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Abstract

This paper presents an approach to system-of-systems engineering for product development

with the use of ontology. A proposed method for building as well as using ontology to gener-

ate and explore system-of-systems design spaces based on identified system-of-system needs

is presented. The method is largely built to cover the first levels of related work, where a

process for system of systems in the context of product development is introduced. Within

this work, it is shown that scenarios for a system-of-systems can be used to identify needs and

subsequently the system-of-systems capabilities that fulfils them. The allocation of capabilit-

ies to possible constituent systems is used to show the available design space. The proposed

method of this paper therefore addresses these initial challenges and provides a framework

for approaching the system-of-systems design space creation using ontology. A case study

is used to test the method on a fictitious search and rescue scenario based on available re-

sources and information from the Swedish Maritime Administration. The case study shows

that a representation of a system-of-systems scenario can be created in an ontology using the

method. The ontology provides a representation of the involved entities from the fictitious

scenario and their existing relationships. Defined ontology classes containing conditions are

used to represent the identified needs for the system-of-systems. The invocation of a descrip-

tion logic reasoner is subsequently used to classify and create an inferred ontology where the

available system-of-systems solutions are represented as sub-classes and individuals of the

defined classes representing the needs. Finally, several classes representing different possible

system-of-systems needs are used to explore the available design space and to identify the

most persistent solutions of the case study.
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1 Introduction

Interest in system-of-systems engineering (SoSE) for aero-

nautical product development has seen steady growth in re-

cent years, and aerospace systems are becoming more and

more interconnected with their operational environments [1].

This, together with rapid advancements in technology, gener-

ates a desire for systems to collaborate to achieve capabilit-

ies that are not reachable by the individual systems alone [2].

In an ever-changing world, traditional approaches to product

development for aerospace systems fall short when external

factors such as politics, economics, regulations, technolo-

gies and doctrines affect the initially specified requirements

for the systems. This problem becomes more pronounced

when both the long product development time and the ex-

pected lifetime for aerospace systems are taken into account.

A system-of-systems (SoS) perspective for product develop-

ment of aerospace systems puts a focus on SoS needs and

the required SoS capabilities that fulfil them. The corres-

ponding requirements for Constituent Systems (CS) are sub-

sequently generated depending on the intended SoS architec-

ture [1]. This SoS conceptualization of aerospace product de-

velopment consequently takes the process to a more abstract

level, where capabilities that are not achievable by the indi-

vidual systems can be generated through system collabora-

tion. A definition of SoS presented by [3] states that a SoS

is separated from a typical complex system by five character-

istic properties. These are operational independence of com-

ponents, managerial independence of components, geograph-

ical distribution of components, evolutionary development of

components and that the system experiences emergent beha-

viour. This definition of SoS is used throughout this paper.

A proposed holistic product development in a SoS context

was presented in [1], where the process of development was

divided into five main levels of interest. The proposed SoS

design process can be seen in Fig. 1.

The first level of interest presented in Fig. 1 describes how

the needs and boundary conditions of the SoS can generate

SoS capabilities from possible scenarios. It is stated in [1]
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Figure 1: A representation of the holistic SoS design process from [1]. This paper covers the content under Ontology Application.

that analyses can be performed on the process by varying the

initial conditions and boundaries to see how required capabil-

ities respond to changes in the SoS needs. This consequently

generates a design space of available capabilities that fulfil

the SoS needs. The identified SoS capabilities from needs

and scenario analyses can then be distributed to constituent

systems that make up the SoS design space and architecture.

The last two levels of the process describe how CS and

their sub-systems (SS) should be chosen depending on the

requirements generated in the previous levels. It is believed

that ontologies are needed to connect the SoS process levels

in a coherent way using common language and semantics.

The work presented in this paper therefore aims to provide

a method for approaching the first two levels of the SoS-

process and generating a SoS design space as presented in [1]

using ontology. Furthermore, the influence of changing SoS

needs on the available capabilities and SoS design space are

also subject to investigation. This paper thereby contributes

to the realization of the first two levels of interests shown

in Fig. 1. A simple search and rescue (SAR) mission based

on the Swedish Maritime Administration [4] is used as an

implementation example to test the proposed method.

2 Frame of reference

The goal of the presented work is to provide a method for

breaking down SoS needs into suitable capabilities and CS

that together specify an available SoS design space. This

chapter presents work that has been carried out in areas re-

lated to this paper and other approaches intended for the prob-

lem outlined in the introduction.

