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Conceptual models or semantic data models were developed to capture the meaning of an
application domain as perceived by someone. Moreover, concepts employed in semantic data
models have recently been adopted in object-oriented approaches to systems analysis and
design.

To employ conceptual modeling constructs effectively, their meanings have to be defined
rigorously. Often, however, rigorous definitions of these constructs are missing. This situation
occurs especially in the case of the relationship construct. Empirical evidence shows that use
of relationships is often problematical as a way of communicating the meaning of an
application domain. For example, users of conceptual modeling methodologies are frequently
confused about whether to show an association between things via a relationship, an entity, or
an attribute.

Because conceptual models are intended to capture knowledge about a real-world domain, we
take the view that the meaning of modeling constructs should be sought in models of reality.
Accordingly, we use ontology, which is the branch of philosophy dealing with models of reality,
to analyze the meaning of common conceptual modeling constructs.

Our analysis provides a precise definition of several conceptual modeling constructs. Based on
our analysis, we derive rules for the use of relationships in entity-relationship conceptual
modeling. Moreover, we show how the rules resolve ambiguities that exist in current practice
and how they can enrich the capacity of an entity-relationship conceptual model to capture
knowledge about an application domain.
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1. INTRODUCTION
Conceptual modeling (or semantic modeling) focuses on capturing and
representing certain aspects of human perceptions of the real world so that
these aspects can be incorporated into an information system. Most concep-
tual modeling approaches are concerned with “things,” which are often
referred to as entities, and associations among things, often referred to as
relationships [Brodie 1984]. More recently, these two constructs also fea-
ture in object-oriented (OO) approaches. The entity construct is often
replaced by the object construct, although both constructs have much in
common. The traditional notion of a relationship, however, is used in only
some OO approaches [Embley et al. 1992; Rumbaugh et al. 1991]. Nonethe-
less, as we argue below, it has much in common with the message-passing
construct that is ubiquitous in OO modeling.

While both entities and relationships are fundamental to conceptual
modeling, relationships prove to be more problematical. To illustrate some
of the difficulties, consider the often-cited example of Marriage as a
real-world fact to be modeled. In the context of the entity-relationship (ER)
model, Chen [1976] argues that marriage can be considered as a separate
entity type or as a relationship type between two Person entity types. In this
light, Hansen and Hansen [1992] chose to model marriage as a relationship
type, is-married-to, and as an aggregate object (entity) type, married-
couple, which in turn participates in other relationship types. Date [1995]
and Kent [1978] also mention that a relationship type can be conceived as
an entity type, and Batini et al. [1992, p. 31] describe relationship types as
representing aggregations of two or more entity types. An aggregation of
entity types, however, is itself likely to be perceived as an entity type
[Smith and Smith 1977]. Still other examples of multiple representations
for relationship types can be found. In the ER model, for example, Elmasri
and Navathe [1994] sometimes represent them as weak entity types and
sometimes as attributes. In short, the theory underlying the nature of and
representation of relationships in conceptual modeling is unclear.

Empirical evidence also indicates that database designers find relation-
ships more difficult to model than entities. For example:

(1) Prietula and March [1991] studied the physical design processes used
by expert and novice database designers. They found that failure to
specify “file connections” (relationships) was a major problem.
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(2) Batra et al. [1990] studied the logical design processes used by data-
base designers. They concluded (p. 137) “that the most commonly
occurring errors pertain to the connectivity of relationships.”

(3) Goldstein and Storey [1990] studied how users employed an automated
database design tool. They found that users had difficulty distinguish-
ing attributes from relationships.

In our view, problems arise with relationships in conceptual modeling
because their nature and underlying meaning are unclear. For example,
usually a relationship is defined simply as an association between two or
more entities [Batini et al. 1992; Chen 1976; Goldstein 1985; McFadden
and Hoffer 1985]. But what, exactly, is meant by an “association”? In an
attempt to answer this question, Teorey et al. [1986, p. 200] argue that:
“Relationships have semantic meaning, which is indicated by the connectiv-
ity between entity occurrences (one to one, one to many, and many to many)
and the participation in this connectivity by the member entities may be
either optional or mandatory.” The cardinalities of a relationship and
whether they are optional or mandatory indeed describe some characteris-
tics of relationships, but they do not describe the underlying meaning of
relationships. We contend that a clear, unambiguous definition of this
meaning is a prerequisite for conceptual modelers to be able to use
relationships correctly to represent phenomena in the domains that inter-
est them.

The purpose of this paper, therefore, is to undertake a formal analysis of
the meaning of the relationship construct and to show the practical
implications of this analysis for conceptual modeling activities. We begin by
arguing that the meaning of all conceptual modeling constructs needs to be
articulated within the context of a theory of ontology (see also Ashenhurst
[1996]; Guarino [1995]; and Wimmer and Wimmer [1992]). Ontology is
“That branch of philosophy which deals with the order and structure of
reality in the broadest sense possible” [Angeles 1981]. Because relation-
ships are constructs that have been devised to model certain types of
real-world phenomena, it should be possible, therefore, to derive their
meaning via theories of ontology. Having clarified the meaning of relation-
ships, we then seek to provide rules that will assist information system
designers to use them in their conceptual modeling activities. Such rules
can be the basis for ensuring that different designers will model the same
phenomena in the same way. In this regard, note that our focus in this
paper is not on data modeling. Clearly, a single conceptual model might be
mapped into different data models, depending, for example, on constraints
imposed by the underlying technology platform used to store and manipu-
late data.

The paper proceeds as follows. Section 2 provides an overview of the
ontological model we use to analyze the meaning of relationships. Section 3
shows how this model can be employed to formalize various conceptual
modeling constructs that are essential to understanding the nature of and
meaning of relationships. Section 4 then derives some conceptual modeling
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rules based on the formalization we propose. Section 5 shows how these
rules can be applied to the use of the relationship construct in ER
conceptual modeling. Finally, Section 6 discusses some conclusions and
suggestions for further work.

2. ONTOLOGICAL FOUNDATIONS

To provide the basis for our analysis of the relationship construct, we use
an ontological framework developed by Bunge [1977; 1979]. His model
articulates a set of high-level, abstract constructs that are intended to be a
means of representing all real-world phenomena. Bunge reports [Bunge
1977, Preface] that his aim was to draw upon ample ontological traditions
arising from the work of Aristotle, Aquinas, Descartes, Spinoza, Leibniz,
Hobbes, Helvetius, d’Holbach, Lotze, Engles, Peirce, Russell, and White-
head. He further claims his work differs in a “matter of method” because it
also draws upon contemporary research and has been elaborated using
mathematics (see also Agassi [1990]). Bunge intends his ontology to be
“both exact and scientific.” We might have attempted to use other ontolo-
gies to analyze the meaning of a relationship. We chose Bunge’s, however,
because we are unaware of any others that are as rigorous and comprehen-
sive. Moreover, we have already found his ontology useful in analyzing
other phenomena within the computer science and information systems
domains [Paulson and Wand 1992; Wand 1989; Wand and Weber 1989;
1990; 1993; 1995; Wand and Wang 1996; Weber and Zhang 1996].

The specific ontological constructs we require to analyze the nature and
meaning of a relationship are thing, property, attribute, functional schema,
state, law, interaction, class, kind, and composition of things. In this light,
the following sections provide an overview of these constructs. In the
interests of brevity, henceforth we mean Bunge’s ontological model when
we use the term “ontology.” Postulates and definitions taken from or
adapted from Bunge’s work are indicated by “*”.

2.1 Thing

POSTULATE 1*. The world is made of things that possess properties.

Ontology distinguishes between concrete things, which are called sub-
stantial individuals or entities, and conceptual things (e.g., mathematical
concepts such as sets and functions). We assume that any domain can be
described in terms of concrete things and the linkages that exist among
them. Therefore, we use the word “thing” to refer only to substantial
individuals or concrete things. We further assume that domain modeling is
based upon someone’s view of existing or possible reality. Therefore, the
notion of a concrete thing applies to anything perceived as a specific object
by someone, whether it exists in physical reality or only in someone’s mind.
In this light, a bank account is considered a thing, as well as a product that
has been designed but not yet produced. Both are concrete things in
someone’s mind.
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2.2 Properties

There are no things without properties (there are no “bare” individuals
[Bunge 1977, pp. 36, 58]). Moreover, properties are always attached to
things (“ every property is possessed by some individual or other: there are
no properties that fail to be paired to any individuals” [Bunge 1977, p. 62]).
Properties of concrete things (substantial individuals) are called substan-
tial properties, or simply properties. Properties of conceptual things are
called formal properties, attributes, or predicates. It is important to recog-
nize that not having a property is not a property. For example, “not being
red” is not a property.

