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Abstract

Background: Plant phenotype datasets include many different types of data, formats, and terms from specialized

vocabularies. Because these datasets were designed for different audiences, they frequently contain language and

details tailored to investigators with different research objectives and backgrounds. Although phenotype

comparisons across datasets have long been possible on a small scale, comprehensive queries and analyses that

span a broad set of reference species, research disciplines, and knowledge domains continue to be severely limited

by the absence of a common semantic framework.

Results: We developed a workflow to curate and standardize existing phenotype datasets for six plant species,

encompassing both model species and crop plants with established genetic resources. Our effort focused on

mutant phenotypes associated with genes of known sequence in Arabidopsis thaliana (L.) Heynh. (Arabidopsis), Zea

mays L. subsp. mays (maize), Medicago truncatula Gaertn. (barrel medic or Medicago), Oryza sativa L. (rice), Glycine

max (L.) Merr. (soybean), and Solanum lycopersicum L. (tomato). We applied the same ontologies, annotation

standards, formats, and best practices across all six species, thereby ensuring that the shared dataset could be used for

cross-species querying and semantic similarity analyses. Curated phenotypes were first converted into a common

format using taxonomically broad ontologies such as the Plant Ontology, Gene Ontology, and Phenotype and Trait

Ontology. We then compared ontology-based phenotypic descriptions with an existing classification system for plant

phenotypes and evaluated our semantic similarity dataset for its ability to enhance predictions of gene families, protein

functions, and shared metabolic pathways that underlie informative plant phenotypes.

Conclusions: The use of ontologies, annotation standards, shared formats, and best practices for cross-taxon

phenotype data analyses represents a novel approach to plant phenomics that enhances the utility of model genetic

organisms and can be readily applied to species with fewer genetic resources and less well-characterized genomes. In

addition, these tools should enhance future efforts to explore the relationships among phenotypic similarity, gene

function, and sequence similarity in plants, and to make genotype-to-phenotype predictions relevant to plant biology,

crop improvement, and potentially even human health.
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Background
Plant phenotypic variation constitutes the raw material

for much of plant biology, including research on gene

function in model species, breeding of desirable crop

varieties, functional investigations from the cellular to

ecosystem scale, and inference about the evolution and

ecology of both plants and the species that interact with

them. Disentangling the relationships among genotypes,

phenotypes, and the environment is one of the grand

challenges of contemporary biology [1], yet this endeavor

is severely limited by our ability to collect, integrate, and

systematically analyze phenotypic data [2]. Researchers

generally use free text to describe phenotypes, which al-

lows for rich descriptions, but makes it hard to compare

phenotypes across species, integrate data into the exist-

ing knowledge landscape, or derive information from

combined datasets [3]. In recent years, ontologies have

become powerful tools for working with phenotypic

data, particularly in biomedicine, because standardizing

terminology across species and sub-disciplines enables

inference based on logical relationships [4-6]. Here we

present a new approach to studying plant phenotypes

modeled on recent advances in the use of ontologies in

biomedical research on animal model systems.

Throughout this paper, we use the words phenotype,

phene, and phenome with precise meanings. A ‘pheno-

type’ is the composite set of one or more observable

characteristics associated with a given organism or cell,

that results from the interaction of the genotype and the

environment [7,8]. The separate characteristics that

make up a phenotype are termed ‘phenes’ [9,10]. For ex-

ample, in maize, a dwarf phenotype can be defined as a

composite of the phenes ‘reduced internode length’ and

‘compact, broad leaves’. Phenes relate to ‘phenomes’ in

the way that genes relate to genomes: an organism’s or

species’ phenome is composed of the complete set of its

phenes. Phenomics, therefore, is the study of all pheno-

types associated with an organism or species (i.e. its

phenotype space). In correspondence with Genome

Wide Association Studies (GWAS), Phenome Wide

Association Studies (PheWAS) associate a gene with a

variety of phenes or phenotypes, which is particularly

relevant for genes that have a pleiotropic effect [11].

Biomedical scientists have developed and utilized

phenotype ontologies and ontological reasoning to support

comparative and predictive phenomics [12,13]. Phenotype

ontologies are controlled, hierarchically-related phenotypic

descriptions that enable large-scale computation among in-

dividuals, populations, and even multiple species [14]. A

number of vocabularies and pre-composed phenotype

ontologies (in which terms are pre-defined) have been

developed for specific taxa or applications [15-18], but

comparison across datasets or among different species

requires an extensive alignment process whenever

different vocabularies/ontologies are used to represent

the data. An alternative to phenotype ontology alignment

is the use of post-composed phenotypes, in which all the

elements of a phenotype are explicitly logically defined or

“composed” from existing terms from species-independent

ontologies [16]. One method of post-composing a pheno-

type description is to first break it down into its compo-

nent phenes, and then define an affected Entity (E) and a

describing Quality (Q) for each phene [19,20]. In this

method of post-composing phenotypes, Entity-Quality

(EQ) statements are composed for all phenes under con-

siderations, and the entire set of phenes is reasoned over

simultaneously. Finally, to derive novel insights from cu-

rated genotype and phenotype data, semantic similarity

measures are applied, based on a consistent ontological

representation [21-23].

This approach has been applied successfully to mam-

malian phenotypes to predict gene function across spe-

cies, as well as disease, drug, or pathway involvement of

genes [5,12,13,24,25]. Two major limitations to adopting

a similar approach in plants are the lack of phenotype

data curated with species-neutral ontology terms, and the

need for standards for creating EQ statements to describe

plant phenotypes. Nonetheless, two important existing re-

sources are available to support post-composed ontology

analysis of plant phenotype data: 1) well-developed ontol-

ogies for plant science [26], particularly the Plant Ontology

(PO) [27] and Gene Ontology (GO) [28,29]; 2) curated sets

of mutant phenotype descriptions for multiple plant spe-

cies in model-organism and crop databases such as

MaizeGDB [30,31], Oryzabase [32], Gramene [33,34], and

the Sol Genomics Network (SGN) [15,35] as well as in the

literature (e.g., [36]). In addition, an intellectual framework

for logically defining plant traits has been developed in the

Plant Trait Ontology (TO) [33].