2.1 Capability- and system-of-systems engineering

The definition of a system according to the International

Council On Systems Engineering (INCOSE) specifies that

"A system is a construct or collection of different elements

that together produce results not obtainable by the elements

alone". [5]. The term SoS is defined by [6] as "An interop-

erating collection of component systems that produce results

unachievable by the individual systems alone". As previously

mentioned, [3] specifies that a Complex System or SoS

is distinguished from a "conventional" system’s definition

by five different characteristics properties. [7] presents a

collection of views on SoS including a definition of SoS

types. These include virtual, collaborative, acknowledged

and directed SoS. It is furthermore argued that SoS are

rarely developed as SoS. The process referred to as SoSE is

rather initialized once an assessment of the SoS performance

and capabilities begins. SoSE consequently involves the

planning, analysis, organization and integration of CS.

Capabilities performed by the CS are combined together with

SoSE into SoS capabilities not achievable by the individual

systems [2, 8]. This focus on capabilities for SoS can be

referred to as capability engineering [9]. The process of

capability engineering involves the identification of desired

capabilities to be performed by the SoS, as well as investigat-

ing the possible options for attaining these capabilities [10].

Furthermore, [10] presents a method for supporting SoSE in

translations of SoS capabilities into requirements. Unified

Modelling Language (UML) object models are here used to

model and increase the understanding of the involved systems

with their respective functions, thus enabling explorations

and trades to achieve desired capabilities. The Systems

Modelling Language (SysML) has also been used to model

SoS in various studies such as [11] and [12].

Enterprise architecture frameworks for defence indus-

tries such as the US Department of Defence Architecture

Framework (DoDAF), the UK Ministry of Defence Archi-

tecture Framework (MoDAF) and the NATO Architecture

Framework (NAF) have been used to model SoS in a model

based systems engineering (MBSE) focused approach [13].

These architecture frameworks are intended to capture the

operational, system, service, maintenance and information

views of the SoS, among others. Other main actors within

SoS and identified methods for approaching complex sys-

tems and SoS have been presented in [1]. [1] furthermore

describes a holistic product development approach for SoS

as mentioned in the introduction. The first of the proposed

SoS-process levels shown in Fig. 1 describes the SoS needs

and boundary conditions. The understanding of SoS needs

and boundary conditions directly influences the strategic

planning and prioritization, which together with the intended

scenario defines the suitable SoS capabilities.
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2.2 Ontology and ontological engineering for system of

systems

A different approach to SoSE involves using ontologies. An

ontology is an "explicit specification of a conceptualiza-

tion" [14]. This is further explained as a formal and explicit

representation of a given domain that involves knowledge

of the involved entities and the relationships that exist

between them [15]. Ontologies have seen a steady increase

in usage for areas such as systems engineering (SE), SoSE

and capability engineering [16–18]. An ontology can be

used to enhance the interoperability aspect of a system or

SoS [16], and it has been shown in [19] that scalability is also

increased. Another approach to further enhance interoperab-

ility but on an ontology level is suggested in [20], where it is

explained that a domain-neutral top-level ontology structure

can support both the creation of new domain ontologies

and the re-usability of existing ones. Top-level ontology

examples can be found in [21]. Domain-specific ontologies

are ontologies intended to describe individual systems or

domains of interest. Such domain ontologies can for example

be found in [22], which describes an ontology for aircraft

design, or [23] where an ontology for information systems

interoperability is presented.

An ontology can be implemented in different ontology

languages. Current standards include languages such as the

Web Ontology Language (OWL) and the Resource Descrip-

tion Language (RDF). OWL is based on RDF, but with the

advantages of being better equipped for description logics

and constraints checking [24]. An ontology made in OWL

is composed of individuals, classes and their properties,

which together are used to describe concepts of the intended

domain modelled in the ontology. OWL supports the use of

description logic reasoners, enabling the creation of more

complex concepts out of simpler ones. Description logic

reasoners can also be used to check for inconsistencies in

the implemented ontology [25]. Different types of reasoners

support different features [26]. Automatic reasoning over

large ontologies requires large computational resources as

indicated in [27, 28]. The scalability for automatic reasoning

is thus hindered by computational resources. Ontologies that

utilize heuristics can contribute to the efficiency of reasoning

in domains containing incomplete data and consequently a

large number of axioms [29]. There are also various optim-

ization techniques which can contribute to the efficiency of

reasoning [28].