A property can depend on one or more things. A distinction is made
between

● intrinsic properties that depend on one thing only; and

● mutual or relational properties that depend on two or more things.

For example, the height of a person is an intrinsic property because it
depends only on the existence of the person. The property of being a
university student is a mutual property, however, because it depends upon
the existence of both a person and a tertiary institution.

Properties themselves can not have properties [Bunge 1977, pp. 98–99].
For example, at first glance, it might seem that the weight of a person itself
has a property associated with the time at which the weight was measured.
The “real” meaning here, however, is that the person has a variable weight
(the property is not just weight but weight at time t). The possibility of
properties having properties is only contemplated when we have not fully
specified (or properly understood) a property in the first place.

2.3 Attributes

The properties of a thing exist, whether or not humans are aware of them.
Humans conceive of things, however, in terms of models of things. Such
models are conceptual things. Recall that the properties of conceptual
things are termed attributes. Attributes are characteristics assigned to
(models of) things according to human perceptions. Depending upon cir-
cumstances, humans may use different models of the same thing, and
therefore assign different sets of attributes to the same thing. Thus,
humans conceive of properties of things in terms of the attributes of their
conceptual models, and properties are known to humans only as attributes.
An attribute, however, may or may not reflect a substantial property (or
properties). Moreover, in a given model, not every property will be repre-
sented as an attribute.

To illustrate the notions of property and attribute, consider the following
examples:

● The height of a person is an attribute that reflects a substantial property.
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● The name of a person does not represent any specific substantial prop-
erty. It is an attribute that stands for the individual as a whole
(assuming that the name is unique).

● The I.Q. of a person is an attribute representing many properties that
are not known explicitly.

● Having a student number in a given university represents the mutual
property of being a student at that university.

Attributes can be formalized in a predicate form or in a functional form.
The predicate (propositional) form for a general property is

A : T1 3 . . . 3 Tn 3 V1 3 . . . 3 Vm 3 Statement regarding A (1)

where Tk~k 5 1, . . . , n! represents a set of things and Vj~ j 5 1, . . . , m!
represents a set of values. It will usually be assumed that a set Ti contains
the same “type” of thing (that is, things perceived similar in some respect).

For example, the property “a person works for a company” can be
represented as W : T1 3 T2 3 D 3 P, where T1 is a set of people, T2 is a
set of companies, D is a set of dates, and P is a set of statements of the
form: “p (from the set T1) works for c (from the set T2) at d (from the set
D).”

Based on this form, a specific property (of a particular individual, t1) can
be represented as an attribute predicate of the form:

A~t1, . . . , tn, v1, . . . , vm! where ti [ Ti, vj [ Vj. (2)

For example; works-for ~ p, c, d! means person p, works for company c, at
date d.

The following ontological premise ensures that every property, in princi-
ple, can be modeled as follows:

POSTULATE 2*. Every property in general can be represented by a
propositional (attribute) function; A : T1 3 . . . 3 Tn 3 V1 3 . . . 3 Vm

3 Statement regarding A; and every specific property can be represented
as an attribute function of the form; A~t1, . . . , tn, v1, . . . , vm! where ti

[ Ti, vj [ Vj.

Note: The propositional form of attributes can be converted to a func-
tional form in which an attribute can be assigned values (we allow an
attribute to be multivalued). Below, we use the functional form of at-
tributes.

The examples in Table I illustrate the notion of an attribute function and
how it represents properties. Note that sometimes properties that appear to
be intrinsic are actually mutual. For example, at first glance, being an
employee appears to be an intrinsic property of a person. It is a mutual
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property, however, because it depends upon the existence of both a person
and an employer.

2.4 Class and Kind

The concept of a class is now widely used within the conceptual modeling
literature. It is important because we usually conceive of a thing as an
instance of a certain type of thing. Thus, we formalize the concept of a class
and the related notion of a kind:

Definition 1*. The scope of a property is the set of things that possess
the property. That is, if Q is the set of all things and P is the set of all
properties, the scope function S is the mapping S : P 3 2Q.

Definition 2*. A subset of things is called a class if and only if a
property exists such that the subset is the scope of that property. That is, a
subset X of the set of things Q is called a class of things iff ?p [ P such
that X 5 S~ p! [ 2Q.

Definition 3*. A subset of things X is a subclass of another set of things
Y if and only if X is a proper subset of Y. Conversely, Y is a superclass of X.

Corollary 3. If S~ p1! 5 X and S~ p2! 5 Y, p1, p2 [ P, then X is a
subclass of Y if and only if S~ p1! , S~ p2!.

Note that if a set of things is a subclass of another set of things, all things
in the former set must also possess the property possessed by all things in
the latter set. Indeed, it is common to define subclasses by first identifying
an additional property that some members of a class possess. The subclass
is then defined in terms of the scope of the conjunction of the property used
initially to define the class and the additional property of interest. In short,
subclasses are formed by “adding” properties to the set of properties
possessed by things in a class. Conversely, superclasses are formed by

Table I. Properties Represented By Attribute Functions

Property Attribute Value of Attribute
(representing the property in

general)
(representing the specific
property of an individual)

Height A : persons 3 U 3 P (where U is a
set of units of measure and P is the
set of nonnegative numbers)

“John’s height is 1.70 metres”
Height (‘John’,‘metre’,1.70)

Being an
employee

A : persons 3 companies “Mary works-for company X”
Works-for(‘Mary’,‘X’)

A supplier
supplies a part

A : parts 3 suppliers “Supplier X supplies part P”
Supplies(‘P’,‘X’)

A supplier
supplies a part
at a certain
price

A : parts 3 suppliers 3 C 3 P
(where C is a set of currencies and
P is the set of nonnegative numbers
with two decimals)

“Supplier X supplies part P at a
price of $50.00”
Price(‘P’,‘X’,‘$’,50.00)
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“subtracting” properties from the set of properties possessed by things in a
subclass.

Definition 4*. Let R be a set of properties. An R-kind is the intersection
of all scopes of properties in R.

If the set R is finite R 5 $p1, . . . , pn%, we can define a compound
property–one having all properties in R. In that case, an R-kind is a class.

Finally, when a kind contains only things whose combination of proper-
ties abide by “laws,” it is termed a natural kind. Things in a natural kind
can only assume states that are “allowed” by a set of laws. (Note that we
define the notion of “law” formally, below.)

In short, a class is defined by a set of things possessing a common
property, a kind is defined by a set of properties, and a natural kind is
defined by a set of lawfully related properties.

2.5 Functional Schema, State, and Law

Similar things can be represented by the same model. One specific model of
things is a functional schema. In a functional schema, the attributes of the
conceptual model of a thing are represented in a functional rather than a
propositional form. A functional schema, therefore, is a finite sequence of
attribute functions defined on a certain domain:

Definition 5*. Let T be a set of things all possessing a common set of
properties. A functional schema Xm 5 , M, F . is a nonempty set M,
and a finite sequence F 5 , F1, . . . , Fn . of functions defined on M;
that is, Fi : M 3 Vi where Vi is a domain of values, and each (attribute)
function represents a property of the things.

Several aspects of this definition need clarification. First, in a functional
schema, attributes are represented by nonpropositional functions and not
predicates. Bunge proposes this alternative form because it is more com-
mon in the sciences; it is more “economical.” In particular, it is a convenient
form for defining the notion of state (see below). Second, the domain M
reflects any conditions under which the value of the function Fi is “ob-
served.” Often, M is a set of time instances. It may , however, include other
variables such as who observes the thing. In essence, the existence of M
recognizes that all real-world observations are relative. Third, the func-
tions Fi are evaluated for each thing in the set T (i.e., the set of things all
possess the same properties for which the functional schema is defined).