To push the field of plant phenomics forward, it is clear

that there is a need for additional high-quality phenotype

descriptions generated by research, as well as for high-

confidence predictions of phenotypic associations among

equivalent phenotypes, both across species and between

phenotypes and their causative genotypic variants and en-

vironments. Here we describe how our work to translate

existing high-quality phenotypic descriptions across six

plant species enabled the prediction of phenotypic asso-

ciations. Furthermore, we demonstrate that additional

curation of such data into ontological representations

can expand the phenotypic predictive capacity of plant

sciences.

This paper includes methodology, as well as an initial

dataset that was used to test and refine the methodology.

In brief, we compiled EQ statements for 1,742 phenes

from 2,747 genes and gene models in six plant species

[Arabidopsis thaliana (Arabidopsis), Zea mays ssp. mays

(maize), Medicago truncatula (barrel medic or Medicago),
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Oryza sativa (rice), Glycine max (soybean), and Solanum

lycopersicum (tomato)] and applied consistency checks to

ensure a high-quality phenotype annotation set. The

annotated phenotype data set was subjected to an auto-

mated semantic similarity analysis, based on PhenomeNET

[37,38], and the results are available in a separate plant in-

stance [39]. The semantic similarity dataset was evaluated

for its ability to enhance predictions of gene families, gene

functions, and shared metabolic pathways across the six

species and compared to an existing classification of plant

phenotypes [36].

Results and discussion
A method for describing phenotypes with a common

semantic representation across six plant species

We include in the Results a brief description of our

method, because this is the first report outlining this type

of analysis of phenotypes across multiple reference species

in plants. For this analysis we limited our species set to

the model/crop species Arabidopsis, maize, Medicago,

rice, soybean, and tomato, to take advantage of the exist-

ing data for these species. However, the method could be

applied to any plant for which there are characterized mu-

tant phenotypes associated with sequenced genes. To

maximize the ability to compare both phenotypes and ge-

notypes across species, we used only genotypes for which

the sequence was known and made efforts to limit our

datasets to phenotypes resulting from mutations to a sin-

gle gene. For genes where phenotype information was

available for different alleles, we counted each allele as a

separate genotype (Additional file 1). For each species, the

authors with the most relevant expertise selected free text

phenotype descriptions for inclusion using methods spe-

cific to that species (see Methods). The number of geno-

types analyzed varied widely among species (maximum

2,393 in Arabidopsis, minimum 30 in soybean), reflecting

the availability of phenotypic descriptions for each species.

We first decomposed each free text phenotype descrip-

tion into a set of simple atomized statements correspond-

ing to each component, or “phene”, of the phenotype. We

then translated each of these components into an EQ (En-

tity-Quality) statement (Figure 1). As with EQ statements

previously developed for mammalian species, we distin-

guish between structural phenotypes, such as “short

plant”, and process phenotypes, such as “late flowering”

[40]. In a structural phenotype, the Entity is an affected

part of the plant, represented with a term from the Plant

Ontology (PO) [27] or Gene Ontology (GO) cellular com-

ponent branch [29]. In a process phenotype, the Entity is

an altered process represented with a term from the GO

biological process branch. In both cases, the manner in

which the entity is affected was described using Quality

terms from the Phenotype and Trait Ontology (PATO)

[16]. For example, the atomized statement “short leaves”

can be expressed as: Entity = vascular leaf from the Plant

Ontology (PO:0009025)a and Quality = decreased length

from the Phenotype and Trait Ontology (PATO:0000574).

We found that many of the phenes required more com-

plex EQ statements and terms from additional ontologies

to fully represent their meaning. For example, the phene

“lack of anthocyanins in aleurone” could be expressed as:

aleurone layer (PO:0005360) lacks parts or has fewer parts

of type (PATO:0001999) anthocyanins (CHEBI:38697), with

the form:

primary E1 − Q − secondary E1

where Q is a relational quality. In addition, we found that

the Entities themselves may be complex. For example, an

EQ statement for the free text “silks are green” would be

phrased: style (PO:0009074) part_of (BFO:0000050)b ear in-

florescence (PO:0020136) green (PATO:0000320), with the

form:

primary E1 − R − primary E2½ � – Q

where R is a relation from the Relation Ontology (RO)

[41,42]. All EQ statements in the dataset could be parsed

using the generalized formula:

primary E1ð Þ − R − primary E2ð Þ½ � − Q − QL½ �

− secondary E1ð Þ − R − secondary E2ð Þ½ �

where QL is a qualifier to the quality Q. At a minimum,

we required that a primary E1 and Q be present, and any

of the other elements were optional. We found that all

phenotypes in our dataset could be described with the on-

tologies listed in Table 1, although we recognize that our

dataset does not encompass the entire breadth of possible

plant phenotypes, and additional ontologies and develop-

ment of existing ontologies will be needed to annotate

more diverse phenotypes.

Because a phenotype consists of one or more phenes,

one or more EQ statements were used to describe it. For

example, the phenotype “corngrass” in maize is described

as “narrow leaves, extreme tillering, highly reduced ears

and tassel; grasslike growth habit, often vegetative leaves

in the ear and tassel”. This phenotype was broken down

into 5 phenes, which were annotated with EQ statements

(Figure 1). Likewise, an individual EQ statement can be

used to describe more than one phenotype. In the corn-

grass example, the EQ statement that describes the “nar-

row leaf” phene is also used in several other phenotypes,

such as “narrowleaf” (Additional file 1). Our approach

considers each “phenotype” as the sum of its individual

EQ statements.