Ontology-based approaches for modelling SoS are com-

plementary to UML and SysML due to their ability to

describe chosen domains from different terminologies and

perspectives [18,19]. Studies from Georgia Tech’s Aerospace

Design Laboratory (ASDL) have shown that ontologies

can be used to model and prune the design space of cyber-

physical systems in the context of conceptual design [30]. It

has also been shown that matrix-based approaches such as

an Interactive Reconfigurable Matrix of Alternatives (IRMA)

can be used to illustrate and create the available design space

from the knowledge captured in the ontology [31].

The presented frame of reference for this paper has identified

methods and approaches for the modelling and usage of SoS

in the context of aerospace product development. Figure 2

shows a representation of where the proposed scope of this

research is situated. Based on the gathered information, a

method of modelling an ontology intended for design space

explorations on SoS is proposed in the next chapter.

Figure 2: The positioning of the performed work compared to

other areas and disciplines

3 Method

This chapter introduces a method for translating SoS needs

into capabilities, and subsequently a way of generating the

available design space for a SoS. It builds upon the holistic

engineering approach for SoS introduced in [1], which can be

seen in Fig. 1. As mentioned earlier, this holistic engineering

approach suggests that the development is divided into five

levels of interest, where each of the levels are recurrent and

interrelated with each other. The presented levels are associ-

ated with a respective design space of solutions that should

be derived by successive investigation and exploration of the

previous levels.

3.1 Design space for system-of-systems capabilities

The first level of the presented process involves the descrip-

tion of the intended scenarios that the SoS is believed to be

situated in during its lifetime. This description includes defin-

itions for high-level frames of interest such as geopolitics,

economics, customer needs, technology, laws and regulations,

which together specify the overall boundary conditions and

needs for the SoS. These initial conditions and needs must

be varied based on different possible scenarios in order to

achieve a holistic perspective on the intended SoS [1]. The

influence and uncertainty of the high-level frames of interest

are thereby evaluated. Suitable capabilities that can fulfil the

needs should then be identified in order to generate the SoS

capability design space. The capability design space is also

subject to changing boundary conditions and needs, and a

similar approach by varying scenarios should be used to in-

crease the understanding of the available design space. These

variations on initial conditions are used to explore the design

space, consequently identifying the persistent solutions least

affected by changes. These "resistant" capabilities represen-

ted in the design space are deemed to be suitable strategical

choices based on the trade of boundary conditions and needs.
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The distribution of the chosen capabilities can later be ex-

plored in a variety of different SoS architectures where CS

and SS are assigned with the required capabilities. The pro-

cess explained above is illustrated in Fig. 3.

Figure 3: A detailed view of the needs to SoS capability pro-

cess.

The method proposed in this paper suggests that ontology

should be used to represent the main components presented

in Fig. 3. The ontology provides a mapping of the involved

actors and high-level frames of interest as well as the existing

relationships between them. The following section describes

a suggested approach for modelling an ontology intended for

SoS design space generation and exploration.

3.2 Ontology design and usage

An ontology can be created in several ways, and it is even

argued that there is no one correct way of modelling a domain

since it depends on the application in mind [15]. The ontology

creation method introduced in this paper is largely based on

guidelines presented in [15] and [20], and is intended to be

used with OWL. It follows eight successive steps which are

illustrated in Fig. 4.

3.2.1 Step 1

The aim of the initial step is to determine the scope of the

content and domain that is to be represented. Typically, this

would correspond to the intended usage for the SoS to be

developed, for example SAR.

Step (A) in Fig. 4 is an intermediate step which intro-

duces the option of using a top-level ontology structure.

There are several benefits with top-level ontologies that are

explained in [32]. These include improved interoperability

between domain ontologies.

3.2.2 Step 2

Holistic analyses of possible scenarios for the intended

SoS domain and scope are used to identify entities to be

implemented in the ontology. Such entities include laws,

regulations, weather conditions, available assets, capabilit-

ies, needs and more. It is important to specify terms and

vocabularies carefully to enable coherent formalism so that

ambiguity in definitions is avoided.

Ontologies can suffer from a reinventing-the-wheel syn-

drome where several ontologies are created for the same

domain [32]. It is therefore desirable to consider using

existing ontologies for the SoS design space generation

instead of creating a redundant one [15]. If a decision is

made to utilize existing external ontologies, these should be

modified to fit the intended formalism of the ontology under

development.