For example, assume the set of things T is the set of employees in an
organization. A function F1 represents the salary of employees in dollars.
For a particular employee, it maps time instants ti [ M into, say, the set of
positive integers. Thus, the function shows an employee’s salary level at
each point in time. Other functions Fi can be used to represent other
attributes of the employee (e.g., educational qualifications and prior work
experience).
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Note, also, that a functional schema is based on a representation of a
partial set of properties. Hence, a functional schema can be conceived as a
model of a class or kind. Because a functional schema is just a model
created for a certain purpose, the properties represented in a functional
schema depend upon the circumstances and purpose of modeling the
things. For example, a person may be viewed as an employee, a customer,
or a taxpayer. Similarly, a university student may be viewed differently by
the department responsible for academic records and the department
responsible for tuition fee payments. Thus, a functional schema can be
interpreted as a formalization of a view of a set of similar things [Takagaki
and Wand 1991].

The idea of a functional schema also allows us to define the notion of the
state of a thing. The state concept is useful for reasoning about how things
may change.

Definition 6*. Consider a thing X described by the functional schema
,M, F.. The function Fi : M 3 Vi is termed the ith state function of the
thing. The set of values F~t! 5 ,F1~t!, . . . , Fn~t!. at a certain point t
[ M, is said to represent the state of X at t.

The definition of state allows any combination of the values of the
functions Fi~t! to be a possible state. Not all combinations of the values of
$Vi, i 5 1, . . . , n% might occur, however. Restrictions on the possible
combinations are termed laws:

Definition 7*. Any restriction on the possible values of the components
of a functional schema of a thing or their combinations is termed a law.

For example, if the functional schema of an employee contains rank and
salary as state variables, a law may constrain the allowed combinations of
rank and salary.

Finally, these constructs allow us to address two fundamental questions
that have implications for conceptual modeling: Can two things possess
exactly the same properties? Does a thing remain the “same” when it
acquires or loses properties? These questions are addressed by the follow-
ing two ontological principles:

Principle 1*. No two things possess exactly the same set of specific
properties.

Principle 2*. (Nominal invariance): “A thing, if named, shall keep its
name throughout its history as long as the latter does not include changes
in natural kind–changes which call for changes of name” [Bunge 1977, p.
221].

The former principle implies that keys are unnecessary attributes in
conceptual modeling. Indeed, it makes clear that keys are simply imple-
mentation mechanisms. Thus, key attributes have no informative role in a
functional schema nor in a conceptual model of a domain.

502 • Y. Wand et al.

ACM Transactions on Database Systems, Vol. 24, No. 4, December 1999.



The latter principle implies that a thing can change properties and still
be considered the same thing. It will cease being considered the same only
when the laws that specify its possible states undergo change. The acquisi-
tion or loss of a property has implications for how a thing is “classed,”
however. Moreover, it has implications for how we deal with optional
properties. We return to this matter below.

2.6 Interaction

Things can interact. When two things interact, one may cause the other to
change. Changes to things are manifested as changes to properties, which
will be modeled via changes in the values of attribute functions–namely,
changes of state.

Definition 8*. Thing X acts on thing Y if and only if the states that Y
traverses for a given subset of M when X is present are different from the
states that Y would traverse if the thing X did not exist. Things X and Y
interact if at least one acts on the other.

For example, consider specific instances of an inventory item and a
customer. Assume the current state of the item manifests that it is in stock.
If the customer decides to purchase the item, its availability (and hence its
state) will change as a function of time. According to our definition, the
customer and the inventory item interact because the states that the
inventory item traverses through time are affected by the existence of the
customer.

A close link exists between the notion of interaction and the notion of a
mutual property. In this regard, consider two types of things, T1 and T2,
such that a thing of type T1 can interact with a thing of type T2. The
existence of interaction is a mutual property of things in T1 and in T2.
Hence, it can be described in terms of an attribute predicate:

AI : T1 3 T2 3 Statement that an interaction exists

If t1 and t2 interact, this form implies that the predicate AI~t1, t2! is “true.”
Conversely, the existence of a mutual property can indicate an interac-

tion. Consider an example from Table I. The (mutual) property that a
person is employed by a company implies that the existence of the company
affects the state of the person (and vice versa). For example, if the company
ceases to exist, the person is no longer employed. Similarly, if the employee
quits, the (set-valued) attribute of the company that shows its list of
employees will change in value. A mutual property that reflects interaction
is termed a binding mutual property [Bunge 1977, p. 102]. A binding
property implies that some changes in one thing are related to (precede, are
accompanied by, or are followed by) changes in the other thing. This is true
in the example “a person works-for a company.” A property that does not
imply interaction is termed nonbinding. For example, “object a is behind
object b.”
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2.7 Composition of Things

Composition is a fundamental ontological concept which addresses the
notion that a thing is made-of other things; that is, it has parts. Each of
these things, in turn, is a component-of or part-of the composite thing:

POSTULATE 3*. Two things may associate to form another thing.

Based on this postulate, a thing is a composite if and only if at least two
concrete things combine to form it; otherwise, it is simple. Ontology also
postulates that simple things exist.

The reason we assemble things into composite things is that we are
interested in some property of the composite. In other words, the composite
has at least one emergent property that interests us; that is, a property not
possessed by any of its component parts:

Definition 9*. A property of a composite thing is inherited if and only if
it is a property of any of its components; otherwise, it is emergent.

To illustrate the distinction between an inherited and an emergent
property, consider a computer. A computer is a composite thing because it
is made up of a central processor, main memory, etc. The memory size of
the computer is an inherited property because it is a property of the
memory component. In contrast, the processing power of a computer is an
emergent property because it cannot be attached to any individual compo-
nent. Processing power can be evaluated only for the whole system, even
though it depends on the properties of individual components.

Ontology postulates that humans view an aggregation of things as a
composite thing only if they are interested in at least one emergent
(holistic) characteristic of the composite:

POSTULATE 4*. Every composite thing possesses emergent properties.

For example, every composite will have emergent properties like its
number of components and, in the case of systems, the structure of its
components and its overall history (which will not be equivalent to the
histories of its components). Often, also, it is the relationship of the whole
(rather than the individual components) to some other thing that is of
interest to stakeholders–for example, the relationship of a university (a
system of interacting components) with its funding agencies.

In ontology, the part-of construct is a type of binding mutual relation-
ship. The history of the composite (as manifested through one or more of its
emergent properties) depends on one or more of its components. For
example, the death of a family member (a component of the family) may
affect its taxation status (an emergent property of the family composite).
The death of a family member also affects other emergent properties of the
composite such as the number of family members and the average age of
family members.

A number of ontological researchers (e.g., Simons [1987] ; Varzi [1994])
have attempted to clearly distinguish between connection relationships
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(e.g., a husband and wife interact) and part-of relationships (e.g., the
husband and wife are parts of a family). The former relationships are
defined as topological relationships; the latter as mereological relation-
ships. In ontology, however, both topological and mereological relationships
are types of mutual properties. Moreover, in conceptual modeling, we are
usually interested in those types of topological and mereological relation-
ships that are binding mutual properties.

Note that our notion of aggregation is not one of “assembling” attribute
“objects” to form a “composite” object (see, e.g., Elmasri and Navathe [1994,
pp. 636–637]). For a start, in our ontology, attributes are not objects (see
Rule 1 in Section 4). Rather, they are proxies for (unknowable) properties.
We model objects/things via a functional schema, which is the set of
attributes we choose to describe the object/thing. In our ontology, aggrega-
tion pertains only to building composite things using the part-of (mereologi-
cal) relationship.

Finally, the notion of composite might be extended further by indicating
mutual properties among its components. In particular, if components have
a mutual attribute that indicates some precedence among them, the compo-
nents can be viewed as forming a sequence.

3. FORMALIZATION OF CONCEPTUAL MODELING CONSTRUCTS

In this section we propose mappings from the set of ontological constructs
discussed in Section 2 into well-known conceptual modeling constructs. Our
goal is threefold. First, we seek to show that ontological constructs often
have a representation in familiar modeling constructs. Second, the map-
ping enables us to assign a precise meaning to these constructs. Third, by
providing an ontological meaning to well-known modeling constructs, we
seek to lay the foundation for resolving the difficulties we described earlier
pertaining to the modeling of relationships.