This method allows for highly detailed and species-

independent descriptions of phenotypes, but still has sev-

eral limitations. Creating accurate EQ statements requires

knowledge of both the species-specific phenotypes as well
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as the ontologies used to describe them. Brief pheno-

type descriptions may be available in databases (e.g.,

MaizeGDB, SGN), but much more complete and accur-

ate descriptions of mutant phenotypes are spread over

many publications spanning several years. Collecting

and extracting phenotype information is very labor in-

tensive. In addition, EQ statements are created by curators

and thus still reflect a certain amount of subjectivity. It is

often possible to build more than one EQ statement for

the same textual description, and it is not always clear

when to use a process entity versus a structural entity. In

this project, we established a strict set of rules and proto-

cols and held regular meetings to help ensure consistent

construction of comparable EQ statements across species

(see Methods). In the future, we would like to evaluate the

importance of consistently structured EQ statements for

analyzing semantic similarity, and determine whether

some variation can be tolerated.

An ontology-based dataset of mutant phenotypes for six

reference plant species

The complete list of genes, genotypes, phenotypes, at-

omized statements, and EQ statements can be found in

Additional file 1, which is also included as part of the

complete dataset housed in the iPlant Data Commons [44].

The largest set of annotations came from Arabidopsis,

followed by maize, rice, and tomato (Table 2). The low

numbers of annotations for Medicago and soybean reflect

Table 1 Description of applied ontologies

Ontology Content Link

Plant Ontology (PO) [27] Plant anatomy and morphology and
development stages

http://www.plantontology.org/

Gene Ontology (GO) [29] Biological processes, cellular components
and molecular functions

http://geneontology.org/

Chemical Entities of Biological
Interest ontology (ChEBI) [43]

Molecular entities focused on ‘small’
chemical compounds.

http://www.ebi.ac.uk/chebi/

Phenotypic Qualities
Ontology (PATO) [16,19]

Phenotypic qualities http://obofoundry.org/wiki/index.php/PATO:Main_Page

Plant Experimental Conditions
Ontology (EO)

Treatments, growing conditions, and/or study types http://planteome.org/amigo/cgi-bin/crop_amigo/
term_details?term=EO:0007359

NCBI taxonomy (NCBITAXON) A curated classification and nomenclature for all of
the organisms in the public sequence databases.

http://www.ncbi.nlm.nih.gov/taxonomy

Relation Ontology (RO) [41] Core upper-level relations and biology-specific relations https://code.google.com/p/obo-relations/

Species-independent ontologies used to form EQ statements. All ontologies were downloaded on 15 March 2014.

Figure 1 The method applied to annotate mutant phenotypes from textual descriptions. Textual descriptions from the literature or

databases (A), based on observations of mutant plants, are first broken down into atomized statements corresponding to phenes (B) that are

then represented with EQ statements (C).
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the relatively small number of studies on these species and

the scarcity of curated phenotypes. There was little overlap

of unique phenotypes among species (Additional file 2). In

the following sections, we describe some of types of com-

putational analyses that can be done with this dataset.

Quantitative analysis of pairwise semantic phenotype

similarity of genotypes across the entire dataset

To determine pairwise semantic phenotype similarity

scores, we used the method described for mammalian ge-

notypes [37] where phenotypes are represented by EQ

statements that are then integrated using species-

independent ontologies and a semantic similarity measure.

That is, every phenotype (which is composed of one of

more EQ statements) is compared to every other pheno-

type, and their similarity within the ontological graph is

evaluated. For a pair of phenotypes to receive a score of 1,

each phenotype would have to contain the same number

of identical (or nearly identical) EQ statements. A score of

0 would mean that none of the EQ statements for either

phenotype were similar. For the 8,213,956 possible pairs

from the 2,866 genotypes, 548,888 (7%) of the genotype

pairs yielded phenotype semantic similarity scores greater

than zero. Score distributions, overall and on a per-species

basis, are provided in the following sub-sections.

Distribution of similarity scores

We calculated semantic similarity scores for 548,888

genotype pairs in the range of >0 – 1. A similarity score

of 0 indicates no semantic overlap with respect to the

phenotype, while a similarity score of 1 indicates an

identical semantic phenotype description (and therefore

equivalent sets of EQs). Figure 2A illustrates the distri-

bution of semantic similarity scores for intra- as well as

inter-species genotype pairs. For 13% (71,290) of the

genotype pairs possessing a semantic similarity score,

the score fell into the range 0.9 – 1 (not including the

similarity of a genotype to itself, which is always 1).

While 13% seems high, some of the nearly identical

scores occur because of the limited availability of pheno-

type information for many genotypes. For example, if

two genotypes are annotated with the same single EQ

statement, the result is a semantic similarity score of

one, even if in reality those mutant genotypes may have

many more phenes that were not recorded. Only known

phenes that were already curated from the scientific lit-

erature were assigned to genotypes, and our method

cannot compensate for gaps in the literature (e.g., due to

limitations in biological experiments). As the dataset

grows, a better separation of genotypes with respect to

their semantic phenotype similarity will be possible.

Almost half (241,042 = 44%) of the non-zero semantic

similarity scores are below 0.1, indicating that many of the

phenotypes show only a small overlap in their description.

For example, the rice mutant DWARF4 (Os03g0227700

[45], allele osdwarf4-1) shows a similarity of 0.08 with the

rice mutant MADS18 (Os07g0605200 [45]). This results

from both genes being annotated with “dwarf”-related

phenotypes but also possessing diverging annotations,

such as increased panicle number for DWARF4 and early

flowering for MADS18. It is not surprising that most of

the phenotypes show at least some marginal overlap, as

this is intrinsic to the aim of the study: making phenotypes

comparable. This highlights the potential of the method,

but, at the same time, raises the need for consistent, co-

herent, and complete phenotype annotations in order to

computationally replicate the underlying biology and de-

rive accurate predictions.

Although there are more complex scoring mechanisms

that take frequency of EQ statements into consideration

[23], we applied a Jaccard index that determines the over-

lap of phenes used in the phenotype descriptions. In an

earlier study, it was shown that different types of semantic

similarity measures do not differ much as long as the re-

sults are interpreted carefully [21]. In future work, we in-

tend to investigate the applicability of alternative scoring

methods, in combination with the development of bench-

mark sets for evaluation purposes.