3.2.3 Step 3

The third step in the ontology development process involves

the definition and creation of all classes based on the entities

identified in step 2. This is typically done in a hierarchy

structure with classes and sub-classes. The identified SoS

needs of the analysed scenarios should also be defined as

classes. Different approaches can be used when developing

the class hierarchy as described in [15]. It is important that

unequal classes are defined as disjoint for the later invocation

of the description logic reasoner.

Step (B) is optional and can be used if a top-level on-

tology structure is to be utilized. Top-level ontologies include

predefined classes that provide an overarching framework

for organizing the knowledge of different domain ontolo-

gies [32]. The classes and eventual domain ontologies that

represent the intended SoS should consequently be allocated

to the existing framework of the chosen top-level ontology.

3.2.4 Step 4

This step is used to describe the internal structure, existing

relationships and properties of the previously created classes

of the ontology. The associations between the classes should

come from the scenario analyses in step 2, where the rela-

tionships between the different entities are identified. Classes

should also include properties that describe them. These

properties can include values in the form of numbers and lists.

Cardinality specifications are used to describe the number of

relationships a class can have in a min., max. or exactly logic.

Further explanations and details of available properties and

cardinalities in OWL can be found in [15] and [25]. Finally,

classes can be defined as either primitive or defined. The dif-

ferences between these are so-called necessary and sufficient

conditions. A primitive class only includes necessary con-

ditions while a defined class includes at least one necessary

and sufficient condition. The use of defined classes allows

for the automated classification and computation of class rela-

tionships in the ontology by a description logic reasoner. This

is particularly useful when building large ontologies [25]. The

classes representing the SoS needs and boundaries should be

specified as defined classes for the reasoner to associate avail-

able solutions to the necessary and sufficient conditions spe-

cified in them. This process is further explained in chapter

4.1.

3.2.5 Step 5

Instances should represent the lowest granularity of the mod-

elled ontology domain. This is described in [15] as "Indi-
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Figure 4: Ontology development process in the context of SoS design space generation.

vidual instances are the most specific concepts represented in

a knowledge base". They represent the lowest level of de-

tail for the intended domain and should be related to suitable

corresponding classes of the ontology.

3.2.6 Step 6

The sixth step is used to invoke a description logic reasoner

to check the consistency of the implemented ontology. The

reasoner will classify the ontology and build an inferred on-

tology based on the previously defined relationships, prop-

erties and conditions of the different represented classes and

instances. This process will associate the previously imple-

mented classes representing the SoS needs of the ontology

with all classes and individuals that have fulfilled the spe-

cified conditions. It will consequently show the available SoS

design space as sub-classes and individuals to the inferred

need classes. If the reasoner classifies the ontology as incon-

sistent, step 8 needs to be performed.

3.2.7 Step 7

It is recommended that the credibility of the inferred onto-

logy and populated classes representing the needs should be

evaluated. The ontology may prove to be consistent but in-

clude unreasonable or unwanted inferred relationships of the

reasoner. If such unwanted relationships or results exist, step

8 needs to be carried out.

3.2.8 Step 8

This final step in the process presented in Fig. 4 is only to

be performed if inconsistencies or unreasonable results or

relationships exist in the inferred ontology. Possible correc-

tions should be performed in the definition of classes and

their relationships, properties and conditions. OWL supports

the usage of various ontology debuggers that can prove to be

useful for finding the source of any inconsistencies [33]. Un-

reasonable results can be further investigated by description

logic querying, where the inferred ontology is used to answer

"questions" about specific classes or instances [34].

The end result of the process shown in Fig. 4 is an in-

ferred ontology where the defined need classes represent

the available SoS design space. This process both creates

and reduces the available SoS design space based on the

description of needs identified from the possible scenarios

for the intended SoS.

4 Implementation of case study

In order to test the proposed method of creating a SoS design

space from specified needs with an ontology, a simple case

study based on the operations and resources of the Swedish

Maritime Administration (SMA) was performed. According

to statistics, SAR at sea has accounted for approximately

60% of the operations performed by the SMA during the past

three years and is a good example of a SoS where changing

circumstances can affect the available solutions.

The scenario considered for the case study is fictitious

and solely based on the available assets, regulations and

capabilities of the SMA. It is also worth mentioning that

the purpose of the case study is not to provide a complete

ontology for Swedish SAR but instead to test the validity and

usefulness of the proposed method in this context. Hence,

the implemented scenario is kept simple in order to show

the possibilities of the proposed method even at low levels

of scenario detail. The use of a top-level ontology was also

excluded for the purpose of this case study.