Table II summarizes our proposed mappings from the ontological con-
structs discussed in Section 2 to commonly used constructs in data-oriented
and OO conceptual modeling. Table II also includes proposed generic terms
for conceptual modeling constructs. Note that we are not implying that
users of conceptual modeling constructs always comply with our proposed
mappings. Indeed, the conceptual modeling literature is replete with exam-
ples where the mappings are violated; a matter we take up further in
Sections 4 and 5. We argue that these violations are the primary source of
semantic ambiguity in conceptual modeling work. They reflect that a
singular ontological meaning of a conceptual modeling construct has not
been preserved, and thus the interpretation of the construct is no longer
clear.

3.1 Things

We begin by positing that the fundamental construct needed to model a
domain is a representation of a thing. Identifying the things in a domain is
a prerequisite to our eliciting the remaining semantics–for example, the
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attributes that are important, the relationships that exist among things,
and the classes used to generate a view of the domain.

The generic conceptual modeling construct used to represent a thing is an
instance. Depending upon the modeling approach used, an instance in turn
is represented as an entity or object:

Premise 1. The primary focus when modeling a domain is the things
that exist in the domain.

Definition 10. An instance in a conceptual model is a representation of a
thing in the ontological model.

The notion of using objects or entities as modeling constructs to represent
instances of things is widely held. For example, Coad and Yourdon [1991, p.
53] argue that an object is “An abstraction of something in the problem
domain.” Similarly, Chen [1976, p. 10] argues that “An entity is a ‘thing’
which can be distinctly identified.”

3.2 Properties and Attributes

In the ontological model, recall that humans are deemed to be aware of
properties of things only via attributes. Thus, conceptual models never

Table II. Mapping Ontological Constructs to Conceptual Modeling Constructs

Ontological Construct Commonly Used Construct

Proposed Generic
Conceptual Modeling

Construct

Thing Entity, Object Instance

Property No direct representation No direct representation

Attribute representing an
intrinsic property

Attribute (of an entity or an
object)

Attribute (type: intrinsic)

Attribute representing a
mutual property

Relationship (binary or n-ary) Attribute (type: mutual)
Reference attribute

Interaction attribute
representing a binding
mutual property

Relationship Attribute (type: mutual,
binding)Reference attribute

Message connection
Service request

Class Entity type, object class Class

Kind Entity type, object class Class

Natural kind Object type Class

Simple thing Entity, object Instance (type: simple)

Composite thing Aggregate entity or object Instance (type: composite)

Connection attribute
representing a binding
mutual property

Relationship Attribute (type: mutual,
binding, topological)

Component-of attribute
representing a binding
mutual property

Relationship
Part-of

Attribute (type: mutual,
binding, mereological)
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represent properties directly. Rather, they represent only attributes. Be-
cause attributes represent either intrinsic or mutual (relational) properties,
however, we distinguish between two situations in conceptual models:

Definition 11. An attribute in a conceptual model is a representation of
an attribute in the ontological model, which in turn represents an intrinsic
property (one or more) of a thing in the real world. A relationship in a
conceptual model is a representation of an attribute in the ontological
model, which in turn represents a mutual property (one or more) of a thing
in the real world.

In data-oriented conceptual models, relationships are shown in two ways:
with no special symbol, but simply by a line connecting two entities; or
explicitly by a special symbol (e.g., a diamond) to which the related entities
are connected. In OO conceptual models, these representations are also
used. In addition, relationships in OO conceptual models are sometimes
shown via message connections (with or without the use of a special
construct) [Rumbaugh et al. 1991; Coad and Yourdon 1991]. In all cases,
the degree of a relationship can be determined by the number of lines
connecting the things or objects that participate in the relationship.

At first glance, message connections in OO models may appear to be a
different construct from the relationships shown in data-oriented concep-
tual models. The ontological model indicates, however, that they represent
the same construct. From an ontological perspective, a message connection
implies that one object can affect the state of the other; that is, the two
objects interact. The attributes of the objects that change directly as a
result of the message connection are mutual attributes. In ontology, how-
ever, recall that interaction is manifested as a binding mutual property.
Because a relationship represents any mutual property, it is a generaliza-
tion that represents either a binding or a nonbinding mutual property. In
OO conceptual models, therefore, use of the message construct conveys
additional information about the nature of the mutual property, namely,
that it is binding.

3.3 Class and Kind

We assume that all kinds are defined by a finite set of properties. Hence,
they can be viewed as classes. A class is defined via a set of properties (a
compound property) that a set of things possess in common. In the
ontological model, properties in turn are represented by attribute functions
in the functional schema. Hence, a functional schema can be conceived as a
model of things that are alike in some way; that is, a model of a class (or
kind):

Definition 12. A class (or type) in a conceptual model is a representation
of a class or kind in the ontological model.

In the ontological model, recall that attribute functions in a functional
schema represent either intrinsic properties or mutual properties. In a
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conceptual model, therefore, a class is defined in terms of both attributes
and relationships (and message connections for OO models). Note that the
generic conceptual modeling construct is a class. This generic construct in
turn is represented in specific conceptual modeling methodologies as either
entity types or object classes and types.

In conceptual modeling, subclasses are often defined via the process of
specialization (the IS-A concept). Similarly, superclasses are often defined
via the process of generalization. In the context of the ontological model,
subclasses and superclasses are simply classes or kinds. Moreover, given
our property-based view of classes, specialization and generalization can be
conceived as processes that lead to the addition of properties to or subtrac-
tion of properties from the set of properties possessed by other classes (see
Parsons and Wand [1997]).

Definition 13. Specialization is the process of forming one class from
another class by adding properties to the set of properties possessed by the
latter class. Conversely, generalization is the process of forming one class
from two or more other classes by identifying properties that are common
to these latter classes (subtracting properties that are not common to
them).

3.4 Laws and Natural Kinds

Recall that laws in the ontological model constrain the states that can be
assumed by things. The generic conceptual modeling construct used to
represent a law is a constraint:

Definition 14. A constraint in a conceptual model is a representation of
a law in the ontological model.

In data-oriented conceptual models, constraints are represented by integ-
rity constraints. In OO models, methods that control object states are also a
representation of constraints. In the ontological model, when the instances
of a kind are subject to laws, the kind is termed a natural kind. Hence,
class definitions that include integrity constraints and object-type defini-
tions that include methods (or operations) can be viewed as representing
natural kinds.

While entities and objects represent individual things, note that classes,
kinds, and types represent views of things, and usually apply to many
things. Because things exist independently of the views that are assigned
to them, we argue that entities and objects also should be conceived
independently of classes or types. In this light, the term “object” should not
be used as a descriptor for a class, kind, or type [Shlaer and Mellor 1988, p.
11]).

3.5 Composites and the Part-of Relationship

Ontologically, both a composite and its components are things. The former
is a complex thing; the latter are simple or complex things. Recall that the
composite and its components are related via a binding mutual property. In
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conceptual models, a relationship construct is often used to show that the
composite and its components are related (e.g., Elmasri and Navathe [1994,
p. 67]). In ontology, the part-of (mereological) relationship is a type of
binding mutual attribute. Recall, it is distinguished from a connection
(topological) relationship, which is also a type of binding mutual attribute.

4. ONTOLOGY-BASED CONCEPTUAL MODELING RULES

In this section we propose a set of conceptual modeling rules based on
Bunge’s [1977; 1979] ontological theory and our proposed mappings from
his ontological constructs to conceptual modeling constructs. These rules
are not tied to a specific conceptual modeling approach. Rather, they are
applicable to any approach that uses the generic constructs listed in the
right-hand column of Table II—for example, ER modeling, object-role
modeling (ORM, or its precursor, NIAM), and OO modeling. We underscore
again that our focus is on conceptual or domain modeling, and not data
modeling (in the sense of database design). Also, the mappings we propose
include more concepts than are usually available within any one modeling
method.

The motivation for our rules is that we seek to provide a precise meaning
for some important conceptual modeling constructs. In particular, we seek
to reduce semantic ambiguity by avoiding (a) construct overload, whereby
one modeling construct stands for two or more ontological constructs, and
(b) construct redundancy, whereby more than one modeling construct can
be used to represent a single ontological construct (see Wand and Weber
[1993]). Whenever instances of construct overload or construct redundancy
occur, we argue that a prima facie case exists for semantic ambiguity to
arise. Stakeholders’ understanding of the domain being modeled is likely to
be undermined because a one-one mapping does not exist between ontolog-
ical constructs and modeling constructs.