Table 2 The number of EQ statements, genes, genotypes, and phenotypes they were associated with, for six plant species

Species #EQs (phenes) #unique EQs - all
genotypes

#genes #genotypes #phenotypes

Arabidopsis thaliana 5172 1260 2393 2393* 1385

Zea mays ssp mays 373 180 114 169 117

Oryza sativa L. 340 271 92 95 86

Solanum lycopersicum 269 174 72 128 90

Medicago truncatula 149 99 40 45 40

Glycine max 61 39 30 30* 24

Total 6364 2023 2741 2866 1742

The number of EQ statements, genes, genotypes, and phenotypes they were associated with, for each species.

*#Genotypes equals # genes because no information on alleles was available for these species.

Oellrich et al. Plant Methods  (2015) 11:10 Page 5 of 15



Species-specific distribution of scores

To obtain further insights into the distribution of similar-

ity scores, we split similarity scores according to species. If

both genotypes that were used to calculate the pairwise

similarity score belong to the same species, we recorded

the resulting similarity score only for this species. If both

genotypes leading to a particular similarity score belong to

different species, we recorded it as a cross-species score.

The resulting seven similarity score distributions are illus-

trated in Figure 2B-H. Species-specific score distributions

are mostly consistent with the overall score distribution

(Figure 2A). There are some differences for soybean and

Medicago, but this is likely due to the small sizes of the

phenotype annotation sets in these species.

Differences between the semantically-generated

phenotype network and a manually derived

phenotype grouping

A previous analysis of Arabidopsis used the same set of

phenotypes and laid much of the groundwork for this

present study [36]. Mutant phenotypes were categorized

in a simplified, three-level hierarchy consisting of 4

groups divided into 11 classes and 42 subsets. Each gene

was assigned to one of 11 phenotypic classes based on

the developmental stage when the phenotype was first

observed and what methods and conditions were used

to detect it (see more details in Methods). Genes were

also assigned to one or more of the 42 subsets, based on

the nature of the phenotype (e.g., gametophyte defective,

flowering time).

To assess whether our results recapitulate those of

[36], we calculated the average similarity scores for each

of their classes (higher level grouping) and subsets

(lower level grouping). Semantic similarity by class was

greater than 0.3 for all classes except Vegetative, and

ranged from 0.13 for Vegetative to 0.87 for Chemical

and Biological (Additional file 3 and Figure 3). Average

semantic similarity scores were lower and more variable

across subsets, ranging from 0.10 for GEM (gameto-

phyte, embryo defective) to 0.92 for OBI (other bio-

logical interactors), with 25 of 42 subsets having average

scores less than 0.3 (Figure 3). Although there were in-

deed several classes and subsets that had good concord-

ance with the semantic similarity scores, in general,

semantic similarity scores within both classes and sub-

sets were low (less than 0.5).

There could be several reasons for low semantic similar-

ity scores within classes or subsets, such as annotations

that are not ideally defined, a poor choice of semantic

scoring mechanism, or classes/subsets that are too broadly

A) B)

D)

G) H)

E) F)

C)

Figure 2 Semantic similarity score distributions for inter- and intraspecific pairwise phenotype similarity. When binning all semantic

similarity scores across all species, 44% of semantic similarity scores indicate a relatively low phenotypic overlap between genes (semantic

similarity range 0–0.1) while 13% show highly similar phenotypes (similarity score range 0.9-1) (A). Distributions of intraspecific scores

(pairwise scores where both genotypes belong to the same species) were similar to the overall distribution of scores (B-H).
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defined and therefore contain a large variety of pheno-

types. In general, we expected pairs of genes within the

same subset to have lower semantic similarity scores than

pairs of genes within the same class, because genes can

belong to multiple subsets, but only a single class. If

the phenotype of a gene has multiple phenes, that gene

should to belong to multiple subsets, and unless two

genes share all of the same phenes (and therefore be-

long to all of the same subsets), they would have a rela-

tively low similarity score within each subset. Genes in

the same class may have somewhat higher similarity

scores, because classes aggregate several phenotypic

subsets (Figure 3). However, they do not aggregate sub-

sets from other classes (as semantic similarity does)

and thus are unlikely to completely mirror semantic

similarity scores.

Examination of two contrasting subsets, Flowering

time (FLT) and Pathogens/Herbivores (PTH), can help

to explain some of the agreement or disagreement be-

tween membership in a class or subset and degree of se-

mantic similarity (Figure 3). The PTH subset seems to

be more coherent with respect to phenotype annotations

than the other groups, which suggests that PTH genes

are not documented as having pleiotropic effects. In

contrast, pairs of genes in the FLT subset have low aver-

age semantic similarity, suggesting that these genes are

highly pleiotropic. Consistent with this, the PTH subset

genes have on average 1.68 phenes whereas genes in the

FLT subset have on average 3.99 phenes.

The categorical system devised by [36] has the dis-

tinct advantages of being more intuitive and not

requiring an understanding of ontologies to make an-

notations or carry out an analysis of the data. However,

the disadvantages are that category boundaries are

sometimes somewhat arbitrary, very disparate pheno-

types may be included in a single category (e.g., miscel-

laneous categories), and each phenotype may be forced

into a single class. Although the class/subset classifica-

tion can capture pleiotropic phenotypes, it does not

provide a way to compare pleiotropic phenotypes of

multiple genes the way semantic similarity scores based

on collections of EQ statements does. In contrast, the

ontology approach allows the grouping of phenotypes

at any level of the ontology that may be appropriate for

a particular analysis, while still allowing each observa-

tion (phene) to be separately annotated.