Following the process shown in Fig. 4, a SAR scenario

was determined as the domain to be modelled in the on-

tology. This fictitious SAR scenario was created based

on available information such as the assets, resources and

regulations of the SMA [35] and is illustrated by a simple

sketch in Fig. 5.

The scenario shown in Fig. 5 illustrates that there is a sub-

ject situated in the sea near Gothenburg, Sweden. The subject

can make a distress call and indicate a position. Information
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Figure 5: A fictitious scenario based on available assets and

resources of the SMA.

about the distress call is forwarded to the Joint Rescue Co-

ordination Centre (JRCC) located in Gothenburg. The JRCC

can dispatch suitable and available assets for the SAR of the

subject. The available assets considered in this scenario are

Bombardier Dash 8 Q300 aeroplanes, AW 139 helicopters

and two fictitious kinds of sea vessels: fast and slow. The

environment is associated with weather conditions, temperat-

ures and time of year and day.

4.1 Ontology modelling

The process of identifying all entities and relationships to be

modelled in the ontology involved detailed scenario analyses

where available capabilities and assets were broken down

into functions and means. Information flows between entit-

ies such as communication links were determined as well as

the relationships between assets and their corresponding sub-

components. After identifying entities and relationships to be

represented in the ontology, the class and sub-class definition

was initiated. The case study was implemented in the Protégé

ontology editing software, which is based on OWL [36]. The

class structure of the study was created using a top-down de-

velopment process where the most general classes, such as

System and Environment, were created first [15]. The class

definition was done in a "is_a" manner, which meant that all

sub-classes of an intended class inherited its properties. A de-

piction of the case study class hierarchy can be seen in Fig. 6.

Classes not equal to each other are defined as disjoint.

The identified needs of the SoS are represented as the solution

classes in Fig. 6 and are explained in more detail further

down. The available assets of the case study are represented

under the system classes which are defined by the various

sub-system classes of the hierarchy structure. Figure 7 shows

an example of how the HelicopterSystem class is defined.

The properties, cardinalities and conditions describing

the various classes in the hierarchy were based on specific-

ations of SMA assets, resources and available capabilities.

The fictional sea vessel’s properties were estimated based on

high and low speed sea vessels for SAR. Mapping between

capabilities, functions, systems and other classes was carried

out to create the relational properties between all entities

represented in the ontology hierarchy. Assets and resources

Figure 6: The ontology class hierarchy for the intended scen-

ario.

capable of performing the functions or capabilities from the

former breakdowns were related to their respective function.

Once a satisfactory mapping of the relationships between

classes was achieved, the step of implementing the lowest

levels, or instances, of the ontology was performed. The

instances for this case study represented specific individuals

such as an AgustaWestland 139 helicopter which is part of

the SMA assets [35]. These individuals were assigned data

properties describing their individual performances. Figure

7 shows the definition of a HelicopterSystem and the AW139

instance within the case study ontology.

It should be noted that the instance values described in Fig. 7

do not include any units. The data properties describing the

relationships are instead assigned comments describing the

intended units. The hasOperationalRange data property,

for example, has the unit of kilometres in this case study.

The instances of the sub-systems are defined for the sake of

simplicity as various types indicating that resources can be

composed of different alternatives such as different types of

radar.

Finally, the solution classes describing the intended SoS

needs were specified and given necessary and sufficient

conditions. This was done so that the Solution classes were

defined as equal to specified needs of the SAR scenario.

The procedure was carried out by describing the required

capabilities, functions and performances in the necessary and

sufficient conditions of the Solution classes. An example of

such a class can be seen in Fig. 8. The conditions described

in the Solution classes of this case study are, as with the SAR

scenario, fictitious and are only used to show the intended

process of the method. It can be seen in Fig. 8 that the class

describes a need for both a search and a rescue capability. It

furthermore specifies that the rescue vessel needs to be able

to carry at least 10 persons and have a length of 15 (meters)

or above.
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Figure 7: The definition of the HelicopterSystem class (top)

and the AW139 instance (bottom), where both are defined by

respective object and data properties.