In this regard, several of our rules provide theoretical support for some
existing modeling practices by showing why semantic ambiguity should not
arise. These rules are likely to be accepted, therefore, at face value. Other
rules are counterintuitive, however, and contravene widespread conceptual
modeling practices. We see this outcome as a strength of our approach
because it motivates us to be circumspect about some existing, widely
accepted conceptual modeling practices. In some cases we now have re-
search outcomes (which we reference below) to show that our rules do
indeed reduce semantic ambiguity in conceptual modeling. In other cases,
however, the research needed to evaluate the merits of our rules has yet to
be conducted. Accordingly, we see our rules as propositions to be tested
empirically.

Based on our ontological theory, then, we propose seven rules as founda-
tions for conceptual modeling practice:

RULE 1. Things are represented only as instances. Instances should
represent only things.
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Rationale: Because things are fundamental constructs, they should be
represented by special constructs that do not represent any other ontologi-
cal concept.

Practical implications: The notion of an entity or object should be used
only to represent things. In the ontological model, things can be linked only
by mutual properties (usually reflecting interactions), not by other things.
Because mutual properties are not things, they should not be represented
by constructs that represent things. Thus, Rule 1 proscribes the practice of
using entities or objects to connect other entities or objects. Interestingly,
widely-read literature on conceptual modeling often recommends that
entities or objects be used to model constructs other than things; for
example, the use of “event remembered” to connect two object classes where
the relationships is of cardinality m : n [Coad and Yourdon 1991, p. 131]
and the notion of “objectified relationships,” which involve “treating a
relationship between objects as an object itself” [Halpin 1995, p. 65].

Similarly, in ontology, an event is a change of state of a thing, not a
thing. Therefore, rule 1 also proscribes modeling events as entities or
objects. Again, widely-read literature on conceptual modeling often shows
events modeled as entities or objects. For example, the authors of OSA
[Embley et al. 1992, p. 68] indicate “we may model any event as an object.”
Again, we note that this implication applies to conceptual (domain) model-
ing, not to database design. From a database design viewpoint, an event
can be represented as a record modeled as an entity in an ER diagram or a
data object in an OO diagram.

Rule 1 also proscribes modeling properties (attributes) as things (entities,
objects). Thus, this rule runs counter to modeling approaches like NIAM
that are founded on the contention that a distinction should not be made
between properties and things (NIAM models both attributes and entities
as objects) [Halpin 1995]. Based on the ontological principles we have
articulated here, however, Weber [1996] provides psychological theory and
compelling evidence in support of humans making a distinction between
things and their properties and the need to maintain this distinction in
conceptual models that are built to describe a domain.

Nor does Rule 1 allow “values” to be modeled as things or objects (e.g.,
see Elmasri and Navathe [1994, pp. 667–671]). Values are elements of the
codomains of attribute functions. They cannot exist independently in the
world. Instead, they must be conceived in terms of things that have
properties that in turn are represented as values of attribute functions.

RULE 2. Both simple and composite things should be represented using
the same construct (entity, object).

Rationale: This rule is a corollary of Rule 1: both simple things and
composite things are things. Hence, they should be modeled in the same
way.

Practical implications: Given Rule 2, whether we use an entity/object or a
relationship to represent a composite thing should no longer be an issue in
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conceptual modeling. Rule 2 proscribes the use of relationships to represent
composites. Note, however, that we are not proscribing the use of different
symbols to distinguish simple things from composite things. For example,
to avoid construct overload, we may want to annotate the symbol we use for
things, to differentiate between simple things and composite things. Alter-
natively, we might use the same symbol to represent a simple thing and a
composite thing, and rely on the existence of a part-of relationship symbol
to signal when a thing is simple or composite.

RULE 3. A class or a kind of thing is defined in terms of a given set of
attributes and relationships; that is, intrinsic attributes and mutual at-
tributes.

Rationale: A class is represented by a functional schema. A functional
schema is defined in terms of a set of intrinsic attributes and mutual
attributes that are used to represent both intrinsic and mutual properties.

Practical implications:
(1) A class/type definition should include relationships or message connec-

tions, as appropriate.

(2) The same thing can be viewed in terms of different functional schemata
(sets of intrinsic and mutual attributes/relationships). Each view
should be represented as a class or type, defined in terms of attributes
and relationships. Thus, at any time, a specific thing can be an instance
of several classes that do not have to be related by inheritance.

(3) Assume a thing has “acquired” a property (for example, a person has
become an employee of a company). If this property is relevant for
modeling purposes, Rule 3 requires that the thing now be modeled via a
new functional schema. This schema is represented by another entity
type of object class. Thus, the “acquisition” (or loss) of a property
signals that the thing has become (or ceased to be) an instance of a
class.

(4) Because a class is defined via a set of attributes and relationships
(mutual attributes), a class definition cannot include optional proper-
ties.

RULE 4. An aggregate type/class must have properties in addition to
those of its component types/classes.

Rationale: A composite thing must possess emergent properties; that is,
properties not possessed by any of its components.

Practical implications: A composite thing must be shown with attributes
or relationships not possessed by any of its components. Otherwise, it is not
a composite thing or else the model is missing important information.
Recall that relationships represent mutual properties, and mutual proper-
ties may represent interactions. It is sufficient, therefore, for a composite
thing to be involved in a relationship in which none of its components
partake. For example, an organization may be entitled to government
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support, but none of the individuals in the organization may be entitled to
the support.

RULE 5. All attributes and relationships in a class represent properties
of things in the class.

Rationale: Class definitions in ontology are based upon properties of
individual things; that is, substantial properties.

Practical implications: Identification attributes are not part of a concep-
tual model. At first glance, this implication is counterintuitive, as “name”
and “key” are usually the first attributes of a thing to be identified. Rule 5
does not preclude the use of identifying attributes in system design.
Rather, it indicates that they have no significance in modeling the world.
This observation is congruent with Rumbaugh et al.’s [1991, p. 2] argu-
ment: “In the real world an object simply exists, but within a programming
language each object has a unique handle by which it can be uniquely
referenced.” In essence, use of identification attributes reflects the ontolog-
ical premise that every thing is unique (no two things possess the same set
of properties).

RULE 6. “Null” attributes have no meaning.

Rationale: Not having a property is not a property.
Practical implications: Rule 6 requires that all attributes included in a

model, whether representing intrinsic or mutual properties, have values for
all possible instances. In particular, it implies that a relationship should be
instantiated for all instances of a class. In short, intrinsic attributes and
relationships should not be optional but mandatory (see also Weber and
Zhang [1996]). Rule 6 negates the common practice of showing attributes
and relationships as either optional or mandatory (e.g., Teorey et al.
[1986]). In other words, “null” values must not exist when we model a
domain. Again, these implications apply to conceptual modeling rather
than to database design. The same database design may result, irrespective
of whether we use optional attributes, optional relationships, or subclassi-
fication in our conceptual model. We contend, however, that the approach
we use in our conceptual model will impact the clarity of the meaning we
convey to stakeholders, including database designers.

RULE 7. The same construct should be used to represent a binary
relationship and a higher-order relationship.

Rationale: Both binary and higher-order relationships reflect attributes
representing mutual properties.

Practical implications: Rule 7 proscribes the practice of using different
constructs to represent binary and higher-order relationships (e.g., Embley
et al. [1992]; Rumbaugh et al. [1991]). Again, note that we are not
proscribing the use of different symbols to distinguish binary relationships
from higher-order relationships. Instead, we only require that designers
recognize that binary and higher-order relationships are types of the same
construct–namely, a mutual property/attribute. In terms of a conceptual
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modeling diagram, the same symbol can often be used to represent binary
and higher-order relationships, since the number of lines linking the
relationship symbol with the entity symbols, representing the entities
involved in the relationship, indicates the degree of the relationship.