Semantic similarity predicts participation in shared

metabolic and regulatory pathways

It is a premise of this work that through computational

analysis of EQ statements representing phenotypes, bio-

logical processes can be recapitulated, modeled, and

even discovered. Were this to be true, one would expect,

for example, that gene products in the same metabolic

pathways would be annotated with EQ statements that

are highly similar. To test this hypothesis, we used the

PlantCyc project databases AraCyc (v 11.5) [46], Oryzacyc

(v 1.0), SoyCyc (v 4.0) and CornCyc (v 4.0) as well as

LycoCyc from SGN (v 3.3 Solanum lycopersicum) [47],

and MedicCyc from the Noble Foundation [48]. One

metabolic pathway that is well populated among those da-

tabases and for which our phenotype datasets have

Figure 3 Average semanitic similarity scores for previously derived groupings of Arabidopsis genotypes. The average pairwise semantic

similarity for subsets previously identified by [36] ranged from ~0.1 to ~0.9. Subsets are shown grouped by the classes and groups to which

they belong.

Oellrich et al. Plant Methods  (2015) 11:10 Page 7 of 15



representation is the phenylpropanoid biosynthesis initial

reactions of flavonoid biosynthesis. 3-hydroxy flavo-

noids, also called anthocyanins, are pigments. They

serve to, e.g., attract pollinators and protect plants from

UV-B damage [49,50].

For the gene products involved in the phenylpropa-

noid biosynthesis pathway – more specifically the initial

reactions of flavonoid biosynthesis – we queried Plant

PhenomeNET. The most informative query result came

from maize, which had only the c2 gene (colorless2 con-

verts 4-coumaryl-Coa to 2′, 4, 4′, 6′-tetrahydroxychal-

cone) curated into the phenylpropanoid biosynthesis

initial reactions. When Plant PhenomeNet was queried

with GRMZM2G422750 (the gene model identifier for

c2) a number of maize genes associated with phenotypes

were returned:

c2 GRMZM2G422750 similarity score 1 (identity: this

is the query)

c1 GRMZM2G005066 similarity score 1

r1 GRMZM5G822829 similarity score 0.6666666667

b1 GRM similarity score 0.5

All three of the identified gene models are involved in

the anthocyanin pathway of maize, which controls fla-

vonoid synthesis (reviewed in [51]). More specifically,

the gene products of the c1, r1, and b1 loci activate

genes in the anthocyanin pathway. This result: (1) indi-

cates that reasoning across curated phenotypes in plants

is capable of creating result sets that recapitulate well-

characterized biological phenomena, (2) hints that for

plant species that are not genetically well-characterized,

the ontological reasoning approach to predicting

phenotypic associations could assist in forward genetics

approaches, and (3) highlights the potential use of rea-

soning across phenotypic ontological associations to

prioritize high-quality data curation where data are

missing from or complementary to repositories like the

PlantCyc database.

Focusing on (2) – that the suggested approach can

help with characterizing understudied species – the rea-

soning is as follows. Consider a poorly studied species

with a number of mutant phenotypes that include an al-

tered seed color phene. The phenotypes of this species

would be described and codified using ontological rep-

resentations. These phenotypic descriptions then could be

used as queries to return genes from a well-characterized

species (e.g., maize) with phenotypes that have high simi-

larity to the phenotype in the poorly studied species. This

result set could indicate to a researcher who is not an ex-

pert in pigment biology that the flavonoid and anthocya-

nin biosynthetic pathways and their regulators were of

interest for determining which genes were responsible for

the phenotype.

Evaluation of phenotypic similarity across orthologs and

gene families

Manual assessment of gene families

We were able to place 2,741 EQ-annotated genes (2,393

Arabidopsis, 30 soybean, 40 Medicago, 92 rice, 72 to-

mato, 114 maize) into 1,895 gene families, of which 460

families contain two or more genes annotated with EQ

statements. The gene families, based on the Phytozome 10

Angiosperm-level families [52], generally contain both

dicot and monocot representatives from the species in this

study. Forty-two of the families contain between five and

12 genes with EQ statements, allowing us to assess how

often homologous genes have similar functions. Further,

there are 147 families that contain EQ statements from

two or more species. These are of interest because it al-

lows us to assess how often functions are conserved be-

tween orthologs.

For most families with multiple EQ-annotated genes,

gene function is conserved or similar. For example, in the

terpene synthase family (family 54585183, Additional files

4, 5 and 6), with 12 EQ-annotated genes from Arabidopsis,

rice, and maize, all genes included aspects of “dwarf” phe-

notypes (quality “decreased height”, PATO:0000569).

However, salient phenotypes in maize also include floral

hermaphrodism, in contrast to the typical male and female

floral separation in wild type domesticated maize. In the

Flowering Locus T family (family 54614050, Additional files

4, 5 and 6), there are 12 EQ-annotated genes from five of

our study species. All of the characterized mutant pheno-

types involve floral development or photoperiod control.

We also observed gene families in which annotated

phenotypes are quite different across orthologs. For ex-

ample, in the family (54614050, Additional files 4, 5

and 6), a leucine-rich repeat, serine-threonine kinase

family, the SUNN mutant in Medicago display extra

root nodules, while the CLV1 mutant in Arabidopsis

displays abnormal leaf phyllotaxy and altered floral

morphology [53,54].

Plant phenomeNET: a web interface for searching the

plant dataset

We adapted PhenomeNET [37] to provide the results of

the computational analysis of the plant data sets to the

broader research community in an online form. Plant

PhenomeNET is available via [39] and provides access to

the genotypes of all six species that possess at least one

EQ statement. For each genotype, a detailed genotype

page provides information about similarity scores to any

of the other genotypes as well as a link to an additional

page providing the phenotype assigned by the curator

and those inferred via the ontologies. We note here that

similarity scores of 0 for genotype pairs are not reported

in Plant PhenomeNET.
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Using plant phenomeNET – Searching for tasselseed1

To illustrate the usage of Plant PhenomeNET, we pro-

vide an example search for tasselseed1 (ts1) maize gene.

The tassel of maize normally bears only male flowers,

but in the ts1 mutant, female flowers also develop in the

spikelets born on the tassel. By entering “ts1” into the

search box and submitting the form, we obtain a list of

genes that all match the string “ts1” (for search query

and results see: panel A and B of Figure 4). For the navi-

gation from the search list, there are two options pro-

vided (see last two columns in panel B of Figure 4): one

can either show the phenotype or explore phenotypically

similar mutants.