4.2 Ontology usage

In order to classify the ontology, check consistency and obtain

the available sub-classes and instances of the Solution classes,

a description logic reasoner needed to be used. Protégé has a

set of default reasoners as well as additional reasoners avail-

able through plug-ins. The default Pellet reasoner was con-

sidered suitable for this case study and was used throughout

the implementation process. (For a detailed comparison of

available reasoners in Protégé, see [26].) The reasoner was

invoked to classify the ontology and consequently generate

the logically inferred hierarchy. This process generated the

available SoS design spaces as sub-classes and individuals of

the defined Solution classes that could fulfil the necessary and

Figure 8: The necessary and sufficient conditions specified

for the Solution4 ontology class.

sufficient conditions. These results are shown in Figs. 9 and

10.

Figure 9: The inferred solution class structure (top) and

the description of Solution classes 1 and 2 (bottom). Solu-

tion1 describes a need for a search capability and a minimum

speed, while Solution2 requires both search and rescue cap-

abilities.

Figure 10: The description of Solution classes 3 (left) and 4

(right). Solution3 specifies a need to keep the cost under a

specified cost per hour.

It can be seen in Fig. 10 that the Solution4 class from Fig. 8

has been populated with the AW139 and SlowBoat individuals

due to their fulfilment of the necessary and sufficient condi-

tions specified in the class description. It should be noted

that Solution4 has been inferred as a sub-class of Solution2

in Fig. 9. This is due to the solutions described in Solution4

also fulfilling the conditions in Solution2. It is possible to

carry out design space explorations by defining several solu-

tion classes based on different possible SAR scenarios and

needs as illustrated in Figs. 9 and 10. Figure 11 shows the

available design space for all Solution classes. The Solution2

class describes needs for both search and rescue capabilities.

All individuals in the Solution4 class fulfil the conditions and

are subsequently part of the solution for the needs described

in Solution2.

By comparing all inferred design spaces, it can be seen

that the individuals with the highest reoccurrence represent
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Figure 11: The inferred SoS design spaces where the Solu-

tion2 class is shown in the middle with corresponding indi-

viduals and Solution4 as a sub-class.

the most persistent solutions. The consequent SoS design

space generated with the method is available in the OWL

file of the inferred ontology and can be exported for fur-

ther investigations and analyses. Such analyses can for

example include determining the most suitable number of

assets described by the inferred individuals based on Measure

of Effectiveness (MoE), which is not provided by this method.

Finally, this case study has shown that the proposed

method can be used to generate SoS design spaces for SAR

and specified needs from a SoS scenario.

5 Discussion

The method proposed in this paper is intended to be used

for any SoS design space creation and delimitation. The

implementation of the case study was based on a fictitious

existing SoS. This can be referred to as a near-term SoS

where available resources and how best to use them are

investigated. The method and consequent use of ontology

allows for the evaluation of new resources in combination

with existing ones. New resources and capabilities can be

introduced to the ontology structure and can be related to

the existing entities. The use of a reasoner can once again

prove useful for automatically expanding the ontology with

new resources depending on their description. A new entity

with a capability to fly can, for example, automatically be

placed as a sub-class of AirborneSystem if an AirborneSystem

has been defined with necessary and sufficient conditions

specifying that an airborne system has the capability to fly.

This ability makes ontologies highly scalable and flexible for

introducing new entities to the modelled domain and building

up taxonomies. However, this comes at the cost of increased

computational time for automatic reasoning as described in

section 2.2.

A combination of existing and new SoS solutions can

be referred to as a mixed SoS. It is also possible to use the

proposed method for analyses of long-term SoS where no

existing resources are available. This typically corresponds

to creating a SoS from scratch where only vague definitions

of possible needs and capabilities are defined and related.

Assets and resources can be guessed and evaluated based on

the scenario and epoch analysis of the intended SoS.

As mentioned in the frame of reference, there are sup-

plementary methods for ontologies available for modelling

and performing analyses on SoS. Enterprise architecture

frameworks have been successfully used to describe SoS as

well as intended scenarios in a SysML or UML language [13].

Relational databases have a similar structure to ontology,

and it is possible to describe a SoS with all entities and the

relationships that exists between them here as well. However,

the advantage with ontologies is that they work under the

previously mentioned open world assumption which, together

with an ability to perform description logic reasoning, can

be used to infer implicit knowledge of the intended domain.

This implicit knowledge can reveal emergent behaviours of

the SoS which are very important and desirable to understand

at an early stage of development [17]. Nevertheless, ontology

has some limits when it comes to inference by a reasoner.