5. APPLYING THE RULES TO MODEL RELATIONSHIP TYPES IN ER
MODELING

In this section we use the ontological foundations and conceptual modeling
rules we have articulated above to derive additional rules for modeling
relationship types in ER modeling. Our purpose is to illustrate the power of
the rules and to show how they can be used to identify the strengths and
weaknesses of practices employed to represent relationships in a widely
used conceptual modeling approach.

5.1 Relationship Types With Attributes

Consider the following two statements about a university domain:
A student attends a university.
A student attends a university from a given date.

How should these two statements be represented in the ER model?
Figure 1 shows how we believe the first statement will be represented.

This representation complies with our rules. It shows that things of class
student possess a mutual property with things of class university–namely,
an “attends” mutual property. The possible states of student things and the
possible states of university things are not independent of each other.
Hence, the existence of a mutual property.

Figure 2 shows how we believe the second statement will be represented.
But this representation is problematical because its interpretation is
ambiguous. Specifically, start date is a mutual property of the student and
university things. In the ER model, therefore, it should be shown using a
relationship symbol if construct overload is to be avoided. Instead, it is
shown using the intrinsic attribute symbol. How then should the ER
diagram be interpreted? [Weber 1997, pp. 112–114]. Is start date an
attribute of the mutual property attends? Under our ontological model,
recall that properties themselves cannot have properties. Thus the repre-
sentation violates our ontology. Moreover, if mutual attributes are to be
given attributes, then consistency dictates we should also be able to attach
attributes to intrinsic attributes—a representation we believe that many, if
not most, conceptual modelers who employ the ER model would reject.

Student UniversityAttends
(1,*) (1,*)

Fig. 1. Student attends a university.
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Figure 3 shows how the statement should be represented in the ER model
if our rules are applied. Relative to the representation in Figure 2, at first
glance the representation in Figure 3 seems to have two disadvantages.
First, visually it appears to be more complex. Second, the cardinalities that
should be attached to the start date relationship type are unclear if one
tries to think of the relationship type as a “linking” construct—like, say,
the relationship type attends in Figure 1, where the values of this relation-
ship type are typically conceived of as tuples whose elements are some kind
of identifiers for the student and university entities.

We argue, however, that conceiving of relationship types as a link
between two entities reflects a design and implementation view (often that
of relations and normalization) rather than a conceptual modeling view of a
domain. Recall from our ontology that mutual properties do not exist
independently of the things that possess them. From the perspective of
conceptual modeling, therefore, they must be conceived of as properties of
the things that possess them. From the perspective of the university entity,
therefore, the start date mutual property is a multivalued property (pre-
sumably a student can start at multiple times during a year). From the
perspective of the student entity, the start date mutual property is also a
multivalued property (presumably a student may have multiple start dates
if she or he has attended multiple universities). The cardinalities shown in
Figure 3 for the start date relationship type, therefore, see this relationship
as a multivalued property of two things.

We believe that the design and implementation perspective of relation-
ships as links between two entities (which can be implemented as connect-
ing relations) has been the primary reason for modeling relationship types
in the ER model, as in Figure 2. From a normalization perspective, for
example, the start date mutual property poses problems because its values
are not the identifiers of the student and university entities. The “easy”
solution, therefore, is to see start date as an attribute of a relationship type
that does have the identifiers of the student and university entities as
values, namely, the attends relationship type. The normalized relation
derived from this relationship type then comprises the triple ( student ID,
university ID, and start date). The links between relations that are the
implementations of entity types are thereby attained. From a conceptual
modeling perspective, however, our ontological model predicts that this

Student UniversityAttends
(1,*) (1,*)

Start Date

Fig. 2. Student attends a university from a given date.
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representation might result in a loss of information about the modeled
domain. While this prediction may seem counterintuitive, Burton-Jones
and Weber [1999] have experimental evidence to show that users of an ER
conceptual model who received the representation of mutual attributes,
shown in Figure 3, were better able to undertake problem-solving in a
domain than users who received the representation of mutual attributes
shown in Figure 2.

5.2 Binary and Higher-Order Relationship Types

In the ER model, the relationship type construct is usually shown using one
of two approaches: (a) a line connecting related entity types, or (b) a special
symbol (e.g., a diamond) that is connected to related entity types via lines.
Note that both approaches to representation should not be used in the same
ER diagram if construct redundancy, and therefore semantic ambiguity, is
to be avoided.

For two reasons, our ontology leads us to proscribe the representation of
relationship types via a line with no special mediating symbol between
related entity types. First, mutual attributes whose values are not identifi-
ers for the related entities cannot usually be represented in this way. For
instance, the start date mutual attribute of our example in Section 5.1
cannot be shown with just a line connecting the student and university
entities. In practice, one approach to try to overcome this difficulty is to
employ a “connecting entity type” that can possess attributes (similar to
using a relationship type with attributes, as in Figure 2). Our ontological
analysis proscribes this practice, however, as entity types should only be
used to represent classes of things.

Second, higher-order (ternary and above) mutual attributes cannot be
represented directly. In practice, one approach to overcome this difficulty is
to employ several binary constructs to represent a higher-order mutual
attribute [Rob and Coronel 1997, p. 205]. Again, our ontological analysis
proscribes this practice. A mutual attribute can be understood only in

Student University

Attends

(1,*) (1,*)

Start Date

(1,*)(1,*)

Fig. 3. Alternative representation of student attends a university from a given date.
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terms of all involved things. Thus, it is not ontologically equivalent to a set
of binary attributes, each depending on two things only. Indeed, using
binary attributes to represent higher-order mutual attributes may result in
spurious high-order links; that is, links that do not exist. In other words,
the information about which links truly exist is lost (this phenomenon is
known as a connection trap [Elmasri and Navathe 1989, p. 48]).

Our ontology highlights still another way in which some current prac-
tices for modeling relationships in the ER model are deficient. Specifically,
binary mutual attributes are sometimes represented by making one entity
a “property” of other entities. For example, employer might be included as
an attribute of employee. Because being employed is a mutual attribute and
not an intrinsic attribute, it should be represented by a relationship
construct and not an intrinsic attribute construct. We believe that repre-
senting mutual attributes via intrinsic attributes is a carryover from
database design considerations. Specifically, mutual attributes are often
represented as foreign keys in each of the relations that represent the
entity types that possess the mutual property. Design considerations,
however, should not affect conceptual models. Indeed, Embley et al. [1995]
argue that considering design features in models used for analysis “can
corrupt the analysis process.” Recall that keys have no meaning in our
ontological model (Rule 5), and representing a mutual property via a
foreign key attribute in a conceptual model is thus vacuous in our model. In
short, all mutual attributes should be represented as relationships in the
ER model, not just some.

5.3 Mandatory and Optional Relationships

Things of certain types may interact. For example:
A customer might buy a certain product.
A student might take a given course.

To reflect this type of situation, ER models often employ optional
relationship types to indicate that instances of a class may form a relation-
ship with instances of another class or the same class. Our rules proscribe
this practice, however (Rule 6). To see why, consider first the case where
every thing from one class interacts with a thing from another class. For
example:

An employee works for a company.
A university student is enrolled in a tertiary institution.

In these examples, a person cannot be an employee without working for a
company, and a person cannot be a university student without enrolling in
a tertiary institution. Accordingly, the functional schema of an employee
type will contain an attribute representing the mutual property of being
employed. Similarly, the functional schema of a student type will contain
an attribute representing the mutual property of being enrolled in a
university. Our ontology requires that these mutual properties be repre-
sented as relationship types (mutual attributes).
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Consider, however, the notion of possible interaction. If things do not
interact with other things, they have no mutual property that manifests an
interaction. In ontology, recall that not having a property is not a property
(Rule 6). Thus, a thing that interacts with another thing will have a
different functional schema from a thing that does not interact with the
other thing.

This analysis leads to several outcomes. First, using an optional relation-
ship type amounts to “folding” two functional schemas into one entity type.
This approach violates our rule that requires each class or type to be
represented by its own functional schema (Rule 3). Second, when a thing
acquires/loses an interaction that is important for modeling purposes, it
should be represented by a new functional schema. According to our rules,
therefore, it should be modeled as a new entity type (sub/super class or
sub/super type, Rule 3). Third, when acquiring or losing a mutual property,
the thing may also have acquired and lost several other properties. For
example, assume a person who is a full-time employee becomes a student.
As a result, the person ceases being a full-time employee and loses his/ her
eligibility for the company’s medical insurance. Thus, significant changes
could occur in the relevant properties modeled.