By following the first link “show phenotypes”, the user

obtains the assigned (top list, panel C, Figure 4) as well as

the inferred EQ statements (bottom list, panel C, Figure 4)

for the ts1 gene. For example, the curator assigned an EQ

statement for the “abnormality of the tassel” as part of the

phenotype. One of the EQ statements that was inferred

based on the ontology structure is “extra floral organs

in spikelet”.

Following the second link to “explore” similar mutants,

the user obtains an ordered list of phenotypically similar

mutants with the most similar at the top and the least

similar at the bottom (see panel D, Figure 4). Each of the

mutants provided in the list can then be explored further

with the links provided for navigation. One interesting

case is presented in our list with the rice mutant FOR1,

with the atomized statement “extra floral organs in the

spikelet”. This example illustrates how important cor-

rectly assigned EQ statements are, and how, using in-

ferred EQ statements, connections can made between

mutants from different species.

Conclusions
After defining a common method for semantic represen-

tation of plant phenotypes, we annotated 2,741 geno-

types with 2,023 unique EQ statements. This represents

the first cross-species plant data set that can readily be

integrated with other data via shared ontologies. This

use of ontologies to support phenotypic reasoning en-

ables integration beyond plants and would enable gener-

alized analyses to discover phenomena conserved across

all domains of life as described in [55]. An example of

such cross-domain inference is their finding that the

pathways that underlie gravitropism sensing in Arabi-

dopsis root tips are concordant with an inner ear defect

in human developmental biology known as Waardberg

syndrome [55].

In our initial computational analyses using semantic

phenotype similarity scoring, we were able to identify

gene sets that are functionally related, i.e. belonging to

the same gene family or involved in the same pathway.

The method described here can be readily applied to

other plant species to suggest genes for analysis in

under-studied species or crop wild relatives, or expanded

to describe and compare phenotypes across diverse plant

species for evolutionary analysis, as has been done for

fish [17,56]. Because the ontologies used for compari-

sons are taxon-neutral, there are no restrictions to

expanding this method to non-flowering plant models

such as Physcomitrella patens, Selaginella moellendorffi,

or Ceratopteris [57-59], and comparisons across widely

divergent species (e.g., maize versus moss) may even re-

veal surprising conservation or co-option of gene func-

tion. Even for the species used in this initial study, there

is much to learn about the relationships between geno-

type and phenotype, and we urge the continued curation

and EQ-based annotation of plant phenotypes, to ex-

pand this data set and increase its utility. Because

species- and clade-specific databases will need to curate

and hold these statements, a standardized method for

storing this data, preferably using a common database

schema such as [60], should be implemented.

Methods
Generation of the lists of phenotypes for each plant

species

Each of the model plant species represented in this ana-

lysis is supported by a database of genomic and other

data. These databases are highly individualized, based on

the differing needs of their community members. As

such, the generation of a list of phenotypes associated

with a mutant allele of a known gene was slightly differ-

ent for each species.

Selection of Arabidopsis phenotypes

The Arabidopsis mutant phenotype dataset, first com-

piled by [36], includes ~2,400 genes with recessive mu-

tant phenotypes for which the disrupted gene is known.

Information for this dataset was previously gathered from:

1) a sequence-based map of genes with mutant pheno-

types [61]; 2) the SeedGenes database of essential genes

[62], as updated by [63]; 3) a list of genes associated with

mutant phenotypes obtained from TAIR [64]; and 4) sev-

eral thousand publications describing Arabidopsis mutant

phenotypes retrieved from the Pubmed Database [65]

using appropriate keywords (Arabidopsis, mutant(s), mu-

tation(s), knockout, and null). Short, free-text phenotype

descriptions found in column I of Supplemental Table S2

of [36] were used as the input for the Arabidopsis EQ

statements. Genes with only a dominant, gain-of-function

mutant phenotype [66] were generally excluded. Based on

past work, the Arabidopsis phenotypes analyzed here are

associated with sequenced genes but not with specific mu-

tant alleles.
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Selection of maize phenotypes

In the MaizeGDB database [31], maize phenotypes are as-

sociated with mutant alleles (variations) of genes based on

a maize-specific controlled phenotype vocabulary, consist-

ing of 1,088 phenotypes. Of the 1,088 phenotypes associ-

ated with mutant-defined loci, we removed continuous

trait phenotypes (e.g., phenotypes that are attributable to

quantitative trait loci or QTL), and several other types of

phenotypes not likely to be relevant for this analysis, such

as gel mobility of a protein on a starch gel. Of the

remaining phenotypes, we selected only those associated

with gene models (DNA sequences).

Selection of rice phenotypes

In order to create a list of rice mutants that were associated

with known genes, data was combined from Gramene [34]

A)

B)

C)

D)

Figure 4 This figures illustrates the usage of Plant PhenomeNET for the maize gene mac1. After searching for the gene (A), search results

are returned (B) and assigned and inferred phenes are shown (C), as well as semantically similar phenotypes from other genes (D). See text for

more details.
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and Oryzabase [32,67]. The Oryzabase file was quite large

(about 4,800 traits/phenotypes listed, with about 1,600 of

those associated with a known locus), while the Gramene

list was smaller, with about 160 loci. The information from

the two sets was combined and all the mutants with identi-

fiers from both databases were cross-referenced to ensure

there was no overlap or duplications. Many of the described

mutants had to be eliminated from the master list as they

were only described morphologically (i.e. not associated

with a known locus or gene). For the remaining mutants,

we combined all available phenotypic descriptions from the

two sources.

Selection of soybean and Medicago phenotypes

Curated lists of phenotypes for these species are not

available in public databases. Thus, in order to create

lists of mutant genes in soybean and Medicago for this

study, the primary literature was searched for pheno-

types and their descriptions.