Such limits are shown in detail in [34], where inference

is used to a high degree on an ontology. The presented

method is, as previously mentioned, built upon existing

methods for creating an ontology. There are many available

methods and pieces of software for creating an ontology.

Protégé was chosen as the implementation software due to

its compatibility with OWL and RDF, as well as the support

for description logics. The proposed method of this paper is

however neutral in terms of the choice of software and could

be used provided that the software supports a description

logic reasoner.

An important delimitation of the presented case study

is the exclusion of a top-level ontology structure. This was

mainly excluded due to the fact that no existing ontology

was to be used for the implemented example. The use of

a top-level ontology would also imply a large increment

in the class hierarchy structure and size, which would

make the ontology less comprehensible to the human eye.

Furthermore, the ontology for the case study was, as pre-

viously mentioned, implemented to show the possibilities

for creating and exploring the SoS design space and not to

provide an extensive ontology for SAR operations. However,

the inclusion of a top-level ontology can be utilized at a

later stage if desired due to the scalability and flexibility of

ontology structures. This would require some restructuring of

the class hierarchy to fit the top-level ontology properly, but

would also enable re-usability and combinability with other

ontologies that utilize the same top-level design. The scope

of the modelled SAR case study was kept at a simple level

to visualize the goal of the proposed process and method. It

could however easily be expanded to include more details

about the domain and available system components. The

example components shown in Fig. 7 could be replaced

with actual sub-system representations that have their own

sub-classes and instances, leading to a question about fidelity

levels in the ontology. The fidelity or detail level of the

ontology is determined at the very beginning of the proposed

method in Fig. 4. This is however also expandable at a later
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stage due to the flexibility of ontologies. The results obtained

in Figs. 9 and 10 show that the SoS needs can be represented

as demands for the necessary performances and capabilities.

The usefulness of this strategy becomes increasingly distinct

in ontologies featuring a larger number of resources and

possible solutions. The reasoner becomes a valuable asset for

inferring knowledge and creating the available design space

in larger ontologies.

The results in Figs. 9 and 10 show that the available

solutions are instances of the Solution classes. It is pos-

sible to use the method in order to generate sub-classes

representing the available design space as a complement

to a set of individuals. The open world assumption that

OWL ontologies work under can, however, complicate class

inferences. A closed world assumption assumes that data

which does not exist is false, while an open world assumption

sees non-existent data as simply unknown. Ontologies

consequently do not make any assumptions about incomplete

data. This means that ontology classes can include more

entities that are simply not yet known unless the class has

been explicitly stated not to do so using closure axioms [25].

The open world assumption is also a reason why ontologies

are so flexible and easy to expand. Instances are, however,

easier to work with since they represent the lowest level of

the intended ontology and are less affected by the open world

assumption.

Finally, the implemented case study is still under devel-

opment at the time of writing this paper. More SMA

information and resources must be implemented in order

to generate a larger pool of available solutions for the SoS

design spaces. More detailed capability and functional

breakdowns are subject to implementation to obtain a more

comprehensive picture of the existing relationships in the do-

main. Additionally, more extensive design space explorations

will be performed by defining more solution classes based on

scenario and epoch analyses of the case study. As mentioned

in section 3.1, varying the initial conditions to increase the

understanding of the design space is an important future

addition to the case study.

6 Conclusions and future work

The proposed method introduced in this paper has shown that

a design space of possible SoS solutions can be generated

using ontology. An implementation of a search and rescue

(SAR) case study was carried out to test the method and show

the process of building an ontology for SoS design space gen-

eration. Several ontology classes describing different needs

were implemented and populated with suitable instances rep-

resenting solutions by a description logic reasoner. This cor-

responded to a small design space exploration which was used

to identify the most common solution elements of the SoS.

The future work of this study involves the expansion of the

case study and extraction of the SoS design space generated in

the inferred ontology file. Similar approaches to those presen-

ted in [31] can be used to transfer the information from the

ontology to matrix-based approaches. This transfer allows

for more advanced numerical calculations and optimizations

needed for the remaining levels of interest proposed in [1].

Furthermore, the design space generation of this paper has

only shown available types of solutions and no number of re-

quired assets. Future work includes the determination of the

most suitable SoS architectures with regard to number and

collaboration of assets. The work so far has, however, shown

that ontologies provide a resilient way of exploring and gen-

erating SoS design spaces based on specified needs. It con-

tribute to the ways of approaching the complex challenges of

today’s product development.
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