minimum,

which can be found by solving ∇ f i,λL = 0. In fact, the

minimum is attained at

f i =
R−1ξ i

ξ i⊤ R−1ξ i
. (14)

Often, linear filters are derived in the frequency domain

instead, but linear filter defined in the time domain

have several advantages, see Vollgraf and Obermayer

(2006).

Appendix B: Derivation of Deconfusion

I(yi
t) can be expressed as a linear combination of the

sources υ j at shifts τi, j:

I(yi
t) =

∑

j

(A)i, j υ
j

t+τi, j
(15)

We show that

zi
t :=

∑

j

(W )i, j I(y
j
t−τ j,i

) (16)
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with W = A−1 is the corresponding inverse problem.

By inserting the expression in Eq. (15) into Eq. (16) one

obtains

zi
t =

∑

j

(W )i, j

∑

k

(A) j,k υk
t+τ j,k−τ j,i

=
∑

j,k

(W )i, j (A) j,k υk
t+τ j,k−τ j,i

=
∑

j

(W)i, j (A) j,i υ
i
t+τ j,i−τ j,i

+
∑

j,k�=i

(W )i, j (A) j,k υk
t+τ j,k−τ j,i

= υ i
t +

∑

j,k�=i

(W )i, j (A) j,k υk
t+τ j,k−τ j,i

(17)

Hence,

zi
t =υ i

t ⇐⇒
∑

j,k�=i

(W )i, j (A) j,k υk
t+τ j,k−τ j,i

=0 ∀ j, k, i �=k

(18)

This is true, if

τ j1,k − τ j1,i = τ j2,k − τ j2,i ∀ j1, j2, i, k. (19)

Note that this condition is always satisfied for k = i.

Appendix C: Derivation of the optimal threshold

If we assume that the noise in the Deconfusion output

is still a mixture of Gaussians (as an approximation

for a mixture of truncated Gaussians), it follows for its

variance

σ 2
k := Var

(

zk
)

= Var

(

∑

i

wk,i · yi
τk,i

)

=
M

∑

i=1

M
∑

j=1

Cov
(

wk,i y
i
τk,i

, wk, jy
j
τk, j

)

=
M

∑

i=1

(

wk,i

)2
Var

(

yi
τk,i

)

+ 2

M
∑

i=1

M
∑

j>i

wk,iwk, j

× Cov
(

yi
τk,i

, y j
τk, j

)

=
M

∑

i=1

(

wk,i

)2
f i⊤C f i + 2

M
∑

i=1

M
∑

j>i

wk,iwk, j f i⊤

× C|τk, j−τk,i| f j (20)

where C|τk, j−τk,i| are shifted covariance matrices, i.e.

taking temporal correlations into account of order T f +
|τk, j − τk,i|.

The optimal threshold for the detection and classi-

fication of spikes from neuron k is chosen such that

the overlap between the distribution of the spikes from

neuron k and the distribution of the other spikes (from

neurons j, j = 1, ..., M, j �= k) is minimal. We assume

the distributions to be Gaussian, with means μk, j and

variance σ j
2. The μk, j are given by the maximal re-

sponse values of filter j to template k after Deconfu-

sion, i.e.

μk, j = max
τ

{

(

W · I
(

(

ξ 1 ⋆ f j . . . ξ M ⋆ f j
)⊤

))

k,τ

}

(21)

whereas the variance is given by Eq. (20). One has

only to consider the maximal false response and not

the whole response, because the refractory period is in

general longer than the length of the template. Thus the

optimal threshold ǫk is given by

ǫk = argmin
ǫk

{

1 −
βk

2
er f c

(

ǫk − 1
√

2σk

)

+
∑

j�=k

β j

2
er f c

(

ǫk − μk, j√
2σ j

)

⎫

⎬

⎭

where er f c denotes the complementary error function,

and β j is a normalized weight proportional to the firing

frequency of neuron j in order to minimize the total

error. Note that the threshold must lie in the interval

[0, 1], hence this minimization problem can be solved

numerically with a line search algorithm, for example

using the “fminbnd” command of MATLAB.
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