Accordingly, we provide the following rules:

(1) Optional relationships should be avoided.

(2) The acquisition and loss of a mutual property should be modeled as a
change in type/class.

(3) The ability of instances of a class to acquire an interaction (mutual
property) without losing properties should be modeled as subclassifica-
tion.

Note that point (2) above refers to an instance, and point (3) refers to the
classification structure.

In ER modeling, we therefore advocate the use of an “IS-A” construct
instead of optional relationships. Use of the IS-A construct allows all entity
types to be modeled with mandatory (intrinsic and mutual) attributes only.
Optional attributes, whether instrinsic or mutual, are not required.

To illustrate some implications of our rules, consider the example of
university students who can borrow books from a library (Figure 4). When
a student borrows a book (“book” refers to a specific volume), the book
becomes unavailable in the library. Moreover, the student becomes respon-
sible for returning the book. The states of the student and the book have
changed. Thus, students and books may interact, which is often repre-
sented via an optional relationship (note the zero cardinality number in
Figure 5). When a student actually borrows a book, however, the student
and the book acquire a mutual property. According to our rules, both the
student and the book should now be described by new functional schemas,
represented as new entity types (Figure 6). The student becomes a bor-
rower (for simplicity, assume only students can borrow books), and the book
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becomes a borrowed-book. In Figure 6, note that cardinality numbers are
still used, but our rules proscribe using a cardinality number of zero.

Several advantages accrue from using subtyping rather than optional
relationship types. (1) Optional relationship types do not model a situation
satisfactorily when “acquisition” of a relationship signals a fundamental
change in how we wish to model a thing. For example, consider a paper
submitted to a journal. If the paper is accepted, in due course it becomes a
published article with a substantial change to its properties. For example,
it is published in a certain issue of a journal and will be referenced in
citation indexes. Reclassification accommodates such changes more easily
than optional relationships. Moreover, it clarifies the semantics associated
with the paper.

(2) Using optional relationship types may lead to semantic ambiguities
and inconsistencies because a single functional schema has been used to
describe two classes of things, one for things with and one for things
without the mutual attribute. Each class calls for another name, yet only
one name can be used in the model. In the case of the journal paper, for
example, it is unclear whether the word “paper” relates to a submitted
paper or a published paper.

(3) The integrity constraints (rules/laws) governing things in the domain
are clearer when subtyping is used. With subtyping, the integrity con-
straints apply to all things in the class. Moreover, all integrity constraints
that apply to superclasses are inherited “naturally” by their subclasses.
With optional properties, however, integrity constraints have to be quali-
fied. For example, if unpublished papers and published papers are covered
by a single entity type that has optional attributes, some integrity con-
straints will depend on the outcome of a test to determine whether a paper
is published or unpublished. Moreover, when subclasses are then created
for a class with optional attributes, the inheritance of integrity constraints
is no longer straightforward. Some integrity constraints may be inherited
by the subclass; others may not.

(4) Semantic ambiguities may arise because the chosen relationship type
name is inconsistent with the chosen class name. For example, modeling
the fact that “An instructor teaches a course” with an optional relationship
implies that not every instructor teaches a course. In a university, however,
the title “instructor” implies the person does teach a course. Therefore, the
class name implies different semantics from those implied by the relation-
ship name.

(5) Semantic ambiguities may arise because a relationship name itself
may imply that it must be possessed by a thing whereas a structural
constraint indicates it is optional. For example, the fact stated as “depart-
ment controls project” implies that every department controls at least one

Student Book

Fig. 4. Student and book—no interaction.
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project. Yet notation indicating the relationship is optional implies other-
wise (Figure 7). Which interpretation, therefore, is correct?

In practice, such ambiguities are often resolved using our experience and
commonsense. For example, we might know that controling a project is not
a salient characteristic of a department and interpret controls as may
control. In some cases, however, we might be modeling an organization
where departments can only exist if they have projects under their control.
Should we then follow the semantics implied by the words (and our
experience/commonsense), or the structural constraint specified in the
model? Admittedly, the distinction might not be significant for the practical
design of a database. If a conceptual model is intended to convey informa-
tion about an enterprise and to facilitate problem solving, however, such
ambiguities should be avoided.

In our analysis above, note that we assume that optional attributes stand
for real properties. For example, an analyst might want to indicate that a
person lives in either an apartment or a house. The analyst might draw a
conceptual schema diagram, therefore, with two optional relationships: one
connects a person entity type to a house entity type; and the other connects
the person entity type to an apartment entity type. Because the analyst has
made a distinction between houses and apartments, we assume this dis-
tinction indicates the analyst is seeking to distinguish between two real
properties. For example, the real properties might pertain to the types of
insurance needs that house dwellers are likely to have versus those that
apartment dwellers are likely to have. According to our rule, therefore, the

Student BookBorrows
(0,*) (0,1)

Fig. 5. Student may borrow—the use of an optional relationship.

Borrower Borrowed
book

Borrows
(*) (1)

Student Book

IS-A IS-A

Fig. 6. Student and book acquire a mutual property—borrows.
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analyst should replace the optional properties with two subtypes: one for
house dwellers and the other for apartment dwellers.

In some cases, however, optional properties are simply alternative prox-
ies for the same underlying real property. In our example above, the real
property of concern to the analyst might simply be a person’s place of
residence. At the conceptual modeling level, therefore, the analyst does not
need to distinguish between different types of residences because the
domain stakeholders care only that a person has a residence of some sort.
At the implementation modeling level, however, designers might want to
provide alternative representations of this underlying real property; for
example, address-line fields/domains that are best suited to houses versus
address-line fields/domains that are best suited to apartments. Hence, a
schema diagram prepared to assist design and implementation of the
database might show optional relationships to accommodate these two
alternative types of addresses. We stress that these are implementation
concerns, however, and not conceptual modeling concerns.

In short, our rule in relation to optional (intrinsic and mutual) attributes
is straightforward. If, in the context of some domain, an optional attribute
in a conceptual schema diagram represents an alternative real property, a
subtype must be created. If an optional attribute in a conceptual schema
diagram simply represents an alternative “label” for some underlying real
property, however, then implementation modeling has been confused with
conceptual modeling. At the implementation level, use of optional relation-
ships (and attributes) will perhaps lead to a satisfactory database design.
We believe this issue needs further research because we suspect that
optionality undermines understanding, even when it pertains to attributes
that stand for alternative labels of a common real property rather than
alternative real properties themselves.

We recognize that the downside of our rule is that the size of a conceptual
model might sometimes increase markedly if subtypes with mandatory
properties are used in place of optional relationships. Nonetheless, the
primary purpose of a conceptual model is to provide clear semantics about a
domain to its users. A concise conceptual model achieves little, therefore, if
its semantics are ambiguous. In this regard, Gemino [1998; 1999] and
Bodart et al. [1998], during experimental work, found that users who
employ a conceptual model where optional properties are proscribed under-
take better problem solving in relation to the domain described than users
who employ a conceptual model where optional properties are permitted.

Department Projectcontrols
(0,*) (1,1)

Fig. 7. Department controls a project (adapted from Elmasri and Navathe [1994, p. 58]).
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5.4 Composite Things

In the ER model, the composition construct is represented in various ways.
For example, use of a “part-of” relationship to connect a component and its
composite is common in the extended entity-relationship approach (e.g.,
Fahrner and Vosson [1995]). Sometimes, however, a relationship symbol
rather than an entity symbol is used to represent a composite thing (Figure
8). Also, composition is sometimes shown by physically enclosing the entity
symbols representing the components within the entity symbol represent-
ing the composite (Figure 9).

Our ontological model, however, allows us to determine clear-cut rules
for modeling composite things:

(1) The functional schema of a composite thing and the functional schemas
of its components should be represented as entity types/classes.

(2) Each component should be linked with the composite entity via a
(directional) part-of relationship type construct (representing a binding
mutual property).

(3) The emergent properties of the composite should be modeled as at-
tributes and relationship types.

These rules have several implications. First, because a composite is a
thing, it has its own properties. Moreover, recall that the ontological model
requires that a composite must possess at least one emergent property.
This property can be either intrinsic (shown as an attribute) or mutual
(shown as a relationship type). If we model an aggregate without additional
properties, the model is incomplete.