Selection of tomato phenotypes

Tomato loci with a known phenotype were selected from

the Sol Genomics Network database (SGN) [15,35]. Phe-

notypes are associated with alleles, with some loci having

multiple alleles with different phenotypes. The loci were

curated manually based on previously described mutants

[68] and literature curation of published tomato cloned

genes with an associated phenotype. We included only loci

with morphological or metabolic phenotypes, excluding

isozyme alleles and loci that have a described phenotype

but no associated gene sequence.

Quality assurance across the entire data set

In order to provide consistency across species and allow

for computational analysis of the entire phenotype data

set, we developed a set of rules to define how the EQ

statements should be constructed, and employed manual

and automated quality checks to verify compliance with

the rules. Manual checks determined if the EQ state-

ments were made in a consistent manner across species.

We did find consistency in most cases; however, minor

inconsistencies have a relatively small effect, as the

power of using hierarchical ontologies to describe phe-

notypes allows similar but not identical EQ statements

to have high similarity scores.

Automated quality checks computationally verified the

validity of the assigned EQ statements based on our pre-

defined set of rules. An example of such a rule is a re-

quirement that entities be represented with either PO

(for structural) or GO IDs (for process phenotypes) and

that the type of Quality chosen from PATO must match

the Entity (i.e. a structure quality for a structure entity

and a process quality for a process entity). Furthermore,

the automated checks ensured that valid identifiers were

used for each ontology term and that each term label

matched its ID, which was useful for correcting typo-

graphical errors. More details on the rules we employed

are provided in Additional file 7. The automated quality

assurance was an iterative process in which the errors

were removed continuously as the data set expanded.

The data set comprising EQ statements from all six spe-

cies (Additional file 1) successfully passed the automated

checking procedure.

Building a phenotype network using semantic similarities

of gene pairs based on assigned EQ statements

The computational analysis relied on the representation of

phenotypes as EQ statements. Each phenotype was repre-

sented as an affected entity that is further described with a

quality. The application of EQ statements has been proven

useful for cross-species gene function prediction, as well

as pathway involvement and the identification of disease

gene candidates [53,69]. As described by [19], species-

specific phenes were decomposed into an affected Entity

and Quality, and represented using species-independent

ontologies. All the ontologies used here for the description

of the phenotypes in any of the six species were down-

loaded on 15 March 2014 and converted to OWL EL. In

addition to the ontologies, a set of logical definitions to

connect plant structures with biological processes has

been downloaded on 29 April 2013 and was also inte-

grated with the ontologies (see Additional file 8). For fur-

ther details on the applied ontologies see Table 1.

Once the ontologies were transferred into an OWL EL

profile, they were combined into one ontology. We ap-

plied the method implemented in PhenomeNET [37], to

represent the statements in OWL with:

has−part some E and has−quality some Qð Þ

where Entities and Qualities were used as defined by the

curators. Following this approach generates one inte-

grated ontology that then can be used to infer additional

phenes using reasoning over the ontology. An inferred

phene is an EQ statement that is an ancestor term of the

assigned EQ statement. For example, the maize mac1

(multiple archesporial cells1) gene was curated with an

EQ statement named “Male and female infertility” and

from the complete list of curator-assigned statements,

and one additional EQ statement named “Complete ster-

ility” was inferred.

To determine the semantic phenotype similarity of two

genotypes (genotype A and B), a Jaccard index based on

the binary vectors is calculated:

simphen ¼ PgenoA ∩ PgenoB
� �

= PgenoA ∪ PgenoB
� �

where P_geno_A represents the phenes of genotype A

and P_geno_B represents the phenes of genotype B.

Oellrich et al. Plant Methods  (2015) 11:10 Page 11 of 15



Applying this scoring method, phenotype semantic simi-

larity scores fall into the range [0, 1], with 0 indicating

no overlap between phenotypes and 1 indicating identi-

cal phenotypes. Calculating the semantic similarity score

for each possible combination of genotypes results in a

2,866 × 2,866 data matrix. Similarity scores > 0 are pro-

vided as Additional file 9. We note here that 10 EQ

statements of Arabidopsis genotypes (<0.2% of total EQ

statements) were excluded from the computational ana-

lysis, because they either needed further discussion

among the curators due to the relations used to build

the entity or include a term that was removed from the

ontology in the period between curation and the compu-

tational analysis.

This matrix constituting a genotype network based on

phenotype similarities was 1) compared to an existing,

manually created phenotype-specific grouping of genes

[36], and 2) used to assess gene function (see following

sections and Results and Discussion). We note here that

this scoring is highly dependent on the assigned EQ

statements and that the annotations assigned to date are

as complete as can be derived from existing findings.

This means that for phenes that have not been tested

yet, we assume that this phene is absent. With the

growth of the data set, more detail will be added to the

genotypes, which in consequence will improve the ac-

curacy of semantic phenotype similarity scores and the

representation of biological processes.

Employed data and software

We downloaded all the ontologies from the OBO Foundry

[70,71] or their respective download site (see Table 1), and

used El Vira (version 0.2) [72] to transform ontologies

from an OWL DL profile into an OWL EL profile. The ap-

plication of OWL EL files facilitates faster reasoning over

the combined ontologies and is consistent with the de-

scription of the method described for mammal data [37].

To integrate the individual annotation files along with the

respective ontologies used in annotation into a single

ontology, the Brain library version 1.5.2 was used to easily

modify OWL EL ontologies [73]. All scripts required for

the data analysis were implemented in Groovy (version

2.0.4) [74]. A copy of PhenomeNET was set up to hold the

results of the computational analysis, which were uploaded

using the PhenomeNET database scheme. Plant Phenom-

eNET is accessible from [39].

Comparison of semantic similarity and an existing

classification of plant phenotypes

For intraspecific comparison of Arabidopsis phenotypes,

we used Table S2 from [36]. In this previous work, genes

were sorted into a three-tiered hierarchy of phenotypes

of groups, class, and subsets. Their classification system

was designed for the specific purpose of defining the set

of essential genes for an organism, and for this purpose

it was not necessary to differentiate among phenotypes

of different mutant alleles of the same gene. Genes were

placed into a single group and class, prioritized by devel-

opmental stage when phenotypes are first observed and

what methods and conditions are used to detect them.

The lowest rank included phenotypes where detection

required a biochemical assay or microscopic examin-

ation. When the phenotype of a weak allele was more

informative or better characterized than the phenotype

of a null allele, the assignment was made on the basis of

the better-known phenotype (e.g., fy - null is emb lethal

but known as flowering time gene). Genes were also

assigned to one or more of 42 phenotypic subsets, such

as shoot architecture, flowering time, miscellaneous

seed defects, and temperature.

To carry out a comparison of the previous results to

the present work, we rearranged the dataset from [36]

so that each unique gene/subset combination was on a

single row. Because genes could belong to multiple sub-

sets, there were multiple rows per gene. We removed data

for 82 genes that were in [36] but not included in the

present study. We calculated average semantic similarity

of the classes and subsets as the average of all pairs of

genes where both genes were in the same class or subset.

Pathway assessment based on phenotype network

The BioCyc databases for Arabidopsis (AraCyc version

11.5), maize (CornCyc version 4.0), rice (OryzaCyc ver-

sion 1.0), and soybean (SoyCyc version 4.0) were down-

loaded from Plant Metabolic Network [45,75]. The

database for tomato (LycoCyc version 3.3) was down-

loaded from the Sol Genomics Network [15,35], and the

database for Medicago (MedicCyc version 2.0) was re-

quested from and provided by The Samuel Roberts

Noble Foundation [47,76].

To identify well-populated pathways across all six spe-

cies, we divided the number of pathway steps catalyzed

by a gene product for which a phenotype was included

in our dataset by the average number of reactions in the

pathway across the species examined (e.g., number of

steps with a curated phenotype divided by number of

total steps in the pathway). For instances where more

than one gene encoded the enzyme responsible for a sin-

gle step, that step was counted only once (i.e. the pres-

ence or absence of a gene encoding the enzyme was

counted, not the number of genes encoding that step in

a particular plant genome).

Assessment of gene families using the phenotype network

Gene families are based on the Angiosperm-level fam-

ilies from the Phytozome10 release [50], accessed on

August 13, 2014, as multiple-sequence alignments for

each family. These gene family alignments included
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peptide sequences from 43 species, and comprised 29,803

gene families. From these alignments, we calculated

HMM-based alignment models using hmmbuild (HMMer

package version 3.1 r4562, Eddy, 2011 [77]). We then

searched the peptide sequences from each of the seven

species discussed in this paper, along with peptide se-

quences from Amborella trichopoda (to serve as an out-

group in phylogenies), against the gene family HMMs,

using hmmscan (maximum E-value 1e-4), and then placed

each sequence into the family of the top HMM match,

giving a multi-fasta file for each gene family. The resulting

family files were realigned to the respective HMM using

hmmalign. Prior to generating phylogenetic trees, the

resulting alignments were trimmed of non-aligning resi-

dues (as lower case characters in the output of hmmalign,

indicating non-match-state residues in the HMM align-

ments). Phylogenetic trees were calculated using RAxML

(raxmlHPC-PTHREADS-AVX, v. 8.0.26 [78]), using model

PROTGAMMAAUTO. Analyses of EQ statements relative

to gene families were conducted by generating combined

EQ statements for each gene (concatenating multiple EQ

statements into a single string separated by “;;”) and then

joining these combined statements with genes. The result-

ing analyses are in Additional file 4. Alignments and phylo-

genetic trees are in Additional files 5 and 6, respectively.

Genome assembly and annotation versions used in

these gene families were: Glycine max assembly and an-

notation version Wm82.a2.v1; Medicago truncatula as-

sembly v 4.0v1; Arabidopsis thaliana v TAIR10; Oryza

sativa Japonica (Nipponbare) assembly IRGSP-1.0, with

the IRGSP-1.0 gene model names; Zea mays spp mays

B75 RefGen v3, assembly annotation v 6a; Lycopersicon

esculentum v iTAG2.3; Amborella trichopoda v 1.0.

Endnotes
aOntology term identifiers of the form PO:0000925 are

shorthand for identifiers of the form http://purl.obolibrary.

org/obo/PO_0009025.
bSome relations in the Relation Ontology fall within the

BFO namespace, because they are imported from the

Basic Formal Ontology.

Additional files

Additional file 1: All EQ statements curated for the six species. All EQ

statements in tabular form, with explanations of how to fill in each column.

Additional file 2: Overlap among unique phenotypes for sets of

species. Unique phenotypes means that if one EQ statement is shared

between two species, it is counted as overlap only once, no matter how

often it occurs.

Additional file 3: Average similarity scores for previously derived

Arabidopsis genes grouped by class. Classes follow [36].

Additional file 4: Gene families with EQ statements. An Excel file

with gene family membership by species, concatenated EQ statements

for genes with EQ annotations, and gene family descriptions.

Additional file 5: Gene family alignments. An archived, compressed

directory of the multi-fasta alignments (text files) for the 1,985 gene

families with EQ statements from this study. Access using “tar -xzf

alignments_w_EQs.tar.gz” and then with an alignment viewer or

standard text editor.

Additional file 6: Gene families with EQ statements. An archived,

compressed directory of the phylogenetic reconstructions (“trees”),

calculated from the alignments in Additional file 5. Tree files are in

Phylip/Newick format. Access using “tar -xzf trees_w_EQs.tar.gz” and

then with a phylogenetic tree viewer.

Additional file 7: List of error checks for the EQ statements.

Additional file 8: Logical definitions for biological processes in

plants. A subset of logical definitions built to connect biological

processes with plant structures were used as part of the computational

analysis. While the logical definitions are now part of GO, we used an

earlier independent version provided here as an OWL file, which can be

opened in a text editor or OWL editor.

Additional file 9: Similarity scores of genotype pairs with

similarity >0.
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