Second, we need to recognize that things that are part-of another thing
may play different roles. For example, two people can be a part of a team.
One may be the team leader, however, and the other may be a regular
member. Thus, we sometimes need to embellish our statements about the
part-of relationship to indicate the role to be played:

A is part-of B in the role of . . .

The implication is that the specific role that a part plays means we must
form subclasses of a class of things to reflect different roles. For example,
we need to classify individuals who make up a team into team members
and team leaders. Otherwise, as we show below, we will be forced to violate
one of our earlier rules and to use optional properties to indicate that

Married
  Man

Married
Woman

MARRIED COUPLE

is
married

to

Fig. 8. Marriage as a relationship (adapted from Hansen and Hansen [1992, p. 85]).
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individuals may sometimes be team members and sometimes be team
leaders.

Third, showing both the composite and the components provides richer
meaning to the part-of relationship-type construct. In particular, the model
can accommodate the minimum and maximum number of components of
each type. Moreover, because each component’s role can be represented,
different constraints can be associated with each role.

To illustrate the advantages of modeling a composite according to these
rules, consider an ER model representation of a team made up of members
and a team leader, all of whom are employees (Figure 10). Assume that the
team is represented by an optional relationship construct (contrary to our
rules pertaining to optional properties).

In this representation it is difficult to show that the team must have at
least one member or that it has exactly one leader, as the structural
constraints relate to employees, not to the team.

Figure 11 shows how we model team according to our rules for compos-
ites. First, both team-member and team-leader are subclasses of employee.
Note that the union of these two subclasses might not equal the employee
class. In other words, some employees may be neither team members nor
team leaders. Moreover, the team-member and team-leader subclasses
might not be disjoint. For example, we might consider all team leaders to
also be team members. Alternatively, even if we do not categorize team
leaders as team members, some employees may be leaders of one team but
members of another team. To avoid construct overload, we need to annotate
our class/subclass/entity type symbols to show whether we are dealing with

Married Man Married Women

Address

is
married

to

Resides
at

Fig. 9. Marriage as an aggregate (adapted from Hansen and Hansen [1992, p. 85]).
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subsets or proper subsets or whether we are dealing with partially overlap-
ping, totally overlapping, or disjoint sets (see, e.g., Elmasri and Navathe
[1994, pp. 618–619]). Alternatively, we might use different symbols to
represent the different circumstances.

Note that our choice of names for the entity types/subclasses indicates
the role they play in the composition relationship; that is, team leader or
team member. The use of subclasses indicates that instances of the sub-
class have an additional property, namely, they are either team leaders or
team members.

Note that team member and team leader, which are the components, and
team, which is the composite, have all been modeled as entity types. They
are all things that have certain properties we wish to model. Indeed, recall
that team must have at least one emergent property (either intrinsic or
mutual) that we wish to model.

The composition relationship is shown via a part-of (relationship-type)
symbol. We have also added an arrow to the part-of symbol to indicate the
direction from the component to the composite. Overall, the symbols make
clear to the user of the diagram that we are seeking to represent a
mereological relationship rather than a topological relationship between
things.

Our model contains no optional relationships. The cardinality constraints
indicate that:

(a) A team member must be a member of at least one team and can be a
member of two or more teams.

(b) A team leader must be a team leader of at least one team and can be a
team leader of two or more teams.

(c) A team must have at least one team member and must have only one
team leader.

Representing the composite as an entity type enables it to be a part-of
another entity type. In this way, a hierarchy of composite things can be
represented where a thing in the hierarchy can be part-of a “higher-level”
composite. For example, a team can be part-of a department.

Employee

(0,*)

(0,1)

member

leader

Team

Fig. 10. TEAM as a relationship.
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Finally, because the composite is represented as a class of things, it can
be a subclass itself (e.g., of a unit) or a superclass (e.g., of a project team).

To further illustrate the application of our rules to a domain that is
sometimes awkward to model, consider a bill-of-materials application; that
is, one where components are parts of a higher-level assembly that itself
may be a component of a higher-level assembly. Figure 12 shows one way to
model a bill-of-materials application using our rules. Note that we have two
entity types/classes, namely, higher-level assembly and lower-level assem-
bly–linked by a part-of relationship type. The intermediate components
(components that are composites themselves and a component of another
composite) are represented by the intersection of the two classes. The
highest-level components (components that are not part of another compo-
nent) can be determined by subtracting the lower-level class (set) from the
higher-level class (set). Similarly, the lowest-level components (components
that are not made up of other components) can be determined by subtract-
ing the higher-level class (set) from the lower-level class (set). The entity-
type symbols representing the two classes overlap to show they are not
disjoint. Note that there are no optional part-of relationship types. None-
theless, Figure 12 still shows the basic recursive nature of the relationship.

To summarize, we argue the following rules apply to modeling compos-
ites:

(1) The class of composite things should be represented as a class (entity
type).

Employee

Team
Member

Team
Leader

Part-of Part-of

Team

1,*

1,*

1,*

1,1

Fig. 11. Using subtyping with mandatory properties.
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(2) Instances of the class of composite things should have attributes
representing their emergent properties.

(3) Each component type should be represented as a class (entity type).

(4) Each component type should be linked to the composite via a (direction-
al) part-of relationship type.

(5) The role of a component should be described using meaningful names
for the subclass of which the component is a member.

Structural constraints can be used to indicate the following information
for the composite:

(1) the minimum number of components in a given role (must be at least
one, but may be greater);

(2) the maximum number of components in a given role;

(3) if several components of the same type are allowed to have the same
part-of role, they represent interchangeable things.

Structural constraints can be used to indicate the following information
for a component:

(1) the minimum number of composites (must be one or more) in which the
component plays some part-of role (note that if a thing is not always a
component of another thing, two subclasses must be formed: one to
describe the independent thing and the other to describe the component
thing);

(2) the maximum cardinality, which represents a “load” measure that
indicates the maximum number of composite entities of a given type in
which the component can be a part in a given role.

6. CONCLUSIONS

In this paper we sought to show how a theory of ontology can be used to
clarify the meaning of certain constructs that are widely used to undertake

Lower-level
assembly

Higher-level
assembly Part-of

1,*

1,*

Fig. 12. Bill-of-materials application.
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conceptual modeling. In particular, we focused on the relationship con-
struct, which is central to many conceptual modeling methodologies, but
seemingly difficult to use in a clear and unambiguous way. We have shown
how our ontological theory can be used to generate simple, prescriptive
rules that we believe will enhance the meaning we seek to communicate via
conceptual models in general and the relationship construct in particular.
We have then shown how the relationship construct must be modeled in ER
modeling if conceptual modelers are to comply with our rules, and indicated
how current ER modeling practices are often at odds with our prescrip-
tions. While these latter practices may suffice to design a database, they
may lead to a loss of meaning when modeling a domain.

The merits of our theoretical analyses and prescriptions should now be
assessed in four ways. (1) They can be evaluated for face validity. Specifi-
cally, they can be scrutinized to determine whether they are consistent
with the ontological theory we employ as the foundation for our work. (2)
They can be shown to experienced conceptual modelers to determine
whether they have intuitive appeal. Our goal is to impact not only the
theory, but also the practice, of conceptual modeling. Thus, the extent to
which our rules are accepted by practitioners is an important test of their
merits. (3) They can be applied to other conceptual modeling approaches to
tease out their implications for these approaches. For brevity, in this paper
we focus on the implications of our rules for ER modeling only. In various
places throughout the paper, however, we foreshadow their implications for
approaches such as OO modeling and ORM. As with ER modeling, it
quickly becomes clear that our rules proscribe some of the current practices
followed with OO modeling and ORM. (4) Formal empirical tests of our
predictions must be undertaken. For example, experiments can be designed
to test our predictions about whether certain conceptual modeling practices
pertaining to relationships undermine the communication of meaning
about an application domain and whether practices that follow our rules
mitigate problems. As we indicated at various places in the paper, we have
already begun this work with some of our colleagues, and the initial results
are supportive of our rules. Much more work needs to be done, however, to
evaluate the worth of the rules we have articulated in this paper.
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